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Nucleon and � resonances in K�(1385) photoproduction from nucleons
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The reaction mechanisms for K�(1385) photoproduction from the reaction γp → K+�0(1385) in the
resonance energy region are investigated in a hadronic model. Both contributions from N and � resonances
of masses around 2 GeV as given in the Review of Particle Data Group and by the quark model predictions
are included. The Lagrangians for describing the decays of these resonances into K�(1385) are constructed
with the coupling constants determined from the decay amplitudes predicted by a quark model. Comparing the
resulting total cross section for the reaction γp → K+�0(1385) with the preliminary data from the Thomas
Jefferson National Accelerator Facility, we find that the most important contributions are from the two-star-rated
resonances �(2000)F35, �(1940)D33, and N (2080)D13, as well as the missing resonance N 3

2

−
(2095) predicted

in the quark model. Predictions on the differential cross section and photon asymmetry in this reaction are also
given.
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I. INTRODUCTION

Strangeness production from photon-nucleon reactions
has been extensively studied in recent experiments at elec-
tron/photon accelerator facilities [1–4]. Among the motiva-
tions for such studies are to obtain a deeper understanding
of the baryon resonances and to search for the so-called
missing resonances, whose existence is predicted by quark
models but has not been experimentally confirmed. Most of
the data from these experiments are for reactions of kaon
photoproduction which are accompanied by the ground state
of � or � hyperon, i.e., �(1116) or �(1193). Recently, there
have been reports on experimental studies of other strangeness
production processes that include K∗�,K∗�, and K�(1385)
photoproduction [5–7]. Although the reported cross sections
for these reactions are smaller than those for K�(1116)
and K�(1193) photoproduction, the suppression factor is
not large. In fact, the magnitude of the cross sections for
these reactions in the resonance region, corresponding to total
center-of-mass energies around 2 GeV, is as large as one-
half of the K�(1116) and K�(1193) photoproduction cross
sections. This indicates that these reaction channels cannot be
neglected in a full coupled channel calculation for extracting
the properties of these baryon resonances [5]. In addition,
these reactions have their own interesting physics regarding the
structure of hadrons. For example, photoproduction of K∗�
and K∗� can be used to obtain information on the properties
of strange scalar κ mesons [8,9].

Regarding the missing resonance problem, photoproduc-
tion of K�(1385) provides a useful tool for testing baryon
models in the literature. According to the quark model of
Ref. [10], most nucleon and � resonances have small
couplings to the K�(1385) channel. Some resonances, mostly
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missing or not-well-established ones, are, however, predicted
to have large partial decay widths into this channel. For
example, the missing resonance N 3

2
−

(2095) was predicted

to have a decay width of �(N 3
2

−
(2095) → K�(1385)) ≈

60 MeV. Therefore, photoproduction of K�(1385) could be
an ideal reaction in which one can search for such resonances.

Experimental studies of K�(1385) photoproduction are
very rare, and only limited experimental data on the total cross
section for γp → K+�0(1385) with large error bars have been
reported [11–13]. The CLAS Collaboration at the Thomas
Jefferson National Accelerator Facility recently measured the
cross section of this reaction at 23 different photon energies
covering from the threshold up to 3.8 GeV [5]. More accurate
data for the total and differential cross sections are expected
to be reported soon [14]. We will use the preliminary data for
the total cross section of this reaction reported in Ref. [5] for
our study.

Theoretical investigation of K�(1385) photoproduction is
also very scarce. To our knowledge, only a few theoretical
studies on this reaction were reported quite recently. In
Ref. [15], contributions from the single and double K-meson
pole terms to the differential cross section of this reaction
were compared, while the role of �(1700) resonance near
the threshold region was addressed in Ref. [16]. In this
paper, we present a model for K�(1385) photoproduction
from the reaction γp → K+�0(1385), based on an effective
Lagrangian approach. In addition to the t-channel K and
K∗ meson exchanges, we consider the s- and u-channel
diagrams as well as the contact term, which are required
by crossing symmetry and the gauge invariance condition.
We also investigate the role of resonances in this reaction.
For this purpose we construct the Lagrangians involving the
decay of resonances into K�(1385). The coupling constants in
these Lagrangians are determined by decomposing the decay
amplitudes according to the relative orbital angular momentum
of the final K�(1385) state and then comparing them with
those known empirically or calculated from hadronic models.
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This paper is organized as follows. In Sec. II, we discuss
the effective Lagrangians employed in the present work.
This includes the general form for the K∗N�∗ interactions
(or ρN� interactions), which has been overlooked in the
literature. Numerical results on the total and differential cross
sections as well as the photon asymmetry are presented
and discussed in Sec. III, which is followed by a summary
and discussion in Sec. IV. The propagators of spin-3/2 and
-5/2 baryons are given in Appendix A together with the
isospin structure of the interaction Lagrangians. Given in
Appendix B are details on the decay amplitudes of baryon
resonances into K�(1385) and Nγ , which are used to relate
the coupling constants in the interaction Lagrangians to the
predicted decay amplitudes from hadronic models.

II. THE MODEL

A. Effective Lagrangians

Particle production in photon-nucleon interactions has been
extensively studied in hadronic models based on effective
Lagrangians. This includes the production of various mesons
[17], charmed hadrons [18], � baryons [19], and exotic
baryons [20,21]. In this paper, we use this approach to study
the reaction γp → K+�0(1385). The production mechanisms
for this reaction are shown in Fig. 1. Figure 1(a) includes the
t-channel K and K∗ meson exchange diagrams. The s-channel
diagrams shown in Fig. 1(b) contain contributions from non-
strange baryons, i.e., nucleon, � and their resonances. In
the present work, we consider resonances of masses around
2 GeV, as the purpose of this work is to investigate the
role of such resonances in this reaction. Resonances below
the K�(1385) threshold are not considered since there is
no information on their couplings to the K�(1385) channel.
The u-channel diagrams shown in Fig. 1(c) contain hyperons
and their resonances. Although all � and � resonances can
contribute to the reaction through this diagram, only �(1116)

N(p)

γ (k) K (q)

Σ*(p′)

K, K*

(a)

N

γ K

Σ*N′
(b)

N

γ K

Σ*Y′
(c)

N

γ K

Σ*

(d)

FIG. 1. Feynman diagrams for γp → K+�∗0. N ′ stands for
the nucleon, �, and their resonances, and Y ′ the �, �, and their
resonances. For details of the contact term [diagram (d)] used in the
present work, see Eq. (15).

and �(1385) are considered in the present study, as there is
no information on the photo-transitions between �(1385) and
hyperon resonances with masses around 2 GeV. Figure 1(d) is
the contact diagram required by gauge invariance.

