
PARAMETERIZED COMPLEXITY AND

POLYNOMIAL-TIME APPROXIMATION SCHEMES

A Dissertation

by

XIUZHEN HUANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2004

Major Subject: Computer Science

PARAMETERIZED COMPLEXITY AND

POLYNOMIAL-TIME APPROXIMATION SCHEMES

A Dissertation

by

XIUZHEN HUANG

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

Jianer Chen
(Chair of Committee)

Donald K. Friesen
(Member)

Sing-Hoi Sze
(Member)

Catherine Yan
(Member)

Valerie E. Taylor
(Head of Department)

December 2004

Major Subject: Computer Science

iii

ABSTRACT

Parameterized Complexity and

Polynomial-Time Approximation Schemes. (December 2004)

Xiuzhen Huang, B.S., Shandong University;

M.S., Shandong University

Chair of Advisory Committee: Dr. Jianer Chen

According to the theory of NP-completeness, many problems that have impor-

tant real-world applications are NP-hard. This excludes the possibility of solving

them in polynomial time unless P=NP. A number of approaches have been proposed

in dealing with NP-hard problems, among them are approximation algorithms and

parameterized algorithms. The study of approximation algorithms tries to find good

enough solutions instead of optimal solutions in polynomial time, while parameterized

algorithms try to give exact solutions when a natural parameter is small.

In this thesis, we study the structural properties of parameterized computation

and approximation algorithms for NP optimization problems. In particular, we in-

vestigate the relationship between parameterized complexity and polynomial-time

approximation scheme (PTAS) for NP optimization problems.

We give nice characterizations for two important subclasses in PTAS: Fully Poly-

nomial Time Approximation Scheme (FPTAS) and Efficient Polynomial Time Ap-

proximation Scheme (EPTAS), using the theory of parameterized complexity. Our

characterization of the class FPTAS has its advantages over the former characteriza-

tions, and our characterization of EPTAS is the first systematic investigation of this

new but important approximation class.

We develop new techniques to derive strong computational lower bounds for

iv

certain parameterized problems based on the theory of parameterized complexity. For

example, we prove that unless an unlikely collapse occurs in parameterized complexity

theory, the clique problem could not be solved in time O(f(k)no(k)) for any function

f . This lower bound matches the upper bound of the trivial algorithm that simply

enumerates and checks all subsets of k vertices in the given graph of n vertices.

We then extend our techniques to derive computational lower bounds for PTAS

and EPTAS algorithms of NP optimization problems. We prove that certain NP

optimization problems with known PTAS algorithms have no PTAS algorithms of

running time O(f(1/ε)no(1/ε)) for any function f . Therefore, for these NP optimiza-

tion problems, although theoretically they can be approximated in polynomial time

to an arbitrarily small error bound ε, they have no practically effective approximation

algorithms for small error bound ε. To our knowledge, this is the first time such lower

bound results have been derived for PTAS algorithms. This seems to open a new

direction for the study of computational lower bounds on the approximability of NP

optimization problems.

v

To my husband and our daughter (four year old)

vi

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Dr. Jianer Chen, for his tremendous help,

guidance and encouragement during my study in Texas A&M University. Dr. Chen

has led me into this exciting and promising research area and guided me throughout

my PhD research. His excellence in both teaching and research in computer science

makes him a great example for me to follow in my academic career.

A special thanks to Dr. Donald K. Friesen for his kindness to the students and

excellent work in our department.

A special thanks to Dr. Sing-Hoi Sze for his excellent course on “Special Topics

in Computational Biology”.

A special thanks to Dr. Catherine Yan, who gave me advice on my thesis with

her one-month-old son sleeping in her arms.

I would like to thank all my committee members for their great support, their

time in reading this thesis, and their valuable suggestions.

I would like to thank Iyad A. Kanj, Ge Xia, Henry Brans, Songjian Lu and

Fenghui Zhang for their helpful discussions and their collaboration on part of my

research. Our collaboration work has been very helpful.

Many thanks go to all the teachers, friends and nice people in China and the

US. They have given me many valuable and beautiful things in my life, which they

themselves may not realize.

I would like to thank the National Science Foundation and the Department of

Computer Science for the financial support.

Finally, I would like to thank my husband (who has been sharing all the happiness

and hardship with me since we got married), our daughter (who is four year old

as I finish this dissertation), and our whole family members: my grandparents, my

vii

parents, my parents-in-law, my brother and his wife, my sister-in-law and her husband

and son, my aunts, my uncles, and my cousins.

viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Motivation . 1

B. Introduction to Parameterized Complexity Theory 6

C. Terminologies in Approximation 12

D. Thesis Outline . 15

II PARAMETERIZED COMPLEXITY AND PTAS 17

A. Introduction . 17

B. Efficient-FPT and FPTAS 18

C. Planar W -hierarchy and EPTAS 26

D. Remarks . 38

III LOWER BOUNDS OF PARAMETERIZED COMPUTATION . 40

A. Parameterized NP-hard Problems 40

1. Introduction . 40

2. Satisfiability and Weighted Satisfiability 43

3. Lower Bounds on Weighted Satisfiability Problems . . 52

4. Satisfiability Problems and the W -hierarchy 60

5. Linear fpt-reductions and Lower Bounds 67

B. On Some Parameterized Non NP-hard Problems 77

1. Further Remarks on Wl[1]-hardness 77

2. Parameterized LOGNP Problems 79

IV LOWER BOUNDS FOR PTAS ALGORITHMS 90

A. Our Theorem . 90

B. The DSSP Problem . 92

1. Standard Definitions of DSSP and Its PTAS 93

2. PTAS Lower Bound for DSSP 96

C. The LCS Problem . 100

1. FLCS-k . 102

2. LCS-λ . 106

D. The LOGNP Problems . 109

ix

CHAPTER Page

1. Rich Hypergraph Cover, Tournament Dominating

Set and V-C Dimension 109

2. LOG Hypergraph Cover, LOG Adjustment, and

LOG Dominating Set 112

3. log n-partite Graph Clique 117

V STUDY OF EPTAS ALGORITHMS ON PLANAR GRAPHS . 119

A. EPTAS Lower Bound Results 119

B. Planar Vertex Cover and EPTAS Upper Bound 120

VI CONCLUSIONS . 131

A. Summary . 131

B. Future Work . 132

REFERENCES . 136

VITA . 145

x

LIST OF FIGURES

FIGURE Page

1 An FPTAS algorithm for the problem Q. 22

2 Algorithm A≥. 91

3 Unfolding operation on the vertex v (with degree 6). 121

4 Parameterized algorithm for planar vertex cover. 125

5 EPTAS algorithm for planar vertex cover. 128

1

CHAPTER I

INTRODUCTION

A. Motivation

According to the NP-completeness theory, many problems that have important real-

world applications are NP-hard [44]. There are no polynomial time algorithms for

them unless P=NP. To deal with NP-hard problems, many approaches have been

proposed. Approximation algorithms and parameterized computation are two of these

approaches.

The highly acclaimed approximation approach [5] tries to come up with a good

enough solution in polynomial time instead of an optimal solution for an NP-hard op-

timization problem. Several important approximation classes, which include FPTAS,

EPTAS, and PTAS are introduced.

A notable class of NP-hard optimization problems has fully polynomial-time ap-

proximation schemes (FPTAS). An FPTAS algorithm is an efficient approximation

algorithm whose approximation ratio is bounded by 1 + ε and whose running time

is bounded by a polynomial in both the input size and 1/ε, where the relative error

bound ε can be any positive real number. Examples of FPTAS problems include the

well-known knapsack problem and the makespan problem on a fixed number of

processors [50].

A more general class of NP-hard optimization problems admits polynomial-time

approximation schemes (PTAS), which have polynomial time approximation algo-

rithms of approximation ratio 1 + ε for each fixed relative error bound ε > 0. A large

number of NP-hard optimization problems belong to the class PTAS [50], including

The journal model is IEEE Transactions on Automatic Control.

2

the well-known euclidean traveling salesman problem [4] and the general

multiprocessor job scheduling problem [27]. Contrary to the efficiency of FP-

TAS algorithms, the running time of a general PTAS algorithm of approximation

ratio 1+ ε can be of the form O(nt(ε)), where n is the input size and t(ε) is a function

of ε that can be very large even for moderate values of ε. Downey [33] (see also

Fellows [38]) examined many recently developed PTAS algorithms for NP-hard opti-

mization problems, and discovered that for the relative error bound value of ε = 20%,

most of these PTAS algorithms have t(ε) > 106, i.e., the running time of these PTAS

algorithms exceeds the order of n100000! Obviously, these PTAS algorithms are not

practically feasible.

Observing this fact, recent research has proposed to further refine the class PTAS.

We say that an optimization problem has an efficient polynomial-time approximation

scheme (EPTAS) if for any ε > 0, there is an approximation algorithm of ratio 1 + ε

whose running time is bounded by a polynomial of the input size whose degree is inde-

pendent of ε. In particular, all FPTAS problems belong to the class EPTAS. EPTAS

algorithms are superior to PTAS algorithms whose running time is of the form O(nt(ε))

in terms of the efficiency. In fact, many PTAS algorithms developed for NP-hard op-

timization problems are actually EPTAS algorithms. Moreover, there are a number

of well-known NP-hard optimization problems, such as the euclidean traveling

salesman problem [4], the general multiprocessor job scheduling problem

[27], and the makespan problem on unbounded number of processors [50], for which

early developed PTAS algorithms had running time of the form O(nt(ε)), but later

were improved to EPTAS algorithms.

The theory of parameterized complexity [37] is a newly developed approach in-

troduced to address NP-hard problems with small parameters. It tries to give exact

algorithms for an NP-hard problem when its natural parameter is small (even if the

3

problem size is big). Problems are considered fixed-parameter tractable (in the class

FPT) if they can be solved in time O(f(k)nc), where n is the problem size, k is the

parameter, f is a recursive function, and c is a constant. For a problem in the class

FPT, researchers try to come up with more efficient parameterized algorithms. For

example, the vertex cover problem is fixed-parameter tractable (in FPT).

vertex cover problem [20]: given a graph G and an integer k, determine

if G has a vertex cover C of k vertices, i.e., a subset C of k vertices in G

such that every edge in G has at least one end in C. Here the parameter

is k.

The problem is a well-known NP-complete problem [44]. On the other hand,

the Computational Biochemistry Research Group at the ETH Zürich has successfully

applied algorithms for this problem to their research in multiple sequence alignments

[73, 75], where the parameter value k can be bounded by 60. After many rounds of

improvement, the best known algorithm for the vertex cover problem runs in time

O(1.286k +kn) [26]. This algorithm has been implemented and is quite practical [18].

Accompanying the work on designing efficient and practical parameterized al-

gorithms, a theory of parameter intractability is developed. In parameterized com-

plexity, to classify fixed-parameter intractable problems, a hierarchy, the W -hierarchy⋃
t≥0 W [t], where W [t] ⊆ W [t + 1] for all t ≥ 0, has been introduced, in which the

0-th level W [0] is the class FPT. The hardness and completeness have been defined

for each level W [i] of the W -hierarchy for i ≥ 1, and a large number of W [i]-hard

parameterized problems have been identified [37]. For example, the clique problem,

the independent set problem, and the dominating set problem are all W [1]-

hard. Now it has become commonly accepted that no W [1]-hard (and W [i]-hard,

i > 1) problem can be solved in time f(k)nO(1) for any function f (i.e., W [1] 6= FPT).

4

W [1]-hardness has served as the hypothesis for fixed-parameter intractability. Exam-

ples include a recent result by Papadimitriou and Yannakakis [67], showing that the

database query evaluation problem is W [1]-hard. This provides strong evidence

that the problem cannot be solved by an algorithm whose running time is of the form

f(k)nO(1), thus excluding the possibility of a practical algorithm for the problem even

if the parameter k (the size of the query) is small as in most practical cases.

Also note that, as is pointed out in [20], “the theory of fixed-parameter tractabil-

ity is not a simple refinement of the concept of NP-completeness”, since there are

fixed-parameter tractable problems which are harder than NP-complete problems,

such as the ml type-checking problem, and there are also fixed-parameter in-

tractable problems that seem easier than NP-complete problems, such as the v-c

dimension problem. “Therefore, the theory of fixed-parameter tractability seems to

well supplement the theory of NP-completeness [20].”

Research activities in parameterized computation have demonstrated rich com-

plexity structures and effective algorithmic approaches. This research area has found

applications in computational biology, database systems, networks, parallel comput-

ing, VLSI design and other research areas. Please refer to [37, 33, 38, 20, 67, 47]

and the recently published special issue in Journal of Computer and System Sciences

(Volume 67, No.6, 2003, Guest Editors: J. Chen and M. Fellows).

We have seen that a lot of research has been done in the approximation area

and the parameterized complexity area. The work on the connections of these two

research areas is still primitive, but already demonstrates its beautiful theoretical

properties and important practical applications. In the following are only a few nice

results of the recent research work in this direction.

In [12], Cai and Chen proposed a standard approach to parameterize an NP

optimization problem. Using the standard parameterization, they proved:

5

Lemma I.1 ([12]) If an optimization problem has a fully polynomial-time approx-

imation scheme, then the corresponding parameterized problem is fixed-parameter

tractable (in FPT).

Later this result was extended [17]:

Lemma I.2 ([17]) All optimization problems that have efficient polynomial-time ap-

proximation schemes have their parameterized problems in FPT.

This shows that for NP optimization problems whose corresponding parame-

terized problems are fixed-parameter intractable, they are unlikely to have efficient

polynomial-time approximation schemes. The study of parameterized complexity

“provides a new and potentially powerful approach to proving nonapproximability of

NP optimization problems [37].”

As an application, Lemma I.2 was used to prove the lower bound result for

the distinguishing substring selection problem (abbreviated DSSP) problem

which arose in the area of computational biology. Gramm et al. in [46] proved that the

DSSP problem is W [1]-hard. Combining this W [1]-hardness result with Lemma I.2,

they got the following lower bound result for the problem:

Lemma I.3 ([46]) Unless W[1]=FPT, the W[1]-hardness of DSSP excludes the pos-

sibility of DSSP having efficient polynomial-time approximation schemes.

Therefore the PTAS algorithm for the DSSP problem designed in [30, 31] could

not be greatly improved to an EPTAS algorithm.

In this thesis, we study the structures of parameterized problems with respect to

their parameterized tractability and the relationship between parameterized complex-

ity and approximability. Specifically, the work in this thesis includes the following:

6

• the study of the relationship between parameterized complexity and approxi-

mation classes.

• the investigation of the issues related to the computational lower bounds for NP-

hard parameterized problems and some Non NP-hard parameterized problems.

• the extension of the techniques to derive computational lower bounds for PTAS

and EPTAS approximation algorithms.

B. Introduction to Parameterized Complexity Theory

This section is adapted from some material in [20, 25]. Interested readers are referred

to the book by Downey and Fellows [37] for a more systematic treatment of the

theory of parameterized complexity. Here we only provide some fundamentals of

parameterized complexity theory.

The theory of parameterized computation and complexity mainly considers de-

cision problems (i.e., problems whose instances only require a yes/no answer). This

losses no generality. In fact, it has been a very natural practice in the study of the

NP-completeness theory [44] to reduce an optimization problem to a decision problem

by introducing a parameter.

Definition A parameterized problem Q is a decision problem (i.e., a language) that

is a subset of Σ∗×N , where Σ is a fixed alphabet and N is the set of all nonnegative

integers. Thus, each element of Q is of the form (x, k), where the second component,

i.e., the integer k, is the parameter.

A parameterized problem Q can take a more general form such that the parameter

is also a finite string in a fixed alphabet [37]. Our discussion will be based on the

7

above simplified definition in which the parameter is a nonnegative integer, as is the

case for most parameterized problems.

We say that an algorithm A solves the parameterized problem Q if on each

input (x, k), the algorithm A can determine whether (x, k) is a yes-instance of Q (i.e.,

whether (x, k) is an element of Q). We call the algorithm A a parameterized algorithm

if its computational complexity is measured in terms of both the input length |x| and

the parameter value k.

Definition The parameterized problem Q is fixed-parameter tractable if it can be

solved by a parameterized algorithm of running time bounded by f(k)|x|c, where f

is a recursive function and c is a constant independent of both k and |x|. Denote by

FPT the class of all fixed-parameter tractable problems.

Many NP-hard parameterized problems, such as vertex cover, are in the class

FPT. For most developed parameterized algorithms for FPT problems, the recursive

function f is moderate (e.g., f(k) = dk for a small constant d > 1). Therefore, for

small parameter values of k, the running time f(k)|x|c of the algorithms for FPT

problems becomes practically acceptable.

A natural question is whether there are parameterized problems (in particular,

parameterized NP-complete problems) that are not fixed-parameter tractable. In

order to discuss this, we first need to describe a group of satisfiability problems

on circuits of bounded depth. For this, we first review some basic definitions and

notations related to circuits.

A circuit C of n variables is an acyclic graph, in which each node of in-degree 0

is an input gate and is labelled by either a positive literal xi or a negative literal xi,

where 1 ≤ i ≤ n. All other nodes in C are called gates and are labelled by a Boolean

8

operator either and or or. A designated gate of out-degree 0 in C is the output gate.

The circuit C computes a Boolean function in a natural way. The size of the circuit

C is the number of nodes in C, and the depth of C is the length of a longest path

from an input gate to the output gate in C. The circuit C is a Πt-circuit if its output

is an and gate and its depth is bounded by t. The circuit C is monotone (resp.

antimonotone) if all its input gates are labelled by positive literals (resp. negative

literals). We say that an assignment τ to the input variables of the circuit C satisfies

C if τ makes the output gate of C have value 1. The weight of an assignment τ is the

number of variables assigned value 1 by τ .

Using the results in [19], a Πt-circuit C can be re-structured into an equivalent

Πt-circuit C ′ with size increased at most quadratically such that (1) C ′ has t+1 levels

and each edge in C ′ only goes from a level to the next level; (2) the circuit C ′ has the

same monotonicity and the same set of input variables; (3) level 0 of C ′ consists of

all input gates and level t of C ′ consists of a single output gate; and (4) and and or

gates in C ′ are organized into t alternating levels. Thus, without loss of generality,

we will implicitly assume that Πt-circuits are in this levelled form.

The satisfiability problem on Πt-circuits, abbreviated sat[t], is to determine

if a given Πt-circuit C has a satisfying assignment. The parameterized problem

weighted satisfiability on Πt-circuits, abbreviated wcs[t], consists of the pairs

(C, k), where C is a Πt-circuit and k is an integer, and C has a satisfying assignment

of weight k. The weighted monotone satisfiability (resp. weighted an-

timonotone satisfiability) problem on Πt-circuits, abbreviated wcs+[t] (resp.

wcs−[t]) is defined similarly as wcs[t] except that the circuit C is required to be

monotone (resp. antimonotone). To simplify our discussion, we will denote by wcs∗[t]

the problem wcs+[t] when t is even, and the problem wcs−[t] when t is odd.

Finally, we define the problem weighted antimonotone cnf 2-sat (shortly

9

wcnf-2sat−) to be the set of pairs (F, k), where F is a CNF formula with only

negative literals, in which each clause contains at most two literals and F has a

satisfying assignment of weight k.

Extensive computational experience and practice have given strong evidences

that the problem wcnf-2sat− and the problems wcs∗[t] for all t > 1 are not fixed-

parameter tractable. The theory of fixed-parameter intractability is built based on

this working hypothesis, which classifies the levels of fixed-parameter intractability

in terms of the parameterized complexity of the problems wcnf-2sat− and wcs∗[t].

For this, we need to introduce a new type of reduction.

Definition A parameterized problem Q is fpt-reducible to a parameterized problem

Q′ if there is an algorithm that transforms each instance (x, k) of Q into an instance

(x′, k′) of Q′ in time O(f(k)|x|c), where k′ = g(k), f and g are recursive functions

and c is a constant, such that (x, k) is a yes-instance of Q if and only if (x′, k′) is a

yes-instance of Q′.

It is easy to verify that the fpt-reduction preserves the fixed-parameter tractabil-

ity, in the following sense. Suppose that Q is fpt-reducible to Q′. Then if Q′ is

fixed-parameter tractable then so is Q, and if Q is not fixed-parameter tractable then

neither is Q′.

Lemma I.4 ([37]) Let Q1, Q2, and Q3 be parameterized problems. If Q1 is fpt-

reducible to Q2 and Q2 is fpt-reducible to Q3, then Q1 is fpt-reducible to Q3.

Now we are ready to define the W -hierarchy [37].

Definition A parameterized problem Q1 is in the class W [1] if Q1 is fpt-reducible

10

to the problem wcnf-2sat−. A parameterized problem Qt is in the class W [t] for

t > 1 if Qt is fpt-reducible to the problem wcs[t].

In particular, an FPT problem is in the class W [t], for all t ≥ 1. Moreover,

observe that the wcnf-2sat− problem is a subproblem of the wcs[2] problem and

that the fpt-reduction is transitive, so we have W [1] ⊆ W [2]. By the similar reason,

for an integer t > 1, since the problem wcs[t] is trivially fpt-reducible to the problem

wcs[t + 1], so W [t] ⊆ W [t + 1]. Thus, if we define W [0] = FPT, then we obtain the

fixed-parameter intractability hierarchy, the W -hierarchy
⋃

t≥0 W [t], with

W [0] ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [t] ⊆ · · ·

In particular, by the definitions, the problem wcnf-2sat− is in the class W [1]

and the problem wcs[t] is in the class W [t] for all t > 1. According to our working

hypothesis, wcnf-2sat− is not fixed-parameter tractable, which is equivalent to the

statement FPT 6= W [1].

Following the same style of NP-hardness and NP-completeness, we define:

Definition Let t ≥ 1 be an integer. A parameterized problem Qt is W [t]-hard if

all problems in W [t] are fpt-reducible to Qt, and is W [t]-complete if in addition Qt is

also in W [t].

By the definitions, we get a generic complete problem for each level in the W -

hierarchy.

Theorem I.5 The problem wcnf-2sat− is W [1]-complete, and for all integers t >

1, the problem wcs[t] is W [t]-complete.

11

Since the fpt-reduction is transitive, we have

Theorem I.6 For t ≥ 1, if a W [t]-hard problem is fixed-parameter tractable, then

FPT = W [t].

Since it is commonly believed that for all t ≥ 1, FPT 6= W [t], the W [t]-hardness

of a parameterized problem provides a strong evidence that the problem is not fixed-

parameter tractable.

The transitivity of the fpt-reduction also provides a convenient way for deriving

hardness in the W -hierarchy.

Theorem I.7 Let t ≥ 1 be an integer. A parameterized problem Qt is W [t]-hard if

there is a W [t]-hard problem that is fpt-reducible to Qt.

In particular, for each integer t ≥ 2, it can be shown that the problem wcs[t]

is fpt-reducible to the problem wcs∗[t] [37]. The problem wcs∗[t] is obviously in

the class W [t]. Therefore, for each t ≥ 2, we get the second W [t]-complete problem

wcs∗[t].

Using Theorem I.7, researchers in the theory of parameterized computation and

complexity have identified over a hundred parameterized problems that are either

hard or complete for various levels in the W -hierarchy [37]. For example, the problems

independent set, clique, and weighted 3-sat are W [1]-complete, the problems

weighted cnf-sat, dominating set, set cover, hitting set, and 0-1 integer

programming are W [2]-complete. Many of these problems have been well-known

for their theoretical and practical importance. Some of them have been the main

targets for algorithmic research for many years. The fact that nobody has been able

to develop a fixed-parameter tractable algorithm for any of these problems provides

a strong support to our working hypothesis.

12

We point out that each level W [t] of the W -hierarchy can also be defined in terms

of the traditional machine models and of more “standard” complexity measures. See

[13, 28, 40] for detailed discussions.

C. Terminologies in Approximation

For a reference of the theory of approximation, the readers are referred to the book

[5]. In this section, we provide some basic terminologies for studying approximation

algorithms and its relationship with parameterized complexity. These terminologies

will be used through out this thesis.

An NP optimization problem Q is a 4-tuple (IQ, SQ, fQ, optQ), where

1. IQ is the set of input instances. It is recognizable in polynomial time;

2. For each instance x ∈ IQ, SQ(x) is the set of feasible solutions for x, which is

defined by a polynomial p and a polynomial time computable predicate π (p and π

only depend on Q) as SQ(x) = {y : |y| ≤ p(|x|) and π(x, y)};

3. fQ(x, y) is the objective function mapping a pair x ∈ IQ and y ∈ SQ(x) to a

non-negative integer. The function fQ is computable in polynomial time;

4. optQ ∈ {max, min}. Q is called a maximization problem if optQ = max, and a

minimization problem if optQ = min.

An optimal solution y0 for an instance x ∈ IQ is a feasible solution in SQ(x) such

that fQ(x, y0) = optQ{fQ(x, z) | z ∈ SQ(x)}. We will denote by optQ(x) the value

optQ{fQ(x, z) | z ∈ SQ(x)}.

