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We propose a cavity QED-based scheme to observe the noncommutativity between the creation and anni-
hilation operators. By conditional measurement after the atom-field interaction in a cavity, it is possible to
achieve a photon-added-then-subtracted state and a photon-subtracted-then-added state, which have different
statistical properties. This scheme has the advantages of simple analytical results and much higher generation
probabilities. We show that the ideal results of one-cycle photon addition and subtraction are approached in the
short time limit. We also discuss the possible implementation scheme.
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I. INTRODUCTION

The commutation relation between the creation and anni-
hilation operators a† and a has long been an intriguing part
of quantum mechanics. It is the cause of zero point energy,
including the vacuum fluctuation. Unlike classical systems
where the order of adding and subtracting identical particles
does not make any difference, in quantum systems each se-
quence gives a unique result due to the noncommutativity
between a† and a. A direct observation of these different
results would be of fundamental interest.

With the progress of quantum state engineering, it is now
possible to create a photon-added state or photon-subtracted
state by conditional measurement. One way of doing this is
through a beam splitter �1�. Dakna showed that if the initial
state and a Fock state are injected at the two input channels,
then the photon number counting of the output Fock state
reduces the other output channel into a corresponding
photon-added or photon-subtracted state �2�. Another method
is through parametric amplification �3–5�, where the photon
counting at the idler mode could reduce the signal mode into
a number state or a photon-added state �6�. Ban has shown
the equivalence between the two methods �7�.

Conditional measurement can also be applied to atom-
field interaction in a cavity. For example, for an excited two-
level atom going through a cavity in the short interaction
time limit, if the outgoing atom is detected to be in the
ground state, then the field in the cavity will be reduced to
the single photon-added state. The first proposal was made
by Agarwal and Tara to produce the photon-added coherent
state and it exhibits nonclassical properties �8�. Later came a
series of discussions about various states after photon addi-
tion, such as photon-added squeezed vacuum states �9�, even
and odd coherent states �10�, thermal states �11�, and two-
mode squeezed vacuum states �12�.

Recently Zavatta et al. realized the single photon addition
for a coherent state �6�, and showed the smooth transition
between quantum �Fock� state and a classical �coherent� state
by preparing different initial states. The same group achieved
single photon addition and subtraction by using a setup in-
volving a beam splitter and a parametric amplifier �13�. This

provided a striking direct observation of the noncommutativ-
ity. They found that for a thermal state, counterintuitively a
photon subtraction increases the average photon number.
While the Wigner function for the photon-added-then-
subtracted state has a positive dip at the center, the dip be-
comes negative for the photon-subtracted-then-added state.

These interesting results and their fundamental impor-
tance motivated us to conceive a similar experiment in cavity
quantum electrodynamics �QED�. There are certain advan-
tages in such a scheme. The state generation probability is
much higher as compared to the beam splitter setup. Our
simple system allows an analytical form for the final density
operator. The rapid development �14� in the field of cavity
QED has provided all the necessary technology for the ex-
perimental implementation, as we will discuss in Sec. V.

II. GENERAL THEORY

In order to observe the noncommutativity between the
creation and annihilation operators a† and a, the most
straightforward way is to compare the one-cycle photon-
added-then-subtracted and photon-subtracted-then-added
states. If the two sequences lead to different results then it is
a clear sign of noncommutativity.

Ideally, a single photon addition to a state ��� changes it
into a†���. The density operator ��0� is correspondingly
changed into ��a�=Na†��0�a where N means normalization of
the density operator. If then followed by a single photon
subtraction, the final density operator would be

��sa� = Naa†��0�aa†. �1�

This is the ideal result in which the photon only undergoes
one cycle. The ideal density operator after one-cycle photon-
subtraction-then-addition is

��as� = Na†a��0�a†a . �2�

Due to the difficulty of deterministic single photon opera-
tions, one cannot obtain these ideal results exactly in experi-
ment, but only approximate them.