The production amplitudes from the diagrams for the
t-channel K exchange, s-channel nucleon term, u-channel
�(1385) term, and contact term can be calculated from the
following effective Lagrangians:

LγKK = ieAµ(K−∂µK+ − ∂µK−K+),

LKN�∗ = fKN�∗

MK

∂µK�
∗µ · τN + H.c.,

LγNN = −eN̄

(
γ µAµ

1 + τ3

2
− κN

2MN

σµν∂νAµ

)
N, (1)

LγKN�∗ = −ie
fKN�∗

MK

AµK−(
�̄∗0

µ p +
√

2�̄∗+
µ n

) + H.c.,

Lγ�∗�∗ = e�
∗
µAα�

α,µν
γ�∗ �∗

ν ,

where MK is the kaon mass, Aµ is the photon field, and �∗
µ is

the Rarita-Schwinger field for the �(1385) of spin-3/2.1 The
isodoublets are defined as

K =
(

K+

K0

)
, K = (

K−, K̄0
)
, N =

(
p

n

)
. (2)

The electromagnetic interaction of the �∗ field contains

Aα�
α,µν
γ�∗ =

{
gµνγ α − 1

2
(γ µγ νγ α + γ αγ µγ ν)

}
AαT3

− κ�∗

2MN

σαβ∂βAαgµν, (3)

where MN is the nucleon mass and T3 = diag(1, 0,−1).
For the KN�∗ coupling, it can be related to the πN�

coupling by the SU(3) flavor symmetry relation

fπN�

Mπ

= −
√

6
fKN�∗

MK

, (4)

where Mπ is the pion mass. Estimating the πN� cou-
pling as fπN� = 2.23 from the � resonance decay width
�(� → Nπ ) = 120 MeV, we obtain from the above equation
fKN�∗ = −3.22. The electromagnetic interactions of baryons
contain the baryon anomalous magnetic moments. We use the
empirical value κp = 1.793 for the proton. Since the magnetic
moment of �0(1385) is unknown, its value is taken from the
quark model prediction given in Ref. [22], i.e., κ

�∗0 = 0.36.
For the t-channel K∗ exchange, we use the Lagrangian

LγKK∗ = gK∗Kγ εµναβ∂µAν∂αK∗−
β K̄+ + H.c. (5)

for the γKK∗ interaction with gK∗Kγ = 0.254 GeV−1, which
is determined from the empirical value of the K∗ decay
width �(K∗± → K±γ ) ≈ 50 keV. We note that for neutral
K∗, gK∗Kγ = −0.388 GeV−1 as �(K∗0 → K0γ ) ≈ 116 keV,
and the signs of these coupling constants are fixed by the quark
model.

1In this work, we do not consider the off-shell properties of the
Rarita-Schwinger field.
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For the interactions of a vector meson with spin-1/2 and
spin-3/2 baryons, i.e., for the vertex of 3

2 → 1 + 1
2 , there are in

general three independent interaction terms from consideration
of angular momentum and parity conservation. The most
general form of the K∗N�∗ interaction Lagrangian can be
written as

LK∗N�∗ = ig1

2MN

K
∗µν

�
∗
µ · τγνγ5N

+ g2

(2MN )2
K

∗µν
�

∗
µ · τγ5∂νN

− g3

(2MN )2
∂νK

∗µν
�

∗
µ · τγ5N + H.c., (6)

where K∗
µν = ∂µK∗

ν − ∂νK
∗
µ and K∗ is an isodoublet as K in

Eq. (2). To determine the coupling constants g1,2,3, we again
make use of the SU(3) relations to relate them to the ρN�

coupling. For the coupling constant g1, the SU(3) relation

g
ρN�

1

Mρ

= −
√

6
gK∗N�∗

1

2MN

(7)

leads to g1 = −5.48 for the K∗N�∗ coupling if the empir-
ically determined value g

ρN�

1 = 5.5 [23,24] is used. Since
the other two couplings, g2 and g3, in the ρN� interactions
have never been seriously considered in previous studies,
corresponding couplings for the K∗N�∗ interactions thus
cannot be determined. In the present study, we treat g2 and
g3 in the K∗N�∗ interactions as free parameters and vary
their values to find their role in K�(1385) photoproduction.

