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The pseudorapidity asymmetry and centrality dependence of charged hadron spectra ind+Au collisions at
ÎsNN=200 GeV are presented. The charged particle density at midrapidity, its pseudorapidity asymmetry, and
centrality dependence are reasonably reproduced by a multiphase transport model, by HIJING, and by the latest
calculations in a saturation model. Ratios of transverse momentum spectra between backward and forward
pseudorapidity are above unity forpT below 5 GeV/c. The ratio of central to peripheral spectra ind+Au
collisions shows enhancement at 2,pT,6 GeV/c, with a larger effect at backward rapidity than forward
rapidity. Our measurements are in qualitative agreement with gluon saturation and in contrast to calculations
based on incoherent multiple partonic scatterings.

DOI: 10.1103/PhysRevC.70.064907 PACS number(s): 25.75.Dw

Soft and hard scattering processes have distinctive rapid-
ity and centrality dependences in the context of particle pro-
duction in dspd+Au collisions. Models based on the color
glass condensate[1,2], HIJING [3], and multiphase transport
(AMPT) [4] predict specific pseudorapidityshd and central-

ity dependence of produced particle density which can be
directly compared to experimental measurements. The Cro-
nin effect[5]—the enhancement of particle yield at interme-
diate transverse momentumspTd with respect to binary col-
lision scaling—has also been observed ind+Au collisions at
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RHIC [6–10]. For partonic processes such as the dominant
g+g and q+g scatterings, the particle rapidity distribution
can be evaluated in a pQCD-inspired framework that de-
pends on the parton distribution functions and the underlying
dynamics. For example, calculations of the Cronin effect
based on incoherent initial multiple partonic scatterings and
independent fragmentation[3] predict a unique rapidity
asymmetry of particle production ind+Au collisions, where
the backward-to-forward[negative rapidity(Au) to positive
rapidity sdd] particle ratio is greater than unity at lowpT,
goes below unity at intermediatepT, and approaches unity
again at highpT. The amplitude of the theoretical backward-
to-forward particle ratios depends on the nuclear shadowing
[3]. Calculations of shadowing alone, based on Regge theory
and hard diffraction[11], are fairly successful in describing
the observed suppression of particle production at forward
rapidity in d+Au collisions[12]. The calculation in Ref.[12]
considers the spatial dependence of the shadowing, leading
to an impact parameter dependence that goes beyond the
simple geometrical scaling. Calculations in a gluon satura-
tion model[13] predict a backward-to-forward particle ratio
that is opposite to the predictions based on incoherent mul-
tiple partonic scatterings. In this approach, the particle pro-
duction is related to the high gluon density in the nucleus
(nucleon). The asymmetry is greater than unity in the range
of transverse momenta determined by the values of the satu-
ration scaleQssyd and the geometrical scaleQs

2syd /Qs,min,
whereQs,min is at the onset of the gluon saturation. Recently,
the quark recombination model was used to explain the Cro-
nin effect as a final-state effect[14], implying a backward-
to-forward particle ratio markedly different from that of the
QCD-inspired formulation in[3] and similar to the predic-
tions by a saturation model[13]. In this approach, the en-
hancement of particle production at intermediatepT is an
extension from lowpT due to the thermal parton and shower
parton recombination[14].

The suppression of high transverse momentum particles
in central Au+Au collisions at RHIC can be described by
both final-state and initial-state effects, such as jet quenching
calculations that assume parton energy loss via gluon brems-
strahlung[15,16] or gluon saturation[17]. The measurement
of particle production at midrapidity fromd+Au collisions at
RHIC [6–9] favors the scenario that the suppression of high-
pT particles is primarily due to the final-state interactions,
i.e., processes after the hard partonic scattering. The quanti-
tative features of high-pT particle production in Au+Au col-
lisions can be described by models that incorporate a com-
bination of physical effects such as the Cronin effect, nuclear
shadowing[18], and parton energy loss[15,16]. The Cronin
effect and shadowing can be investigated indspd+Au colli-
sions. The magnitude of these nuclear effects on particle pro-
duction has a geometrical dependence due to the nuclear
density distribution. The particle production indspd+Au col-
lisions at different rapidities also reflects the dynamics of
nuclear and Bjorken-x dependence of these effects. There-
fore, the centrality, pseudorapidity, andpT dependence of
particle production indspd+Au collisions provides an essen-
tial baseline for understanding the underlying phenomena in
Au+Au collisions.