Here we propose a cavity QED system for the experiment,
in which an initial field is stored inside a cavity and two-
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level atoms are sent into the cavity one by one to interact
with the field for some time before flying out. The atom-field
interaction is governed by the unitary time-evolution opera-
tor �15�

U�t� = exp�− igt��a��b�a + a†�b��a���

= cos�gt�a†a + 1��a��a� + cos�gt�a†a��b��b�

− i
sin�gt�a†a + 1�

�a†a + 1
a�a��b� − ia†sin�gt�a†a + 1�

�a†a + 1
�b��a� ,

�3�

where g is the atom-field coupling constant assumed to be
real. The atom is detected when it flies out of the cavity.
Only if it ends at the wanted level we claim a successful run,
for which we measure the properties of the field left in the
cavity. This postselection of atoms reduces the field in our
desired way since they are entangled due to the interaction.

In the following sections we present the procedures and
general results for the two-step detection and one-step detec-
tion, and show how the two-step results approach the ideal
ones in the short time limit. These general formulas will be
applied to the initial thermal state and coherent state in Secs.
III and IV to observe the noncommutativity.

A. Two-step detection

In the two-step detection, we first send in an atom in the
excited state �a� and detect it at the exit to select the ground
state �b� result only. Then we send in another atom in the
ground state and accept the case only if it ends in the excited
state. When both conditions are satisfied, we measure the
field left in the cavity.

The initial density operator of the system is ��0��a��a�.
When the first atom is inside the cavity, the system evolves
as U�t���0��a��a�U†�t� if we ignore the damping for simplic-
ity. Since we only choose the cases in which the atom leaves
the cavity in the ground state after some interaction time t,
the density operator of the field is reduced to

��a� = N�b�U�t���0��a��a�U†�t��b�

= N	a†sin�gt�a†a + 1�
�a†a + 1

��0�sin�gt�a†a + 1�
�a†a + 1

a
 . �4�

Similarly for the second atom, the initial system is ��a��b��b�.
After some interaction time t� and the atom detection, the
final density operator of the field becomes

��sa� = N�a�U�t����a��b��b�U†�t���a�

= N	 sin�gt��a†a + 1�
�a†a + 1

a��a�a†sin�gt��a†a + 1�
�a†a + 1


 .

�5�

This is the photon-added-then-subtracted state after two-step
detection.

The Taylor expansion of Eq. �5� yields

��sa� = N	�gt��2a��a�a† −
�gt��6

3!
aa†a��a�a†aa† + ¯ 


= N	�g2tt��2aa†��0�aa†

−
�g4tt��2�t4 + t�4�

3!
aa†aa†��0�aa†aa† + ¯ 
 . �6�

In the short time limit when both gt and gt� are very small,
the one-cycle term is dominant so our result ��sa� approaches
the ideal result ��sa�. With the increase of either interaction
time, the two-cycle term comes into play and causes the
deviation. Compared to Eq. �S5� of Ref. �13�, where their
parameters � and � play the same roles as our gt and gt�, our
expression is simpler and the unwanted terms start from
higher order �gt�6 instead of �4. This means they disappear
much faster in the short time limit.

In the reversed order we first send in an atom in the
ground state and only accept the results when it exits in the
excited state. Then we send in another atom in the excited
state and detect it in the ground state. The density operator of
the photon-subtracted-then-added state ��as� can be obtained
from Eqs. �4� and �5� by simply switching levels a and b.

B. One-step detection

A simpler setup is always preferable, so we also investi-
gate the possibility of one-step detection. In pursuing the
one-cycle photon-added-then-subtracted state, we send in an
excited atom and detect it at the exit to choose the excited
state result only. The field density operator is reduced to

�1
�sa� = N�a�U�t���0��a��a�U†�t��a� , �7�

where the subscript 1 means one step. Similarly we try to
approximate the one-cycle photon-subtracted-then-added
state by sending and detecting the atom in the ground state.
The field density operator becomes

�1
�as� = N�b�U�t���0��b��b�U†�t��b� . �8�

III. INITIAL THERMAL STATE

A. Results of two-step detection

In order to see the effect of these conditional measure-
ments we consider an example of the thermal field. The ini-
tial density operator is

�th = �
n=0

�
n̄n

�1 + n̄�1+n �n��n� , �9�

where n̄ is the average photon number of the thermal state.
Using the formulas in Sec. II A we obtain the final density
operators for the two sequences

��sa� =

�
n=0

�

rn sin2�gt�n + 1�sin2�gt��n + 1��n��n�

�
n=0

�

rn sin2�gt�n + 1�sin2�gt��n + 1�

,

SUN, AL-AMRI, AND ZUBAIRY PHYSICAL REVIEW A 78, 043801 �2008�

043801-2



��as� =

�
n=1

�

rn sin2�gt�n�sin2�gt��n��n��n�

�
n=1

�

rn sin2�gt�n�sin2�gt��n�

, �10�

where r= n̄ / �1+ n̄�. These simple analytical forms cannot be
obtained in the beam splitter and/or parametric amplifier
scheme. They allow us to analyze how the results change
with the parameters, such as n̄ and the interaction times.