The u-channel diagrams shown in Fig. 1(c) contain inter-
mediate hyperon Y ′. Because of the lack of information on
the radiative decays of hyperon resonances to �(1385), we
consider only the contribution from the ground state hyperons.
The effective Lagrangians for these diagrams are

L�∗Yγ = − ief1

2MY

Yγνγ5F
µν�∗

µ

− ef2

(2MY )2
∂νYγ5F

µν�∗
µ + H.c., (8)

LKNY = gKNY

MN + MY

Nγ µγ5Y∂µK + H.c.,

where Fµν = ∂µAν − ∂νAµ and Y stands for a hyperon with
spin-1/2. For the intermediate �(1116) state, we use the
radiative decay width, �(�(1385) → �γ ) = 479 ± 120 keV,
as recently measured by CLAS Collaboration [25]. To estimate
the relative strength of the two coupling constants, we make
use of the quark model result of Ref. [26] for the helicity
amplitudes A1/2 and A3/2 (see Appendix B), which gives
the ratio A3/2/A1/2 ≈ 1.82.2 Combining this information, we
obtain

f1 = 4.52, f2 = 5.63. (9)

The coupling constant gKN� can be determined by flavor
SU(3) symmetry relations, which give gKN� = −13.24. For
the intermediate �(1193) hyperon, there is no experimental

2We note that most theoretical predictions [26,27] underestimate
this decay width.

data for �(�(1385) → �(1193)γ ). However, most hadron
model calculations show that the decay width of �(1385) →
�(1193)γ is less than 10% of that of �(1385) → �(1116)γ
[26,27]. With gKN� = 3.58 from the flavor SU(3) symmetry,
we have estimated that the contribution from the u-channel
�(1193) is only at the level of 0.5% of the u-channel �(1116)
contribution. In the present work, therefore, we will consider
the u-channel diagram with the �(1116) hyperon only.

As we have mentioned above, the motivation for the study
of K�(1385) photoproduction is to identify the contributions
from baryon resonances. For this purpose, we consider the
contributions from both nucleon and � resonances in the
present work, which requires the interaction Lagrangians for
photoexcitation of a resonance from a nucleon as well as for
its decay into the K�(1385) channel. For the former, we use

LRNγ

(
1
2

±) = ef1

2MN

N̄�(∓)σµν∂
νAµR + H.c.,

LRNγ

(
3
2

±) = − ief1

2MN

N�(±)
ν FµνRµ

− ef2

(2MN )2
∂νN̄�(±)FµνRµ + H.c., (10)

LRNγ

(
5
2

±) = ef1

(2MN )2
N̄�(∓)

ν ∂αFµνRµα

− ief2

(2MN )3
∂νN̄�(∓)∂αFµνRµα + H.c.,

where R,Rµ, and Rµν are the fields for the spin-1/2, 3/2, and
5/2 resonances, respectively, with

�(±)
µ =

(
γµγ5

γµ

)
, �(±) =

(
γ5

1

)
. (11)

It should be noted that the coupling constant fi has isospin
dependence if the resonance R has isospin 1/2, while it is
isospin blind if the isospin of R is 3/2. Since we only consider
in the present work photoexcitation of resonances from the
proton, the isospin quantum number is fixed in the process.

For the decay of a resonance with spin j into K�(1385),
the number of possible interaction terms in the Lagrangian
is restricted by the angular momentum and parity conserva-
tion. The interaction Lagrangian has one term for a j = 1

2
resonance, but it has two terms for a resonance with j � 3

2 .
Explicitly, the effective Lagrangians for RK�∗ interactions
can be written as

LRK�∗
(

1
2

±) = h1

MK

∂µK�̄∗µ�(∓)R + H.c.,

LRK�∗
(

3
2

±) = h1

MK

∂αK�̄∗µ�(±)
α Rµ

+ ih2

M2
K

∂µ∂αK�̄∗
α�(±)Rµ + H.c., (12)

LRK�∗
(

5
2

±) = ih1

M2
K

∂µ∂βK�̄∗α�(∓)
µ Rαβ

− h2

M3
K

∂µ∂α∂βK�̄∗
µ�(∓)Rαβ + H.c.
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In evaluating the Feynman diagrams (b) and (c) in
Fig. 1 for the reaction γp → K+�0(1385), we need also the
propagators of baryon resonances. They are given explicitly in
Appendix A for baryon resonances of spins up to 5/2, together
with the isospin structure of their interaction Lagrangians.
For the coupling constants f1,2 in Eq. (10) and h1,2 in
Eq. (12), they can be related to the photon helicity am-
plitudes of R → Nγ and the decay amplitudes of R →
K�(1385), respectively. These relations are given explicitly in
Appendix B, and they allow us to determine the coupling
constants once these amplitudes are known either empirically
or from models for hadrons.

B. Form factors

In evaluating the production amplitudes of γp →
K+�0(1385), we need to dress the interaction vertices with
form factors. We use the monopole type form factor for the
t-channel K meson exchange diagram, i.e.,

FM

(
q2

ex,Mex
) = �2

M − M2
ex

�2
M − q2

ex

. (13)

For s- and u-channel diagrams and t-channel K∗ exchange,
we adopt the form factor

FB

(
q2

ex,Mex
) =

(
n�4

B

n�4
B + (

q2
ex − M2

ex

)2

)n

, (14)

which goes to a Gaussian form as n → ∞. In Eqs. (13) and
(14), qex is the four-momentum of the exchanged particle of
mass Mex. The cutoff parameters �M and �B as well as n will
be adjusted to fit the experimental data.

C. Generalized contact current

Employing different form factors to interaction vertices
breaks the gauge invariance. Following the prescription of
Ref. [28], we restore gauge invariance by introducing the
following generalized contact term to the amplitude for the
reaction γp → K+�0(1385):

Mµν
c = �

µν

γKN�∗ft + ie�ν
KN�∗ (q)Cµ. (15)

In the above equation,

�
µν

γKN�∗ = ie
fKN�∗

MK

gµν (16)

and

�ν
KN�∗ (q) = −fKN�∗

MK

qν, (17)

are vertex functions obtained, respectively, from LγKN�∗ and
LKN�∗ in Eq. (1) with q being the momentum of the outgoing
K meson; Cµ is defined as

Cµ = −(2q − k)µ
ft − 1

t − M2
K

fs − (2p + k)µ
fs − 1

s − M2
N

ft , (18)

with the momenta defined in Fig. 1, and the form factors in
the t-channel [Eq. (13)] and s-channel [Eq. (14)] diagrams are
denoted by ft and fs , respectively. Note that the first term on

the right-hand side of Eq. (15) is the usual Kroll-Ruderman
contact current multiplied by the t-channel form factor. The
last term is an additional contact current required to restore
gauge invariance of the total amplitude in the presence of
form factors at the hadronic vertices. We note that the contact
current as specified above also satisfies the crossing symmetry.
For details on the restoration of gauge invariance and a more
general form of Cµ, we refer the readers to Ref. [28].