An algorithm A is an approximation algorithm for an NP optimization problem

Q = (IQ, SQ, fQ, optQ) if, for each input instance x in IQ, A returns a feasible solution

yA(x) in SQ(x). The solution yA(x) has an approximation ratio r(n) if it satisfies the

13

following condition:

optQ(x)/fQ(x, yA(x)) ≤ r(|x|) if Q is a maximization problem

fQ(x, yA(x))/optQ(x) ≤ r(|x|) if Q is a minimization problem

The approximation algorithm A has an approximation ratio r(n) if for any instance

x in IQ, the solution yA(x) constructed by the algorithm A has an approximation

ratio bounded by r(|x|). An NP optimization problem Q has a polynomial-time

approximation scheme (PTAS) if there is an algorithm AQ that takes a pair (x, ε) as

input, where x is an instance of Q and ε > 0 is a real number, and returns a feasible

solution y for x such that the approximation ratio of the solution y is bounded by

1 + ε, and for each fixed ε > 0, the running time of the algorithm AQ is bounded by

a polynomial of |x|.1 Finally, an NP optimization problem Q has a fully polynomial-

time approximation scheme (FPTAS) if it has a PTAS AQ such that the running time

of AQ is bounded by a polynomial of |x| and 1/ε.

Observe that the time complexity of a PTAS algorithm may be of the form

O(21/ε|x|c) for a fixed constant c or of the form O(|x|1/ε). Obviously, the latter type

of computations with small ε values will turn out to be practically infeasible. This

leads to the following definition [17].

Definition An NP optimization problem Q has an efficient polynomial-time ap-

proximation scheme (EPTAS) if it admits a polynomial-time approximation scheme

whose time complexity is bounded by O(f(1/ε)|x|c), where f is a recursive function

1There is an alternative definition for PTAS in which each ε > 0 may correspond
to a different approximation algorithm Aε for Q [44]. The definition we adopt here
may be called the uniform PTAS, by which a single approximation algorithm takes
care of all values of ε. Note that most PTAS developed in the literature are uniform
PTAS.

14

and c is a constant.

An NP optimization problem Q can be parameterized in a natural way as follows.

Definition Let Q = (IQ, SQ, fQ, optQ) be an NP optimization problem. The param-

eterized version of Q is defined as follows:

(1) If Q is a maximization problem, then the parameterized version of Q is

defined as Q≥ = {(x, k) | x ∈ IQ ∧ optQ(x) ≥ k};

(2) If Q is a minimization problem, then the parameterized version of Q is de-

fined as Q≤ = {(x, k) | x ∈ IQ ∧ optQ(x) ≤ k}.

The above definition offers the possibility to study the relationship between the

approximability and the parameterized complexity of NP optimization problems.

However, there is an essential difference between the two categories: an approxi-

mation algorithm for an NP optimization problem constructs a solution for a given

instance of the problem, while a parameterized algorithm only provides a “yes/no”

decision on an input. To make the comparison meaningful, we need to extend the

definition of parameterized algorithms in a natural way so that when a parameter-

ized algorithm returns a “yes” decision, it also provides an “evidence” to support the

conclusion (see [12] for a similar treatment).

Definition Let Q = (IQ, SQ, fQ, optQ) be an NP optimization problem. We say that

a parameterized algorithm AQ solves the parameterized version of Q if

(1) in case Q is a maximization problem, then on an input pair (x, k) in Q≥, the

algorithm AQ returns “yes” with a solution y in SQ(x) such that fQ(x, y) ≥ k, and

on any input not in Q≥, the algorithm AQ simply returns “no”;

15

(2) in case Q is a minimization problem, then on an input pair (x, k) in Q≤, the

algorithm AQ returns “yes” with a solution y in SQ(x) such that fQ(x, y) ≤ k, and

on any input not in Q≤, the algorithm AQ simply returns “no”.

D. Thesis Outline

The organization of this thesis is as follows. In Chapter II, we study the relation-

ship between parameterized complexity and approximability. We present our char-

acterizations of the approximation classes FPTAS and EPTAS using the theory of

fixed-parameter tractability and the W -hierarchy of parameterized intractability.

In Chapter III, we study the structural properties of parameterized complexity,

and introduce the definition of linear fpt-reduction. We investigate the issues related

to the computational lower bounds for NP-hard parameterized problems, such as the

independent set, clique and dominating set problems, and some Non NP-hard

parameterized problems, such as the problems in the class lognp.

In Chapter IV, we study the applications of parameterized complexity in deriving

computational lower bounds on PTAS algorithms for NP-hard optimization problems,

such as the distinguishing substring selection (DSSP) and longest common

subsequence (LCS) problems, which have found important applications in compu-

tational biology. We then discuss the inapproximability of the problems in the class

lognp.

In Chapter V, we derive computational lower bounds for EPTAS algorithms for

some NP-hard problems on planar graphs. Since there is a gap between our lower

bound results and the current upper bound results, in particular, we investigate the

possibility of improving the upper bound of the EPTAS algorithm for the planar

16

vertex cover problem.

We give a summary of our work and the directions for future research in Chapter

VI.

17

CHAPTER II

PARAMETERIZED COMPLEXITY AND PTAS∗

This chapter is joint work with J. Chen, I. Kanj, and G. Xia [24].

A. Introduction

In this chapter, we study the relationship between the approximability and the pa-

rameterized complexity of NP optimization problems.

We start by identifying a subclass, efficient-FPT, of fixed parameter tractable

problems, and prove that under a very general condition (the scalability condition,

see the next section for a formal definition), a problem is in FPTAS if and only if it

is in efficient-FPT. This provides a very precise characterization of the approxima-

tion class FPTAS in terms of parameterized complexity. This characterization has

advantages over the previous characterizations for the class FPTAS. Compared to

Paz and Moran’s characterization of the class FPTAS based on certain polynomial

time computable functions [68] (see also [6]), our characterization is easier to verify:

the scalability condition seems to be satisfied by almost all NP optimization prob-

lems. Compared to Woeginger’s recent characterization of the class FPTAS based on

a dynamic programming formulation, our characterization seems more general and

includes more FPTAS problems.

We then study the characterization of the class EPTAS. We enforce a constraint

of planarity on the W -hierarchy in parameterized complexity theory, and introduce

∗Part of the data reported in this chapter is reprinted with permission from “Poly-
nomial time approximation schemes and parameterized complexity” by J. Chen, X.
Huang, I. Kanj, and G. Xia, 2004, Proceedings of the 29th International Symposium
on the Mathematical Foundations of Computer Science, (MFCS 2004), pp. 500-512,
Copyright 2004 by Springer-Verlag.

18

the syntactic classes planar min-W [h], planar max-W [h], and planar W [h]-sat

(this approach is similar to that of Khanna and Motwani [57] in their efforts to charac-

terize the class PTAS). These syntactic classes capture many NP optimization prob-

lems in the class EPTAS, such as planar vertex cover, planar independent

set, and planar max-sat. By extending Baker’s techniques [7] and techniques more

recently developed in the study of parameterized algorithms [2, 43], we prove that

all problems in these syntactic classes belong to the class EPTAS. These syntactic

classes seem to form the core for a significant class of EPTAS problems. Finally, we

point out that our syntactic classes are significantly different from the PTAS syntactic

classes introduced by Khanna and Motwani [57]: our syntactic classes characterize

only EPTAS problems while the syntactic classes in [57] seem to include PTAS prob-

lems that are not in EPTAS, while on the other hand, our syntactic classes contain

EPTAS problems that cannot be characterized by the syntactic classes in [57].

Our results combined with a result by Cesati and Trevisan [17] show that all

problems expressible by our syntactic classes are fixed-parameter tractable. Moreover,

a byproduct derived from an immediate result in our discussion shows that for any

fixed integer t ≥ 0, the planar t-normalized weighted satisfiability problem

is solvable in polynomial time, which answers an open problem posed by Downey and

Fellows [37].

B. Efficient-FPT and FPTAS

In this section, we present a characterization for the approximation class FPTAS in

terms of parameterized complexity. Recall that a fixed-parameter tractable problem

has an algorithm of running time of the form f(k)nc, where f is an arbitrary recursive

function. By enforcing a further constraint on the function f(k), we introduce the

19

following subclass of the class FPT:

Definition An NP optimization problem Q is efficiently fixed-parameter tractable

(efficient-FPT) if its parameterized version is solvable by a parameterized algorithm

of running time bounded by a polynomial of |x| and k.

Note that efficient-FPT does not necessarily imply polynomial time computabil-

ity: NP optimization problems, in particular a large variety of scheduling problems,

may have their optimal values much larger than the input size. In consequence, the

parameterized versions of these problems may have their parameter values k much

larger than the input size.

Definition An optimization problem Q = (IQ, SQ, fQ, optQ) is said to be scalable if

there are polynomial time computable functions g1 and g2 and a fixed polynomial q

such that:

1. for any instance x ∈ IQ, and any integer d ≥ 1, xd = g1(x, d) is an instance of

Q such that |xd| ≤ q(|x|) and |optQ(xd)− optQ(x)/d| ≤ q(|x|); and

2. for any solution yd to the instance xd, y = g2(xd, yd) is a solution to the in-

stance x such that |fQ(xd, yd)− fQ(x, y)/d| ≤ q(|x|).

Most NP optimization problems are scalable. In particular, if an NP optimization

problem Q has its optimal value opt(x) bounded by a polynomial of |x| for all instances

x, then the problem Q is automatically scalable — simply let xd = g1(x, d) = x for

any integer d, and for a solution yd to xd = x, let g2(xd, yd) = yd. This immediately

implies that most set problems and graph problems are scalable, including the well-

known NP-hard problems such as bin packing, 3d-matching, set cover, vertex

20

cover, and dominating set. Moreover, most NP optimization problems involving

large numbers (i.e., the number problems defined by Garey and Johnson [44]), such

as knapsack and makespan, are also scalable. We pick Q = makespan as an

example to illustrate how such a problem involving large numbers can be scaled. An

instance x of makespan consists of n jobs of integral processing times t1, t2, . . .,

tn, respectively (we will refer to the jth job by tj), and an integer m, the number of

identical processors, and asks to construct a scheduling of the jobs on the m processors

so that the completion time (i.e., the makespan) is minimized. For a given instance

x = (t1, t2, . . . , tn; m) of makespan and a given integer d ≥ 0, we define

xd = g1(x, d) = (t′1, t
′
2, . . . , t

′
n; m)

where t′i = dti/de for i = 1, 2, . . . , n, which is also an instance for makespan. A

solution yd to the instance xd is a scheduling that partitions the n jobs in xd into

m subsets: yd = (T ′
1, . . . , T

′
m), where T ′

i is the set of jobs in xd that are assigned

to the ith processor. We define y = g2(xd, yd) to be the same index partitioning

of the jobs in x: y = (T1, . . . , Tm) (i.e., a job tj is in Ti if and only if the job

t′j is in T ′
i). Obviously, y = g2(xd, yd) is a solution for the instance x, and the

functions g1 and g2 are computable in polynomial time. To see the relation between

the solution y = (T1, . . . , Tm) for x and the solution yd = (T ′
1, . . . , T

′
m) for xd, note

that the makespan of y is equal to maxi{
∑

tj∈Ti
tj}, and the makespan of yd is equal

to maxi{
∑

t′j∈T ′
i
t′j}. We have

fQ(xd, yd) = max
i
{
∑

t′j∈T ′
i

t′j} = max
i
{
∑

tj∈Ti

dtj/de}

≥ max
i
{
∑

tj∈Ti

tj/d} = max
i
{
∑

tj∈Ti

tj}/d = fQ(x, y)/d. (2.1)

21

On the other hand

fQ(xd, yd) = max
i
{
∑

t′j∈T ′
i

t′j} = max
i
{
∑

tj∈Ti

dtj/de}

≤ max
i
{
∑

tj∈Ti

(tj/d + 1)} ≤ max
i
{
∑

tj∈Ti

tj}/d + n

= fQ(x, y)/d + n. (2.2)

Here we have used the fact that the total number of jobs in each subset Ti is bounded

by n. Combining (2.1) and (2.2), we get |fQ(xd, yd) − fQ(x, y)/d| ≤ n. Similarly, it

can be verified that the instances x and xd satisfy |optQ(xd) − optQ(x)/d| ≤ n. In

conclusion, the makespan problem is scalable.

Theorem II.1 Let Q = 〈IQ, SQ, fQ, optQ〉 be a scalable NP optimization problem.

Then Q has an FPTAS if and only if Q is efficient-FPT.

Proof. One direction of the theorem was implicitly proved in [12]. Suppose that

Q has an FPTAS AQ, which is an algorithm such that on any instance x of Q and

any given ε > 0, the algorithm AQ constructs a solution of ratio bounded by 1 + ε for

x, in time p(|x|, 1/ε), where p(|x|, 1/ε) is a polynomial of |x| and 1/ε. Cai and Chen

proved ([12], Theorem 3.2) that then the parameterized version of Q can be solved in

time O(p(|x|, 2k)). In consequence, the problem Q is efficient-FPT.

To show the converse, we consider specifically the case when Q is a maximization

problem (a proof for minimization problems can be similarly derived). Suppose that

the problem Q is efficient-FPT, and the parameterized version Q≥ is solvable in time

p(k, |x|), which is a polynomial in k and |x|. Since Q is scalable, we let g1 and g2 be

the polynomial time computable functions, and q be the polynomial in the definition

of the scalability of Q. For a given instance x of Q and a real number ε > 0, consider

the algorithm (assume n = |x|) shown in Fig 1.

22

FPTAS Algorithm for Q.

begin

1. let x1 = g1(x, 1); if (x1, 3q(n)/ε) is not in Q≥, then try all instances (x, 1), (x, 2),
. . ., (x, 3q(n)/ε + q(n)) to construct an optimal solution for x; STOP.

2. use binary search on d to find an integer d ≥ 1 such that (xd, 3q(n)/ε) is in Q≥,
but (xd+1, 3q(n)/ε) is not in Q≥;

3. construct an optimal solution yd for the instance xd;

4. let y0 = g2(xd, yd); output y0 as a solution for x.

end

Fig. 1. An FPTAS algorithm for the problem Q.

We discuss the correctness and the complexity of the above algorithm. First note

that by the definition, |xd| ≤ q(n) for any integer d. If (x1, 3q(n)/ε) is not in Q≥, then

optQ(x1) < 3q(n)/ε. Moreover, since Q is scalable, we have |optQ(x1)− optQ(x)/1| ≤

q(n). Combining these two relations, we get optQ(x) ≤ optQ(x1) + q(n) < 3q(n)/ε +

q(n). Thus, step 1 of the algorithm will correctly construct an optimal solution for the

instance x (note by our definition, on input (x, optQ(x)), the parameterized algorithm

must return “yes” with an optimal solution to the instance x). Moreover, since

checking each instance (x, k) takes time p(k, n), where k = 1, 2, . . ., 3q(n)/ε + q(n),

step 1 of the algorithm takes time bounded by O((3q(n)/ε+q(n))p(3q(n)/ε+q(n), n)),

which is a polynomial of n and 1/ε.

If (x1, 3q(n)/ε) is in Q≥, then we execute step 2 of the algorithm. First we need

to show that there must be an integer d ≥ 1 such that (xd, 3q(n)/ε) is in Q≥ but

23

(xd+1, 3q(n)/ε) is not in Q≥. We already know that (xd, 3q(n)/ε) is in Q≥ for d = 1.

Thus, we only need to show that there must be a d such that (xd, 3q(n)/ε) is not

in Q≥. Since Q is an NP optimization problem, we have optQ(x) < 2r(n), where

r(n) is a polynomial in n. Therefore if we let d = 2r(n), then from the scalability

of the problem Q, we have |optQ(xd) − optQ(x)/d| ≤ q(n), which gives immediately

optQ(xd) < 1+q(n) ≤ 3q(n)/ε (here we assume without loss of generality that q(n) ≥ 1

and 0 < ε < 1). Thus, the integer d in step 2 of the algorithm must exist and d ≤ 2r(n).

Since we use binary search on d, the total number of instances (xd, 3q(n)/ε) we check

in step 2 is bounded by r(n). By our assumption, each instance (xd, 3q(n)/ε) of Q≥

can be tested in time p(3q(n)/ε, q(n)) (note that |xd| ≤ q(n)). Therefore, the running

time of step 2 of the algorithm is also bounded by a polynomial of n and 1/ε.

Now consider step 3. Since (xd+1, 3q(n)/ε) is not in Q≥, we have optQ(xd+1) <

3q(n)/ε. By the scalability of Q, we have

|optQ(xd)− optQ(x)/d| ≤ q(n)

|optQ(xd+1)− optQ(x)/(d + 1)| ≤ q(n)

From this we get (note since d ≥ 1, we have (d + 1)/d ≤ 2)

optQ(xd) ≤ optQ(x)

d
+ q(n)

=
d + 1

d
· optQ(x)

d + 1
+ q(n)

≤ d + 1

d
(optQ(xd+1) + q(n)) + q(n)

≤ 2 · optQ(xd+1) + 3q(n)

≤ 6q(n)

ε
+ 3q(n)

Thus, by checking all instances (xd, k), where k = 1, 2, . . ., 6q(n)/ε + 3q(n), each

taking time p(k, q(n)), we will be able to construct the optimal solution yd for the

24

instance xd. In conclusion, step 3 of the algorithm also takes time polynomial in n

and 1/ε.

Summarizing the above discussion, we conclude that the running time of the

algorithm is bounded by a polynomial in n and 1/ε. What remains is to bound the

approximation ratio for the solution y0 of the instance x.

By our construction, fQ(xd, yd) = optQ(xd) and y0 = g2(xd, yd). By the scalability

of Q,

|optQ(xd)− fQ(x, y0)/d| = |fQ(xd, yd)− fQ(x, y0)/d| ≤ q(n) (2.3)

Thus, fQ(x, y0) ≥ d · optQ(xd) − d · q(n). Since (xd, 3q(n)/ε) is in Q≥, we have

optQ(xd) ≥ 3q(n)/ε, which gives (note 0 < ε < 1 thus d/ε ≥ d):

fQ(x, y0) ≥ 3d · q(n)/ε− d · q(n) = q(n)(3d/ε− d) ≥ 2dq(n)/ε (2.4)

Now from (2.3) and the inequality |optQ(xd)− optQ(x)/d| ≤ q(n), we get

|optQ(x)/d− fQ(x, y0)/d| ≤ |optQ(xd)− optQ(x)/d|+ |optQ(xd)− fQ(x, y0)/d| ≤ 2q(n)

Thus optQ(x) − fQ(x, y0) ≤ 2dq(n) (recall that Q is a maximization problem). This

eventually gives us

optQ(x)/fQ(x, y0) ≤ 1 + 2dq(n)/fQ(x, y0) ≤ 1 + ε

The last inequality is from (2.4). In conclusion, the approximation ratio of the solution

y0 for the instance x is bounded by 1 + ε.

This proves that the algorithm above is an FPTAS for the problem Q. This

completes the proof of the theorem.

As an application of Theorem II.1, the scalability as shown earlier and the

well-known dynamic programming algorithm of running time O(nkm) [44] for the

25

makespan problem conclude immediately that the makespan problem has an FP-

TAS when the number m of processors is a fixed constant. This is a major result in

[74].

We make a few remarks on Theorem II.1. Since the first group of publications

on FPTAS for NP optimization problems [52, 74], there has been a line of research

trying to characterize problems in FPTAS [6, 68, 79]. Most of the early work in this

direction [6, 68] characterizes the class FPTAS in terms of certain polynomial time

computable functions. These characterizations do not provide any clue on how to

detect the existence of such functions, or on how to develop FPTAS for the problems

(the interested readers are referred to [68], Theorem 4.20, for a more detailed discus-

sion on this line of research). Very recently, Woeginger [79], in an effort to overcome

this difficulty, considered a class of optimization problems that can be formulated

via dynamic programming of certain structures. He showed that as long as the cost

and transition functions of such problems satisfy certain arithmetical and structural

conditions, the problems have FPTAS.

In comparison to these related works, Theorem II.1 seems to have the following

advantages. First, as we have shown for the makespan problem, the scalability

property of an NP optimization problem is satisfied in most cases and, in general,

can be checked in a straightforward manner. Thus, in most cases, the existence of

FPTAS for an NP optimization problem is reduced to the development of an efficient-

FPT algorithm for the problem. Moreover, the proof of Theorem II.1 describes in

detail how an efficient-FPT algorithm is converted into an FPTAS algorithm. On the

other hand, Theorem II.1 seems to cover more FPTAS problems than Woeginger’s

characterization [79]: intuitively, and generally, a dynamic programming formulation

for an NP optimization problem directly implies an efficient-FPT algorithm for the

problem.

26

C. Planar W -hierarchy and EPTAS

In the previous section, we have shown how a subclass of the parameterized class

FPT, the class efficient-FPT, provides a nice characterization for the approximation

class FPTAS. In this section, we study the approximation class EPTAS in terms of

the parameterized class, the W -hierarchy.

We note that a significant amount of research has been done on studying the

approximation properties in terms of their syntactic descriptions. For instance, Pa-

padimitriou and Yannakakis [65] introduced the syntactic classes maxnp and maxsnp

of optimization problems, which, via proper approximation ratio preserving reduc-

tions, turn out to be exactly the class of NP optimization problems that can be

approximated in polynomial time with constant approximation ratios [58]. Khanna

and Motwani [57] proposed the syntactic classes mpsat, tmax, and tmin by enforc-

ing a planar structure on first order Boolean formulas of depth 3, and showed that

most known PTAS problems are expressible by these classes.

In a parallel approach to that of Khanna and Motwani [57], we study the ap-

proximation class EPTAS by enforcing a planar structure on the W -hierarchy in

parameterized complexity. A Πh-circuit is a Π+
h -circuit if all of its inputs are labeled

by positive literals, and is a Π−
h -circuit if all of its inputs are labeled by negative

literals. A Πh-circuit α is planar if α becomes a planar graph after removing the

output gate in α.

Definition We define the following syntactic optimization classes:

planar min-W [h]: consists of every optimization problem Q such that each

instance of Q can be expressed as a planar Π+
h -circuit α, and the problem is to look

for a satisfying assignment of minimum weight for α.

27

planar max-W [h]: consists of every optimization problem Q such that each

instance of Q can be expressed as a planar Π−
h -circuit α, and the problem is to look

for a satisfying assignment of maximum weight for α.

planar W [h]-sat: consists of every optimization problem Q such that each

instance of Q can be expressed as a planar Πh-circuit α, and the problem is to look for

an assignment that satisfies the largest number of depth-(h−1) gates in the circuit α.

We make a few remarks on the above optimization classes. The classes planar

min-W [h], planar max-W [h], and planar W [h]-sat are optimization versions,

with a planarity constraint, of the problem wcs(h), which is the representative com-

plete problem for the hth level W [h] of the W -hierarchy in parameterized complexity

theory. The class planar W [h]-sat captures the optimization problems such as the

planar maximum satisfiability problem, where the objective is to construct a

solution that satisfies the maximum number of constraints. In particular, the prob-

lem planar maxsat formulated by Khanna and Motwani [57] belongs to the class

planar W [2]-sat. The classes planar min-W [h] and planar max-W [h] capture

the optimization problems where the objective is to construct an optimal (minimum

or maximum) solution that satisfies all the constraints. Most optimization problems

on planar graphs belong to the classes planar min-W [h] or planar max-W [h]. For

example, for an instance G of the minimum vertex cover on planar graphs, we

can convert G into a planar Π+
2 -circuit αG by making each vertex v in G an input of

αG and replacing each edge [v, w] in G by an or gate with the two inputs v and w,

which is connected to the unique output and gate of the circuit αG. It is easy to see

that the minimum vertex covers of the graph G correspond to the minimum weight

assignments that satisfy the circuit αG, and vice versa.

In the rest of this section, we show that all optimization problems expressible

28

by our syntactic classes have EPTAS. EPTAS algorithms for these problems are

developed based on methods similar to that presented in [7]. We provide the details

below, emphasizing on the differences. Moreover, since the algorithms for the three

classes are similar, we will concentrate on the class planar min-W [h], and give brief

explanations on how the algorithms can be modified to apply to the classes planar

max-W [h] and planar W [h]-sat.

Let G be a planar graph (not necessarily connected) and π(G) be a planar embed-

ding of G. A vertex v is in layer-1 in π(G) if v is on the boundary of the unbounded

region of π(G). We define G1 to be the subgraph of G induced by all layer-1 vertices.

Inductively, a vertex v is in layer-i, i > 1, if v is on the unbounded region of the

embedding of the graph G−(G1∪ . . .∪Gi−1) induced by the embedding π(G). Define

Gi to be the subgraph of G induced by all layer-i vertices. The embedding π(G) is

q-outerplanar if it has at most q layers.

Now consider a planar Π+
h -circuit αw with output gate w. Let α = αw−w be the

subgraph of αw with the output gate w removed. By the definition, the graph α has

a planar embedding π(α). Let G be a subgraph of α that is induced by q consecutive

layers in π(α), where q ≥ 2h, and let π(G) be the embedding of G induced from

π(α). Obviously, the embedding π(G) is q-outerplanar. We consider the following

optimization problem:

min (h, q)-sat

Given the graph G and the q-outerplanar embedding π(G) of G, as defined

above, construct an assignment of minimum weight for the input variables

in G so that all depth-(h − 1) gates in αw that are in the middle q − 2h

layers in π(G) (i.e., the (h + 1)st, . . ., and the (q − h)th layers in π(G))

are satisfied.