With these density operators we can find any property of
the final field. For example, we can prove the relation be-
tween the average photon numbers of the two sequences,

�n��sa� + 1 =

�
n=0

�

rn sin2�gt�n + 1�sin2�gt��n + 1��n + 1�

�
n=0

�

rn sin2�gt�n + 1�sin2�gt��n + 1�

=

�
n=0

�

r1+n sin2�gt�n + 1�sin2�gt��n + 1��n + 1�

�
n=0

�

r1+n sin2�gt�n + 1�sin2�gt��n + 1�

=

�
n=0

�

rn sin2�gt�n�sin2�gt��n�n

�
n=0

�

rn sin2�gt�n�sin2�gt��n�

= �n��as�. �11�

In deriving the above equation, we multiply both the nu-
merator and the denominator with a factor r in the second
step, and reorganize the symbol 1+n into n in the third step.
Equation �11� clearly shows the noncommutativity between
the creation and annihilation operators, valid for any interac-
tion times.

In Fig. 1 we show how �n��sa� changes with the interaction
time gt at a fixed gt�=0.1�. For most of the gt, the average
photon number after photon-addition-then-subtraction is

higher than the initial n̄. This counterintuitive result, as ex-
plained in Ref. �13�, is because the creation and annihilation
operators produce a �n+1 �or �n� factor which increases the
weight of higher number states in the final field. The dips and
the peaks on these curves are caused by certain missing num-
ber states, as we will explain in the next section.

The generation probability p�sa� can be obtained from the
normalization constant of ��sa�,

p�sa� = �
n=0

�
n̄n

�1 + n̄�1+n sin2�gt�n + 1�sin2�gt��n + 1� .

�12�

We can similarly obtain p�as� and prove their relation p�as�

=rp�sa�. For n̄=0.57 and close to short time limit gt=gt�
=0.1�, we have p�sa�=0.027 and p�as�=0.01. This is over 102

times larger than the generation probabilities in Ref. �13� at
the fidelity level above 99%. The reason is that we do not
require very small gt and gt� to eliminate the unwanted
terms, since they start from higher order in our case.

We can also calculate the Wigner function from the den-
sity operators via �15�

W��,�*� =
2

�2 exp�2���2� � �− 	���	�


exp�− 2�	�* − 	*���d2	 , �13�

where �	� is a coherent state. For the initial thermal state the
Wigner function can be shown to be

Wth��,�*� =
2

��1 + 2n̄�
exp	−

2���2

1 + 2n̄

 , �14�

which is positive everywhere in the phase space and peaks at
the center, as shown in Fig. 2. The cycling of the photon
dramatically changes the field. When both interaction times
are small, the Wigner function after the photon-addition-
then-subtraction process is also positive everywhere but has
a dip at the center. For the reverse process, this central dip
becomes negative. All these comply with the ideal situation
and the experimental results from Ref. �13�. The different
results from the two sequences reveal the noncommutativity
between a and a†. We show these Wigner functions only on

FIG. 1. �Color online� Average photon numbers �n��sa� change
with the interaction time gt, while gt� is fixed at 0.1�. At most
times they are larger than the initial photon number. The dips on the
curves are caused by Rabi oscillations.

FIG. 2. �Color online� Wigner functions for the short interaction
times gt=gt�=0.1� and n̄=0.57, which is very close to the ideal
case of single photon addition and subtraction.
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the x axis because they are rotationally invariant for diagonal
density operators.