D. N and � resonances

For resonances in the s-channel diagrams, we include those
with spin j � 5/2. Neglecting resonances with higher spins
is justified, as they have been shown in Ref. [10] to couple
weakly to the K�(1385) channel. We classify the resonances
into two groups: (A) resonances listed in the review of Particle
Data Group (PDG) [29] and (B) missing resonances. Since the
decay widths of the resonances listed in PDG into K�(1385)
have not been empirically determined, we have to rely on
theoretical models, such as the quark model of Refs. [10,30],
to determine their coupling constants to K�(1385). Instead
of all possible resonances, we consider only a few of them
which are predicted to have large couplings to Nγ and to
K�(1385). The resonances of group (A) and the predictions
of the quark model given in Refs. [10,30] on their decay
amplitudes are given in Table I. These resonances are referred
to as PDG resonances and include N 1

2
−

(1945), N 3
2

−
(1960),

N 5
2

−
(2095),� 3

2
−

(2080), and � 5
2

+
(1990), which are identi-

fied as N (2090)S∗
11, N (2080)D∗∗

13 , N (2200)D∗∗
15 ,�(1940)D∗

33,
and �(2000)F ∗∗

35 , respectively, by the authors of Ref. [10].
Although listed in the review of PDG, these resonances are
rated as either one-star or two-star resonances, which means
that the evidence of their existence is poor or only fair [29]
and that further work is required to verify their existence and
to know their properties. Accordingly, their total decay widths
and branching ratios are not known. In the present work, we
assume the same total decay width of �R = 300 MeV for these
resonances.

The missing resonances that are predicted to have large
couplings to the K�(1385) channel are listed in Table II.
These resonances include N 3

2
−

(2095), N 5
2

+
(1980), and

� 3
2

−
(2145). Among them, the resonance N 3

2
−

(2095) is
particularly interesting since it is predicted to have a very large
decay width into the K�(1385) channel, �(N 3

2
−

(2095) →
K�(1385)) � 60 MeV [10]. Photoproduction of K�(1385)
thus offers an opportunity for finding these resonances. In
Ref. [10], the missing resonances N 1

2
−

(2070) and N 5
2

−
(2260)

are also predicted to have large couplings to K�(1385), but
no prediction for their photoexcitation amplitudes have been
made within the same model. We thus leave the investigation
on the role of these resonances to a future study. We also
assume �R = 300 MeV for these resonances.

III. RESULTS

A. Total cross section

With the effective Lagrangians and form factors con-
structed above, we first compute the total cross section for
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TABLE I. Resonances listed in the review of PDG [29] and their decay amplitudes of R → K�(1385) and of R → Nγ predicted in
Refs. [10,30]. The coupling constants are calculated using the resonance masses of PDG.

Resonance PDG [29] Amplitudes of R → K�(1385)a h1 h2 Amplitudes of R → Nγ b f1 f2

G(�1) G(�2) A
p

1/2 A
p

3/2

N 1
2

−
(1945) S∗

11(2090) G(2) = +1.7 – −9.8 – +12 – −0.055 –

N 3
2

−
(1960) D∗∗

13 (2080) G(0) = +1.3 G(2) = +1.4 0.24 −0.54 +36 −43 −1.25 1.21

N 5
2

−
(2095) D∗∗

15 (2200) G(2) = −2.0 G(4) = 0.0 0.29 −0.08 −9 −14 0.37 −0.57

� 3
2

−
(2080) D∗

33(1940) G(0) = −4.1 G(3) = −0.5 −0.68 1.00 −20 −6 0.39 −0.57

� 5
2

+
(1990) F ∗∗

35 (2000) G(1) = +4.0 G(3) = −0.1 −0.87 0.11 −10 −28 −0.68 −0.062

aIn
√

GeV.
bIn 10−3/

√
GeV.

γp → K+�0(1385) without the resonance contributions. For
the form factors in the s- and u-channel diagrams, we take
�B = 1.0 GeV with n = 1. For the t-channel K exchange, we
use �M = 0.83 GeV to reproduce the total cross section data
at Eγ � 2.5 GeV. Following Ref. [31], we avoid the use of FM

for vector meson exchanges, and the t-channel K∗ exchange
is calculated by using the form factor FB with �B = 1.2 GeV
and n = 1. With the K∗N�∗ coupling constants determined
before, namely, g1 = −5.48 and g2 = g3 = 0, we find that
the contribution from the K∗ exchange is negligible in the
considered energy region. Even at higher energies, Eγ = 3 ∼
4 GeV, the K∗ exchange contribution is only at the level of
a few percent of those from other production mechanisms.
We have also tested the role of the K∗ exchange by allowing
nonvanishing values for g2 and g3. We again find that the
K∗ exchange is suppressed compared with other production
mechanisms unless g2 and/or g3 is as large as ∼100. Although
there is no constraint at present on the values of g2 and g3,
we regard such a large value as unrealistic. This leads us
to conclude that the role of K∗ exchange in this reaction is
negligibly small. However, since the K∗ trajectory has a larger
intercept than the K trajectory, the role of the K∗ exchange
would have a chance to be revealed at very high energies.
It is thus of interest to measure the cross sections at much
higher energies, and this would help constrain the values of
the coupling constants g2 and g3.

Our result on the total cross section is shown in Fig. 2
and is compared with the pre-1970s data [11–13] and the

preliminary CLAS data reported in Ref. [5].3 Comparison
with the preliminary CLAS data for the total cross section
of γp → K�0(1385) shows that this model can explain the
general energy dependence of the total cross section but not
the enhanced cross section at Eγ = 1.7 ∼ 1.9 GeV. Although
varying the cutoff parameters of employed form factors can
change the magnitude of the cross section, the peak arising
from the threshold effect cannot reproduce the observed peak
in the data. This implies that resonances play an important role
in the production mechanism.