29

We point out that assigning all input variables in G the value 1 will satisfy all

depth-(h − 1) gates in the middle q − 2h layers in π(G). This is because all literals

in αw are positive, and αw has depth h. So any input variable or any gate that is

connected via a path in αw to a depth-(h − 1) gate in the middle q − 2h layers in

π(G) must necessarily be contained in G, and hence, when all these input variables

in G are assigned the value 1, all the depth-(h− 1) gates in the middle q − 2h layers

in π(G) will be satisfied.

Lemma II.2 The problem min (h, q)-sat can be solved in time O(81qn).

Proof. The proof proceeds based on the techniques proposed by Baker [7]. Starting

with the q-outerplanar embedding π(G), we can recursively decompose the graph G

into “slices”. Each slice S is a subgraph of G with at most q “left boundary vertices”

and at most q “right boundary vertices”, which are the only vertices in S that may

be adjacent to vertices not in S. A trivial slice is simply an edge in G. Two slices S1

and S2 can be “merged” into a larger slice S if the right boundary of S1 is identical

to the left boundary of S2. Baker [7] presented a linear time algorithm to show how

a q-outerplanar graph G is decomposed into slices and how the slices, starting from

trivial slices, are recursively merged to reconstruct the original graph G.

To use the slice decomposition of the graph G to solve the min (h, q)-sat problem,

we assign a value to each boundary vertex v in a slice S in G. The boundary vertex v

may have the following possible values (note that all inputs of an or gate are either

an input variable or an and gate, and all inputs of an and gate are either an input

variable or an or gate):

• If v is an input variable, then v may have value either 0 or 1.

• If v is an or gate, then v may have three possible values:

30

(1) value 0, in this case all inputs of v in S should have value either 0 or 0̃;

(2) value 1, if v has value 1 and an input of v in S has value 1; or

(3) value 1̃, if v has value 1 but no input of v in S has value 1.

• If v is an and gate, then v may have three possible values:

(1) value 1, in this case all inputs of v in S should have value either 1 or 1̃;

(2) value 0, if v has value 0 and an input of v in S has value 0; or

(3) value 0̃, if v has value 0 but no input of v in S has value 0.

We call a possible value assignment to the vertices in a (either left or right)

boundary of a slice a “configuration” of the boundary. Each slice S with left boundary

L and right boundary R is associated with a “table” TS. For each configuration fL of

L and each configuration fR of R, the table TS records a minimum weight assignment

Amin(S, fL, fR) to the input variables in the slice S that realizes the configurations

fL and fR on the boundaries L and R, and satisfies all depth-(h − 1) gates that are

in S and belong to the middle q − 2h layers in π(G). Since each vertex in L and R

may have at most three different values and the total number of vertices in L ∪ R is

bounded by 2q, the table TS has at most 32q items. If S is simply a trivial slice, then

the table TS can be constructed by enumerating all possible situations.

To recursively construct the tables for larger slices, we need to merge two slices

S1 and S2 into a larger slice S. Suppose that the left and right boundaries of S1 and S2

are L1 and R1, and L2 and R2, respectively. The left and right boundaries of the larger

slice S will be L1 and R2. By the construction described in [7], the right boundary R1

of S1 is identical to the left boundary L2 of S2. Now fix a configuration fL1 of L1 and

a configuration fR2 of R2. By enumerating all pairs of consistent configurations fR1 of

R1 and fL2 of L2, and by reading the records Amin(S1, fL1 , fR1) and Amin(S2, fL2 , fR2)

in the tables TS1 and TS2 , we will be able to construct the assignment Amin(S, fL1 , fR2)

31

for the larger slice S.

We explain what we mean by “a pair of consistent configurations” fR1 and fL2

of the boundaries R1 and L2. Let v be a vertex on the boundaries R1 = L2. If v is an

input variable, then the value assignments on v are consistent if fR1 and fL2 assign

the same value, 0 or 1, to v. If v is an or gate, then the value assignments on v are

consistent if either (1) both fR1 and fL2 assign the same value to v; or (2) one of fR1

and fL2 assigns the value 1 and the other assigns the value 1̃ to v; or (3) the vertex

v is also on the boundaries L1 ∪R2 and both fR1 and fL2 assign value 1̃ to v (in this

case, the vertex v will have value 1̃ on the boundaries of the larger slice S). The case

that v is an and gate can be similarly described. Finally, the configurations fR1 and

fL2 are consistent if their value assignments to every vertex in R1 = L2 are consistent.

Since each boundary vertex v may have three possible values, and each (left or

right) boundary has at most q vertices, for each fixed pair of configurations fL1 and fR2

of the boundaries L1 and R2, there are at most 3q · 3q possible pairs of configurations

on the boundaries R1 and L2. Thus, the record Amin(S, fL1 , fR2) can be constructed

in time O(9q). In consequence, the table TS, which has a record for each pair of

configurations fL1 and fR2 of the boundaries L1 and R2, can be constructed in time

O(9q · 9q) = O(81q).

Using Baker’s algorithm which recursively decomposes the q-outerplanar graph

G into slices and reconstructs the graph G from its trivial slices by recursively merg-

ing slices, we conclude that in time O(81qn),1 we can construct a minimum weight

assignment to the input variables in G that satisfies all depth-(h − 1) gates that are

in the middle q − 2h layers in G, thus solving the min (h, q)-sat problem.

1We remark that based on the approach of graph tree decomposition and more
careful slice merging [2], the complexity of the algorithm described in Lemma II.2
can be improved to O(cqn) for a constant c much smaller than 81. However, this will
not affect our main results.

32

Downey and Fellows ([37], page 482) posed an open problem for the parameter-

ized complexity of the following problem:

planar t-normalized weighted satisfiability

Given a πt-circuit α that is a planar graph in the strict sense (i.e., it is

planar even without removing the output gate) and a parameter k, does

α have a satisfying assignment of weight k?

Fix a planar embedding π(α) of the circuit α. Suppose the output gate of α is

contained in the ith layer Li in π(α). Since the depth of α is bounded by t, every

gate in α must be contained in one of the 2t + 1 layers Li−t, . . ., Li, . . ., Li+t. In

consequence, the embedding π(α) must be (2t + 1)-outerplanar. Thus, similar to the

proof of Lemma II.2, we can construct a satisfying assignment of weight k to the circuit

α based on the slice structure of π(α) (or report no such an assignment exists). The

only difference is that now for each boundary configuration (fL, fR) of a slice S, we

should record all possible weights w, 0 ≤ w ≤ k, such that there is an assignment to

the input variables in the slice S that implements the boundary configuration (fL, fR).

Now merging two slices should also consider combining all possible weights recorded

in the two slices, which increases the time complexity by a factor of O((2t + 1)2).

Therefore, this induces an algorithm of running time O(812t+1(t + 1)2n) for solving

the problem planar t-normalized weighted satisfiability.

Theorem II.3 For each integer t, the planar t-normalized weighted satisfi-

ability is solvable in polynomial time.

Now we return back to the discussion of the problem planar min-W [h].

Theorem II.4 For every h ≥ 1, planar min-W [h] is a subclass of the class EPTAS.

33

Proof. We present an EPTAS algorithm for a given planar min-W [h] problem

Q.

For a given constant ε > 0 and an instance Gw of the problem Q, where Gw is

a planar Π+
h -circuit with output gate w, we first construct a planar embedding π(G)

for the graph G = Gw − w, and let q = 2h(d1/εe + 1). By adding empty layers to

the embedding π(G), we can assume without loss of generality that the layers of the

embedding π(G) are L1, L2, · · ·, Lr, where r > 2q + 2h, and the first q + h layers L1,

. . ., Lq+h, and the last q + h layers Lr−q−h+1, . . ., Lr are all empty.

For each fixed integer d, where 0 ≤ d ≤ q/(2h)−2, we construct a decomposition

Dd of overlapping “chunks” of the graph G. Each chunk consists of q consecutive

layers of the embedding π(G), and two overlapping chunks share 2h common layers.

More formally, for i ≥ 0, the ith chunk of the decomposition Dd consists of the q

layers Lj, where 2hd + i(q − 2h) + 1 ≤ j ≤ 2hd + i(q − 2h) + q, and i satisfies

2hd + i(q − 2h) + q ≤ r. By our assumption, the layers that do not belong to any

chunk in Dd are all empty layers, and the first h layers in the 0th chunk in Dd, and

the last h layers in the last chunk in Dd are also empty layers.

Let Ui be the ith chunk of G and π(Ui) be the q-outerplanar embedding of Ui

induced from the embedding π(G). According to Lemma II.2, in time O(81qni) we

can construct a minimum weight assignment fd,Ui
to the input variables in Ui that

satisfies all depth-(h − 1) gates in the middle q − 2h layers in π(Ui), where ni is the

total number of vertices in Ui.

Now merge the assignments fd,Ui
over all chunks Ui of Dd to obtain an assignment

fd for the input variables in G (i.e., if v belongs to a single chunk Ui in G, then

fd(v) = fd,Ui
(v), while if v is shared by two consecutive chucks Ui and Ui+1 in G, then

fd(v) = fd,Ui
(v) ∨ fd,Ui+1

(v)). Since two consecutive chunks overlap with 2h layers,

34

every depth-(h − 1) gate in G belongs to the middle q − 2h layers for some chuck.

Moreover, the circuit Gw is monotone in the sense that if an assignment f satisfies a

gate v then changing any 0 bit in f into 1 also makes an assignment satisfying the

gate v. Therefore, the assignment fd to the input variables in G satisfies all depth-

(h − 1) gates in G, thus satisfies the circuit Gw. It is easy to see from the above

discussion that the assignment fd can be constructed in time O(81qn), where n is the

total number of vertices in G.

For each integer d, 0 ≤ d ≤ q/(2h) − 2, we construct the assignment fd to the

input variables in Gw that satisfies the circuit Gw. We pick the one fd with minimum

weight over all d and output it as our solution fapx. Let the weight of fapx be |fapx|.

Thus, in time O(81qn) = O(812h/εn), the above algorithm constructs an assign-

ment fapx that satisfies the given planar Π+
h -circuit Gw. What remains is to show

that the approximation ratio of the solution fapx is bounded by 1 + ε.

Let Dd be a chunk decomposition of G. A layer L is called a “boundary layer”

for Dd if L is either one of the first 2h layers or one of the last 2h layers in a chunk

in Dd. Note that a boundary layer is either an empty layer (if it is one of the

first 2h layers in the 0th chunk or one of the last 2h layers in the last chunk in the

decomposition Dd), or is shared by two consecutive chunks in Dd. By the construction

of the chunk decompositions, every layer in π(G) is a boundary layer for exactly one

chunk decomposition. Therefore, the layers in π(G) can be partitioned into disjoint

layer sets Si, 0 ≤ i ≤ q/(2h)−2, where Si consists of all boundary layers in the chunk

decomposition Di.

Now suppose that fopt is a minimum weight assignment of weight |fopt| to the

input variables in Gw that satisfies the circuit Gw. Let Vopt be the set of input

variables which are assigned value 1 by fopt (thus, |fopt| = |Vopt|). Since the layer

sets Si, 0 ≤ i ≤ q/(2h) − 2, are disjoint, one of the layer sets contains at most

35

|fopt|/(q/(2h)−1) ≤ ε · |fopt| input variables in Vopt. Let this set be Sd, and let V d
opt be

the set of input variables in both Vopt and Sd, |V d
opt| ≤ ε · |fopt|. We consider the chunk

decomposition Dd. Let fd be the assignment to the input variables in Gw constructed

by our algorithm based on the chunk decomposition Dd.

Let U0, U1, . . ., Up be the chunks in Dd. Let fd,Ui
be the input assignment we

construct for the chunk Ui, and let fopt,Ui
be the input assignment in Ui induced from

fopt. Note that the assignment fopt,Ui
also satisfies all depth-(h−1) gates in the middle

q − 2h layers in Ui, and by our construction, fd,Ui
is a minimum weight assignment

that satisfies all depth-(h− 1) gates in the middle q− 2h layers in Ui. Thus, if we let

|fopt,Ui
| and |fd,Ui

| be the weights of these two assignments, we have |fopt,Ui
| ≥ |fd,Ui

|.

Therefore,
p∑

i=0

|fopt,Ui
| ≥

p∑
i=0

|fd,Ui
|

Since for each input variable v, we have fd(v) = fd,Ui
(v) if v is in the middle q − 2h

layers of the chunk Ui, and fd(v) = fd,Ui
(v) ∨ fd,Ui+1

(v) if v is in a boundary layer

shared by two chunks Ui and Ui+1, we have
∑p

i=0 |fd,Ui
| ≥ |fd|. Moreover, in the

summation
∑p

i=0 |fopt,Ui
|, each input variable in the set V d

opt counts exactly twice and

each input variable in Vopt − V d
opt counts exactly once, thus

p∑
i=0

|fopt,Ui
| = |fopt|+ |V d

opt| ≤ |fopt|(1 + ε)

Finally, since the assignment fapx constructed by our algorithm is the assignment fd

with minimum weight over all d, we derive immediately:

|fapx| ≤ |fd| ≤
p∑

i=0

|fd,Ui
| ≤

p∑
i=0

|fopt,Ui
| ≤ |fopt|(1 + ε)

and conclude that the approximation ratio of our algorithm is bounded by 1 + ε.

We briefly describe how Lemma II.2 and Theorem II.4 are modified to apply to

36

the classes planar max-W [h] and planar W [h]-sat.

Given an instance Gw of a planar max-W [h] problem and a real number ε > 0,

where Gw is a planar Π−
h -circuit with the output gate w, we let q = h(d1/ε0e + 1),

where ε0 = ε/(1+ε), and construct a planar embedding π(G) of the graph G = Gw−w.

Now each chunk decomposition Dd partitions the graph G into disjoint chunks, each

consists of q consecutive layers in π(G). The first h layers and the last h layers in

a chunk will be called the boundary layers of the chunk. Assign value 1 to input

gates that are in boundary layers of the chunks. Since all input gates are labeled by

negations of input variables, this assignment is equivalent to assigning value 0 to the

corresponding input variables. According to this assignment, if a gate g1 has an input

from a gate g2 such that g1 and g2 belong to two different chunks, then the gate g2

must have value 1 since all input gates that can affect the gate g2 are in boundary

layers and hence have been assigned value 1.

With this initial assignment, now we work on each chunk U in Dd. Note that it

is always possible to assign the remaining input gates in the chunk U to satisfy all

depth-(h − 1) gates in U (e.g., assigning all remaining input gates in U value 1, or

equivalently, assigning all remaining input variables in U value 0). Since the chunk

U is given as its q-outerplanar embedding induced from π(G), using the techniques

similar to that of Lemma II.2, we can construct a maximum weight assignment to the

remaining input variables in U that satisfies all depth-(h − 1) gates in U . As shown

in Lemma II.2, such an assignment can be constructed in time O(81qnU), where nU

is the number of vertices in U . Doing this for all chunks in the chunk decomposition

Dd gives an assignment fd to the input variables that satisfies all depth-(h− 1) gates

in Gw, thus satisfying the circuit Gw. Now we apply this process to each possible

chunk decomposition Dd, each gives an assignment fd satisfying the circuit Gw. We

pick the one, denoted by fapx, with the largest weight among all fd’s and output it as

37

the approximation solution to the problem. The assignment fapx can be constructed

in time O(81qn2) = O(81O(1/ε)n2).

Similar to the analysis given in Theorem II.4, if we fix an optimal assignment

fopt to the circuit Gw, then there is a chunk decomposition Dd in which the number

md of variables that are in the boundary layers of Dd and are assigned value 1 by

the assignment fopt is bounded by ε0|fopt|. Moreover, the weight of the assignment

fd constructed based on the chunk decomposition Dd is at least |fopt| − md. Since

the weight of the assignment fapx is the largest among all fd’s, we conclude that the

assignment fapx has weight at least |fopt| −md. In consequence, the ratio |fapx|/|fopt|

is at least 1−ε0. Replacing ε0 by ε/(1+ε) gives the approximation ratio |fopt|/|fapx| ≤

1 + ε. This completes the proof that every problem in planar max-W [h] is in the

class EPTAS.

The EPTAS algorithm for a problem in planar W [h]-sat is similar. Again we

use chunk decompositions of disjoint chunks, but do not apply any initial assignments.

For each chunk U , we construct an assignment to the input variables in U to satisfy

the largest number of depth-(h − 1) gates that are in the middle q − 2h layers in

U (note that no input gates outside chunk U can affect these gates). We leave the

verification of the details to the interested readers.

Theorem II.5 For every h ≥ 1, planar max-W [h] and planar W [h]-sat are

subclasses of the class EPTAS.

Cesati and Trevisan [17] proved that if an optimization problem is in the class

EPTAS then its parameterized version is fixed-parameter tractable. Combining this

with Theorem II.4 and Theorem II.5, we get the following:

Corollary II.6 For every positive integer h, the classes planar min-W [h], planar

max-W [h], and planar W [h]-sat are subclasses of FPT.

38

D. Remarks

In this chapter, under a very general constraint of scalability, we presented a pre-

cise characterization of the approximation class FPTAS in term of its parameterized

complexity, the efficient fixed-parameter tractability. This new characterization has a

number of advantages over the previous characterizations of the approximation class

FPTAS.

Not enough attention has been paid to the computational complexity of general

PTAS algorithms for NP optimization problems. Many developments of PTAS al-

gorithms simply sought a polynomial bound on the running time of the algorithms

with the hope that once a polynomial time approximation algorithm is derived, it

will sooner or later be improved to become practically efficient. The recent progress

in the study of parameterized computation has shown that this understanding is not

always correct: unless an unlikely collapse in parameterized complexity theory oc-

curs, there are PTAS problems for which any PTAS algorithm must have the time

complexity in which 1/ε is in the exponent of the input size n [14, 46]. In particular,

our very recent research has shown that under a similar conjecture, there are PTAS

problems in computational biology for which there is a constant c > 0 such that any

PTAS algorithms for these problems must have time complexity of order Ω(nc/ε) [22].

For this kind of PTAS problems, practically efficient polynomial-time approximation

schemes are unlikely even for moderate values of the approximation error bound ε.

The introduction of the concept of EPTAS attempts to refine the class PTAS

and characterize the PTAS problems that admit practically efficient polynomial-time

approximation schemes. Since the initialization of this line of research [12, 14, 17], we

make the first attempt to a systematic investigation of the structural properties of this

new but important approximation class. Based on the fixed-parameter intractable

39

hierarchy, the W -hierarchy, and by enforcing a planarity constraint, we presented

the syntactic classes, planar min-W [h], planar max-W [h], and planar W [h]-

sat, and showed that all problems in these classes belong to the approximation class

EPTAS. These syntactic classes seem to form the core for a very significant class of

EPTAS problems.

We point out that our syntactic classes planar min-W [h], planar max-W [h],

and planar W [h]-sat are significantly different from the classes tmin, tmax, and

mpsat proposed by Khanna and Motwani [57] in the following sense. First, Corol-

lary II.6 proves that all optimization problems in our syntactic classes are fixed-

parameter tractable, while Cai et. al [14] recently proved that there are W [1]-hard

problems in the syntactic classes introduced in [57]. This shows that these problems

cannot be contained in our syntactic classes unless an unlikely collapse in parame-

terized complexity theory occurs. On the other hand, our classes are not subclasses

of that of Khanna and Motwani’s: the classes tmin, tmax, and mpsat are defined

based on circuits of depth 3, while ours are defined based on circuits of any constant

depth. According to the well-known research on constant depth circuits [48], the

classes planar W [h]-sat, planar min-W [h], and planar max-W [h] for h > 3

cannot be expressed by the syntactic classes tmin, tmax, and mpsat.

40

CHAPTER III

LOWER BOUNDS OF PARAMETERIZED COMPUTATION∗

In this chapter, based on the study of the structural properties of parameterized com-

plexity, we develop new techniques for deriving strong computational lower bounds

for a class of well-known NP-hard problems and some Non NP-hard problems. The

NP-hard problems include weighted satisfiability, dominating set, hitting

set, set cover, clique, and independent set. And the Non NP-hard problems

are the problems in the class lognp, such as tournament dominating set and

v-c dimension.

A. Parameterized NP-hard Problems

The result reported here in this section is joint work with J. Chen, I. Kanj, and G.

Xia [23].

1. Introduction

In parameterized computation, fixed-parameter tractable algorithms, whose running

time takes the form f(k)nO(1) for a function f , have been used to solve a variety

of difficult computational problems in practice. The concept of W [1]-hardness has

been introduced to address fixed-parameter intractability, and a large number of W [1]-

hard parameterized problems have been identified [37]. Now it has become commonly

accepted that no W [1]-hard problem can be solved in time f(k)nO(1) for any function

f (i.e., W [1] 6= FPT).

∗Part of the data reported in this chapter is reprinted with permission from “Linear
FPT reductions and computational lower bounds” by J. Chen, X. Huang, I. Kanj,
and G. Xia, 2004, Proceedings of the 36th ACM Symposium on Theory of Computing
(SOTC 2004), pp. 212-221, Copyright 2004 by ACM.

41

The W [1]-hardness of a parameterized problem implies that any algorithm of

running time O(nh) solving the problem must have h a function of the parameter

k. However, this does not completely exclude the possibility that the problem may

become feasible for small values of the parameter k. For instance, if the problem is

solvable by an algorithm running in time O(nlog log k), then such an algorithm is still

feasible for moderately small values of k.1

Take the W [1]-hard parameterized problem clique as an example. We know

that a trivial enumeration can easily test in time O(nk) if a given graph of n vertices

has a clique of size k. Is it possible for it to have algorithms of uniform running

time no(k)? Can the problem be solvable in time no(k) for an extreme range of the

parameter values such as k = log log n or k = n4/5? Moreover, is it possible that the

problem be solvable in time f(k)no(k) for a function f?

Based on the framework of parameterized complexity theory, we develop new

techniques and derive much stronger computational lower bounds for a class of well-

known NP-hard problems. In particular, we answer the above mentioned questions

completely. We greatly improve the results in [21]. We start by proving computational

lower bounds for a class of satisfiability problems, and then extend the lower bound

results to other well-known NP-hard problems by introducing the concept of linear fpt-

reductions. In particular, we consider two classes of parameterized problems: Class

A which includes weighted cnf sat, dominating set, hitting set, and set

cover, and Class B which includes weighted cnf q-sat for any constant q ≥ 2,

clique, and independent set. We prove that (1) unless W [1] = FPT, no problem

in Class A can be solved in time f(k)no(k)mO(1) for any function f , where n is the

1A question that might come to mind is whether such a W [1]-hard problem exists.
The answer is affirmative: by re-defining the parameter, it is not difficult to construct
W [1]-hard problems that are solvable in time O(nlog log k).

42

size of the search space from which the k elements are selected and m is the input

length; and (2) unless all search problems in the syntactic class SNP introduced by

Papadimitriou and Yannakakis [65] are solvable in subexponential time, no problem

in Class B can be solved in time f(k)mo(k) for any function f , where m is the input

length. These results remain true even if we bound the parameter values by an

arbitrarily small nondecreasing and unbounded function. Moreover, under the same

assumptions, we prove that even if we restrict the parameter values k to be of the

order Θ(µ(n)) for any reasonable function µ, no problem in Class A can be solved in

time no(k)mO(1) and no problem in Class B can be solved in time mo(k).

Note that each of the problems in Class A (resp. Class B) can be solved by a

trivial algorithm of running time cnkm (resp. cmk), where c is an absolute constant,

which simply enumerates all possible subsets of k elements in the search space. Much

research has tended to seek new approaches to improve this trivial upper bound.

One of the common approaches is to apply a more careful branch-and-bound search

process trying to optimize the manipulation of local structures before each branch

[1, 2, 26, 29, 63]. Continuously improved algorithms for these problems have been

developed based on improved local structure manipulations (for example, see [78, 54,

71, 9] on the progress for the independent set problem). It has even been proposed

to automate the manipulation of local structures [64, 72] in order to further improve

the computational time.

Our results above, however, provide strong evidence that the power of this ap-

proach is quite limited in principle. The lower bounds f(k)nΩ(k)p(m) and f(k)mΩ(k)

for any function f and any polynomial p mentioned above indicate that no local

structure manipulation running in polynomial time or in time depending only on the

value k will obviate the need for exhaustive enumerations.

We always assume that complexity functions are “nice” with both domain and

43

range being non-negative integers and the values of the functions and their inverses

can be easily computed. For two functions f and g, we write f(n) = o(g(n)) if there is

a nondecreasing and unbounded function λ such that f(n) ≤ g(n)/λ(n). A function

f is subexponential if f(n) = 2o(n).

2. Satisfiability and Weighted Satisfiability

In this section, we present two lemmas that show how a general satisfiability problem

is transformed into a weighted satisfiability problem. One lemma is on circuits of

bounded depth and the other lemma is on CNF formulas.

