
Finite-Hilbert-basis-set calculations for the angular distribution of ionized electrons
produced in p+H impact at 20 keV

John F. Reading,* Jun Fu, and Mathew J. Fitzpatrick
Center for Theoretical Physics, Physics Department, Texas A&M University, College Station, Texas 77843, USA

(Received 17 November 2003; published 28 September 2004)

We present a different method of extracting the angular distribution of ejected electrons in an ion-atom
collision from a two-centered finite Hilbert basis-set calculation. We obtain good agreement with experiment
for a p+H collision at 20 keV if we include an interference between the target centered and projectile centered
amplitudes.
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I. INTRODUCTION

An energetic projectile proton in collision with a hydro-
gen atom is a much studied fundamental system. It provides
an ideal well defined laboratory wherein we may learn how
to understand a dynamic quantal collision[1–8]. Our con-
cern here is direct ionization where the electron is ejected
into a continuum state; ionization also occurs through charge
transfer where the electron is captured onto a bound state of
the projectile proton. The cited work notwithstanding, we
report here a different way of extracting differential electron
cross sections from finite Hilbert basis-set(FHBS) calcula-
tions [1]; this incorporates a quantal ionization process
wherein the outgoing ejected electron diffracts past the target
and projectile protons. This gives rise to an interference
bringing theory and experiment[9] into agreement.

Full quantal calculations of differential cross sections
have been previously reported[4–8] but just a small number
of direct comparisons with experiment have been made. Per-
haps one reason for this is the quite remarkable successes of
the classical trajectory Monte Carlo(CTMC) algorithm [2]
and the continuum distorted wave(CDW) approximation[3];
they reproduce the Rudd group data over a wide range of
proton energies[9].

When compared to the CTMC and CDW approximate
treatments, full quantal calculations are complicated to pro-
gram and expensive in computer time at convergence. How-
ever, whereas the CTMC algorithm models the initial quan-
tum state with an ensemble of electron starting conditions,
the subsequent projectile-electron dynamics is treated classi-
cally. Thus the CTMC algorithm cannot reproduce a dy-
namic quantal interference. The CDW approximation is fully
quantal. Ionization is treated as charge transfer to a projectile
continuum state, but target and projectile interference in the
final state is not treated directly.

With this in mind, if we re-examine the situation, we find
an anomaly: a failure of the CTMC-CDW approaches to re-
produce the electron angular distribution in thep+H system
at 20 keV [9]. This determines our choice of projectile en-
ergy for the full quantal FHBS calculation described here.

A difficulty with the FHBS method in producing differen-
tial cross sections is the fact that the ejected electron energy

continuum is modeled by a discretized set of pseudostate
eigenenergies. We must re-interpret the pseudostate contribu-
tions in terms of acceptably smooth momentum amplitudes;
to these we can apply the necessary Galilean transformation
to move between projectile and target frames. The main the-
oretical thrust of this work is to describe how this may be
done.

II. FINITE HILBERT BASIS-SET CALCULATIONS

A successful method of describing the reaction of a target
electron to the impact of a projectile ion, presumed to be
following a classical path,Rstd=sB ,Zd=sB ,vtd, has been to
expand the system wave function in afinite Hilbert basis set.
FHBS calculations typically use a single centered expansion
(SCE), which has just target centered bases, or, a two cen-
tered expansion(TCE), which has both projectile and target
centered bases. A third alternative which we refer to infor-
mally as a one-and-half-centered expansion(OHCE) [10] is
intermediate in its flexibility; it is two centered but limits the
projectile basis to contain just bound states.

The FHBS system wave function at large target-projectile
separation is written as

cnlm = SxTsn8l8m8dsr de−ien8l8tUTsn8l8m8d,Tsnlmds`,− `d

+ Seiv.rxpsn8l8m8dsr − Rde−ien8l8t−ivZ/2

3UPsn8l8m8d,Tsnlmds`,− `d. s1d

HereUTsn8l8m8d,Tsnlmd are the intratarget transition amplitudes,
andUPsn8l8m8d,sTnlmd are the target-projectile transition ampli-
tudes. The setxTsn8l8m8dsr d=xTsn8l8dsrdYl8m8sVd are the eigen-
states obtained from diagonalizing the target Hamiltonian
projected onto a target centered basis, whereby we obtain the
discrete energy spectrumen8l8. The projectile states are simi-
larly defined, but note in Eq.(1) the various translational
factors due to the motion of the projectile.

The target HamiltonianHT has a kinetic energy termTT
and a Coulomb potential termVT. It is the projection ofTT
onto the Hilbert basis that leads to the discretization of the
continuum, replacing it with a set of positive energy states;
sometimes called pseudostates.