Including the s-channel nucleon and � resonances listed
in Tables I and II in the reaction γp → K+�0(1385), we
have recalculated its cross section. In this calculation, the
parameters of the nonresonant terms are fixed as before, while
the resonance terms are obtained by using the form factor FB in
the form of the Gaussian function obtained by taking n → ∞
and the cutoff �B = 1.0 GeV, as motivated by the Gaussian
radial wave functions in the quark model. The resulting total
cross section for the reaction γp → K+�0(1385) is shown in
Fig. 3. As shown by the dashed line, the contribution from all
resonances to the total cross section of γp → K+�0(1385) is
important in the region around Eγ = 1.8 ∼ 2.0 GeV. Although

3The preliminary CLAS data give very small cross sections for
Eγ � 1.7 GeV, which deviate significantly from our prediction. These
two data points are now corrected in the new analyses of the CLAS
data which are in progress [14].

TABLE II. Missing resonances and their decay amplitudes predicted in Refs. [10,30].

Resonance Amplitudes of R → K�(1385)a h1 h2 Amplitudes of R → Nγ b f1 f2

G(�1) G(�2) A
p

1/2 A
p

3/2

N 3
2

−
(2095) G(0) = +7.7 G(2) = −0.8 0.99 0.27 −9 −14 0.49 −0.83

N 5
2

+
(1980) G(1) = −3.6 G(3) = −0.1 0.59 0.24 −11 −6 0.019 −0.13

� 3
2

−
(2145) G(0) = +5.2 G(2) = −1.9 0.25 0.46 0 +10 0.11 −0.059

aIn
√

GeV.
bIn 10−3/

√
GeV.
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1 1.5 2 2.5 3 3.5 4
Eγ   (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

σ to
ta

l  (
µb

)

pre 1970’s

CLAS (preliminary)

γp → K
 +Σ0(1385)

FIG. 2. (Color online) Total cross sections for γp →
K+�0(1385) without resonance contributions. The pre-1970s data
are from Refs. [11–13] and the preliminary data of CLAS
Collaboration are from Ref. [5].

the contribution coming from the missing resonances (dash-
dash-dotted line) is small compared to the PDG resonance
contributions (dotted line), it moves the peak coming from
the resonant terms to a somewhat higher energy. This result
shows that most resonance contributions come from the sum
of the PDG resonances. However, it should be kept in mind
that this conclusion follows from the quark model predictions
of Refs. [10,30] for the empirically not-well-known decay
properties of the PDG resonances. Therefore, detailed studies
on this reaction could be used to constrain the properties of
the PDG resonances listed in Table I. The total cross sections
obtained by including only the PDG resonances and all the
resonances considered in the present work, which also include
the missing resonances predicted by quark models, are given,
respectively, by the solid line and the dot-dashed line in Fig. 3.

1 1.5 2 2.5 3 3.5 4
Eγ   (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

σ to
ta

l  (
µb

)

pre 1970’s
CLAS (preliminary)
with PDG resonances
with all resonances
sum of all resonances
PDG resonances only
missing resonances only

γp → K
 +Σ0(1385)

FIG. 3. (Color online) Total cross sections for the γp →
K+�0(1385) reaction with the resonances listed in Tables I and II.
See the text for the details.

1 1.5 2 2.5 3 3.5
Eγ   (GeV)

0.00

0.05

0.10

0.15

σ to
ta

l  (
µb

)

D13(2080)

D33(1940)

F35(2000)

N 5/2
+
(1980)

N 3/2
−
(2095)

∆ 3/2
−
(2145)

sum of all resonances

γp → K
 +Σ0(1385)

FIG. 4. (Color online) Contributions from various resonances to
the total cross section for γp → K+�0(1385).

These results show that the peak observed in the preliminary
CLAS data can be successfully explained by these resonances.

The contributions from different resonances are shown
separately in Fig. 4. The solid line is the sum of all the
resonances considered in this work and, therefore, corresponds
to the dashed line in Fig. 3. The largest contribution comes
from the � resonance �(2000)F35 (the dot-dashed line in
Fig. 4), and the contributions from �(1940)D33 (the short
dashed line in Fig. 4) and N (2080)D13 (the dotted line in
Fig. 4) are also noticeable. One interesting result is that
the contribution from the missing resonance N 3

2
−

(2095) is
not the dominant one, although it is as large as that from
N (2080)D13. As discussed above, this missing resonance is
predicted to have a very large coupling to K�(1385). However,
its effect in the reaction γp → K+�0(1385) is not large as
a result of its rather small couplings to Nγ . Furthermore,
this resonance has a destructive interference with the other
missing resonance, � 3

2
−

(2145), so that the net contribution
from missing resonances becomes small. For N (2090)S11 and
N (2200)D15, their contributions are found to be too small to
be shown in Fig. 4.

B. Differential cross section and photon asymmetry

Similar conclusions on the role of resonances in the reaction
γp → K+�0(1385) can be drawn from its differential cross
sections shown in Fig. 5. The solid and dashed lines, which are
obtained with the PDG resonances and with all resonances,
respectively, are close to each other, but they can be distin-
guished from the dotted lines that are obtained without the
resonant contribution, provided the data are accurate enough,
particularly in the region of Eγ = 1.8 ∼ 1.9 GeV. At higher
energies, the models with and without resonances give nearly
the same result. The contributions from the sum of all the
resonances considered in the present work are given by the
dash-dotted lines.
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0
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0.4
0.6
0.8
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1.4

without resonances
sum of all resonances

0
0.2
0.4
0.6
0.8
1
1.2
1.4

with PDG resonances
with all resonances

-1 -0.5 0 0.5
cos θK

0
0.2
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0.6
0.8

1
1.2

-1 -0.5 0 0.5 1
cos θK

0
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0.4
0.6
0.8
1
1.2

2π
dσ

/d
Ω

  (
µ b

/s
r)

γp → K
+Σ0(1385)

Eγ=1.7 GeV

Eγ=1.9 GeV

Eγ=1.8 GeV

Eγ=2.3 GeV

FIG. 5. (Color online) Differential cross sections for γp →
K+�0(1385) at Eγ = 1.7, 1.8, 1.9, and 2.3 GeV with the inclusion
of resonances. The dash-dash-dotted line is the sum of the resonance
terms. See the text for the details.