B. Fidelities of two-step detection

In order to see how closely the final field � simulates the
ideal result �, we calculate the fidelity. If the initial state is
thermal, the ideal final density operators would be

��sa� =

�
n=0

�

rn�n + 1�2�n��n�

�
n=0

�

rn�n + 1�2

,

��as� =

�
n=0

�

rnn2�n��n�

�
n=0

�

rnn2

. �15�

For two diagonal matrices �=�n�n�n��n� and �=�n�n�n��n�,
the fidelity is defined as F=�n

��n�n �16�. By using the same
trick as in Eq. �11� we can prove F�sa�
F�as� in our system,
for any interaction times.

The relation between the fidelities and the interaction
times when t= t� is shown in Fig. 3. For all the different
initial thermal states n̄=0.05, 0.57, and 2, the fidelities ap-
proach 1 at small interaction times, which means we have an
ideal result. The reason is simple, there is no time for mul-
tiple cycles and therefore it could only be single photon
added or subtracted once in each step.

There are some interesting details in Fig. 3. All of these
curves oscillate while they gradually decrease, and they all
have many dips with some common ones at gt=� ,2� , . . ..
The locations of these dips are gt=k� /�1+m where k
=1,2 ,3 , . . . and m=0,1 ,2 , . . .. At these interaction times, the
number state �m� of the field recycles back and so does the
atomic state; therefore the possibility of detecting the atom in
the other state at the exit is essentially zero. This means �m�

does not pass its information to the field after postselection
and causes the deviation dip. The depth of the dip mainly
depends on the significance of �m� in the initial field. For n̄
=0.05 the �0� state is the most important one and there is a
small part of �1�. So we see these deep dips at � ,2�, and the
shallow dips at � /�2,2� /�2. With the increase of n̄ there
are more significant number states and more dips. Some be-
come so close together that they form a wide dip. An obvious
example is the first dip of each curve.

C. Fidelities of one-step detection

Up to now we have been using two-step detection and
found a good agreement with the ideal results in the short
time limit. But how about one-step detection? The short time
limit is no longer a good choice because the no-cycle term
would be dominant, so we did not expect a good fidelity with
respect to the ideal one-cycle result. However, for a moderate
n̄=0.57, the fidelity of one-step detection F1

�sa� rises up close
to 1 at some interaction time, as shown in Fig. 4. The curve
starts from below 1 as we expected. Some dips show up at
locations gt= �k+1 /2�� /�1+m because the number state �m�
is at half-cycle there and so the atom is in the ground state
and gives no contribution to the detection. After all the sig-
nificant number states �except for �0� whose factor caused by
the operators is 1 and so its cycling makes no difference to
the density operator� have passed the half-cycle points and
before any of their one-and-a-half-cycle points, the detection
gives a result close to the ideal one-cycle case. The result
would be even better if we use a smaller n̄.

On the contrary, if we send in an atom on the ground state
and only consider the results when it exits on the ground
state, the fidelity to the ideal photon-subtracted-then-added
result F1

�as� is quite low. The reason is that, for the ideal case,
the �0� state would be eliminated by the annihilation operator,
while it stays untouched in the one-step detection result.

IV. INITIAL COHERENT STATE

We also want to see the results for other initial states. A
natural choice is the coherent state ���, which can be ex-
panded into the number states

FIG. 3. �Color online� Two-step fidelity �F�sa�
F�as�� with re-
spect to time curves under different initial thermal states. We
choose the same interaction times gt=gt�. In the short time limit the
fidelities go to 1. The dips on the curves are caused by Rabi oscil-
lations of different number states.

FIG. 4. �Color online� One-step fidelities for a thermal state with
n̄=0.57. F1

�sa� can approach 1 at some later time, while F1
�as� is

always low.
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��� = e−���2/2�
n=0

�
�n

�n!
�n� . �16�

The ideal results for one-cycle photon addition and subtrac-
tion are

��as� = 	�
n=1

�
�n

�n!
n�n� �

n�=1

�
�*n�

�n�!
n��n��
� Tr,

��sa� = 	�
n=0

�
�n

�n!
�n + 1��n� �

n�=0

�
�*n�

�n�!
�n� + 1��n��
� Tr,

�17�

where the Tr in the denominator means the trace of the nu-
merator. Here the average photon numbers have no fixed
relation like Eq. �11� because �n+1,n+1

�0� /�n,n
�0� is not a constant

for all n.
In our system, after two-step detections, the field density

operators become

��as� = 	�
n=1

�
�n

�n!
sin�gt�n�sin�gt��n��n�


 �
n�=1

�
�*n�

�n�!
sin�gt�n��sin�gt��n���n��
� Tr,

��sa� = 	�
n=0

�
�n

�n!
sin�gt�n + 1�sin�gt��n + 1��n� �

n�=0

�
�*n�

�n�!


sin�gt�n� + 1�sin�gt��n� + 1��n��
� Tr. �18�

These reduce to the ideal result in the short time limit, as
expected.