Recall the definitions given in the Chapter I: A circuit C is a Πt-circuit if its

output gate is an and gate and it has depth t. The satisfiability problem on

Πt-circuits, abbreviated sat[t], is to determine if a given Πt-circuit C has a satisfying

assignment. wcs∗[t] is the problem wcs+[t] if t is even and the problem wcs−[t] if t

is odd, where wcs+[t] and wcs−[t] are the weighted monotone satisfiability

problem and the weighted antimonotone satisfiability problem respectively

on Πt-circuits.

Lemma III.1 Let t ≥ 2 be an integer. There is an algorithm A1 that, for a given

integer r > 0, transforms each Πt-circuit C1 of n1 input variables and size m1 into

an instance (C2, k) of wcs∗[t], where k = dn1/re and the Πt-circuit C2 has n2 = 2rk

input variables and size m2 ≤ 2m1 + 22r+1k, such that C1 is satisfiable if and only if

(C2, k) is a yes-instance of wcs∗[t]. The running time of the algorithm A1 is bounded

by O(m2
2).

Proof. Let k = dn1/re. Divide the n1 input variables x1, . . . , xn1 of the Πt-circuit

C1 into k blocks B1, . . . , Bk, where block Bi consists of input variables x(i−1)r+1, . . . , xir,

44

for i = 1, . . . , k−1, and block Bk consists of input variables x(k−1)r+1, . . . , xn1 . Denote

by |Bi| the number of variables in block Bi. Then |Bi| = r, for 1 ≤ i ≤ k − 1, and

|Bk| ≤ r. For an integer j, 0 ≤ j ≤ 2|Bi| − 1, denote by bini(j) the length-|Bi| binary

representation of j, which can also be interpreted as an assignment to the variables

in block Bi.

We construct a new set of input variables in k blocks B′
1, . . . , B

′
k. Each block B′

i

consists of s = 2r variables zi,0, zi,1, . . ., zi,s−1. The Πt-circuit C2 is constructed from

the Πt-circuit C1 by replacing the input gates in C1 by the new input variables in

B′
1, . . . , B

′
k. We consider two cases.

Case 1. t is even. Then all level-1 gates in the Πt-circuit C1 are or gates. We

connect the new variables zi,j to these level-1 gates to construct the circuit C2 as

follows. Let xq be an input variable in C1 such that xq is the h-th variable in block

Bi. If the positive literal xq is an input to a level-1 or gate g1 in C1, then all positive

literals zi,j in block B′
i such that 0 ≤ j ≤ 2|Bi| − 1 and the h-th bit in bini(j) is 1 are

connected to gate g1 in the circuit C2. If the negative literal xq is an input to a level-1

or gate g2 in C1, then all positive literals zi,j in block B′
i such that 0 ≤ j ≤ 2|Bi| − 1

and the h-th bit in bini(j) is 0 are connected to gate g2 in the circuit C2.

Note that if the size |Bk| of the last block Bk in C1 is smaller than r, then the

above construction for block B′
k is only on the first 2|Bk| variables in B′

k, and the last

s−2|Bk| variables in B′
k have no output edges, and hence become “dummy variables”.

We also add an “enforcement” circuitry to the circuit C2 to ensure that every

satisfying assignment to C2 assigns the value 1 to at least one variable in each block

B′
i. This can be achieved by having an or gate for each block B′

i, whose inputs are

connected to all positive literals in block B′
i and whose output is an input to the

output gate of the circuit C2 (for block B′
k, the inputs of the or gate are from the

first 2|Bk| variables in B′
k). This completes the construction of the circuit C2. It is

45

easy to see that the circuit C2 is a monotone Πt-circuit (note that t ≥ 2 and hence the

enforcement circuitry does not increase the depth of C2). Thus, (C2, k) is an instance

of the problem wcs+[t].

We verify that the circuit C1 is satisfiable if and only if the circuit C2 has a

satisfying assignment of weight k. Suppose that the circuit C1 is satisfied by an

assignment τ . Let τi be the restriction of τ to block Bi, 1 ≤ i ≤ k. Let ji be the

integer such that bini(ji) = τi. Then according to the construction of the circuit C2,

by setting zi,ji
= 1 and all other variables in B′

i to 0, we can satisfy all level-1 or gates

in C2 whose corresponding level-1 or gates in C1 are satisfied by the assignment τi.

Doing this for all blocks Bi, 1 ≤ i ≤ k, gives a weight-k assignment τ ′ to the circuit

C2 that satisfies all level-1 or gates in C2 whose corresponding level-1 or gates in C1

are satisfied by τ . Since τ satisfies the circuit C1, the weight-k assignment τ ′ satisfies

the circuit C2.

Conversely, suppose that the circuit C2 is satisfied by a weight-k assignment

τ ′. Because of the enforcement circuitry in C2, τ ′ assigns the value 1 to exactly one

variable in each block B′
i (in particular, in block B′

k, this variable must be one of

the first 2|Bk| variables in B′
k). Now suppose that in block B′

i, τ ′ assigns the value 1

to the variable zi,ji
. Then we set an assignment τi to the block Bi in C1 such that

τi = bini(ji). By the construction of the circuit C2, the level-1 or gates satisfied by

the variable zi,ji
= 1 are all satisfied by the assignment τi. Therefore, if we make an

assignment τ to the circuit C1 such that the restriction of τ to block Bi is τi for all

i, then the assignment τ will satisfy all level-1 or gates in C1 whose corresponding

level-1 or gates in C2 are satisfied by τ ′. Since τ ′ satisfies the circuit C2, we conclude

that the circuit C1 is satisfiable.

This completes the proof that when t is even, the circuit C1 is satisfiable if and

only if the constructed pair (C2, k) is a yes-instance of wcs+[t].

46

Case 2. t is odd. Then all level-1 gates in the Πt-circuit C1 are and gates.

We connect the new variables zi,j to these level-1 gates to construct the circuit C2 as

follows. Let xq be an input variable in C1 and be the h-th variable in block Bi. If the

positive literal xq is an input to a level-1 and gate g1 in C1, then all negative literals

zi,j in block B′
i such that 0 ≤ j ≤ 2|Bi| − 1 and the h-th bit in bini(j) is 0 are inputs

to gate g1 in C2. If the negative literal xq is an input to a level-1 and gate g2 in C1,

then all negative literals zi,j in block B′
i such that 0 ≤ j ≤ 2|Bi| − 1 and the h-th bit

in bini(j) is 1 are inputs to gate g2 in C2.

For the last s−2|Bk| variables in the last block B′
k in C2, we connect the negative

literals zk,j, 2|Bk| ≤ j ≤ s− 1, to the output gate of the circuit C2 (thus, the variables

zk,j, 2|Bk| ≤ j ≤ s− 1, are forced to have the value 0 in any satisfying assignment to

C2).

An enforcement circuitry is added to C2 to ensure that every satisfying assign-

ment to C2 assigns the value 1 to at most one variable in each block B′
i. This can

be achieved as follows. For every two distinct negative literals zi,j and zi,h in B′
i,

0 ≤ j, h ≤ 2|Bi| − 1, add an or gate gj,h. Connect zi,j and zi,h to gi,h and connect

gi,h to the output and gate of C2. This completes the construction of the circuit C2.

The circuit C2 is an antimonotone Πt-circuit (again the enforcement circuitry does

not increase the depth of C2). Thus, (C2, k) is an instance of the problem wcs−[t].

We verify that the circuit C1 is satisfiable if and only if the circuit C2 has a

satisfying assignment of weight k. Suppose that the circuit C1 is satisfied by an

assignment τ . Let τi be the restriction of τ to block Bi, 1 ≤ i ≤ k. Let ji be the

integer such that bini(ji) = τi. Consider the weight-k assignment τ ′ to C2 that for

each i assigns zi,ji
= 1 and all other variables in B′

i to 0. We show that τ ′ satisfies

the circuit C2. Let g1 be a level-1 and gate in C1 that is satisfied by the assignment

τ . Since C2 is antimonotone, all inputs to g1 in C2 are negative literals. Since all

47

negative literals except zi,ji
in block B′

i have the value 1, we only have to prove that

no zi,ji
from any block B′

i is an input to g1. Assume to the contrary that zi,ji
in block

B′
i is an input to g1. Then by the construction of the circuit C2, there is a variable

xq that is the h-th variable in block Bi such that either xq is an input to g1 in C1

and the h-th bit of bini(ji) is 0, or xq is an input to g1 in C1 and the h-th bit of

bini(ji) is 1. However, by our construction of the index ji from the assignment τ , if

the h-th bit of bini(ji) is 0 then τ assigns xq = 0, and if the h-th bit of bini(ji) is 1

then τ assigns xq = 1. In either case, τ would not satisfy the gate g1, contradicting

our assumption. Thus, for all i, no zi,ji
is an input to the gate g1, and the assignment

τ ′ satisfies the gate g1. Since g1 is an arbitrary level-1 and gate in C2, we conclude

that the assignment τ ′ satisfies all level-1 and gates in C2 whose corresponding gates

in C1 are satisfied by the assignment τ . Since τ satisfies the circuit C1, the weight-k

assignment τ ′ satisfies the circuit C2.

Conversely, suppose that the circuit C2 is satisfied by a weight-k assignment τ ′.

Because of the enforcement circuitry in C2, the assignment τ ′ assigns the value 1 to

exactly one variable in each block B′
i (in particular, this variable in block B′

k must be

one of the first 2|Bk| variables in B′
k since the last s−2|Bk| variables in B′

k are forced to

have the value 0 in the satisfying assignment τ ′). Suppose that in block B′
i, τ ′ assigns

the value 1 to the variable zi,ji
. Then we set an assignment τi = bini(ji) to block Bi

in C1. Let τ be the assignment whose restriction on block Bi is τi. We prove that

τ satisfies the circuit C1. In effect, if a level-1 and gate g2 in C2 is satisfied by the

assignment τ ′, then no negative literal zi,ji
is an input to g2. Suppose that g2 is not

satisfied by τ in C1, then either a positive literal xq is an input to g2 and τ assigns

xq = 0, or a negative literal xq is an input to g2 and τ assigns xq = 1. Let xq be the

h-th variable in block Bi. If τ assigns xq = 0 then the h-th bit in bini(ji) is 0. Thus,

xq cannot be an input to g2 in C1 because otherwise by our construction the negative

48

literal zi,ji
would be an input to g2 in C2. On the other hand, if τ assigns xq = 1 then

the h-th bit in bini(ji) is 1, thus, xq cannot be an input to g2 in C1 because otherwise

the negative literal zi,ji
would be an input to g2 in C2. This contradiction shows that

the gate g2 must be satisfied by the assignment τ . Since g2 is an arbitrary level-1

and gate in C2, we conclude that the assignment τ satisfies all level-1 and gates in

C1 whose corresponding level-1 and gates in C2 are satisfied by the assignment τ ′.

Since τ ′ satisfies the circuit C2, the assignment τ satisfies the circuit C1 and hence

the circuit C1 is satisfiable.

This completes the proof that when t is odd, the Πt-circuit C1 is satisfiable if

and only if the pair (C2, k) is a yes-instance of wcs−[t].

Summarizing the above discussion, we conclude that for any t ≥ 2, from a Πt-

circuit C1 of n1 input variables and size m1, we can construct an instance (C2, k)

of the problem wcs∗[t] such that C1 is satisfiable if and only if (C2, k) is a yes-

instance of wcs∗[t]. Here k = dn1/re, and C2 has n2 = 2rk input variables and size

m2 ≤ m1 +n2 + k + k22r ≤ 2m1 + k22r+1 (where the term k + k22r is an upper bound

on the size of the enforcement circuitry). Finally, it is straightforward to verify that

the pair (C2, k) can be constructed from the circuit C1 in time O(m2
2).

Lemma III.1 will serve as a basis for proving computational lower bounds for

W [2]-hard problems. In order to derive similar computational lower bounds for cer-

tain W [1]-hard problems, we need another lemma that converts weighted satisfiability

problems on monotone CNF formulas into weighted satisfiability problems on anti-

monotone CNF formulas.

The parameterized problem weighted monotone cnf 2-sat, abbreviated

wcnf 2-sat+ (resp. weighted antimonotone cnf 2-sat, abbreviated wcnf

2-sat−) is: given an integer k and a CNF formula F , in which all literals are positive

49

(resp. negative) and each clause contains at most 2 literals, determine whether there

is a satisfying assignment of weight k to F .

Lemma III.2 There is an algorithm A2 that, for a given integer r > 0, transforms

each instance (F1, k1) of wcnf 2-sat+, where the formula F1 has n1 variables, into a

group G of at most (r + 1)k2 instances (Fπ, k2) of wcnf 2-sat−, where k2 = dn1/re,

and each formula Fπ has n2 = k22
r variables, such that (F1, k1) is a yes-instance of

wcnf 2-sat+ if and only if there is a yes-instance for wcnf 2-sat− in the group G.

The running time of the algorithm A2 is bounded by O(n2
2(r + 1)k2).

Proof. For the given instance (F1, k1) of wcnf 2-sat+, divide the n1 variables in

F1 into k2 = dn1/re pairwise disjoint subsets B1, . . ., Bk2 , each containing at most r

variables. Let π be a partition of the parameter k1 into k2 integers h1, . . ., hk2 , where

0 ≤ hi ≤ |Bi| and k1 = h1 + · · · , hk2 . We say that an assignment τ of weight k1 for

F1 is under the partition π if τ assigns the value 1 to exactly hi variables in the set

Bi for every i.

Fix a partition π of the parameter k1: k1 = h1 + · · · + hk2 . We construct an

instance (Fπ, k2) for wcnf 2-sat− as follows. For each subset Bi,j of hi variables in

the set Bi, if for each clause (xs, xt) in F1 where both xs and xt are in Bi, at least

one of xs and xt is in Bi,j, then make Bi,j a Boolean variable in Fπ. Call such a Bi,j

an “essential variable” in Fπ. In particular, if no clause (xs, xt) in F1 has both xs and

xt in the set Bi, then every subset of hi variables in Bi makes an essential variable

in Fπ. For each pair of essential variables Bi,j and Bi,q in Fπ from the same set Bi in

F1, add a clause (Bi,j, Bi,q) to Fπ. For each pair of essential variables Bi,j and Bh,q

in Fπ from two different sets Bi and Bh in F1, if there exist a variable xs ∈ Bi and

a variable xt ∈ Bh such that xs 6∈ Bi,j, xt 6∈ Bh,q but (xs, xt) is a clause in F1, add a

50

clause (Bi,j, Bh,q) to Fπ. This completes the main part of the CNF formula Fπ, which

thus far has no more than k22
r variables. To make the number n2 of variables in Fπ

to be exactly k22
r, we add a proper number of “surplus” variables to Fπ and for each

surplus variable B′ we add a unit clause (B′) to Fπ (so that these surplus variables

are forced to have the value 0 in a satisfying assignment of Fπ). Obviously, (Fπ, k2)

is an instance of the wcnf 2-sat− problem.

We verify that the CNF formula F1 has a satisfying assignment of weight k1

under the partition π if and only if the CNF formula Fπ has a satisfying assignment

of weight k2. Let τ1 be a satisfying assignment of weight k1 under the partition π

for F1. Let C be the set of variables in F1 that are assigned the value 1 by τ1, and

Ci = C ∩ Bi. Then Ci has hi variables. Note that for any clause (xs, xt) in F1 such

that both xs and xt are in Bi, at least one of xs and xt must be in Ci – otherwise

the clause (xs, xt) would not be satisfied by the assignment τ1. Thus, each subset Ci

is an essential variable in Fπ. Now in the CNF formula Fπ, by assigning the value 1

to all Ci, 1 ≤ i ≤ k2, and the value 0 to all other variables (in particular, all surplus

variables in Fπ are assigned the value 0), we get an assignment τπ of weight k2 for Fπ.

For each clause of the form (Bi,j, Bi,q) in Fπ, where Bi,j and Bi,q are from the same

set Bi, since only one variable in Fπ from the set Bi (i.e., Ci) is assigned the value 1

by τπ, the clause is satisfied by the assignment τπ. For two variables Ci and Ch in Fπ,

i 6= h, which both get assigned the value 1 by the assignment τπ, each clause (xs, xt)

in F1 such that xs ∈ Bi and xt ∈ Bh must have either xs ∈ Ci or xt ∈ Ch (otherwise

the clause (xs, xt) would not be satisfied by τ1). Thus, (Ci, Ch) is not a clause in Fπ.

In consequence, the clauses of the form (Bi,j, Bh,q) in Fπ, i 6= h, where Bi,j and Bh,q

are from different sets Bi and Bh, are also all satisfied by τπ. This shows that Fπ is

satisfied by the assignment τπ of weight k2.

Conversely, let τπ be a satisfying assignment of weight k2 for Fπ. Because

51

(Bi,j, Bi,q) is a clause in Fπ for each pair of essential variables Bi,j and Bi,q from

the same set Bi, at most one essential variable in Fπ from each set Bi can be assigned

the value 1 by the assignment τπ. Since the weight of τπ is k2, we conclude that

exactly one essential variable Bi,ji
in Fπ from each set Bi is assigned the value 1 by τπ

(note that all surplus variables in Fπ must be assigned the value 0 by τπ). Each Bi,ji

of these subsets in F1 contains exactly hi variables in Bi. Let C = ∪k2
i=1Bi,ji

, then C

has exactly k1 variables in F1. If in F1 we assign all variables in C the value 1 and all

other variables the value 0, we get an assignment τ1 of weight k1 for the formula F1.

We show that τ1 is a satisfying assignment for F1. For each clause (xs, xt) in F1 where

both xs and xt are in the same set Bi, by the construction of the essential variables

in Fπ, at least one of xs and xt is in Bi,ji
, and hence in C. Thus, all clauses (xs, xt) in

F1 where both xs and xt are in Bi are satisfied by the assignment τ1. For each clause

(xs, xt) in F1 where xs ∈ Bi and xt ∈ Bh, i 6= h, because (Bi,ji
, Bh,jh

) is not a clause in

Fπ (otherwise, τπ would not satisfy Fπ), we must have either xs ∈ Bi,ji
or xt ∈ Bh,jh

,

i.e., at least one of xs and xt must be in C. It follows that the clause (xs, xt) is again

satisfied by τ1. This proves that τ1 is a satisfying assignment of weight k1 for the

formula F1.

For each partition π of the parameter k1, we have a corresponding instance

(Fπ, k2) such that the CNF formula F1 has a satisfying assignment of weight k1 under

the partition π if and only if (Fπ, k2) is a yes-instance of wcnf 2-sat−. Let G be the

collection of the instances (Fπ, k2) over all partitions π of the parameter k1. Since

(F1, k1) is a yes-instance of wcnf 2-sat+ if and only if there is a partition π of k1 such

that F1 has a satisfying assignment of weight k1 under the partition π, we conclude

that (F1, k1) is a yes-instance of wcnf 2-sat+ if and only if the group G contains a

yes-instance of wcnf 2-sat−. The number of instances in the group G is bounded by

the number of partitions of k1, which is bounded by (r + 1)k2 . Finally, the instance

52

(Fπ, k2) for a partition π of k1 can be constructed in time O(n2
2). Therefore, the group

G of the instances of wcnf 2-sat− can be constructed in time O(n2
2(r + 1)k2). This

completes the proof of the lemma.

3. Lower Bounds on Weighted Satisfiability Problems

From Lemma III.1, we can get a number of interesting results on the relationship

between the circuit satisfiability problem sat[t] and the weighted circuit satisfiability

problem wcs∗[t].

In the following theorems, we will denote by n the number of input variables and

m the size of a circuit.

Theorem III.3 Let t ≥ 2 be an integer. For any function f , if the problem wcs∗[t]

is solvable in time f(k)no(k)mO(1), then the problem sat[t] can be solved in time

2o(n)mO(1).

Proof. Suppose that there is an algorithm Mwcs of running time bounded by

f(k)nk/λ(k)p(m) that solves the problem wcs∗[t], where λ(k) is a nondecreasing and

unbounded function and p is a polynomial. Without loss of generality, we can assume

that the function f is nondecreasing, unbounded, and that f(k) ≥ 2k. Define f−1 by

f−1(h) = max{q | f(q) ≤ h}. Since the function f is nondecreasing and unbounded,

the function f−1 is also nondecreasing and unbounded, and satisfies f(f−1(h)) ≤ h.

From f(k) ≥ 2k, we have f−1(h) ≤ log h.

Now we solve the problem sat[t] as follows. For an instance C1 of sat[t], where C1

is a Πt-circuit of n1 input variables and size m1, we set the integer r = b3n1/f
−1(n1)c,

and call the algorithm A1 in Lemma III.1 to convert C1 into an instance (C2, k) of

the problem wcs∗[t]. Here k = dn1/re, C2 is a Πt-circuit of n2 = 2rk input variables

53

and size m2 ≤ 2m1 + 22r+1k, and the algorithm A1 takes time O(m2
2). According

to Lemma III.1, we can determine if C1 is a yes-instance of sat[t] by calling the

algorithm Mwcs to determine if (C2, k) is a yes-instance of wcs∗[t]. The running

time of the algorithm Mwcs on (C2, k) is bounded by f(k)n
k/λ(k)
2 p(m2). Combining

all above we get an algorithm Msat of running time f(k)n
k/λ(k)
2 p(m2)+O(m2

2) for the

problem sat[t]. We analyze the running time of the algorithm Msat in terms of the

values n1 and m1.

Since k = dn1/re ≤ f−1(n1) ≤ log n1,
2 we have f(k) ≤ f(f−1(n1)) ≤ n1.

Moreover,

k = dn1/re ≥ n1/r ≥ n1/(3n1/f
−1(n1)) = f−1(n1)/3

Therefore if we set λ′(n1) = λ(f−1(n1)/3), then λ(k) ≥ λ′(n1). Since both λ and f−1

are nondecreasing and unbounded, λ′(n1) is a nondecreasing and unbounded function

of n1. We have (note that k ≤ f−1(n1) ≤ log n1),

n
k/λ(k)
2 = (k2r)k/λ(k) ≤ kk2kr/λ(k) ≤ kk23kn1/(λ(k)f−1(n1))

≤ kk23n1/λ(k) ≤ kk23n1/λ′(n1) = 2o(n1).

Finally, consider the factor m2. Since f−1 is nondecreasing and unbounded,

m2 ≤ 2m1 + k22r+1 ≤ 2m1 + 2 log n12
6n1/f−1(n1) = 2o(n1)m1

Therefore, both terms p(m2) and O(m2
2) in the running time of the algorithm Msat

are bounded by 2o(n1)p′(m1) for a polynomial p′. Combining all these, we conclude

that the running time f(k)n
k/λ(k)
2 p(m2) + O(m2

2) of Msat is bounded by 2o(n1)p′(m1)

2Without loss of generality, we assume that in our discussions, all values under
the ceiling function “d·e” and the floor function “b·c” are greater than or equal to 1.
Therefore, we will always assume the inequalities dβe ≤ 2β and bβc ≥ β/2 for any
value β.

54

for a polynomial p′. Hence, the problem sat[t] can be solved in time 2o(n)mO(1). This

completes the proof of the theorem.

In fact, Theorem III.3 remains valid even if we restrict the parameter values to

be bounded by an arbitrarily small function, as shown in the following corollary.

Corollary III.4 Let t ≥ 2 be an integer, and µ(n) a nondecreasing and unbounded

function. If for a function f , the problem wcs∗[t] is solvable in time f(k)no(k)mO(1) for

parameter values k ≤ µ(n), then the problem sat[t] can be solved in time 2o(n)mO(1).

Proof. Suppose that there is an algorithm M solving the wcs∗[t] problem in

time f(k)no(k)p(m) for parameter values k ≤ µ(n), where p is a polynomial. Define

µ−1(h) = max{q | µ(q) ≤ h}. Since the function µ is nondecreasing and unbounded,

the function µ−1 is also nondecreasing, unbounded, and such that k > µ(n) implies

n ≤ µ−1(k).

Now we develop an algorithm that solves the wcs∗[t] problem for general param-

eter values. For a given instance (C, k) of wcs∗[t], if k > µ(n) then we enumerate all

weight-k assignments to the circuit C and check if any of them satisfies the circuit, and

if k ≤ µ(n), we call the algorithm M to decide if (C, k) is a yes-instance for wcs∗[t].

This algorithm obviously solves the problem wcs∗[t]. Moreover, in case k > µ(n),

the algorithm runs in time O(2nm2) = O(f1(k)m2), where f1(k) = 2µ−1(k), while in

case k ≤ µ(n), the algorithm runs in time f(k)no(k)p(m). Therefore, the algorithm

solves the problem wcs∗[t] for general parameter values in time O(f2(k)no(k)mO(1)),

where f2(k) = max{f(k), f1(k)}. Now the corollary follows from Theorem III.3.

Further extension of the above techniques shows that, essentially, Theorem III.3

remains true for every parameter value.

55

Theorem III.5 Let t ≥ 2 be an integer and ε be a fixed constant, 0 < ε < 1. For any

nondecreasing and unbounded function µ satisfying µ(n) ≤ nε and µ(2n) ≤ 2µ(n),

if wcs∗[t] is solvable in time no(k)mO(1) for parameter values µ(n)/8 ≤ k ≤ 16µ(n),

then sat[t] is solvable in time 2o(n)mO(1).