We next consider the photon single asymmetry in the
reaction γp → K+�0(1385), which is defined as

� = dσx/d� − dσy/d�

dσx/d� − dσy/d�
, (19)

where dσx/d� and dσy/d� are the differential cross sections
with linearly polarized photons in the x direction and in
the y direction, respectively. Here, the x direction and the
beam momentum direction (i.e., the z direction) define the
reaction plane, and the y direction is transverse to the reaction
plane. The results are shown in Fig. 6, and it is seen that
the role of the resonances can be verified by measuring the

-1

-0.5

0

0.5

1

without resonances
with PDG resonances
with all resonances

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5
cos θK

-1

-0.5

0

0.5

-1 -0.5 0 0.5 1
cos θK

-1

-0.5

0

0.5

Σ

γp → K
+Σ0(1385)

Eγ=1.7 GeV

Eγ=1.9 GeV

Eγ=1.8 GeV

Eγ=2.3 GeV

FIG. 6. (Color online) Single photon asymmetry for the reaction
γp → K+�0(1385) at Eγ = 1.7, 1.8, 1.9, and 2.3 GeV. Dashed lines
are without the resonance contributions. Solid lines are obtained
with the PDG resonances, whereas the dot-dashed lines are with
all resonances considered in the present work.

photon asymmetry.4 The similarities observed between the
solid line (obtained with PDG resonances) and the dot-dashed
line (obtained with all resonances) make it, however, difficult
to identify the role of the missing resonances.

IV. SUMMARY AND DISCUSSION

In this paper, we have studied the reaction mechanisms
for K�(1385) production in photon-proton collisions. We
find that the peak observed in the preliminary total cross
section data of the CLAS Collaboration requires the inclusion
of the resonance contribution in the production mechanism.
We have accounted for the role of the resonances based
on the effective Lagrangian approach. In the present work,
we have considered eight nucleon and � resonances. Five
of them are listed in PDG (Table I) and three of them are
missing resonances predicted by the quark model (Table II).
However, the properties of these resonances are poorly known
or unknown even for the PDG resonances, and we have thus
relied on the predictions of hadronic models for the resonance
parameters. In particular, we have related the amplitudes
of R → Nγ and R → K�(1385) decays with the coupling
constants of our effective Lagrangian, and we then used the
predictions of a quark model made in Refs. [10,30] for the
decay amplitudes to determine these coupling constants.

The results obtained in this work show that the most
important contribution comes from �(2000)F35, and the con-
tributions of �(1940)D33 and N (2080)D13 are also important.
Among the missing resonances, the N 3

2
−

(2095) contribution
is comparable to those of �(1940)D33 and N (2080)D13.
Although this resonance has the largest partial decay width into
the K�(1385) channel, its small photon helicity amplitudes
into Nγ reduces its contribution to this reaction. Furthermore,
the contributions from the missing resonances are found to
have destructive interference with other missing resonances,
and this makes the sum of the missing resonance terms
rather small. This is also verified by our results on the
photon single asymmetry in this reaction. Our predictions
for the cross section and photon single asymmetry show a
significant difference between the models with and without
the resonances, and this can be verified by experiments at the
currently available electron/photon facilities.

It should be stressed that further work to unravel the
properties of the resonances is strongly required. For example,
some other missing resonances such as N 1

2
−

(2070) and

N 5
2

−
(2260) are predicted in Ref. [10] to have large couplings

to the K�(1385) channel. However, we could not study
their role in the reaction γp → K+�0(1385) because their
photon helicity amplitudes are unknown in the same quark
model. Furthermore, the properties of resonance decays into
K�(1385) and Nγ should also be investigated by other
models of hadron structure. This would help us improve our
understanding of the resonances and search for the missing
ones. Finally, to identify the role of resonances of different

4It should be noted, however, that the final-state interactions may
give nontrivial contributions to spin asymmetries.
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isospin, it is desirable to study K�(1385) photoproduction in
other isospin channels.
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APPENDIX A: PROPAGATORS AND ISOSPIN STRUCTURE

The propagator of a spin-3/2 Rarita-Schwinger field of
momentum p and mass M reads as

�αβ(p,M) = p/ − M

p2 − M2
Sαβ (p,M), (A1)

where

Sαβ(p,M) = −ḡαβ + 1
3 γ̄αγ̄β . (A2)

With

ḡµν = gµν − pµpν

M2
,

(A3)
γ̄µ = γµ − pµ

M2
p/,

this leads to

Sαβ(p,M) = −gαβ + 1

3
γαγβ + 1

3M
(γαpβ − pαγβ)

+ 2

3M2
pαpβ. (A4)

The propagator of a spin-5/2 baryon of momentum p and
mass M is written as [32–35]

�αβ;µν(p,M) = p/ − M

p2 − M2
Sαβ;µν(p,M), (A5)

where

Sαβ;µν(p,M)

= 1
2 (ḡαµḡβν + ḡαν ḡβµ) − 1

5 ḡαβ ḡµν

− 1
10 (γ̄αγ̄µḡβν + γ̄αγ̄ν ḡβµ + γ̄β γ̄µḡαν + γ̄β γ̄ν ḡαµ).

(A6)

For resonances with finite width �, the mass M in the
propagator is replaced by M − i�/2.