The projection ofVT leads to an effective finite range
potential. Thus there are not an infinite number of Rydberg*Electronic address: reading@physics.tamu.edu
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states in the FHBS model, just a finite number of negative
energy states. It is an intrinsic assumption of the FHBS
method that this approximation of cutting off the Coulomb
tail is appropriately accurate; this is a hypothesis to be tested
by a convergence study of the particular cross section to be
calculated. We will use this finite range assumption below.

III. A METHOD OF LIMITED ACCURACY

To obtain ionization we could examinecnlm in a region
wherer , the electron coordinate, is far from both the target
and projectile, and then project onto a pure momentum state,
ukl=eik·r . But the very nature of the FHBS method is that it
is not accurate in describing the electron when it is far from
either center; further the result is not independent of time as
all positive energy amplitudes contribute to the projection
onto the system wave function, Eq.(1). A similar difficulty
with lattice based calculations has been described but is not
fully resolved [7,8]. Methods for working directly in mo-
mentum space so as to avoid the difficulty have been devel-
oped[4,5]. However, none of these calculations successfully
addresses this angular distribution.

In this work the key observation[6] is that the true target
continuum radial wave function,xTsldsE,rd, when projected
on to the basis, designated byPT, is accurately connected to
the pseudostate whenE=k2/2=enl by

PTxTsldsenl,rd = NnlxTsnldsrd. s2d

HerexTsnldsrd is normalized to unity; the constantNnl renor-
malizes it for the scattering boundary conditions.

The two identities,

eidlskdsin dlskd = 2kE drr2senl − HTd j lskrdNnlxTsnldsrd

s3ad

− eidlskdcosdlskd = 2kE drr2senl − HTd j l−1skrd

3s1 − e−brdNnlxTsnldsrd, s3bd

allow the determination of the complexNnl. The identities
follow from examining the differential equations satisfied by
j lskrd , j l−1skrds1−e−brd, and xTsldsenl ,rd and then using Eq.
(2). We are assuming that the phase shiftdlskd is produced by
a short-range potential.

Our Hilbert basis has been described elsewhere[6], for
eachl value about 100 exponential radial functions are used
to diagonalize the target Hamiltonian. But just some 20
eigenstates are used in the collisional calculation itself. This
involves about 800 coupled equations; 400 states on each
center as we includes throughh states. We have made ex-
tensive global studies of convergence for thep+H system in
the intermediate energy range; generally we believe our
worst, usually small, total cross sections to be reliable at the
10% level.

If xTsldsenl ,rd is well represented in the potential region
thenNnl is independent of the choice of the parameterb! In

Table I we varyb. One would be correct in inferring from
this test that cross sections are going to be less reliable as the
energy of the ejected electron is increased[6].

Returning to the problem at hand, using Eq.(2) to project
onto an SCEcnlm allows the connection of the differential
partial wave amplitude for ionization to the pseudostate am-
plitude, to wit,

tTsl8m8d,Tslmdsen8l8d = Nn8l8UTsn8l8m8d,Tsnlmds`,− `d. s4d

Because of the orthogonality of the pseudostates only one
state contributes and there is no time variation left after the
projection.

The pseudostates for different partial waves generally
speaking do not have matching sets of eigenenergies. So we
cannot directly construct momentum amplitudes. We could
in principle use a basis in which each set of pseudostates for
different angular momentum values had the same energies.
But this is unnecessary. To produce the differential cross sec-
tions it is just necessary to be able to interpolate on the
smooth physical differential amplitudes,tTsl8m8d,Tslmdsen8l8d, to
a set of common energies. To be successful the packing den-
sity of the discrete pseudostates has to be sufficiently high,
mandating the large basis sets we have used. We have previ-
ously reported on a successful application to the energy dif-
ferential cross sections[6].

In Fig. 1, we demonstrate the limitation of this method in
a first Born approximation for a pure Coulombic potential.
At small angles when the cross section is large the FHBS
method has errors up to 10%. At angles above 120° the
method is quite poor. Recall that at 180° there is as−1dl

factor in any partial wave sum. The phases determined by
Eq. (3) are simply not accurate enough to handle the cancel-
ation. We conclude that the FHBS method as formulated here
is unreliable in such circumstances, and should not be used at
such large angles.