Proof. We first show that by properly choosing the number r in Lemma III.1,

we can make the parameter value k = dn1/re satisfy the condition µ(n2)/8 ≤ k ≤

16µ(n2), where n2 = k2r. To show this, we extend the function µ to a continuous

function by connecting µ(i) and µ(i + 1) by a linear function for each integer i.

Fix the value n1, and consider the function

F (z) = µ

(
n12

z log n1

z log n1

)
− n1

z log n1

= µ

(
nz+1

1

z log n1

)
− n1

z log n1

Pick a real number z0, 0 < z0 < 1, such that (z0 log n1)
1−ε ≤ n

1−(z0+1)ε
1 . For this

value z0, since µ(nz0+1
1 /(z0 log n1)) ≤ (nz0+1

1 /(z0 log n1))
ε ≤ n1/(z0 log n1), we have

F (z0) ≤ 0. Moreover, it is easy to check that F (n1/ log n1) ≥ 0. Therefore, there is

a real number z∗ between z0 and n1/ log n1 such that

µ

(
n12

z∗ log n1

z∗ log n1

)
≤ n1

z∗ log n1

and µ

(
n12

z∗ log n1+1

z∗ log n1 + 1

)
≥ n1

z∗ log n1 + 1
(3.1)

We explain how to find such a real number z∗ efficiently. Starting from the value z0,

then the integer values z1 = 1, z2 = 2, . . ., dn1/ log n1e, we find the smallest zi such

that

µ

(
n12

zi log n1

zi log n1

)
≤ n1

zi log n1

and µ

(
n12

zi+1 log n1

zi+1 log n1

)
≥ n1

zi+1 log n1

Now check the values zi,j = zi + j/ log n1 for j = 0, 1, . . ., dlog n1e to find a j such

56

that

µ

(
n12

zi,j log n1

zi,j log n1

)
≤ n1

zi,j log n1

and µ

(
n12

zi,j+1 log n1

zi,j+1 log n1

)
≥ n1

zi,j+1 log n1

Note that zi,j+1 = zi,j + 1/ log n1 so zi,j+1 log n1 = zi,j log n1 + 1. Thus, we can set

z∗ = zi,j.

Now we have

2µ

(
n12

z∗ log n1

z∗ log n1

)
≥ 2µ

(
n12

z∗ log n1

z∗ log n1 + 1

)
≥ µ

(
n12

z∗ log n1+1

z∗ log n1 + 1

)

≥ n1

z∗ log n1 + 1
≥ n1

2z∗ log n1

(3.2)

where the second inequality uses the fact 2µ(n) ≥ µ(2n). From (3.1) and (3.2), we

get

4µ

(
n12

z∗ log n1

z∗ log n1

)
≥ n1

z∗ log n1

≥ µ

(
n12

z∗ log n1

z∗ log n1

)
(3.3)

Therefore, if we set r = dz∗ log n1e, then from k = dn1/re, n2 = 2rk, and (3.3), we

have

µ(n2) = µ(2rk) = µ(2rdn1/re) ≥ µ(2rn1/r) ≥ µ

(
2z∗ log n1n1

2z∗ log n1

)

≥ 1

2
µ

(
2z∗ log n1n1

z∗ log n1

)
≥ 1

8
· n1

z∗ log n1

≥ 1

8
· n1

dz∗ log n1e

=
1

8
· n1

r
≥ 1

16
· dn1/re =

k

16

On the other hand,

µ(n2) = µ(2rk) ≤ µ(2z∗ log n1+1k) ≤ 2µ(2z∗ log n1dn1/re) ≤ 2µ(2z∗ log n1+1n1/r)

≤ 4µ

(
2z∗ log n1n1

z∗ log n1

)
≤ 4n1

z∗ log n1

≤ 8n1

dz∗ log n1e
=

8n1

r
≤ 8dn1/re = 8k

This proves that the values k and n2 satisfy the relation µ(n2)/8 ≤ k ≤ 16µ(n2).

Now we are ready to prove our theorem. Suppose that there is an algorithm Mwcs

57

of running time nk/λ(k)p(m) for the wcs∗[t] problem when the parameter values k are

in the range µ(n)/8 ≤ k ≤ 16µ(n), where λ(k) is a nondecreasing and unbounded

function and p is a polynomial. We solve the problem sat[t] as follows:

For an instance C1 of sat[t], where C1 is a Πt-circuit of n1 input variables

and size m1,

(A) Let r = dz∗ log n1e, where z∗ is the real number satisfying (3.1). As

we explained above, the value z∗ can be computed in time polynomial in

n1;

(B) Call the algorithm A1 in Lemma III.1 on r and C1 to construct an

instance (C2, k) of the problem wcs∗[t], where k = dn1/re, and C2 is a

Πt-circuit of n2 = k2r input variables and size m2 ≤ 2m1 + 22r+1k. By

the above discussion, we have µ(n2)/8 ≤ k ≤ 16µ(n2);

(C) Call the algorithm Mwcs on (C2, k) to determine whether (C2, k) is a

yes-instance of wcs∗[t], which, by Lemma III.1, is equivalent to whether

C1 is a yes-instance of sat[t].

The running time of steps (A) and (B) of the above algorithm is bounded by a

polynomial p1(m2) of m2. Step (C) takes time n
k/λ(k)
2 p(m2). Therefore, the total run-

ning time of this algorithm solving the sat[t] problem is bounded by n
k/λ(k)
2 p2(m2),

where p2 is a polynomial. We have (for simplicity and without affecting the correct-

ness, we omit the floor and ceiling functions),

n
k/λ(k)
2 = (2rn1/r)

(n1/r)/λ(n1/r) ≤ 2n1/λ(n1/r)n
(n1/r)/λ(n1/r)
1

Now it is easy to verify that n
k/λ(k)
2 = 2o(n1) (observe that k = n1/r ≥ µ(n2)/8

hence λ(n1/r) is unbounded, and that r = z∗ log n1 = Ω(log n1)). Also, since m2 ≤

2m1+2(n2)
2, m2 = 2o(n1)m

O(1)
1 , thus, the polynomial p2(m2) is bounded by 2o(n1)m

O(1)
1 .

58

This concludes that the above algorithm of running time n
k/λ(k)
2 p2(m2) for the problem

sat[t] has its running time bounded by 2o(n1)m
O(1)
1 . This completes the proof of the

theorem.

Now we derive similar results for the weighted satisfiability problem wcnf 2-

sat−, based on Lemma III.2. In the following discussion, for an instance (F, k) of

the problems wcnf 2-sat− or wcnf 2-sat+, we denote by n and m, respectively,

the number of variables and the instance size of the CNF formula F . Note that

m = O(n2).

Theorem III.6 If the problem wcnf 2-sat− is solvable in time f(k)mo(k) for a

function f , then the problem wcnf 2-sat+ is solvable in time 2o(n).

Proof. Since m = O(n2) for any instance of wcnf 2-sat−, we only need to prove

that if the problem wcnf 2-sat− is solvable in time f(k)no(k) for a function f , then

the problem wcnf 2-sat+ is solvable in time 2o(n).

Suppose that the problem wcnf 2-sat− is solvable in time f(k)nk/λ(k) for a

nondecreasing and unbounded function λ. Without loss of generality, we can assume

that the function f is nondecreasing, unbounded, and satisfies f(k) > 2k. Define

f−1(h) = max{q | f(q) ≤ h}. Then f−1 is a nondecreasing and unbounded function

satisfying f−1(h) ≤ log h and f(f−1(h)) ≤ h.

For a given instance (F1, k1) of wcnf 2-sat+, where the CNF formula F1 has

n1 variables, we let r = b3n1/f
−1(n1)c and k2 = dn1/re, then we use the algorithm

A2 in Lemma III.2 to construct a group G of at most (r + 1)k2 instances (Fπ, k2) of

wcnf 2-sat−, where each formula Fπ has n2 = k22
r variables, and such that (F1, k1)

is a yes-instance of wcnf 2-sat+ if and only if the group G contains a yes-instance of

wcnf 2-sat−. By our assumption, it takes time f(k2)n
k2/λ(k2)
2 to test if each (Fπ, k2)

59

in the group G is a yes-instance of wcnf 2-sat−. Therefore, in time of order

(r + 1)k2f(k2)n
k2/λ(k2)
2 + n2

2(r + 1)k2

we can decide if (F1, k1) is a yes-instance of wcnf 2-sat+, where the term n2
2(r+1)k2 is

for the running time of the algorithm A2. As we verified in Theorem III.3, f(k2) ≤ n1,

and n
k2/λ(k2)
2 = 2o(n1) (in particular, n2 = 2o(n1)). Finally, since r = O(n1) and

k2 = O(f−1(n1)) = O(log n1), we get (r + 1)k2 = 2o(n1). In summary, in time 2o(n1)

we can decide if (F1, k1) is a yes-instance of wcnf 2-sat+, and hence, the problem

wcnf 2-sat+ is solvable in time 2o(n).

Based on Theorem III.6, and using a proof completely similar to that of Corol-

lary III.4, we can prove that Theorem III.6 remains valid even if we restrict the

parameter values to be bounded by an arbitrarily small function of n.

Corollary III.7 Let µ(n) be any nondecreasing and unbounded function. If there is

a function f such that the problem wcnf 2-sat− is solvable in time f(k)mo(k) for

parameter values k ≤ µ(n), then the problem wcnf 2-sat+ is solvable in time 2o(n).

Theorem III.8 For any nondecreasing and unbounded function µ satisfying µ(n) ≤

nε and µ(2n) ≤ 2µ(n), where ε is a fixed constant, 0 < ε < 1, if wcnf 2-sat− is

solvable in time mo(k) for parameter values µ(n)/8 ≤ k ≤ 16µ(n), then the problem

wcnf 2-sat+ is solvable in time 2o(n).

Proof. Again since m = O(n2), the given hypothesis implies that wcnf 2-sat−

is solvable in time no(k) for parameter values µ(n)/8 ≤ k ≤ 16µ(n).

Let (F1, k1) be an instance of wcnf 2-sat+, where the CNF formula F1 has n1

variables. As in Theorem III.5, we first compute in polynomial time a real number

60

z∗ satisfying

4µ

(
n12

z∗ log n1

z∗ log n1

)
≥ n1

z∗ log n1

≥ µ

(
n12

z∗ log n1

z∗ log n1

)

Now we let r = dz∗ log n1e and k2 = dn1/re, and use the algorithm A2 in Lemma III.2

to construct a group G of at most (r +1)k2 instances (Fπ, k2) of wcnf 2-sat−, where

each formula Fπ has n2 = k22
r variables, such that (F1, k1) is a yes-instance of wcnf

2-sat+ if and only if the group G contains a yes-instance of wcnf 2-sat−.

As proved in Theorem III.5, the values k2 and n2 satisfy the relation µ(n2)/8 ≤

k2 ≤ 16µ(n2), and n
k2/λ(k2)
2 = 2o(n1) for any nondecreasing and unbounded function λ.

Therefore, by the hypothesis of the current theorem, we can determine in time 2o(n1)

for each (Fπ, k2) in G if (Fπ, k2) is a yes-instance of wcnf 2-sat−. It is also easy to

verify that the total number (r + 1)k2 of instances in the group G and the running

time O(n2
2(r + 1)k2) of the algorithm A2 are all bounded by 2o(n1). Therefore, using

this transformation, we can determine in time 2o(n1) whether (F1, k1) is a yes-instance

of wcnf 2-sat+, and hence the problem wcnf 2-sat+ is solvable in time 2o(n1).

4. Satisfiability Problems and the W -hierarchy

We first show that a subexponential time algorithm for sat[t] would collapse the

W -hierarchy.

Theorem III.9 For any integer t ≥ 2, if sat[t] is solvable in time 2o(n)mO(1), then

W [t− 1] = FPT.

Proof. The theorem for the case t = 2 is an easy corollary of Corollary 3.1 in

[15]. Here we present a proof for the general case t ≥ 3 using different techniques. In

particular, our techniques do not apply to the case t = 2.

Let C be a Πt−1-circuit of n input variables x0, . . ., xn−1 and size m such that C

61

is monotone if t is odd and C is antimonotone if t is even. Without loss of generality,

we assume that log n is an integer (otherwise, we add dummy input variables to C).

Let k ≤ n be a non-negative integer. We first show how to construct a Πt-circuit

C ′ of k log n input variables from the circuit C and the integer k such that C has a

satisfying assignment of weight k if and only if C ′ is satisfiable. The input variables

in C ′ are divided into k blocks B′
1, . . . , B

′
k, where each block B′

i consists of r = log n

input variables zi,1, . . . , zi,r. For a non-negative integer j ≤ n−1, we denote by binr(j)

the length-r binary representation of the integer j, which can also be interpreted as

an assignment to a block B′
i in the circuit C ′. We distinguish two cases based on the

parity of t.

Case 1. t is odd. Then C is a monotone Πt−1-circuit and all level-1 gates in C

are or gates. For each positive literal xj in C and for each block B′
i, we associate an

and gate gi,j in C ′ such that if the h-th bit in binr(j) is 1 (resp. 0) then zi,h (resp.

zi,h) is an input to gi,j. The outputs of gi,j in C ′ are identical to the outputs of xj in

C. Note that for each assignment binr(j) to block B′
i, exactly one of these new and

gates, i.e., the gate gi,j, is satisfied and outputs 1. Thus, the assignment binr(j) of

block B′
i in C ′ simulates the assignment xj = 1 in C. The circuit C ′ is obtained from

the circuit C by removing all input gates in C and adding the kn new and gates gi,j,

1 ≤ i ≤ k, 0 ≤ j ≤ n− 1, and the literals in blocks B′
1, . . ., B′

k. Moreover, we add an

enforcement circuitry to C ′ to make sure that the assignments to different blocks in

C ′ simulate assignments to different variables in C. To achieve this, we construct a

depth-2 subcircuit Ci,i′ for each pair of blocks B′
i and B′

i′ such that Ci,i′ outputs 0 if

and only if blocks B′
i and B′

i′ are assigned the same value. The output of Ci,i′ is an

input to the output and gate of the circuit C ′. Since t ≥ 3, the enforcement circuitry

does not increase the depth of the circuit C ′. Thus, the circuit C ′ is a Πt-circuit with

kr input variables.

62

It is easy to verify that the circuit C has a satisfying assignment of weight k if

and only if the circuit C ′ is satisfiable: suppose C is satisfied by a weight-k assignment

τ , which assigns the value 1 to k variables xj1 , . . ., xjk
, and the value 0 to all other

variables. Then by assigning the value binr(ji) to block B′
i for 1 ≤ i ≤ k, we get

an assignment τ ′ for the circuit C ′ such that all and gates gi,ji
in C ′ are satisfied.

Since the outputs of the and gates gi,ji
are identical to the outputs of the positive

literals xji
, we conclude that all level-2 or gates in C ′ corresponding to those level-1

or gates in C satisfied by the assignment τ are satisfied by the assignment τ ′. Since

the assignment τ satisfies the circuit C and all blocks B′
i are assigned different values,

the assignment τ ′ satisfies the circuit C ′ and the circuit C ′ is satisfiable. Conversely,

suppose the circuit C ′ is satisfied by an assignment τ ′, then the restriction τ ′i of τ ′

to block B′
i satisfies exactly one and gate gi,ji

, where binr(ji) = τ ′i . Because of the

enforcement circuitry, these k gates gi,ji
correspond to k different positive literals xji

.

Thus, if we set xji
= 1 for all 1 ≤ i ≤ k, and assign the value 0 to all other variables,

we get an assignment τ of weight exactly k that satisfies the circuit C.

Case 2. t is even. Then C is an antimonotone Πt−1-circuit and all level-1 gates

in C are and gates. For each input variable xj, 0 ≤ j ≤ n − 1, and for each block

B′
i, we make an or gate gi,j such that if the h-th bit in binr(j) is 0 (resp. 1) then zi,h

(resp. zi,h) is an input to gi,j. The outputs of gi,j in C ′ are identical to the outputs

of xj in C. Note that for each assignment binr(j) of block B′
i, exactly one of these

new or gates, i.e., the gate gi,j, is not satisfied and outputs 0. Thus, the assignment

binr(j) of block B′
i in C ′ simulates the assignment xj = 0 (or equivalently xj = 1) in

C. As in Case 1, we also add an enforcement circuitry to C ′ to make sure that no

two blocks in C ′ are assigned the same value. The circuit C ′ is a Πt-circuit with kr

input variables.

To verify that the circuit C has a satisfying assignment of weight k if and only if

63

the circuit C ′ is satisfiable, suppose C is satisfied by a weight-k assignment τ , which

assigns the value 1 to k variables xj1 , . . ., xjk
, and the value 0 to all other variables.

Then by assigning the value binr(ji) to block B′
i for 1 ≤ i ≤ k, we get an assignment

τ ′ to the circuit C ′ such that for each i, only the or gate gi,ji
is not satisfied and

outputs 0. Thus, for each level-1 and gate g1 satisfied by the assignment τ in C,

since no negative literals xj1 , . . ., xjk
are inputs to g1 in C, no gates g1,j1 , . . ., gk,jk

are inputs to g1 in C ′. Thus, the assignment τ ′ satisfies the gate g1. Since g1 is an

arbitrary level-1 and gate satisfied by τ in C, we conclude that the assignment τ ′

satisfies all level-2 and gates that correspond to the level-1 and gates satisfied by

the assignment τ in C. Since τ satisfies the circuit C and all blocks B′
i are assigned

different values, τ ′ satisfies the circuit C ′ and C ′ is satisfiable. Conversely, suppose

the circuit C ′ is satisfied by an assignment τ ′, then the restriction τ ′i of τ ′ to block

B′
i satisfies all or gates gi,j except the gate gi,ji

, where binr(ji) = τ ′i . Because of the

enforcement circuitry in C ′, assignments τ ′i and τ ′i′ to two different blocks in C ′ are

different. Thus, the assignments to the k blocks induce k different input variables xji
.

If we set xji
= 1 for all 1 ≤ i ≤ k and set the value 0 for all other input variables in

C, we get an assignment τ of weight exactly k satisfying the circuit C.

In summary, we have verified that for any t ≥ 3, for a given Πt−1-circuit C of n

input variables and size m, and for a given k ≤ n, where C is monotone if t is odd

and antimonotone if t is even, we can construct a Πt-circuit C ′ such that C has a

satisfying assignment of weight k if and only if C ′ is satisfiable. The circuit C ′ has

n′ = kr = k log n input variables and size m′ bounded by m + kn + 3k2 log2 n ≤ 3m3,

where the term kn is the number of the gates gi,j, 1 ≤ i ≤ k, 0 ≤ j ≤ n − 1 in

the construction of the circuit C ′, and 3k2 log2 n is an upper bound on the size of the

enforcement circuitry. The circuit C ′ can be constructed from (C, k) in time O((m′)2).

By the hypothesis of the theorem, there is an algorithm A′ that determines

64

whether the circuit C ′ is satisfiable in time 2o(n′)p(m′) for a polynomial p. Thus,

there is a nondecreasing and unbounded function λ such that the running time of

the algorithm A′ is bounded by 2n′/λ(n′)p(m′). This, plus the construction of the

circuit C ′ from (C, k), gives an algorithm A′′ of running time 2n′/λ(n′)p1(m
′) that

determines whether the Πt−1-circuit C has a satisfying assignment of weight k, where

p1 is a polynomial. Note that 2n′/λ(n′) = 2k log n/λ(k log n) ≤ 2k log n/λ(log n). This gives

the following algorithm A that solves the wcs∗[t− 1] problem:

For a given instance (C, k) of wcs∗[t− 1], where C has n input variables

and size m, if k > λ(log n), then enumerate all assignments to C and

check if there is a satisfying assignment of weight k to C; if k ≤ λ(log n),

then call the algorithm A′′ to decide if there is a satisfying assignment of

weight k to C.

We analyze the algorithm A. First note that m′ ≤ 3m3, thus, p1(m
′) is bounded by a

polynomial p′(m) of m. Define λ−1(h) = min{q | λ(q) ≥ h}. Since λ is nondecreasing

and unbounded, λ−1 is also a nondecreasing and unbounded function. Let f(k) =

22λ−1(k)
. We claim that the running time of the algorithm A is bounded by f(k)np′(m).

In effect, if k > λ(log n), we have λ−1(k) ≥ log n, and f(k) ≥ 2n. Therefore, in this

case, the running time of the algorithm A is bounded by 2np′(m) ≤ f(k)p′(m). On

the other hand, if k ≤ λ(log n), then the algorithm A calls the algorithm A′′ to solve

the problem, which runs in time 2k log n/λ(log n) ≤ 2log n = n.

Thus, under the hypothesis of the theorem, we have been able to prove that the

W [t− 1]-complete problem wcs∗[t− 1] is solvable in time f(k)np′(m) for a function

f and a polynomial p′, and hence is fixed-parameter tractable. This, in consequence,

implies that W [t− 1] = FPT.

65

Combining Theorem III.9 with Theorem III.3, Corollary III.4, and Theorem III.5,

we get

Theorem III.10 For any integer t ≥ 2, if the problem wcs∗[t] is solvable in time

f(k)no(k)mO(1) for a function f , then W [t − 1] = FPT. This theorem remains true

even if we restrict the parameter values k by k ≤ µ(n) for any nondecreasing and

unbounded function µ.

Theorem III.11 Let t ≥ 2 be an integer and ε be a fixed constant, 0 < ε < 1.

For any nondecreasing and unbounded function µ satisfying µ(n) ≤ nε and µ(2n) ≤

2µ(n), if the problem wcs∗[t] is solvable in time no(k)mO(1) for the parameter values

µ(n)/8 ≤ k ≤ 16µ(n), then W [t− 1] = FPT.

Now we consider the satisfiability problems wcnf 2-sat− and wcnf 2-sat+on

CNF formulas. In the following discussion, for an instance (F, k) of the problems

wcnf 2-sat− or wcnf 2-sat+, we denote by n and m, respectively, the number of

variables and the instance size of the formula F . Note that m = O(n2).

The class SNP introduced by Papadimitriou and Yannakakis [65] contains many

well-known NP-hard problems including, for any fixed integer q ≥ 3, cnf q-sat,

q-colorability, q-set cover, and vertex cover, clique, and independent

set [53]. It is commonly believed that it is unlikely that all problems in SNP are

solvable in subexponential time3. Impagliazzo and Paturi [53] studied the class SNP

and identified a group of SNP-complete problems under the serf-reduction, in the

sense that if any of these SNP-complete problems is solvable in subexponential time,

then all problems in SNP are solvable in subexponential time.

3A recent result showed the equivalence between the statement that all SNP prob-
lems are solvable in subexponential time, and the collapse of a parameterized class
called Mini[1] to FPT [34].

66

Lemma III.12 If the problem wcnf 2-sat+ is solvable in time 2o(n), then all prob-

lems in SNP are solvable in subexponential time.

Proof. It is easy to see that the problem vertex cover can be reduced to the

problem wcnf 2-sat+ in a straightforward way: given an instance (G, k) of vertex

cover, where G is a graph of n vertices, we can construct an instance (FG, k) of

wcnf 2-sat+, where the CNF formula FG has n variables, as follows: each vertex

vi of G makes a positive literal xi in FG, and each edge [vi, vj] in G makes a clause

(xi, xj) in FG. It is easy to see that the graph G has a vertex cover of k vertices if and

only if the CNF formula FG has a satisfying assignment of weight k. Therefore, if the

problem wcnf 2-sat+ is solvable in time 2o(n), then the problem vertex cover is

solvable in subexponential time. Since vertex cover is SNP-complete under the

serf-reduction [53], this in consequence implies that all problems in SNP are solvable

in subexponential time.

Combining Lemma III.12 with Theorem III.6, Corollary III.7, and Theorem III.8,

we get

Theorem III.13 If the problem wcnf 2-sat− is solvable in time f(k)mo(k) for a

function f , then all problems in SNP are solvable in subexponential time. This the-

orem remains true even if we restrict the parameter values k by k ≤ µ(n) for any

nondecreasing and unbounded function µ.

Theorem III.14 For any nondecreasing and unbounded function µ satisfying µ(n) ≤

nε and µ(2n) ≤ 2µ(n), where ε is a fixed constant, 0 < ε < 1, if wcnf 2-sat− is

solvable in time mo(k) for parameter values µ(n)/8 ≤ k ≤ 16µ(n), then all problems

in SNP are solvable in subexponential time.

67

5. Linear fpt-reductions and Lower Bounds

In the discussion of the problems wcs∗[t], we observed that besides the parameter k

and the circuit size m, the number n of input variables has played an important role

in the computational complexity of the problems. Unless unlikely collapses occur in

parameterized complexity theory, the problems wcs∗[t] require computational time

f(k)nΩ(k)p(m), for any polynomial p and any function f . The dominating term in

the time bound depends on the number n of input variables in the circuits, instead

of the circuit size m. Note that the circuit size m can be of the order 2n.