Since we are considering nucleon and � resonances, the
resonance field R has either isospin-1/2 or isospin-3/2. By
omitting the space-time indices, the isospin structure of RK�∗
interaction reads

R�∗ · τK, (A7)

for isospin-1/2 resonance R. If the resonance R has isospin-
3/2, the effective Lagrangian has the isospin structure

RT 3/2,1/2 · �∗K, (A8)

where

T
(+1)

3/2,1/2 =




√
3 0

0 1
0 0
0 0


 , T

(0)
3/2,1/2 =




0 0√
2

√
2

0 0
0 0


 ,

(A9)

T
(−1)

3/2,1/2 =




0 0
0 0
1 0

0
√

3


 .

In the interaction Lagrangians presented in Appendix B, the
isospin structure given above is always understood.

APPENDIX B: COUPLING CONSTANTS AND DECAY
AMPLITUDES

The effective Lagrangians for photoexcitation of a reso-
nance from a nucleon can be written as

LRNγ

(
1
2

±) = ef1

2MN

N̄�(∓)σµν∂
νAµR + H.c.,

LRNγ

(
3
2

±) = − ief1

2MN

N�(±)
ν FµνRµ

− ef2

(2MN )2
∂νN̄�(±)FµνRµ + H.c., (B1)

LRNγ

(
5
2

±) = ef1

(2MN )2
N̄�(∓)

ν ∂αFµνRµα

− ief2

(2MN )3
∂νN̄�(∓)∂αFµνRµα + H.c.,

for jπ = 1
2

±
, 3

2
±

, and 5
2

±
resonances. In the above, Aµ is

the photon field with Fµν = ∂µAν − ∂νAµ; R,Rµ, and Rµν

are the spin-1/2, spin-3/2, and spin-5/2 resonance fields,
respectively; and �(±)

µ and �(±) are defined in Eq. (11).
The coupling constants f1 and f2 in LRNγ are related to

the photon helicity amplitudes of the resonance R, which are
defined as

�(R → Nγ ) = k2
γ

π

2MN

(2j + 1)MR

[|A1/2|2 + |A3/2|2], (B2)

where kγ = (M2
R − M2

N )/(2MR) and MR is the resonance
mass. With our effective Lagrangians, the helicity amplitudes
are expressed as (see also Ref. [36])

A1/2
(

1
2

±) = ∓ ef1

2MN

√
kγ MR

MN

,

A1/2
(

3
2

±) = ∓e
√

6

12

√
kγ

MNMR

[
f1 + f2

4M2
N

MR(MR ∓ MN )

]
,
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A3/2
(

3
2

±) = ∓ e
√

2

4MN

√
kγ MR

MN

[
f1 ∓ f2

4MN

(MR ∓ MN )

]
,

A1/2
(

5
2

±) = ± e

4
√

10

kγ

MN

√
kγ

MNMR

×
[
f1 + f2

4M2
N

MR(MR ± MN )

]
,

A3/2
(

5
2

±) = ± e

4
√

5

kγ

M2
N

√
kγ MR

MN

[
f1 ± f2

4MN

(MR ± MN )

]
,

(B3)

where the spin-parity of the resonance is given in parentheses.
For the interaction Lagrangians describing the decay of a

baryon resonance R of spin-parity jπ to K�(1385) of the
spin-parity combination 0− + 3

2
+

, consideration of angular
momentum and parity conservation leads to only one term
for jπ = 1

2
±

resonances and two terms for resonances with
j � 3

2 . The general form of these interaction Lagrangians can
be written as

LRK�∗
(

1
2

±) = h1

MK

∂µK�̄∗µ�(∓)R + H.c.,

LRK�∗
(

3
2

±) = h1

MK

∂αK�̄∗µ�(±)
α Rµ + ih2

M2
K

∂µ∂αK�̄∗
α�(±)Rµ

+ H.c., (B4)

LRK�∗
(

5
2

±) = ih1

M2
K

∂µ∂βK�̄∗α�(∓)
µ Rαβ

− h2

M3
K

∂µ∂α∂βK�̄∗
µ�(∓)Rαβ + H.c..

The decay width of resonance R into K�(1385) is then
obtained as

�
(

1
2

± → K�∗) = h2
1

2π

q3MR

M2
KM2

�∗
(E�∗ ± M�∗ ),

�
(

3
2

± → K�∗) = 1

24π

q

MRM2
�∗

(E�∗ ∓ M�∗ )

×
{

h2
1

M2
K

(MR ± M�∗ )2

× (
2E2

�∗ ∓ 2E�∗M�∗ + 5M2
�∗

)
∓ 2

h1h2

M3
K

MRq2(MR ± M�∗ )(2E�∗ ∓ M�∗ )

+ 2
h2

2

M4
K

M2
Rq4

}
,

�
(

5
2

± → K�∗) = 1

60π

q3

MRM2
�∗

(E�∗ ± M�∗ )

×
{

h2
1

M4
K

(MR ∓ M�∗ )2

× (
4E2

�∗ ± 4E�∗M�∗ + 7M2
�∗

)

∓ 4
h1h2

M5
K

MRq2(MR ∓ M�∗ )(2E�∗ ± M�∗ )

+ 4
h2

2

M6
K

M2
Rq4

}
, (B5)

depending on its spin-parity. In the above, q is the magnitude
of the three-momenta of final-state particles in the rest frame
of the resonance,

q = 1

2MR

√[
M2

R − (M�∗ + MK )2
][

M2
R − (M�∗ − MK )2

]
,

(B6)
and E�∗ =

√
M2

�∗ + q2. These formulas are valid for the decays
of resonances of isospin-1/2 as well as isospin-3/2.

For a j = 1
2 resonance, the decay width can be used to

determine the magnitude of the coupling constant h1 but not its
phase. For resonances with j � 3

2 , this gives only one relation
for two coupling constants, h1 and h2. Therefore, we need to
know the decay amplitudes to uniquely determine the coupling
constants. The signs of the couplings are then fixed by hadron
model predictions.