We present inclusivepT spectra of charged hadrons over
anh range of −1(Au-side) to +1 (d-side) in d+Au collisions
at ÎsNN=200 GeV with several collision centrality selec-
tions. For these measurements, the STAR time-projection
chamber(TPC) [19] provided tracking of charged hadrons.
The minimum bias trigger was defined by requiring that at
least one beam-rapidity neutron impinge on the zero degree
calorimeter[20] in the Au beam direction. The measured
minimum bias cross section amounts to 95±3% of the total
d+Au geometric cross section. Charged particle multiplicity
within −3.8,h,−2.8 was measured by the forward TPC
[21] in the Au beam direction and served as the basis for our
d+Au centrality tagging scheme, as described in[6]. The d
+Au centrality definition consists of three event centrality
classes: the 0–20, 20–40, and 40–100 percentiles of the total
d+Au cross section. A separate centrality tag, which requires
that a single neutron impinge on the zero degree calorimeter
in the deuteron beam directionsZDC-dd, was also used. Our
analysis was restricted to events with a primary vertex within
50 cm of the center of the TPC along the beam direction.
This yielded a data set of 9.53106 minimum bias events.
Only tracks(with at least 15 measured points) with a pro-
jected distance of closest approach to the event primary ver-
tex of less than 3 cm were used in the analysis.

Acceptance and TPC tracking efficiency corrections in
various pseudorapidity regions and centrality classes were
obtained by embedding simulated data into a real data
sample. In the region ofuhu,0.5, the tracking efficiency and
acceptance abovepT=2.0 GeV/c were observed to reach a
plateau of about 90% for all centrality classes. Efficiency
corrections using filtered HIJING[22]—HIJING events in a
GEANT simulation of the detector—were also used; a maxi-
mum difference between HIJING and embedded data of
about 3% was observed. Background due to weak decay
products was accounted for using filtered HIJING. For the
0–20 % most central events, the contaminating signals are
estimated at less than 18% forpT,1.0 GeV/c, and for the
40–100 % most peripheral events this was observed to be
less than 12%. The background exponentially decreases, and
abovepT=1.0 GeV/c, the background is approximately 4%,
exhibiting no strong dependence on centrality or pseudora-
pidity. A net uncertainty of 6% in the analysis corrections
was determined by adding the efficiency and background
correction uncertainties in quadrature.

The transverse momentum spectra of primary charged
hadrons for various pseudorapidity regions are shown in Fig.
1 for the 0–20 %, 20–40 %, 40–100 % centrality selections,
and for minimum bias events. In the region of 0.2,pT
,2.0 GeV/c, the charged hadron spectra were fitted with a
power-law function,

d2N

pTdpTdh
=

A

s1 + pT/p0dn . s1d

The integrated charged hadron multiplicity per unit of pseu-
dorapidity dN/dh was obtained by summing up the mea-
sured yields in the covered momentum range and using the
power-law function for extrapolation topT=0 GeV/c. Figure
2 shows the pseudorapidity dependence of charged particle
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densities for various centrality classes. Calculations based on
the ideas of gluon saturation[1] in the color glass condensate
as well as the predictions of AMPT[4] are also shown. Both
models predict a similar pseudorapidity dependence of par-
ticle yields. It should be noted that the pseudorapidity and
centrality dependence of charged particle yields generated by
HIJING [22] (without shadowing) are nearly identical to the
AMPT results at midrapidity. There is a clear increase in the
asymmetry of charged particle densities as a function of in-
creasing centrality: a prominent pseudorapidity dependence
is observed for the 0–20 % most central collisions, while
peripheral collisions between gold nuclei and deuterons are
akin to symmetricp+p collisions. The predictions of the

gluon saturation model and AMPT are in good overall agree-
ment with the data.

We define a measured asymmetry by taking ratios of in-
clusive backward(Au-side) to forward (d-side) pT spectra.
Figure 3 shows thepT dependence of the asymmetry for
minimum bias and ZDC-d neutron-tagged events. The ratio
was taken between the −1.0,h,−0.5 and 0.5,h,1.0 as
well as −0.5,h,0.0 and 0.0,h,0.5 regions. An overall
systematic uncertainty(indicated by the band) of less than
3% was assessed by taking the corresponding ratios between
inclusive spectra measured by STAR inp+p collisions at the
same energy, where an asymmetry is not expected to be
present. The ratio taken withinuhu,0.5 is nearly constant in
pT, with a maximum value of approximately 1.075. This in-
dicates that there is a small disparity between the forward
and backward regions immediately aroundh=0. The ratio
taken at higher pseudorapidity slowly increases withpT up to
about pT=2.5 GeV/c, attaining a value of approximately
1.25. The ratio taken at higher pseudorapidity approaches
unity beyond PT=5 GeV/c, indicating the absence of
nuclear effects at highpT. For the ZDC-d neutron-tagged
events, the ratio exhibits nearly the samepT dependence as
minimum bias events. Figure 4(a) illustrates the centrality
dependence of the asymmetry in the region of 0.5, uhu
,1.0. The asymmetry becomes more prominent with in-
creasing centrality, reaching a factor of about 1.35 for the
most central events. The asymmetry in the region of 0.0
, uhu,0.5, shown in Fig. 4(b), does not exhibit a strong
centrality andpT dependence. The neutron-tagged events
have an average number of binary collisions,kNbinl
=2.9±0.2, well below thekNbinl=7.5±0.4 of the minimum
bias data set. The events in which a single nucleon from the
deuteron interacted with the Au nucleus comprise approxi-
mately half of the 40–100 % peripheral centrality class[6].
However, Fig. 3 shows that theh asymmetry ratios for mini-
mum bias and neutron-tagged events are nearly identical.