Each instance (C, k) of a weighted circuit satisfiability problem such as wcs∗[t]

can be regarded as a search problem, in which we need to select k elements from

a search space consisting of a set of n input variables, and assign them the value 1

so that the circuit C is satisfied. Many well-known NP-hard problems have similar

formulations. We list some of them next:

weighted cnf sat (abbreviated wcnf-sat): given a CNF formula F ,

and an integer k, decide if there is an assignment of weight k that satisfies

all clauses in F . Here the search space is the set of Boolean variables in

F .

set cover: given a collection F of subsets in a universal set U , and an

integer k, decide whether there is a subcollection of k subsets in F whose

union is equal to U . Here the search space is F .

hitting set: given a collection F of subsets in a universal set U , and

an integer k, decide if there is a subset S of k elements in U such that S

intersects every subset in F . Here the search space is U .

Many graph problems seek a subset of vertices that meet certain given conditions.

68

For these graph problems, the natural search space is the set of all vertices. For certain

problems, a polynomial time preprocessing on the input instance can significantly

reduce the size of the search space. For example, for finding a vertex cover of k

vertices in a graph G of n vertices, a polynomial time preprocessing can reduce the

search space size to 2k (see [26]). In the following, we present a simple algorithm for

reducing the search space size for the dominating set problem (given a graph G

and an integer k, decide whether there is a dominating set of k vertices, i.e., a subset

D of k vertices such that every vertex not in D is adjacent to at least one vertex in

D).

Suppose we are looking for a dominating set of k vertices in a graph G. Without

loss of generality, we assume that G contains no isolated vertices (otherwise, we simply

include the isolated vertices in the dominating set and modify the graph G and the

parameter k accordingly). We say that the graph G has an IS-Clique partition (V1, V2)

if the vertices of G can be partitioned into two disjoint subsets V1 and V2 such that V1

makes an independent set while V2 induces a clique. If |V2| ≤ k, then the vertices in

V2 plus any k−|V2| vertices in V1 make a dominating set of k vertices in G. Thus, we

assume that |V2| > k. We claim that the graph G has a dominating set of k vertices

if and only if there are k vertices in V2 that make a dominating set for G. In fact,

suppose that G has a dominating set D of k vertices, in which k1 are in V1 and k2

are in V2, where k1 + k2 = k. Now for each vertex v in D ∩ V1 that has no neighbor

in D, we replace in D the vertex v by a neighbor u of v such that u is in V2 (such a

neighbor u must exist since V1 is an independent set and v is not an isolated vertex).

This process gives us a dominating set D′ of at most k vertices in G, where D′ is a

subset of V2. Adding a proper number of vertices in V2 to D′ then gives a dominating

set of exact k vertices in G.

Therefore, if we are looking for a dominating set of k vertices in a graph G with

69

an IS-Clique partition (V1, V2), we can restrict our search to the set of vertices in V2,

which thus makes a search space for the problem. Now we explain how to test if a

given graph G has an IS-Clique partition.

Lemma III.15 Let the vertices of G be ordered as {v1, v2, . . . , vn} such that deg(v1) ≤

deg(v2) ≤ · · · ≤ deg(vn) (where deg(vi) denotes the degree of the vertex vi). If

G = (V, E) has an IS-Clique partition, then either there is a vertex vi in G where vi

and its neighbors make a clique V2 such that (V −V2, V2) makes an IS-Clique partition

for G, or there is an index h, 1 ≤ h ≤ n − 1, such that deg(vh) < deg(vh+1) and

({v1, . . . , vh}, {vh+1, . . . , vn}) is an IS-Clique partition for G.

Proof. Suppose that the graph G has an IS-Clique partition (V1, V2). We consider

three different cases. (1) If there is a vertex vi in V2 such that vi has no neighbor

in V1, then vi and its neighbors make exactly the set V2 and (V1, V2) is an IS-Clique

partition for G; (2) If there is a vertex vj in V1 that is adjacent to all vertices in V2,

then vj and its neighbors make the set V2 ∪ {vj}, and (V1 − {vj}, V2 ∪ {vj}) is an

IS-Clique partition for G; (3) If neither of (1) and (2) is the case, then each vertex in

V2 has degree at least |V2| and each vertex in V1 has degree at most |V2| − 1.

Using Lemma III.15, we can develop a simple algorithm of running time O(n3)

that tests if a given graph has an IS-Clique partition. Summarizing the above we

obtain the following preprocessing algorithm on an instance (G, k) of the dominating

set problem:

DS-Core(G, k)

1. if the graph G has no IS-Clique partition, then let U be the entire set of

vertices in G;

2. else construct an IS-Clique partition (V1, V2) for G;

70

if |V2| < k, Then let U be V2 plus any k − |V2| vertices in V1;

else let U = V2;

3. return U as the search space.

The parameterized problems discussed here all share the property that they seek

a subset in a search space satisfying certain properties. In most of the problems that

we consider, the search space can be easily identified. For example, the search space

for each of the problems wcnf-sat, set cover, and hitting set is given as we

described. For some other problems, such as dominating set, the search space can

be identified by a polynomial time preprocessing algorithm (such as the DS-core

algorithm). If no polynomial time preprocessing algorithm is known, then we simply

pick the entire input instance as the search space. For example, for the problems

independent set and clique, we will take the search space to be the entire vertex

set. Thus, each instance of our parameterized problems is associated with a triple

(k, n, m), where k is the parameter, n is the size of the search space, and m is the

size of the instance. We will call such an instance a (k, n, m)-instance.

Theorems III.10 and III.13 suggest that the problem wcs∗[t] in the class W [t]

for t ≥ 2 and the problem wcnf 2-sat− in the class W [1] seem to have very high

parameterized complexity. In the following, we introduce a new reduction to identify

problems in the corresponding classes that are at least as difficult as these problems.

Definition A parameterized problem Q is linearly fpt-reducible (shortly fptl-reducible)

to a parameterized problem Q′ if there exist a function f and an algorithm A of run-

ning time f(k)no(k)mO(1), such that on each (k, n, m)-instance x of Q, the algorithm

A produces a (k′, n′, m′)-instance x′ of Q′, where k′ = O(k), n′ = nO(1), m′ = mO(1),

and that x is a yes-instance of Q if and only if x′ is a yes-instance of Q′.

71

From the definition of fptl-reduction, the transitivity of the fptl-reduction can be

easily deduced:

Lemma III.16 Let Q1, Q2, and Q3 be three parameterized problems. If Q1 is fptl-

reducible to Q2, and Q2 is fptl-reducible to Q3, then Q1 is fptl-reducible to Q3.

Proof. If Q1 is fptl-reducible to Q2, then there exist a function f1 and an algorithm

A1 of running time f1(k1)n
o(k1)
1 m

O(1)
1 , such that on each (k1, n1, m1)-instance x1 of

Q1, the algorithm A1 produces a (k2, n2, m2)-instance x2 of Q2, where n2 = n
O(1)
1 ,

m2 = m
O(1)
1 , and k2 ≤ c1k1, where c1 is a constant.

If Q2 is fptl-reducible to Q3, then there exist a function f2 and an algorithm A2 of

running time f2(k2)n
o(k2)
2 m

O(1)
2 , such that on each (k2, n2, m2)-instance x2 of Q2, the

algorithm A2 produces a (k3, n3, m3)-instance x3 of Q3, where k3 = O(k2), n3 = n
O(1)
2 ,

m3 = m
O(1)
2 .

Now we have an algorithm A that reduces Q1 to Q3, as follows. For a given

(k1, n1, m1)-instance x1 of Q1, A first calls the algorithm A1 on x1 to constructs a

(k2, n2, m2)-instance x2 of Q2, where k2 ≤ c1k1, n2 = n
O(1)
1 , and m2 = m

O(1)
1 . Then

A calls the algorithm A2 on x2 to construct a (k3, n3, m3)-instance x3 of Q3. It is

obvious that x3 is a yes-instance of Q3 if and only if x1 is a yes-instance of Q1.

Moreover, from k2 ≤ c1k1 and k3 = O(k2), we have k3 = O(k1), and from n2 = n
O(1)
1 ,

m2 = m
O(1)
1 , n3 = n

O(1)
2 , m3 = m

O(1)
2 , we get n3 = n

O(1)
1 , m3 = m

O(1)
1 . Finally, since

the call to algorithm A1 on x1 takes time f1(k1)n
o(k1)
1 m

O(1)
1 , the call to algorithm A2

on x2 takes time f2(k2)n
o(k2)
2 m

O(1)
2 , and k2 ≤ c1k1, n2 = n

O(1)
1 , and m2 = m

O(1)
1 , we

conclude that the running time of the algorithm A is bounded by f(k1)n
o(k1)
1 m

O(1)
1 ,

where f(k1) = f1(k1) + f2(c1k1). By the definition, A is an fptl-reduction from Q1 to

72

Q3, i.e., Q1 is fptl-reducible to Q3.

Definition A parameterized problem Q1 is W [1]-hard under the linear fpt-reduction,

shortly Wl[1]-hard, if the problem wcnf 2-sat− is fptl-reducible to Q1. A parame-

terized problem Qt is W [t]-hard under the linear fpt-reduction, shortly Wl[t]-hard, for

t ≥ 2 if the problem wcs∗[t] is fptl-reducible to Qt.

Based on the above definitions and using Theorem III.10 and Theorem III.13,

we immediately derive:

Theorem III.17 For t ≥ 2, no Wl[t]-hard parameterized problem can be solved in

time f(k)no(k)mO(1) for a function f , unless W [t − 1] = FPT. This remains true

even if we restrict the parameter values k by k ≤ µ(n) for any nondecreasing and

unbounded function µ.

Theorem III.18 No Wl[1]-hard parameterized problem can be solved in time f(k)mo(k)

for a function f , unless all problems in SNP are solvable in subexponential time. This

remains true even if we restrict the parameter values k by k ≤ µ(n) for any nonde-

creasing and unbounded function µ.

Using the fptl-reduction, we can immediately derive computational lower bounds

for a large number of NP-hard parameterized problems.

Theorem III.19 The following parameterized problems are Wl[2]-hard: wcnf-sat,

set cover, hitting set, and dominating set. Thus, unless W [1] = FPT, none

of them can be solved in time f(k)no(k)mO(1) for any function f . This theorem remains

true even if we restrict the parameter values k by k ≤ µ(n) for any nondecreasing and

unbounded function µ.

73

Proof. We highlight the fptl-reductions from wcs∗[2] = wcs+[2] to these problems,

which are all we need. In fact, the reductions from wcs+[2] to the problems wcnf-

sat, hitting set, and set cover are standard and straightforward, and hence we

leave them to the interested readers.

We present the fptl-reduction from wcs+[2] to dominating set here. Let (C, k)

be an instance of wcs+[2], where C is a monotone Π2-circuit. We construct a graph

GC associated with the circuit C as follows. First we remove any or gate in C if

it receives inputs from all input gates (this kind of or gates will be satisfied by any

assignment of weight larger than 0 anyway). Then we remove the output gate of C

and add an edge to each pair of input gates in C. This gives the graph GC . We

claim that the circuit C has a satisfying assignment of weight k if and only if the

graph GC has a dominating set of k vertices. First observe that the graph GC has

a unique IS-Clique partition (V1, V2), where V1 is the set of all or gates and V2 is

the set of all input gates. Therefore, by the discussion before Lemma III.15, if GC

has a dominating set D of k vertices, then we can assume that D is a subset of V2.

Now assigning the value 1 to the k input variables corresponding to the vertices in

D clearly gives a satisfying assignment of weight k for the circuit C. For the other

direction, from a satisfying assignment π of weight k for the circuit C, we can easily

verify that the k vertices in GC corresponding to the k input gates in C assigned the

value 1 by π make a dominating set for the graph GC . Finally, we point out that

this reduction keeps the parameter value k, the search space size n (assuming that we

apply the algorithm DS-Core to the dominating set problem), and the instance

size m all unchanged.

We remark that the reduction from wcs+[2] to dominating set presented in

74

the proof of Theorem III.19 also provides a new proof for the W [2]-hardness for the

problem dominating set, which seems to be significantly simpler than the original

proof given in [37].

Now we consider certain Wl[1]-hard problems. Define wcnf q-sat, where q > 0

is a fixed integer, to be the parameterized problem consisting of the pairs (F, k),

where F is a CNF formula in which each clause contains at most q literals and F has

a satisfying assignment of weight k.

Theorem III.20 The following problems are Wl[1]-hard: wcnf q-sat for any inte-

ger q ≥ 2, clique, and independent set. Thus, unless all problems in SNP are

solvable in subexponential time, none of them can be solved in time f(k)mo(k) for any

function f . This theorem remains true even if we restrict the parameter values k by

k ≤ µ(m) for any nondecreasing and unbounded function µ.

Proof. The fptl-reductions from the problem wcnf 2sat− to these problems

are all straightforward, and hence we leave the detailed verifications to the interested

readers.

Each of the problems in Theorem III.19 and Theorem III.20 can be solved by

a trivial algorithm of running time cnkm2, where c is an absolute constant, which

simply enumerates all possible subsets of k elements in the search space. Much

research has tended to seek new approaches to improve this trivial upper bound. One

of the common approaches is to apply a more careful branch-and-bound search process

trying to optimize the manipulation of local structures before each branch [1, 2, 26, 29,

63]. Continuously improved algorithms for these problems have been developed based

on improved local structure manipulations. It has even been proposed to automate the

manipulation of local structures [64, 72] in order to further improve the computational

75

time.

Theorem III.19 and Theorem III.20, however, provide strong evidence that the

power of this approach is quite limited in principle. The lower bound f(k)nΩ(k)p(m)

for the problems in Theorem III.19 and the lower bound f(k)mΩ(k) for the problems

in Theorem III.20, where f can be any function and p can be any polynomial, indicate

that no local structure manipulation running in polynomial time or in time depending

only on the target value k will obviate the need for exhaustive enumerations.

One might suspect that a particular parameter value (e.g., a very small pa-

rameter value or a very large parameter value) would help solving the problems in

Theorem III.19 and Theorem III.20 more efficiently. This possibility is, unfortunately,

denied by the following theorems, which indicate that, essentially, the problems are

actually difficult for every parameter value.

Theorem III.21 For any constant ε, 0 < ε < 1, and any nondecreasing and un-

bounded function µ satisfying µ(n) ≤ nε, and µ(2n) ≤ 2µ(n), none of the problems

in Theorem III.19 can be solved in time no(k)mO(1) even if we restrict the parameter

values k to µ(n)/8 ≤ k ≤ 16µ(n), unless W [1] = FPT.

Proof. As described in the proof of Theorem III.19, each fptl-reduction from

wcs+[2] to a problem in Theorem III.19 runs in time mO(1) and keeps the parameter

value k and the search space size n unchanged. The theorem now follows directly

from this fact and Theorem III.11.

Note that the conditions on the function µ in Theorem III.21 are satisfied by

most complexity functions, such as µ(n) = log log n and µ(n) = n4/5. Therefore, for

example, unless the unlikely collapse W [1] = FPT occurs, constructing a dominating

set of log log n vertices requires time nΩ(log log n)mO(1), and constructing a dominating

76

set of
√

n vertices requires time nΩ(
√

n)mO(1).

Similar results hold for the problems in Theorem III.20, by similar proofs based

on Theorem III.14.

Theorem III.22 For any constant ε, 0 < ε < 1, and any nondecreasing and un-

bounded function µ satisfying µ(n) ≤ nε, and µ(2n) ≤ 2µ(n), none of the problems in

Theorem III.20 can be solved in time mo(k) even if we restrict the parameter values k

to µ(n)/8 ≤ k ≤ 16µ(n), unless all problems in SNP are subexponential time solvable.

We observe that all problems in Theorem III.19 are also Wl[1]-hard. Thus, we

can actually claim stronger lower bounds for these problems in terms of the parameter

value k and the instance size m, based on a stronger assumption 4.

Theorem III.23 All problems in Theorem III.19 are Wl[1]-hard. Hence, none of

them can be solved in time f(k)mo(k) for any function f , unless all SNP problems are

subexponential time solvable.

Proof. The fptl-reduction from wcnf 2-sat− to wcnf-sat is straightforward. It

is not difficult to verify that the fpt-reduction from wcnf-sat to dominating set

described in [37], which was originally used to prove the W [2]-hardness for dominat-

ing set, is actually an fptl-reduction. Finally, the fptl-reduction from dominating

set to hitting set, and the fptl-reduction from hitting set to set cover are sim-

ple and left to the interested readers. The theorem now follows from the transitivity

of the fptl-reduction.

4It can be shown that if W [1] = FPT then all problems in SNP are solvable in
subexponential time.

77

B. On Some Parameterized Non NP-hard Problems

The work of this section is motivated by our study on the computational lower bounds

for the parameterized NP-hard problems via the definition of linear fpt-reduction. We

study the problems in the class lognp introduced by Papadimitriou and Yannakakis

[66]. Since these problems can be solved deterministically in time O(nlog n), they are

unlikely to be NP-hard. We prove lower bound results for the problems in the class

lognp.

1. Further Remarks on Wl[1]-hardness

We have given the definition of fptl-reduction and based on it defined Wl[1]-hardness.

We proved that no Wl[1]-hard problem can be solved in time f(k)no(k) for any function

f , unless all SNP problems are solvable in subexponential time.

Let Q be a parameterized problem and let r be any nondecreasing and unbounded

function, we define a subset r-Q of Q:

r-Q = {(x, k) | (x, k) ∈ Q and k ≤ r(|x|)}

We have the following theorem.

Theorem III.24 For a Wl[1]-hard problem Q solvable in time O(cn) for a constant

c and for any nondecreasing and unbounded function r, the problem r-Q has no algo-

rithm of time f(k)no(k) for any function f , unless all SNP problems are solvable in

subexponential time.

Proof. Suppose the problem r-Q is solvable by an algorithm A of running time

f(k)no(k) for a recursive function f .

Define the function r− as r−(p) = max{r(q) ≤ p}. Since r is non-decreasing

78

and unbounded, r− is also a non-decreasing and unbounded function. Define f ′(k) =

cr−(k). Consider the following algorithm A′ solving Q:

For a given instance (x, k) of the problem Q, if k ≥ r(n), then solve the

problem in time O(cn); and if k < r(n), call the algorithm A to solve the problem.

We claim that the algorithm A′ solves the problem Q in its general case in

time F (k)no(k), where F is a function to be decided. In fact, in case k ≥ r(n),

we have r−(k) ≥ n, therefore f ′(k) ≥ cn. Thus, the running time of the algo-

rithm A′ is bounded by O(cn) = O(f ′(k)) = f ′(k)no(k). On the other hand, in

case k < r(n), by the hypothesis of the theorem, the algorithm A runs in time

f(k)no(k) ≤ max(f(k), f ′(k))no(k) ≤ F (k)no(k), where F (k) = max(f(k), f ′(k)).

Thus, the running time of the algorithm A′ is always bounded by F (k)no(k).

By Theorem III.18, the existence of the algorithm A′ of time F (k)no(k) for the

Wl[1]-hard problem Q would imply all SNP problems are solvable in subexponential

time.

We prove the following theorem:

Theorem III.25 Suppose that a problem Q1 has no algorithm of time f(k)no(k) for

any function f , and that Q1 is fptl-reducible to Q2. Then the problem Q2 has no

algorithm of time f ′(k)no(k) for any function f ′.

Proof. Assume the problem Q2 has an algorithm A′ of time f ′(k)no(k) for a

recursive function f ′. We have the following algorithm A for the problem Q1:

Given an instance (x1, k1) of the problem Q1, by the fptl-reduction, we reduce

it in time fl(k1)n
o(k1)
1 to an instance (x2, k2) of the problem Q2, where fl is a recursive

function, k2 ≤ c1k1 with a constant c1, n2 = n
O(1)
1 . Call the algorithm A′ on the

instance (x2, k2) and return “yes” if A′ returns “yes”; Otherwise return “no”.

79

The reduction takes time fl(k1)n
o(k1)
1 . And the call to the algorithm A′ takes time

f ′(k2)n
o(k2)
2 ≤ f ′(c1k1)n

o(k1)
1 . Therefore we have the algorithm A for the problem Q1 of

time bounded by f(k)no(k), where f(k) = fl(k)+f ′(c1k). This causes a contradiction.

Our assumption is not correct. The theorem is proved.

2. Parameterized LOGNP Problems

We have demonstrated that for NP-hard optimization problems we can derive strong

computational lower bounds. In this section, we give a uniform method to prove lower

bound results for some Non NP-hard problems in the class lognp.

The problems in the class lognp [66] are decision problems. First we give the

definitions of the standard parameterized lognp problems and then derive lower

bounds for these parameterized problems.

log adjustment-para: given a Boolean expression F in conjunctive

normal form with n variables, and a truth assignment T , and a parameter

k, where k ≤ log n, is there a satisfying truth assignment whose Hamming

distance from T is k?

A chordless path of a graph G is a simple path v1, v2, ..., vn, such that on this

path any two vertices vi and vj with |i− j| > 1 are not adjacent.

log chordless path-para: given a graph G = (V, E), where |V | = n,

and a parameter k, where k ≤ log n, is there a chordless path of length k?

log clique-para: given a graph G = (V, E), where |V | = n, and a

parameter k, where k ≤ log n, is there a clique of size k?

log dominating set-para: given a graph G = (V, E), where |V | = n,

and a parameter k, where k ≤ log n, is there a dominating set of size k?

80

log hypergraph cover-para: given a hypergraph H = (V, E), where

|V | = n, and a parameter k, where k ≤ log n, is there a vertex cover of

size k for H?

rich hypergraph cover-para: given a hypergraph H = (V, E), where

|V | = n and all edges of size at least n/2, and a parameter k, where

k ≤ log n, is there a vertex cover of size k for H?

A tournament graph is a directed graph G = (V, E), where for any two vertices

u, v ∈ V , u 6= v, exactly one of the directed edge (u, v) or (v, u) is in E.

tournament dominating set-para: given a tournament graph G, and

a parameter k, is there a dominating set of size k for G?

v-c dimension-para: given a family C of subsets of a universe U , and

a parameter k, is there a subset S of U such that |S| = k and for each

subset T of S, there is a set CT ∈ C satisfying S ∩ CT = T?

All these problems can be solved in time O(nlog n). They are unlikely to be NP-

hard since otherwise, all NP problems could be solved in time O(nO(log n)). But none

of them are known to be solvable in polynomial time.

We first prove lower bound results for the log clique-para and log domi-

nating set-para.

Theorem III.26 log clique-para and log dominating set-para cannot be

solved in time f(k)no(k) for any function f , unless all SNP problems are solvable in

subexponential time.

Proof. By our notation of r-Q, log clique-para is log n-clique, and log

81

dominating set-para is log n-dominating set. From Theorem III.20 and Theo-

rem III.23, clique and dominating set are Wl[1]-hard. By Theorem III.24, this

theorem is true.

We now prove lower bound results for other problems in the class lognp.

Theorem III.27 log hypergraph cover-para cannot be solved in time f(k)no(k)

for any function f , unless all SNP problems are solvable in subexponential time.

Proof. We give an fptl-reduction from log dominating set-para to log

hypergraph cover-para. By Theorem III.25 and Theorem III.26, the theorem

follows.

The fptl-reduction is adapted from the polynomial time reduction in [66]. Given

an instance (G, k) of log dominating set-para, where G = (V, E) and k ≤ log n,

we construct a hypergraph H. H has the same vertex set V as G. For each vertex v

of G, we build a hyperedge ev, which contains the vertex v and all its neighbors in G.

Suppose the graph G has a dominating set S. For each vertex v of G, either

v ∈ S or v has a neighbor u ∈ S. From the construction of the hypergraph H, we

can see that for each hyperedge ev, it is covered either by v or v’s neighbor u in G.

So, S is a cover of the hypergraph H. On the other hand, suppose S is a cover of the

hypergraph H, then for each hyperedge ev, v ∈ S or u ∈ S, where (u, v) ∈ E. Since

for each vertex v ∈ V we have built a hyperedge ev, then we know for each vertex

v ∈ V , either v ∈ S or one of its neighbor u in S. The vertex set S is a dominating

set for G. Therefore, the graph G has a dominating set of size k if and only if there

is a cover of size k for the hypergraph H. The reduction is an fptl-reduction.

Theorem III.28 log adjustment-para cannot be solved in time f(k)no(k) for

any function f , unless all SNP problems are solvable in subexponential time.

82

Proof. We give an fptl-reduction from log hypergraph cover-para to log

adjustment-para. By Theorem III.25 and Theorem III.27, the theorem follows.

The fptl-reduction is adapted from the polynomial time reduction in [66]. Sup-

pose we are given an instance (H, k) of the log hypergraph cover-para, where

H = (V, E) is a hypergraph with |V | = n, and k is a parameter with k ≤ log n. We

will construct an instance (F, T, k) of log adjustment-para. We build F as a con-

junctive normal form with n positive input variables {v1, v2, ..., vn}. The n positive

input variables represent the n vertices of H. Each clause of F , which corresponds to

an edge e of the hypergraph H, is a disjunction of all the variables that represent the

vertices of the edge e. We assign all variables FALSE as the default truth assignment

T .