The decay amplitude for R → K�(1385) can be written as

〈K(q)�∗(−q,mf )| − iHint|R(0,mj )〉

= 2πMR

√
2

q

∑
�,m�

〈
�m�

3
2 mf

∣∣jmj

〉
Y�m�

(q̂)G(�), (B7)

where Y�m�
(q̂) and 〈�m�

3
2mf |jmj 〉 are the spherical harmonics

and Clebsch-Gordan coefficient, respectively. This also defines
the partial wave decay amplitude G(�). The relative orbital
angular momentum � of the final state is constrained by the
spin-parity of the resonance. The decay width is then given by

�(R → K�∗) =
∑

�

|G(�)|2, (B8)

where the values of G(�) can be obtained from the prediction
of hadronic models as, for example, in Ref. [10].

For the decay of a jπ = 1
2

±
resonance, angular momentum

conservation restricts the relative orbital angular momentum
to � = 1, 2. For the decay of a positive parity resonance, the
final-state particles are therefore in the relative p wave, while
they are in the relative d wave in the decay of a negative parity
resonance. In this case, we have

G(1) = − 1√
2π

q

M�∗

√
qMR

√
E�∗ + M�∗

h1

MK

, (B9)

for a jπ = 1
2

+
resonance, and

G(2) = − 1√
2π

q

M�∗

√
qMR

√
E�∗ − M�∗

h1

MK

, (B10)

for a jπ = 1
2

−
resonance.

For a resonance of j = 3
2 , the final K�(1385) state is in

the relative p and f waves in the decay of a positive parity
resonance and are in the relative s and d waves in the decay
of a negative parity resonance. The decay amplitudes can be
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written in terms of the coupling constants as

G(1) = G
(3/2)
11

h1

MK

+ G
(3/2)
12

h2

M2
K

,

(B11)
G(3) = G

(3/2)
31

h1

MK

+ G
(3/2)
32

h2

M2
K

,

for a positive parity resonance, where

G
(3/2)
11 =

√
30

60
√

π

1

M�∗

√
q

MR

√
E�∗ − M�∗ (MR + M�∗ )

× (E�∗ + 4M�∗ ),

G
(3/2)
12 = −

√
30

60
√

π

q2√qMR

M�∗

√
E�∗ − M�∗ ,

(B12)

G
(3/2)
31 = −

√
30

20
√

π

1

M�∗

√
q

MR

√
E�∗ − M�∗

× (MR + M�∗ )(E�∗ − M�∗ ),

G
(3/2)
32 =

√
30

20
√

π

q2√qMR

M�∗

√
E�∗ − M�∗ ,

and

G(0) = G
(3/2)
01

h1

MK

+ G
(3/2)
02

h2

M2
K

,

(B13)
G(2) = G

(3/2)
21

h1

MK

+ G
(3/2)
22

h2

M2
K

,

for a negative parity resonance, where

G
(3/2)
01 =

√
6

12
√

π

1

M�∗

√
q

MR

√
E�∗ + M�∗ (MR − M�∗ )

× (E�∗ + 2M�∗ ),

G
(3/2)
02 =

√
6

12
√

π

q2√qMR

M�∗

√
E�∗ + M�∗ ,

(B14)

G
(3/2)
21 = −

√
6

12
√

π

1

M�∗

√
q

MR

√
E�∗ + M�∗ (MR − M�∗ )

× (E�∗ − M�∗ ),

G
(3/2)
22 = −

√
6

12
√

π

q2√qMR

M�∗

√
E�∗ + M�∗ .

In the decay of a spin-5/2 resonance into K�(1385), the
final state is in the relative p and f waves for a positive parity
resonance and in the relative d and g waves for a negative

parity resonance. The decay amplitudes are then written as

G(1) = G
(5/2)
11

h1

M2
K

+ G
(5/2)
12

h2

M3
K

,

(B15)
G(3) = G

(5/2)
31

h1

M2
K

+ G
(5/2)
32

h2

M3
K

,

for a positive parity resonance, where

G
(5/2)
11 = − 1

10
√

π

q

M�∗

√
q

MR

√
E�∗ + M�∗ (MR − M�∗ )

× (2E�∗ + 3M�∗ ),

G
(5/2)
12 = 1

5
√

π

q3√qMR

M�∗

√
E�∗ + M�∗ ,

(B16)

G
(5/2)
31 = −

√
6

15
√

π

q

M�∗

√
q

MR

√
E�∗ + M�∗ (MR − M�∗ )

× (E�∗ − M�∗ ),

G
(5/2)
32 = −

√
6

15
√

π

q3√qMR

M�∗

√
E�∗ + M�∗ ,

and

G(2) = G
(5/2)
21

h1

M2
K

+ G
(5/2)
22

h2

M3
K

,

(B17)
G(4) = G

(5/2)
41

h1

M2
K

+ G
(5/2)
42

h2

M3
K

,

for a negative parity resonance, where

G
(5/2)
21 = −

√
105

210
√

π

q

M�∗

√
q

MR

√
E�∗ − M�∗ (MR + M�∗ )

× (2E�∗ + 5M�∗ ),

G
(5/2)
22 = −

√
105

105
√

π

q3√qMR

M�∗

√
E�∗ − M�∗ ,

(B18)

G
(5/2)
41 =

√
70

35
√

π

q

M�∗

√
q

MR

√
E�∗ − M�∗ (MR + M�∗ )

× (E�∗ − M�∗ ),

G
(5/2)
42 =

√
70

35
√

π

q3√qMR

M�∗

√
E�∗ − M�∗ .

It can be verified that the decay widths obtained from
Eq. (B8) with the above relations reproduce the results given in
Eq. (B5). The above effective Lagrangians are constructed for
resonances of spin up to 5/2, but they can be straightforwardly
generalized to resonances with arbitrary spin-parity.
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