Particle production at midrapidity ind+Au collisions may
include contributions from deuteron-side partons that have
experienced multiple scatterings while traversing the gold

FIG. 1. ThepT spectra of charged hadrons. From the top, the
open circles correspond to the 0–20 %, 20–40 %, minimum bias,
and 40–100 % centralities in −1.0,h,−0.5. Similarly, the solid
triangles, open squares, and solid squares correspond topT spectra
in 0.0,h,0.5, −0.5,h,0.0, and 0.5,h,1.0, respectively.
Spectra have been scaled by the factors indicated in the figure.

FIG. 2. (Color online) The pseudorapidity dependence of
charged particle densities for various centrality classes. Particle
tracking efficiency and background corrections were carried out for
each pseudorapidity binsDh=0.1d. The point-to-point systematic
uncertainties shown for each distribution(indicated by bands) are
the quadratic sum of the efficiency and background correction un-
certainties; statistical uncertainties are negligible. The results of
AMPT (with default parameters) and parton saturation are indicated
by the dashed and solid lines, respectively.

FIG. 3. (Color online) The ratio of charged hadron spectra in the
backward rapidity to forward rapidity region for minimum bias and
ZDC-d neutron-tagged events. Calculations based on pQCD[3]
sy=−1/y=1d for minimum bias events are also shown for cases
with no shadowing(solid curve), HIJING shadowing (dashed
curve), and EKS shadowing(dot-dashed curve). Calculations in a
gluon saturation model[13] for minimum bias events are shown for
0.5, uhu,1.0 (filled circles with solid line) and for 0.0, uhu,0.5
(open squares with solid line).
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nucleus, and from gold-side partons that may have been
modified by nuclear effects. Also shown in Fig. 3 is the cal-
culation of the asymmetry in the incoherent multiple partonic
scattering framework with various nuclear shadowing pa-
rametrizations: no nuclear shadowing, the HIJING shadow-
ing [23], and the EKS shadowing[24] parametrizations. The
ratio, taken for minimum bias spectra aty=−1 andy=1, is
below unity atpT,3–4 GeV/c and is a consequence of the
increase inpT for partons from the deuteron hemisphere. Our
measurements disagree with the theoretical calculations[3]
and thus suggest that incoherent multiple scattering of par-
tons in the initial state alone cannot reproduce the observed
pseudorapidity asymmetry in the intermediatepT region. By
the same token, the class of models that incorporate initial
parton scattering[3,4,25], though capable of reproducing in-
tegrated observables such as charged particle yield asymme-
tries, may not adequately reproduce thepT dependence of the
asymmetry. In this respect, thepT dependence of the pseudo-
rapidity asymmetry as illustrated by the backward-to-
forward ratio of charged hadron spectra can serve as an im-
portant discriminator between models.

The minimum bias gluon saturation results for the
backward-to-forward ratio of charged hadron spectra, also
shown in Fig. 3, were obtained by performing a calculation
identical to the one in Ref.[13] on the basis of the method
developed in[17,26]. In this approach, the asymmetry is
greater than unity in the range of transverse momenta deter-
mined by the values of the saturation scaleQssyd and the
geometrical scaleQs

2syd /Qs,min. The calculated particle yield
aysmmetry, evaluated over the same pseudorapidity range as
the data, is in qualitative agreement with our observations.

The theoretical asymmetry exhibits a strongerpT dependence
than actually observed, overpredicting the magnitude of the
asymmetry at high pseudorapidities. The centrality depen-
dence of the backward-to-forward particle yields in a satura-
tion model, illustrated in Fig. 4(a) and 4(b), qualitatively
reproduces the observed centrality dependence. Although the
model calculations fail to describe the data in detail, they
show the same trend of increasing asymmetry with increas-
ing centrality. We note that some conventional models
[12,27] are able to reproduce the suppression of particle pro-
duction at forward rapidity ind+Au collisions, which was
thought to be a unique feature of gluon saturation[2,13,28].
It will be interesting to quantitatively compare our measure-
ments with those calculations in the future.