Suppose H has a cover C of size k. For each edge e ∈ E, at least one of its vertices,

say v, is in C. Then in F , for the clause that corresponds to the edge e, we assign

TRUE to the variable that corresponds to the vertex v. So, F is satisfied by a truth

assignment T ′ with all variables corresponding to the vertices in C being assigned

TRUE and the other variables being assigned FALSE. The Hamming distance between

T ′ and T is k. On the other hand, suppose there is a satisfying truth assignment T ′

whose Hamming distance from T is k. We can get a cover for H, which contains

the vertices that correspond to all the variables with TRUE values in T ′. Therefore,

there is a cover of size k for H if and only if there is a satisfying truth assignment

whose Hamming distance from T is k. The reduction is an fptl-reduction.

Theorem III.29 rich hypergraph cover-para cannot be solved in time f(k)no(k)

for any function f , unless all SNP problems are solvable in subexponential time.

83

Proof. We give an fptl-reduction from log hypergraph cover-para to rich

hypergraph cover-para. By Theorem III.25 and Theorem III.27, the theorem

follows.

The fptl-reduction is essentially the same as the polynomial time reduction in [66].

From an instance of log hypergraph cover-para 〈H = (V, E), k〉, where |V | = n.

we construct an instance of rich hypergraph cover-para 〈H ′ = (V ′, E ′), k〉. The

rich hypergraph cover-para problem requires all the edges contain at least half

of the vertices of the graph. The edges of H may not satisfy this requirement. As in

[66], we will construct H ′ by taking copies of the edges of H and adding new vertices

to enlarge them.

Let l = 3 log n and r = (2l − 1)2. Every integer i, 1 ≤ i ≤ r, could be interpreted

as a binary vector of the form a1a2, where a1 and a2 are nonzero vectors of length

l. V ′ contains all the vertices in V and r new vertices u1, ..., ur. For every edge

e ∈ E, we construct r edges e1, ..., er. Each of the r edges contains the same set of

original vertices as e and also include 3/4 of the r new vertices as follows: suppose

i corresponds to the vector a1a2 and j corresponds to the vector b1b2, for each new

vertex ui, 1 ≤ i ≤ r, it belongs to the edge ej if and only if the inner product a1 ·b1 = 1

or a2 ·b2 = 1, where the arithmetic is in GF(2), i.e., 0+0 = 1+1 = 0, 0+1 = 1+0 = 1,

0× 0 = 0× 1 = 1× 0 = 0, 1× 1 = 1 . This finishes the construction of H ′.

Now we show that H has a cover of size k if and only if H ′ has a cover of size k.

Suppose H has a cover of size k. By the construction of H ′, each edge of H ′ contains

the same vertex set as one edge of H. So H ′ has the same cover as H.

On the other hand, if H ′ has a cover C ′ of size k, k < l. We can prove that the

“old” vertices in C ′ form a cover C of H, i.e., C = {v : v ∈ C ′ and v ∈ V }, as follows:

Suppose there is an edge e ∈ E not covered by any old vertex. consider the r edges

e1, ..., er in H ′ that correspond to the edge e. There is at least one edge ej of the r

84

edges, such that for any “new” vertex ui ∈ C ′, a1 · b1 = 0 and a2 · b2 = 0, where i

corresponds to the vector a1a2 and j corresponds to the vector b1b2 (since |C ′| < l,

there are less than l values of a1 and a2). So, the edge ej is not covered by any old

or new vertex in C ′. If |C| < k, we can randomly add some vertices into the cover C

to make its size equal to k. Therefore, H has a cover of size k if and only if H ′ has a

cover of size k. The reduction is an fptl-reduction.

Theorem III.30 log chordless path-para cannot be solved in time f(k)no(k)

for any function f , unless all SNP problems are solvable in subexponential time.

Proof. We give an fptl-reduction from log clique-para to log chordless

path-para. By Theorem III.25 and Theorem III.26, the theorem follows.

The fptl-reduction is adapted from the polynomial time reduction in [66]. Given

an instance (G, k) of log clique-para, where the graph G = (V, E) with n vertices,

we construct a graph G′ as follows: First, G′ has k disjoint copies of V ; the jth copy

Vj has vertices cij, i = 1, ..., n. Two vertices cij and ci′j′ are connected in G′ if and

only if i = i′ or j = j′ or (i, i′) 6∈ E. Finally, for all j < k we have a path of length

two (pj1, pj2, pj3) and edges from all vertices of Vj to pj1 and from pj3 to all vertices

of Vj+1.

We show that G has a clique of size k if and only if there is a chordless path

of length k′, k′ = 4(k − 1). If G has a clique of size k, then by taking a copy of

its vertices, one from each copy of V , and connecting them in order via the paths

of length four, we form a chordless path of length 4(k − 1) vertices. On the other

hand, suppose that G′ has a chordless path P of length k′. Since every copy Vj of V

induces a clique, P cannot contain more than two vertices from the same copy, and

if it does contain two vertices then it cannot contain the vertices pj1, pj2, pj3 of the

85

following and the preceding length-two path. It follows from this observation that for

P to have length k′ = 4(k − 1), it must contain all the length-two paths and exactly

one vertex from each copy of V . Then the i indices of the vertices of P in the copies

of V must form a clique of the graph G, and there are k of them. The reduction is

an fptl-reduction.

Theorem III.31 v-c dimension-para cannot be solved in time f(k)no(k) for any

function f , unless all SNP problems are solvable in subexponential time.

Proof. We give an fptl-reduction from clique to v-c dimension-para. The fpt-

reduction from clique to v-c dimension-para in [35] for proving v-c dimension-

para is W[1]-complete is essentially an fptl-reduction.

Given a graph G = (V, E), V = {1, ..., n}, and an integer k > 0, we construct a

family of sets F over a base set X, so that F has V-C dimension k if and only if G

has a k-clique.

The base set X is:

X = {(u, i) : u ∈ V, 1 ≤ i ≤ k}.

The size of the base set X is kn.

The family F consists of four subfamilies, F = F0 ∪ F1 ∪ F2 ∪ F3, where

F0 = {φ},

F1 = {{(u, i)} : u ∈ V, 1 ≤ i ≤ k},

F2 = {{(u, i), (v, j)} : [u, v] ∈ E, 1 ≤ i, j ≤ k},

F3 = {{(u, i) : u ∈ V, i ∈ S} : S ⊆ {1, 2, . . . , k}, |S| ≥ 3}.

The family F0 has one set, the family F1 has nk sets, the family F2 has mk2 = O(n2k2)

86

sets, and the family F3 has
∑k

i=3

(
k
i

)
= O(2k) sets. Therefore, the cardinality of the

family F is O(k2n2 + 2k).

Let C be the clique in G and let f be any 1:1 map from C to {1, ..., k}. Consider

the set S ⊆ X of cardinality k:

S = {(u, f(u)) : u ∈ C}

We show that every subset of S is the intersection of S and a set in F . Let S ′ be a

subset of S. If |S ′| ≥ 3, then let I ′ = {i : (u, i) ∈ S ′}, and the set {(u, i) : u ∈ V, i ∈ I ′}

in F3 intersecting S gives S ′. If |S ′| = 2, then S ′ = {(u1, i1), (u2, i2)}. Since C is a

clique in G, [u1, u2] is an edge in G, so S ′ is a set in F2 whose intersection with S

gives S ′. if |S ′| = 1 then S ′ = {(u, i)} is a set in F1 whose intersection with S gives

S ′. Finally, if |S ′| = 0 then S ′ = φ and the empty set φ in F0 intersecting S gives S ′.

On the other hand, suppose S is a k-element subset of X, such that every subset

S ′ of S is an intersection of S and some set W in F . We will call such a set W in F

the “witness” of S ′ in F . Consider any subset S ′ of S with at least 3 elements, since

each of the sets in F0∪F1∪F2 contains fewer than 3 elements, the witness of S ′ must

be in the family F3. Since the set S has
∑k

i=3

(
k
i

)
subsets of at least 3 elements, and

the family F3 has exactly
∑k

i=3

(
k
i

)
sets, every set in F3 is a witness of some subset

of at least 3 elements in S. Therefore, for each subset of at most 2 elements in S,

the witness must be in F0 ∪ F1 ∪ F2 . For each subset S ′ = {(u1, i1), (u2, i2)} of 2

elements in S, since each set in F0 ∪ F1 contains at most 1 element in S, the witness

of S ′ must be in F2, therefore we must have u1 6= u2 and [u1, u2] is an edge in G. In

consequence, if we let C = {u : (u, i) ∈ S}, then C must be a clique of k vertices in

G.

This verifies that the graph G has a clique of k vertices if and only if there is a

set S of k elements such that every subset of S is an intersection of S with a set in

87

the family F . This presents an fptl-reduction from clique to v-c dimension-para,

which, plus Theorem III.20 and Theorem III.25, proves the current theorem.

Theorem III.32 tounament dominating set-para cannot be solved in time

f(k)no(k) for any function f , unless all SNP problems are solvable in subexponen-

tial time.

Proof. We give the fptl-reduction from dominating set to tounament domi-

nating set-para. The fpt-reduction in [36] for proving tounament dominating

set-para is W[2]-complete is essentially an fptl-reduction.

Given a graph G = (V, E), |V | = n, and an integer k > 0, we will construct a

tournament T such that T has a dominating set of size k + 1 if and only if G has a

dominating set of size k. The size of T is O(2kn), and it can be constructed in time

polynomial in n and 2k.

The vertex set of the tournament T is partitioned into three sets: VA, VB and

VC . The vertices in VA are in 1 : 1 correspondence with the vertices of G. Denote

VA = {a[u] : u ∈ V (G)}. The vertices in VB correspond to m copies of the vertices

of G. Denote VB = {b[i, u] : 1 ≤ i ≤ m, u ∈ V (G)}. (The value of m will be

determined.) VC consists of just a single vertex c.

The construction of T must insure that for every pair of vertices x and y, one of

the directed edge (x, y) or (y, x) is present. Let T0 be any tournament on n vertices

as a “model”. Include directed edges in T to make a copy of T0 between the vertices

of each of the n-element VA and VB(i) = {b[i, u] : u ∈ V (G)} for i = 1, ...,m.

Let T1 be a tournament on m vertices that has no dominating set of size k + 1.

It is easy to construct such a tournament with m = O(2k+1). Consider the vertices

set of T1 is V (T1) = {1, ...,m}. For each directed edge [i, j] in T1 include in T an

88

directed edge from each vertex of VB(i) to each vertex of VB(j).

The adjacency of G is represented in T in the following way: for each vertex

u ∈ V (G) include directed edges from the vertex a[u] to the vertices b[i, v] for every

v ∈ NG[u] and for each i, 1 ≤ i ≤ m, and from every other vertex in VB include an

directed edge to a[u].

Finally, there are directed edges in T from c to every vertex in VA and from every

vertex in VB to c. This completes the construction of the graph T . It is easy to verify

that T is a tounament graph.

If there is a dominating set S of size k in G, then the corresponding vertices in

VA dominate all of the vertices in VB. Thus together with c we have a dominating set

of size k + 1 in T .

On the other hand, suppose T has a dominating set D of size k +1. At least one

vertex of D must belong to VB or VC , otherwise the vertex c is not dominated. Thus

there are at most k vertices of D in VA. Let SA denote the corresponding vertices of

G. We verify that SA is a dominating set of the graph G. If SA is not a dominating

set in G, then let x denote some vertex of G that is not dominated. Let DA = D∩VA,

and let DB = D∩VB. The vertices b[i, x] of VB for 1 ≤ i ≤ m are not dominated in T

by the vertices of DA. The vertices of VB can be viewed as belonging to m copies of

V (G) for which we have introduced the notation VB(i), 1 ≤ i ≤ m. Since |DB| ≤ k+1

and T1 has no dominating set of size k + 1, DB cannot dominate all vertices in VB,

so there is at least one VB[j] such that no vertex in VB[j] is dominated by DB (note

that by the construction of T , if any vertex in VB[j] is dominated by DB, then all

vertices in VB[j] would be also dominated by DB). In particular, the vertex b[j, x] is

not dominated by DB. By the discussion above, the vertex b[j, x] is not dominated

by DA, either. Since b[j, x] is also not dominated by the vertex c (there is no edge

from c to VB), we derive the contradiction that b[j, x] is not dominated at all, and the

89

set D would not be a dominating set for T . This contradiction shows that SA must

be a dominating set of the graph G. Note that |SA| ≤ k. This proves that there is a

dominating set of size k + 1 in T if and only if there is a dominating set of size k in

G. The reduction is an fptl-reduction.

Based on the fptl-reduction from dominating set to tournament dominat-

ing set, Theorem III.23 and Theorem III.25, the theorem is proved.

90

CHAPTER IV

LOWER BOUNDS FOR PTAS ALGORITHMS

In this chapter, we extend our techniques developed in the last chapter to derive

computational lower bounds for polynomial-time approximation schemes (PTAS) for

some well-known NP optimization problems, which include the computational biology

problems such as distinguishing substring selection and longest common

subsequence, and the problems in the class lognp.

A. Our Theorem

We prove a general theorem for deriving lower bounds for PTAS algorithms of NP

optimization problems.

Lemma IV.1 If an NP optimization problem Q has a PTAS algorithm of running

time f(1/ε)no(1/ε) for a recursive function f , then the parameterized version of Q can

be solved in time f(2k)no(k).

Proof. We consider the case that Q = (IQ, SQ, fQ, optQ) is a maximization

problem.

From the PTAS algorithm AQ for Q, we provide the parameterized algorithm

A≥ shown in Fig. 2 for the parameterized version Q≥ of Q.

We verify that the algorithm A≥ solves the parameterized problem Q≥. Since Q

is a maximization problem, if fQ(x, y) ≥ k then obviously optQ(x) ≥ k. Thus, the

algorithm A≥ returns a correct decision in this case. On the other hand, suppose

fQ(x, y) < k. Since fQ(x, y) is an integer, we have fQ(x, y) ≤ k − 1. Since AQ is a

91

Algorithm A≥:

Input: An instance (x, k) of Q≥.

Output: If optQ(x) ≥ k, then Output “yes”; otherwise Output “no”.

begin

1. On the instance (x, k) of Q≥, call the PTAS algorithm AQ on x and ε = 1/(2k).
Suppose that AQ returns a solution y in SQ(x).

2. If fQ(x, y) ≥ k, then return “yes”; otherwise return “no”.

end

Fig. 2. Algorithm A≥.

PTAS for Q and ε = 1/(2k), we must have

optQ(x)/fQ(x, y) ≤ 1 + 1/(2k)

From this we get (note that fQ(x, y) < k)

optQ(x) ≤ fQ(x, y) + fQ(x, y)/(2k) ≤ k − 1 + 1/2 = k − 1/2 < k

Thus, in this case the algorithm A≥ also returns a correct decision. This proves that

the algorithm A≥ solves the parameterized version Q≥ of the problem Q. The running

time of the algorithm A≥ is dominated by that of the algorithm AQ, which is bounded

by f(1/ε)no(1/ε) = f(2k)no(k). Thus, the problem Q≥ is solvable in time f(2k)no(k).

The proof is similar for the case when Q is a minimization problem, and hence

is omitted.

92

By Lemma IV.1, we have

Theorem IV.2 Let Q be an NP optimization problem. If the parameterized ver-

sion of Q has no algorithm of time f(k)no(k), then Q has no PTAS of running time

f(1/ε)no(1/ε) for any function f .

We will demonstrate the applications of Theorem IV.2 in the following sections.

B. The DSSP Problem∗

Recently, the problem distinguishing substring selection has drawn a lot of

attention because of its applications in computational biology such as in drug generic

design [31].

Consider all strings over a fixed alphabet. Denote by |s| the length of the string

s. The distance D(s1, s2) between two strings s1 and s2, |s1| ≤ |s2|, is defined as

follows. If |s1| = |s2|, then D(s1, s2) is the Hamming distance between s1 and s2,

and if |s1| ≤ |s2|, then D(s1, s2) is the minimum of D(s1, s
′
2) over all substrings s′2 of

length |s1| in s2.

distinguishing substring selection (dssp): given a tuple (n, Sb, Sg, db, dg),

where n, db, and dg are integers, db ≤ dg, Sb = {b1, . . . , bnb
} is the set of

(bad) strings, |bi| ≥ n, and Sg = {g1, . . . , gng} is the set of (good) strings,

|gj| = n, either find a string s of length n such that D(s, bi) ≤ db for all

bi ∈ Sb, and D(s, gj) ≥ dg for all gj ∈ Sg, or report no such a string exists.

∗Part of the data reported in this section is reprinted with permission from “Linear
FPT reductions and computational lower bounds” by J. Chen, X. Huang, I. Kanj,
and G. Xia, 2004, Proceedings of the 36th ACM Symposium on Theory of Computing
(SOTC 2004), pp. 212-221, Copyright 2004 by ACM.

93

The dssp problem is NP-hard [46]. Recently, Deng et al. [30] (see also [31])

developed an approximation algorithm Ad for dssp in the following sense: for a

given instance x = (n, Sb, Sg, db, dg) for dssp and a real number ε > 0, in case

x is a yes-instance, the algorithm Ad constructs a string s of length n such that

D(s, bi) ≤ db(1 + ε) for all bi ∈ Sb, and D(s, gj) ≥ dg(1 − ε) for all gj ∈ Sg. The

running time of the algorithm Ad is O(m(nb + ng)
O(1/ε6)), where m is the size of the

instance. Obviously, such an algorithm is not practical even for moderate values of

the error bound ε.

The authors of [30] called their algorithm a “PTAS” for the dssp problem.

Strictly speaking, neither the problem dssp nor the algorithm in [30] conforms to

the standard definitions of an optimization problem and a PTAS. The dssp problem

as defined above is a decision problem with no objective function specified, and it is

also not clear what precise ratio the error bound ε measures. We will call an algorithm

in the style of the one in [30] a “PTAS-[30]” for dssp.

1. Standard Definitions of DSSP and Its PTAS

Since our lower bound techniques for PTAS given in Theorem IV.2 are based on the

standard framework that has been widely used in the literature, we first propose an

optimization version of the dssp problem, the dssp-opt problem, using the standard

definition of NP optimization problems. We then prove that a PTAS in the standard

definition for dssp-opt is equivalent to a PTAS-[30] for dssp as given in [30]. Using

the systematical methods described above, we then prove that the parameterized

version of dssp-opt is Wl[1]-hard, which, by Theorem III.18 and Theorem IV.2,

gives a computational lower bound on PTAS for dssp-opt. As a byproduct, this also

shows that it is unlikely to have a practically efficient PTAS-[30] algorithm for the

dssp problem.

94

Definition The dssp-opt problem is a tuple (ID, SD, fD, optD), where

• ID is the set of all (yes- and no-) instances in the decision version of dssp;

• For an instance x = (n, Sb, Sg, db, dg) in ID, SD(x) is the set of all strings of

length n;

• For an instance x = (n, Sb, Sg, db, dg) in ID and a string s ∈ SD(x), the

objective function value fD(x, s) is defined to be the largest non-negative integer d

such that (i) d ≤ dg; (ii) D(s, bi) ≤ db(2− d/dg) for all bi ∈ Sb; and (iii) D(s, gj) ≥ d

for all gj ∈ Sg.

If such an integer d does not exist, then define fD(x, s) = 0;

• optD = max.

Note that for x ∈ ID and s ∈ SD(x), the value fD(x, s) can be computed in polyno-

mial time by checking each number d = 0, 1, . . . , dg ≤ n.

We first show that a PTAS for dssp-opt is equivalent to a PTAS-[30] for dssp.

Since the PTAS-[30] for dssp is only for yes-instances of dssp, we will concentrate

on the performance of the algorithms for yes-instances of the problem dssp.

Lemma IV.3 The dssp-opt problem has a PTAS of running time φ(m, 1/ε) if and

only if there is an algorithm Ad of running time φ(m, O(1/ε)) for dssp that for any

yes-instance of dssp (n, Sb, Sg, db, dg) and ε > 0, constructs a string s of length n

such that D(s, bi) ≤ db(1 + ε) for all bi ∈ Sb, and D(s, gj) ≥ dg(1− ε) for all gj ∈ Sg.

Proof. Since x = (n, Sb, Sg, db, dg) is assumed to be a yes-instance of the decision

problem dssp, when x is regarded as an instance for the optimization problem dssp-

opt, we have optD(x) = dg.

95

Suppose the dssp-opt problem has a PTAS Ap of running time φ(m, 1/ε). We

show for a yes-instance x = (n, Sb, Sg, db, dg) and ε > 0 how to construct a string s

such that D(s, bi) ≤ db(1 + ε) for all bi ∈ Sb, and D(s, gj) ≥ dg(1− ε) for all gj ∈ Sg.

Let ε′ = ε/(1− ε) (note that 1/ε′ = O(1/ε)). Apply the PTAS Ap on x and ε′, we get

a string sp of length n such that fD(x, sp) = dp, optD(x)/dp = dg/dp ≤ 1 + ε′, and

D(sp, bi) ≤ db(2− dp/dg) for all bi ∈ Sb and D(sp, gj) ≥ dp for all gj ∈ Sg

Now from dp ≥ dg/(1 + ε′) = dg(1 − ε), we get D(sp, gj) ≥ dg(1 − ε) for all gj ∈ Sg.

From

2− dp/dg ≤ 2− 1/(1 + ε′) = 1 + ε

we get D(sp, bi) ≤ db(1 + ε) for all bi ∈ Sb. The running time of the algorithm

Ap is φ(m, 1/ε′) = φ(m, O(1/ε)). This shows that a PTAS-[30] of running time

φ(m, O(1/ε)) for dssp can be constructed based on the PTAS Ap for the dssp-opt

problem.

Conversely, suppose that we have a PTAS-[30] Ad of running time φ(m, 1/ε)

for dssp. We show how to construct a PTAS for the dssp-opt problem. For an

instance x = (n, Sb, Sg, db, dg) of dssp-opt and ε > 0, we call the algorithm Ad on

x and ε′ = ε/(2 + 2ε). By our assumption, if x is a yes-instance, then the algorithm

Ad returns a string sd of length n such that D(sd, bi) ≤ db(1 + ε′) for all bi ∈ Sb,

and D(sd, gj) ≥ dg(1 − ε′) for all gj ∈ Sg. We first consider the value fD(x, sd) for

dssp-opt. Let d = dg − dε′dge. Then for each good string gj, we have

D(sd, gj) ≥ dg(1− ε′) = dg − ε′dg ≥ dg − dε′dge = d

and since d = dg − dε′dge ≤ dg − ε′dg = dg(1− ε′), for each bad string bi,

D(sd, bi) ≤ db(1 + ε′) = db(2− (1− ε′)) ≤ db(2− d/dg)

96

By the definition of the function fD(x, sd), we have fD(x, sd) ≥ d = dg − dε′dge.

Now consider the ratio optD(x)/fD(x, sd) for the string sd. If ε′dg < 0.5, then

(note that db ≤ dg)

D(sd, bi) ≤ db(1 + ε′) < db + 0.5 and D(sd, gj) ≥ dg(1− ε′) > dg − 0.5

Since all D(sd, bi), db, D(sd, gj), and dg are integers, we have D(sd, bi) ≤ db = db(2−

dg/dg) for all bi ∈ Sb, and D(sd, gj) ≥ dg for all gj ∈ Sg. Therefore, we have

fD(x, sd) = dg and opt(x)/fD(x, sd) = 1. On the other hand, if ε′dg ≥ 0.5, then

dg − dε′dge ≥ dg − 2ε′dg, and we have

opt(x)/fD(x, sd) ≤ dg/(dg − dε′dge) ≤ dg/(dg − 2ε′dg) = 1/(1− 2ε′) = 1 + ε

Therefore, in all cases, the string sd produced by the algorithm Ad is a solution

of approximation ratio 1 + ε for the instance x of dssp-opt. Again, the running

time of the algorithm is dominated by that of Ad, which is bounded by φ(m, 1/ε′) =

φ(m,O(1/ε)).

This completes the proof of the lemma.

Lemma IV.3 shows that a PTAS-[30] for the problem dssp is also a PTAS in the

standard definition for the optimization problem dssp-opt.

2. PTAS Lower Bound for DSSP

Now using the standard parameterization of optimization problems, we can study the

parameterized complexity of the problem dssp-opt≥.

Lemma IV.4 The parameterized problem dssp-opt≥ is Wl[1]-hard.

Proof. We prove the lemma by an fptl-reduction from the Wl[1]-hard problem

97

dominating set to the dssp-opt≥ problem (see Theorem III.23).

Let (G, k) be an instance of the dominating set problem. Suppose that the

graph G has n vertices v1, . . ., vn. Denote by vec(vi) the binary string of length n

in which all bits are 0 except the i-th bit is 1. The instance xG = (n′, Sb, Sg, db, dg)

for dssp-opt is constructed as follows: n′ = n + 5, Sg consists of a single string

g0 = 0n+5, db = k − 1, and dg = k + 3.

The bad string set Sb = {b1, . . . , bn} consists of n strings, where bi corresponds

to the vertex vi in G. Suppose the neighbors of the vertex vi in G are vi1 , . . ., vir ,

then the string bi takes the form

vec(vi) · 02220 · vec(vi) · 00000 · vec(vi1) · 02220 · vec(vi1) ·

·00000 · · · · · 00000 · vec(vir) · 02220 · vec(vir)

where the dots “·” stand for string concatenations. It is easy to see that the size of xG

is bounded by a polynomial of the size of the graph G. Finally, we set the parameter

k′ = k + 3. Thus, (xG, k′) makes an instance for the dssp-opt≥ problem.