For the initial coherent state ��� the Wigner function is a
Gaussian function peaked at ��=�,

Wcoh���,��*� =
2

�
exp�− 2��� − ��2� . �19�

For the ideal photon-subtracted-then-added state, the Wigner
function has a negative dip located between the origin and �,
and a positive peak lying on their extension line. As an ex-
ample we show the graph W�as� in Fig. 5 when initially ���
= �1+ i�. In the reversed order, the Wigner function W�sa�

shown in Fig. 6 has similar features, although the negative
dip is much shallower than the one for W�as�. We recall that
in the ideal result for the thermal state, W�sa� is positive ev-
erywhere.

V. IMPLEMENTATION

The experimental realization of this scheme lies within
the present technical limitation. Almost all aspects of the
proposed experiment have been demonstrated in the experi-
ments related to single atom interaction with field �17–21�

and quantum state measurement �22�. For example, we can
use circular Rydberg atoms which behave like two-level at-
oms �19,21�. The levels �a� and �b� correspond to the Ryd-
berg states with principal quantum number 51 and 50, re-
spectively. They are prepared one by one in a pulsed process
�23,24�. The currently available high-Q superconducting mi-
crowave cavity has been improved to Q=4.6
109 and
damping time Tc=130 ms �25�. The initial thermal field can
be prepared by cooling the system down to the desired tem-
perature �17�. The initial coherent field can be injected into
the cavity by a pulsed source S �20�. The interaction time can
be controlled by using atoms with different speeds �19�. To
detect the atom level at the exit of the cavity, one can put an
electric field outside to ionize and deflect the excited atoms
�18�.

The Wigner function of the final field can be detected
without absorption via dispersive interaction �22�. Alterna-
tively, we can measure the photon statistics and even the
complete quantum state inside the cavity using a spectral
technique �26�.

VI. CONCLUSION

In summary we have shown that a cavity QED experi-
ment can be done to verify the commutation relation between

�2

0

2

x� �2

0

2

y�

0.0

0.2

0.4

0.6

W �as�

FIG. 5. �Color online� Ideal W�as� when the initial state is a
coherent state ���= �1+ i�. Both the dip and the peak lie on the line
connecting the origin and �.

�2

0

2

x� �2

0

2

y�

0.0

0.2

0.4

0.6

W �sa�

FIG. 6. �Color online� Ideal W�sa� when the initial state is a
coherent state ���= �1+ i�. Similar features as W�as� but with a much
shallower dip.
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the creation and annihilation operators. The proposed experi-
ment gives a generation probability that is several orders of
magnitude larger than the corresponding experiment using
the beam splitter and parametric amplifier. In the short inter-
action time limit, two-step detection can provide an ideal
photon-added-then-subtracted state or photon-subtracted-
then-added state. Their different properties show the non-
commutativity between a† and a, which has its fundamental
interest in quantum mechanics.

The simple analytical form of the final density operator
allows us to see how the results change with the interaction
times. Both the average photon numbers and the fidelity
curves have many dips which can be explained by Rabi os-
cillations. Interestingly, we find even one-step detection is
possible to generate a photon-added-then-subtracted state at
some given time, when all the significant number states un-
dergo one cycle.

The Wigner function for a coherent state also changes
after photon addition and subtraction. The initial Gaussian

peak becomes a positive peak and a negative dip on the line
between the origin point and the initial center. The values
and locations for these extreme points are different for the
two alternated sequences. An interesting difference from the
thermal state is that W�sa� can be negative now even in the
ideal result.

In all these calculations we ignore the atomic decoherence
and field damping because the interaction times are small
compared to the long radiative lifetimes of the circular Ryd-
berg states and the long damping time in the high-Q cavity.
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