It should be noted that a strong particle dependence in the
nuclear modification factor has been observed in this inter-
mediatepT region in both Au+Au[29] andd+Au collisions
[10]. Collective partonic effects at the hadron formation ep-
och such as parton coalescence or recombination[30–33]
have been proposed to explain Au+Au results. The pseudo-
rapidity asymmetry approaches unity at apT scale above
5 GeV/c, approximately the samepT scale above which the
particle dependence of the nuclear modification factor disap-
pears. The idea of recombination was modified to explain the
Cronin effect and its particle dependence[14] as a final-state
effect. In this approach, the enhancement of particle produc-
tion at intermediatepT is an extension from lowpT due to the
thermal parton and shower parton recombination[14], quali-
tatively consistent with the measurements of the pseudora-
pidity asymmetry as a function ofpT. We should emphasize
that the pseudorapidity asymmetry is not likely to be solely
due to the change of particle composition. In the recombina-
tion model, the shower and thermal parton recombination not
only enhances the baryon production, but also the meson
production[14]. The pseudorapidity asymmetry of identified
pion spectra and its quantitative comparison to models are
important for further understanding of particle production at
intermediatepT.

Of similar interest is the ratio ofd+Au central to periph-
eral inclusive spectra

RCP
dAu =

usd2N/dpTdh/kNbinlducentral

usd2N/dpTdh/kNbinlduperiph
, s2d

whered2N/dpTdh is the differential yield per event in colli-
sions for a given centrality class andkNbinl is the mean num-
bers of binary collisions corresponding to this centrality. Us-
ing a Monte Carlo Glauber calculation, as described in[6],
the mean number of binary collisions for the 0–20 % and
40–100 % centrality classes was determined to be 15.0±1.1
and 4.0±0.3, respectively. Figure 5 shows the ratio of the
central to peripheral spectra ind+Au collisions for various
pseudorapidity regions. The error bars on each distribution
are the quadratic sum of statistical and systematic uncertain-
ties; the latter are due to uncertainties in our background
subtraction technique. An overall error of about 10% due to
the uncertainty in normalization is indicated by the band on
the left portion of the figure. TheRCP in Au+Au collisions at
ÎsNN=200 GeV[34] is shown on the bottom of the plot.RCP

dAu

FIG. 4. (Color online) (a) The centrality dependence of the ratio
of charged hadron spectra in backward rapidity to forward rapidity
s0.5, uhu,1.0d. The gluon saturation model calculations are also
shown for the 0–20 %(solid curve), 20–40 %(dashed curve), and
40–100 %(dot-dashed curve) centrality classes.(b) The centrality
dependence of the ratio of charged hadron spectra in backward
rapidity to forward rapiditys0.0, uhu,0.5d. The gluon saturation
model calculations are also shown for the 0–20 %(solid curve),
20–40 %(dashed curve), and 40–100 %(dot-dashed curve) central-
ity classes.
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distributions for each pseudorapidity selection exhibit a rise
with increasingpT, exceeding unity atPT,1–2 GeV/c. At
low pT, the RCP

dAu distribution is highest for the most back-
ward pseudorapidity region and systematically decreases the
more forward in pseudorapidity the ratio is taken. The trend
in the pseudorapidity dependence indicates that the Cronin
effect is more pronounced in the gold hemisphere of the
collision, consistent with the measured asymmetry between
backward and forward rapidity. Our measurement ofRCP

dAu

shows no significant suppression atpT of 2–6 GeV/c. This
result stands in contrast to the Au+Au measurements, where
RCP was observed to be well below unity forPT

,12 GeV/c. The results forRCP
dAu are consistent with calcu-

lations in pQCD models incorporating both Cronin enhance-
ment and nuclear shadowing[25,35–38]. However, the mod-
els based on incoherent parton scattering at the initial stage
fail to reproduce the rapidity dependence in both backward-
to-forward ratios andRCP

dAu.

In summary, we have studied the centrality and pseudora-
pidity dependence of charged hadron production ind+Au
collisions atÎsNN=200 GeV. The inclusive charged hadron
multiplicity is observed to be higher in the gold hemisphere
than the deuteron hemisphere of the collision. The gluon
saturation, HIJING, and AMPT models cannot be ruled out
from the integrated charged particle pseudorapidity distribu-
tions. Ratios of backward-to-forward pseudorapidity trans-
verse momentum distributions are above unity forpT below
5 GeV/c. Our measurement ofRCP

dAu shows no suppression at
pT of 2–6 GeV/c, with the ratio taken at backward pseudo-
rapidities being slightly higher than at forward pseudorapidi-
ties. The incoherent multiple scattering of partons in the ini-
tial state alone cannot reproduce the observed pseudorapidity
asymmetry, while the latest calculations in a gluon saturation
model stand in qualitative agreement with our observations.
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