At 20 keV charge transfer is an important channel and the
SCE method is inefficient. If an OHCE basis is used instead,
the capture of the electron is directly described. And the

TABLE I. Values ofNnl for p pseudostates.

n Energysa.u.d Nnl sb=0.5d Nnl sb=1.0d

7 0.006 s−51.6,−41.1d s−51.6,−41.1d
8 0.0298 s−9.02,40.3d s−9.01,40.3d
9 0.0704 s−19.1,19.2d s−19.1,19.2d
10 0.136 s−13.4,−10.8d s−13.4,−10.8d
11 0.240 s11.3,−6.07d s11.3,−6.06d
12 0.400 s−1.40,8.91d s−1.40,8.90d
13 0.644 s−2.98,−5.54d s−2.98,−5.54d
14 1.01 s3.80,2.56d s3.80,2.56d
15 1.56 s−3.35,−0.721d s−3.36,−0.702d
16 2.38 s2.59,−0.265d s2.59,−0.290d
17 3.58 s−1.86,0.663d s−1.82,0.711d
18 5.35 s1.31,−0.804d s1.25,−0.833d
19 7.87 s−0.909,0.722d s−0.767,0.741d
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same projection technique works if we limit the range of
integration for the ionization to a region around the target; all
projectile bound states have zero overlap with this region
when the target and projectile are well separated. In Fig. 2
we plot the experimental data for thep+H system, and com-
pare to CDW, CTMC, and OHCE calculations. All the theo-
retical methods fail to some extent.

We know that the free ionized electrons are steered by
both the target and the projectile. To account for this feature
efficiently it is necessary to use a TCE basis. Now the ion-
ized electrons are described by two sets of pseudostates, tar-
get and projectile centered. There is no real difficulty with-
this if we decide that the two contributions to ionization are
incoherent. We can easily find the projectile electron mo-
mentum distribution by the techniques described above; we
then perform a Galilean transformation to obtain the distri-
bution in the target frame which we add incoherently to the
target contributions. The result is a considerable improve-
ment in the fit to the data, Fig. 3.

IV. COHERENCE

To includecoherentlytarget and projectile contributions
when we use the TCE method is straightforward. We first
chose to write a final ionized electron wave function as

xs−dsk,r de−ik2t/2 = xT
s−dsk,r de−ik2t/2 + eiv·r+ik·BxP

s−dsk − v,r − Rd

3e−isk − vd2t/2−ivZ/2 − eik·re−ik2t/2. s5d

We note that ast→`, in the target region just the first
term on the right of Eq.(5) survives, and in the projectile
region just the second term survives. When we use this final-
state wave function to project we get two contributions to the
amplitude for ionization at a particular energy and angle. The
first coming from the target pseudostates, the second from
the projectile pseudostates.

We needxT
s−dsk ,r d andxP

s−dsk −v ,r −Rd projected onto the
target and projectile space, respectively. But before we can
directly use Eq.(2) we have to have matching energies both
for the target pseudostates and the projectile pseudostates.
That is, we must have target pseudostates for which there are
eigenenergies for alll8 such that

k2/2 = en8,l8 s5ad

for some choice ofn8 and projectile pseudostates where there
are eigenenergies for alll9 such that

sk − vd2/2 = en9,l9 s5bd

for some choice ofn9.
As k is to have an arbitrary direction we cannot guarantee

that both equations can be satisfied simultaneously for any
particular Hilbert basis diagonalization. But if this happy
situation were obtained then our projection would be inde-
pendent of time! We solve this problem not by repeated di-
agonalizations with different bases but by once again inter-
polating the quantities Nn8l8UTsn8l8m8d,Tsnlmds` ,−`d and
Nn9l9UPsn9l9m9d,Tsnlmds` ,−`d in pseudostate energies to the
common desired value.

FIG. 1. Comparison of angular distribution of ionized electrons
given by an exact first Born approximation(dotted line) and an
FHBS Born calculation(solid line) in a p+H collision at 20 keV. In
this result justs through f states were used for both cross sections.

FIG. 2. Angular distribution of ionized electrons at 20-keV pro-
jectile energyp+H collision given by different theories: CDW
(dots), CTMC (dotted line), and OHCE(solid line). The circled dots
are experimental data.

FIG. 3. Angular distribution of ionized electrons at 20-keV pro-
jectile energyp+H collision given by Two-Centered expansion
model with interference(solid line) and without interference(dotted
line). The circled dots are experimental data.
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The final result is plotted in Fig. 3. With the interference
term included, the experimental values are well reproduced
by the FHBS method, until the large angle region is reached
when the method fails as expected.

V. CONCLUSION

The interference which we have uncovered in this analy-
sis points out the importance of electrons which are strongly
influenced by the target or the projectile in the final exit

channel. It represents an interesting and subtle aspect of the
collision. Recall that the original Young’s double slit experi-
ment was in fact performed with two pinprick holes; in this
case the geometry is similar. The target and projectile play
the roles of moving objects from which the electron scatters.
We anticipate that this interference will become richer in
information as we go to higher-order differentiation. We
have yet to demonstrate that theory is capable of following
the data to these deeper levels.
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