We prove that (G, k) is a yes-instance for dominating set if and only if (xG, k′)

is a yes-instance for dssp-opt≥. Suppose the graph G has a dominating set H of

k vertices. Let vec(H) be the binary string of length n whose h-th bit is 1 if and

only if vh ∈ H. Now consider the string s = vec(H) · 02220. Clearly D(s, g0) =

k + 3 = dg. For each bad string bi, since H is a dominating set, either vi ∈ H or a

vertex vj ∈ H is a neighbor of vi. If vi ∈ H then the substring b′i = vec(vi) · 02220

in bi satisfies D(s, b′i) = k − 1, and if a vertex vj ∈ H is a neighbor of vi, then

the substring b′i = vec(vj) · 02220 in bi satisfies D(s, b′i) = k − 1. This verifies that

D(s, bi) = k − 1 = db(2 − dg/dg) for all 1 ≤ i ≤ n. Thus, for the string s, we have

fD(xG, s) = optD(xG) = dg = k + 3 ≥ k′. In consequence, (xG, k′) is a yes-instance of

98

dssp-opt≥.

Conversely, suppose (xG, k′) is a yes-instance for the dssp-opt≥ problem. Then

there is a string s of length n + 5 such that fD(xG, s) = d ≥ k′ = k + 3. By the

definition, fD(xG, s) ≤ dg = k+3. Thus, we must have d = k+3. From the definition

of the integer d, we have D(s, g0) ≥ d = k+3, and D(s, bi) ≤ db(2−d/dg) = db = k−1

for all bad strings bi. Since g0 = 0n+5 and D(s, g0) ≥ k+3, s has at least k+3 “non-0”

bits. On the other hand, it is easy to see that each substring of length n+5 in any bad

string bi contains at most 4 “non-0” bits. Since D(s, bi) ≤ k − 1 for each bad string

bi, the string s should not contain more than k + 3 “non-0” bits. Thus, the string s

has exactly k +3 “non-0” bits. Now consider any substring b′i of length n+5 in a bad

string bi such that D(s, b′i) ≤ k − 1. The substring b′i must contain “222”: otherwise

b′i has at most three “non-0” bits so D(s, b′i) ≤ k − 1 would not be possible. If the

substring“222” in b′i does not match three “2”’s in s, then s has at least k “non-0”

bits in other places while b′i has only one “non-0” bit in other place, so D(s, b′i) ≤ k−1

would not be possible. Thus, the string s must contain the substring “222”, which

matches the substring “222” in b′i. Finally, observe that we can always assume that

the string s ends with “02220” – otherwise we simply cyclically shift the string s to

move the substring “02220” to the end. Note if D(s, b′i) ≤ k − 1 and b′i is a substring

in a segment “00000 · vec(vj) · 02220 · vec(vj) · 00000” in the bad string bi, then after

shifting s, we must have D(s, b′′i) ≤ k − 1, where b′′i = vec(vj) · 02220. Therefore, if s

is a solution to the instance (xG, k′), then so is the string after the cyclic shifting.

Thus, the string s can be assumed to have the form s′ · 02220, where s′ is a

string of length n, with exactly k “non-0” bits. Suppose that the j1-th, j2-th, . . .,

and jk-th bits of s′ are “non-0”. We claim that the vertex set Hs = {vj1 , . . . , vjk
}

makes a dominating set of k vertices for the graph G. In fact, for any bad string bi,

let b′i be a substring of length n + 5 in bi such that D(s, b′i) ≤ k − 1. According to

99

the above discussion, b′i must be of the form vec(vj) · 02220, where either vj = vi or

vj is a neighbor of vi. The only “non-0” bit in vec(vj) is the j-th bit, and j must be

among {j1, . . . , jk} – otherwise D(vec(vj), s
′) is at least k + 1. Therefore, if vi = vj

then vi ∈ Hs, and if vj is a neighbor of vi, then vi is adjacent to the vertex vj in

Hs. This proves that Hs is a dominating set of k vertices in G, and that (G, k) is a

yes-instance for dominating set.

This completes the proof that the problem dominating set is fptl-reducible to

the problem dssp-opt≥. In consequence, dssp-opt≥ is Wl[1]-hard.

We remark that the problem dominating set is W [2]-hard under the regular

fpt-reduction [37]. Therefore, the proof of Lemma IV.4 actually shows that the dssp-

opt≥ problem is W [2]-hard. This improves the result in [46], which proved that the

problem is W [1]-hard.

From Lemma IV.4, Theorem III.18 and Theorem IV.2, we get immediately

Theorem IV.5 Unless all SNP problems are solvable in subexponential time, the

optimization problem dssp-opt has no PTAS of running time f(1/ε)mo(1/ε) for any

function f .

By Lemma IV.3, a PTAS-[30] of running time f(1/ε)mo(1/ε) for dssp would imply

a PTAS of running time f ′(1/ε)mo(1/ε) for dssp-opt for a function f ′. Therefore, The-

orem IV.5 also implies that any PTAS-[30] for dssp cannot run in time f(1/ε)mo(1/ε)

for any function f . Thus essentially, no PTAS-[30] for dssp can be practically effi-

cient even for moderate values of the error bound ε. To the authors’ knowledge, this

is the first time a specific lower bound is derived on the running time of a PTAS for

an NP-hard problem.

Theorem IV.5 also demonstrates the usefulness of our techniques. In most cases,

computational lower bounds and inapproximability of optimization problems are de-

100

rived based on approximation ratio-preserving reductions [5], by which if a problem

Q1 is reduced to another problem Q2, then Q2 is at least as hard as Q1. In particular,

if Q1 is reduced to Q2 under an approximation ratio-preserving reduction, then the

approximability of Q2 is at least as difficult as that of Q1. Therefore, the intractabil-

ity of an “easier” problem in general cannot be derived using such a reduction from a

“harder” problem. On the other hand, our computational lower bound on dssp-opt

was obtained by a linear fpt-reduction from dominating set. It is well-known that

dominating set has no polynomial time approximation algorithms of constant ratio

[5], while dssp-opt has PTAS. Thus, from the viewpoint of approximability, dom-

inating set is much harder than dssp-opt, and our linear fpt-reduction reduces

a harder problem to an easier problem. This hints that our approach for deriving

computational lower bounds cannot be simply replaced by the standard approaches

based on approximation ratio-preserving reductions.

C. The LCS Problem

The longest common subsequence (LCS) problem is a well-known optimization

problem because of its applications ([60]). The fixed alphabet versions of the prob-

lem is of particular interest considering the importance of sequence comparison (e.g.

multiple sequence alignment) in the fixed size alphabet world of DNA and protein

sequences. (Note that in computational biology, DNA sequences are in a four-letter

alphabet, and protein sequences are in a twenty-letter alphabet).

A string s is a subsequence of a string s′ if s can be obtained from s′ by deleting

some characters in s′. For example, “ac” is a subsequence of “atcgt”. Given a set of

strings over an alphabet Σ, the longest common subsequence problem is to find

a common subsequence that has maximum length. The alphabet Σ may be of fixed

101

size or of unbounded size.

In [10, 11, 49, 70] several parameterized versions of the LCS problem are dis-

cussed. The following are four parameterized versions of the problem.

The LCS-k problem:

Instance: a set S = {s1, s2, ..., sk} of strings over an alphabet Σ, and an

integer λ > 0, where the alphabet Σ is of unbounded size.

Parameter: k.

Question: is there a string s ∈ Σ∗ of length λ, which is a subsequence of

each string in S?

The FLCS-k problem:

Instance: a set S = {s1, s2, ..., sk} of strings over an alphabet Σ, and an

integer λ > 0, where the alphabet Σ is of fixed size.

Parameter: k.

Question: is there a string s ∈ Σ∗ of length λ, which is a subsequence of

each string in S?

The LCS-λ problem:

Instance: a set S = {s1, s2, ..., sk} of strings over an alphabet Σ, and an

integer λ > 0, where the alphabet Σ is of unbounded size.

Parameter: λ.

Question: is there a string s ∈ Σ∗ of length λ, which is a subsequence of

each string in S?

The FLCS-λ problem:

Instance: a set S = {s1, s2, ..., sk} of strings over an alphabet Σ, and an

integer λ > 0, where the alphabet Σ is of fixed size.

Parameter: λ.

102

Question: is there a string s ∈ Σ∗ of length λ, which is a subsequence of

each string in S?

The following results on the parameterized complexity of these parameterized

problems are known:

• The LCS-k problem is W[t]-hard for t ≥ 1 [11].

• The FLCS-k problem is W[1]-hard [70].

• The LCS-λ problem is W[2]-hard [11].

• The FLCS-λ problem is in FPT [70].

In particular, we are interested in the FLCS-k problem and the LCS-λ problem,

which we discuss in the following sections.

1. FLCS-k

In [70], the FLCS-k problem is proved to be W [1]-hard. Unless W [1] = FPT, for the

FLCS-k problem, the W [1]-hardness result rules out the existence of algorithms of

time f(k)nO(1) for any function f , where k is the number of strings. In the conclusion

of [70], the author pointed out that the W [1]-hardness of FLCS-k “does not mean that

there are no algorithms with much better asymptotic time-complexity than the known

O(nk) algorithms based on dynamic programming, e.g. algorithms with running time

n
√

k are not deemed impossible.”

However, we prove:

Theorem IV.6 The FLCS-k problem has no algorithm of time f(k)no(k) for any

function f , unless all SNP problems are solvable in subexponential time.

103

Proof. The proof is based on the fptl-reduction from clique to the FLCS-

k problem. Based on the fptl-reduction, Theorem III.20 and Theorem III.25, the

theorem is proved.

The fpt-reduction from clique to the FLCS-k problem in [70] for proving the

FLCS-k problem is W [1]-hard is essentially an fptl-reduction.

A problem called partitioned clique is first introduced:

partitioned clique: given a graph G = (V, E) and a partition of V

into k sets of equal sizes, {U1, U2, ..., Uk}, where k > 0, is there a clique of

size k, such that there is exactly one vertex from each of the k sets?

We prove that partitioned clique is Wl[1]-hard by an fptl-reduction from

clique. Given an instance of the clique problem (G = (V, E), k), where V =

{v1, v2, ..., vn}, an instance of the partitioned clique problem (G′ = (V ′, E ′), k, U),

where U = {U ′
1, U

′
2, ..., U

′
k}), is built as follows. Every set U ′

j = {uj
1, ..., u

j
n} consists

of n vertices. A vertex uj
i ∈ U ′

j corresponds to vertex vi ∈ V . There is an edge

(ui
x, u

j
y) ∈ E ′ if and only if (vx, vy) ∈ E.

We show that G has a clique of size k if and only if G′ has a partitioned clique

of size k. If G has a clique C of size k. we can assign every vertex from C to the

corresponding vertex in a different set U ′
i . By the construction, these vertices form a

partitioned clique in G′. On the other hand, if we are given a partitioned clique C ′

in G′, then each vertex in C ′ corresponds to a different vertex in G (two vertices that

correspond to the same vertex in G are not adjacent in G′), and those vertices build

a clique in G by the construction. Therefore, there is an fptl-reduction from clique

to partitioned clique.

Now we present the fptl-reduction from partitioned clique to the FLCS-k

104

problem. Given an instance of partitioned clique (G, k, U), where G = (V, E),

U = {U1, U2, ..., Uk}, an instance of the FLCS-k problem (S = {s1, s2, ..., sk, st}, λ) is

built, where there are k + 1 strings, and λ is the length of the common subsequence.

The alphabet is {0, 1}.

Let n = |V |, m = |Ui| = n/k. Define the following strings from which the

instance of the FLCS-k problem is constructed.

I = 17n3
;

O = 07n3
;

ε(u ∈ V, v ∈ V) = II, if (u = v) or (u ∈ Ui, v ∈ Uj) ∈ E : i 6= j; otherwise,

ε(u ∈ V, v ∈ V) = I0I;

ν(u ∈ V) = Πn
j=1ε(u, vj);

Bi = ν(vj
1)Π

m
j=2Oε(vi

j);

B′
i represents the string obtained from Bi by replacing all occurrences of II with

I0I, and vice visa.

τI0I = (I0I)n;

τII = (II)n;

τ = (τI0IO)m−1τI0I ;

τ ′ represents the string obtained from τ by replacing all occurrences of II with

I0I, and vice visa.

The instance of the FLCS-k problem (S = {s1, s2, ..., sk, st}, λ) is

si = (B′
iO)2n+2n2

B′
i;

st = τIOI(Oτ ′)2n+2n2
;

λ = |st|+ (1 + 2n + 2n2)(n− k);

The following are proved in [70]:

Fact 1 If G has a partitioned clique of size k, then there is a string sλ of length λ

105

that is a common subsequence for S = {s1, s2, ..., sk, st}.

Fact 2 If G has no partitioned cliques of size k, then the longest common subsequence

for S = {s1, s2, ..., sk, st} is less than λ.

That is, G has a partitioned clique of size k if and only if there is a string sλ of

length λ that is a subsequence of all the k +1 strings in S. We have an fptl-reduction

from partitioned clique to the FLCS-k problem.

From the transitivity of fptl-reduction, we have an fptl-reduction from clique

to the FLCS-k problem.

We define an optimization problem FLCS-kopt and its corresponding parameter-

ized problem FLCS’-k.

The FLCS-kopt problem:

given a set S = {s1, s2, ..., sl} of strings over a fixed alphabet Σ, and an

integer λ > 0, try to find a string s ∈ Σ∗ of length λ maximizing the size

of a subset S ′ of S, such that s is a common subsequence of all the strings

in S ′.

By our definition, the parameterized version of the optimization problem FLCS-

kopt is

The FLCS’-k problem:

Instance: given a set S = {s1, s2, ..., sl} of strings over a fixed alphabet Σ,

and an integer λ > 0.

Parameter: an integer k, 0 < k ≤ l.

Question: is there a string s ∈ Σ∗ of length λ such that s is a common

subsequence of at least k strings in the set S?

106

From the definitions of the two parameterized problems FLCS-k and FLCS’-k, we

can see that FLCS-k is a special case of FLCS’-k. There is a trivial fptl-reduction from

FLCS-k to FLCS’-k: given an instance I1 of FLCS-k, I1 = (S1 = {s1, s2, ..., sk}, λ and

the parameter k), we build an instance I2 of FLCS’-k, I2 = (S2 = {s1, s2, ..., sk}, λ

and the parameter k), which asks if there is a string s ∈ Σ∗ of length λ that is a

common subsequence of at least k strings (i.e., all strings) in the set S2. Obviously,

the instance I2 is a yes-instance for the problem FLCS’-k if and only if the instance

I1 is a yes-instance for the problem FLCS-k, .

By the above fptl-reduction, Theorem IV.6 and Theorem III.25, we have

Lemma IV.7 The FLCS’-k problem has no algorithm of time f(k)no(k) for any func-

tion f , unless all SNP problems are solvable in subexponential time.

Therefore, by Lemma IV.7 and Theorem IV.2, we have

Theorem IV.8 The FLCS-kopt problem has no PTAS of time f(1/ε)no(1/ε) for any

function f , unless all SNP problems are solvable in subexponential time.

2. LCS-λ

The LCS-λ problem is proved to be W [2]-hard in [10, 11]. Therefore, unless W [2] =

FPT, for the LCS-λ problem, there is no algorithm of time f(λ)nO(1) for any function

f . We prove

Theorem IV.9 The LCS-λ problem has no algorithm of time f(λ)no(λ) for any func-

tion f , unless all SNP problems are solvable in subexponential time.

Proof. We first give an fptl-reduction from dominating set to the LCS-λ prob-

lem. Based on the fptl-reduction, Theorem III.23 and Theorem III.25, the theorem

is proved.

107

The fpt-reduction from dominating set to the LCS-λ problem in [11] for prov-

ing the LCS-λ problem is W [2]-hard is essentially an fptl-reduction.

Given a graph G = (V, E), |V | = n, and a parameter λ, and suppose an ascending

order of the vertices {u1, u2, ..., un} of G, we will construct a set S of strings such that

they have a common subsequence of length λ if and only if G has a dominating set

of size λ. The alphabet is Σ = {a[i, j] : 1 ≤ i ≤ λ, 1 ≤ j ≤ n}. We use the notations:

Σi = {a[i, j] : 1 ≤ j ≤ n}, Σ[t, u] = {a[i, j] : (i 6= t) or (i = t and j ∈ N [u])}.

If Γ ⊆ Σ, let (↑ Γ) be the string of length |Γ| which consists of one occurrence of

each symbol in Γ in ascending order, and let (↓ Γ) be the string of length |Γ| which

consists of one occurrence of each symbol in Γ in descending order.

The set S consists of the following strings.

Control strings:

X1 = Πλ
i=1(↑ Σi),

X2 = Πλ
i=1(↓ Σi).

Check strings: For u = 1, ..., n:

Xu = Πλ
i=1(↑ Σ[i, u]),

We observe that any sequence C of length λ that is a common subsequence of

both control strings must consist of exactly one symbol from each Σi in ascending

order. For such a sequence C we may associate the set Vc of vertices represented by

C: if C = a[1, u1]...a[λ, uλ], then Vc = {ui : 1 ≤ i ≤ λ} = {x : ∃i a[i, x] ∈ C}.

We will prove that if C is also a subsequence of the check strings {Xu}, then Vc

is a dominating set in G. Let u ∈ V (G) and fix a substring Cu of Xu, with Cu = C.

We have the fact:

Fact 3 ([11]) For some index j, 1 ≤ j ≤ λ, the symbol a[j, uj] occurs in the (↑

Σ[j, u]) portion of Xu, thus uj ∈ N [u] by the definition of Σ[j, u].

108

By Fact 3, if C is a subsequence of the control and check strings, then every

vertex of G has a neighbor in Vc, that is, Vc is a dominating set in G.

On the other hand, if D = {u1, .., uλ} is a dominating set in G with u1 < ... < uλ,

then the sequence C = a[1, u1]...a[λ, uλ] is easily seen to be a common subsequence

of the strings in S.

The reduction from dominating set to LCS-λ is an fptl-reduction.

Formally, we give the definition of the optimization problem LCS-λopt.

The LCS-λopt problem:

given a set S = {s1, s2, ..., sk} of strings over an alphabet Σ of unbounded

size, try to find a string s ∈ Σ∗ of maximum length such that s is a

common subsequence of all the strings in S.

By our definition, the parameterized version of the optimization problem LCS-

λopt is

The LCS’-λ problem:

Instance: given a set S = {s1, s2, ..., sk} of strings over an alphabet Σ of

unbounded size.

Parameter: an integer λ > 0.

Question: is there a string s ∈ Σ∗ of length at least λ such that s is a

common subsequence of all strings in the set S?

Since that there is a string s of length at least λ such that s is a common

subsequence of all strings in S is equivalent to that there is a string s of length

exactly λ such that s is a common subsequence of all strings in S, the two problems

LCS-λ and LCS’-λ are equivalent. By Theorem IV.9, the problem LCS’-λ has no

109

algorithm of time f(λ)no(λ) for any function f , unless all SNP problems are solvable

in subexponential time. This result plus Theorem IV.2 gives us the following theorem:

Theorem IV.10 The LCS-λopt problem has no PTAS of time f(1/ε)no(1/ε) for any

function f , unless all SNP problems are solvable in subexponential time.

In [55], the authors showed that the LCS-λopt problem is inherently hard to

approximate in the worst case. In particular, they proved that there exists a constant

δ > 0 such that, the LCS-λopt has no polynomial time approximation algorithm with

performance ratio nδ, unless P = NP. It is obvious to see that this lower bound holds

only when the objective function value λ is larger than nd for a constant d > 0. In

particular, the lower bound result in [55] does not apply to the case when the value of

λ is small. For example, in case λ = nδ, a trivial common subsequence of length one

is a ratio-nδ approximation solution. This implies that for the LCS problem, when

the length λ of the common subsequence is a small function of n, no strong lower

bound result as that of [55] has been derived.

On the other hand, our lower bound result in Theorem IV.10 for the LCS problem

can be applied when the length of the common subsequence λ is any small function

of the length n of each string.

D. The LOGNP Problems

In the previous chapter we have derived computational lower bounds for the param-

eterized lognp problems. Here we discuss the optimization versions of the decision

problems in the class lognp.

1. Rich Hypergraph Cover, Tournament Dominating Set and V-C Dimension

For the decision problem rich hypergraph cover, we define the rich hy-

110

pergraph cover-opt problem as its optimization problem.

rich hypergraph cover-opt: given a hypergraph H = (V, E), where

|V | = n and all edges of size at least n/2, try to find a minimum vertex

cover for H.

By our definition, the parameterized version of the optimization problem rich

hypergraph cover-opt is

rich hypergraph cover-para’: given a hypergraph H = (V, E), where

|V | = n and all edges of size at least n/2, and a parameter k, where

k ≤ log n, is there a vertex cover for H of size at most k?

For the decision problem tournament dominating set, we define the tour-

nament dominating set-opt problem as its optimization problem.

tournament dominating set-opt: given a tournament graph G, try

to find a minimum dominating set for the graph G.

By our definition, the parameterized version of the optimization problem tour-

nament dominating set-opt is

tournament dominating set-para’: given a tournament graph G,

and a parameter k, is there a dominating set of size at most k for the

graph G?

For the decision problem v-c dimension, we define the v-c dimension-opt

problem as its optimization problem.

v-c dimension-opt: given a family C of subsets of a universe U , try to

maximize the size of the subset S of U such that for each subset T of S,

there is a set CT ∈ C satisfying S ∩ CT = T .

111

By our definition, the parameterized version of the optimization problem v-c

dimension-opt is

v-c dimension-para’: given a family C of subsets of a universe U , and

a parameter k, is there a subset S of U such that for each subset T of S,

there is a set CT ∈ C satisfying S ∩ CT = T , and the size of S is at least

k?

We can verify that the above parameterized problems: rich hypergraph

cover-para’, tournament dominating set-para’ and v-c dimension-para’,

are equivalent to the parameterized problems: rich hypergraph cover-para,

tournament dominating set-para and v-c dimension-para, which we de-

scribed in Chapter III. By Theorem III.29, III.31, and III.32, we have

Lemma IV.11 The parameterized problems: rich hypergraph cover-para’, tour-

nament dominating set-para’, and v-c dimension-para’, have no algorithms

of time f(k)no(k) for any function f , unless all SNP problems are solvable in subex-

ponential time.

Based on Lemma IV.11 and Theorem IV.2, we have the following lower bound

results for the optimization problems.

Theorem IV.12 The optimization problems: rich hypergraph cover-opt, tour-

nament dominating set-opt, and v-c dimension-opt, have no PTAS algo-

rithms of time f(1/ε)no(1/ε) for any function f , unless all SNP problems are solvable

in subexponential time.

In particular, our inapproximability result for the v-c dimension-opt problem

in Theorem IV.12 answers the open problem posed in the literature [16].

112

2. LOG Hypergraph Cover, LOG Adjustment, and LOG Dominating Set

For the decision problem log hypergraph cover, we define the log hypergraph

cover-opt problem as its optimization problem.

log hypergraph cover-opt: given a hypergraph H = (V, E) and a

subset Vc of V , where |Vc| = log n and Vc is a cover of H, try to find a

minimum cover of H.

By our definition, the parameterized version of the optimization problem log

hypergraph cover-opt is

The log hypergraph cover-para’ problem: given a hypergraph H =

(V, E), a subset Vc of V , where |Vc| = log n and Vc is a cover of H, and a

parameter k, is there a cover of H of size at most k?

We show that the rich hypergraph cover-para’ problem is fptl-reducible to

the log hypergraph cover-para’ problem. Given an instance I1 of rich hyper-

graph cover-para’, I1 = (H = (V, E), k), where |V | = n, each hyperedge of H con-

tains at least n/2 vertices, and k ≤ log n, we build an instance I2 = (H = (V, E), Vc, k)

as follows. First let Vc = ∅. Since all hyperedges of H contain at least n/2 vertices,

there exists such a vertex v1 ∈ V that is contained in at least half of the hyperedges.

We can check each vertex v ∈ V and find such a vertex v1. We add v1 into the set

Vc (v1 covers half of the hyperedges). In the same way, we can find another vertex

v2 that is contained in at least half of the remaining hyperedges. We add v2 into

the set Vc. Keep doing this until we have a vertex set Vc = {v1, v2, ..., vlog n} that

covers all the hyperedges of H. I2 = (H, Vc, k) is an instance of the log hyper-

graph cover-para’ problem. Obviously, the instance I1 is a yes-instance of rich

hypergraph cover-para’ if and only if the instance I2 is a yes-instance of log

113

hypergraph cover-para’. The reduction from rich hypergraph cover-para’

to log hypergraph cover-para’ is an fptl-reduction.

By the above fptl-reduction, Lemma IV.11 and Theorem III.25, we have

Lemma IV.13 The log hypergraph cover-para’ problem has no algorithm of

time f(k)no(k) for any function f , unless all SNP problems are solvable in subexpo-

nential time.

Therefore, by Lemma IV.13 and Theorem IV.2, we have the following theorem.

Theorem IV.14 The log hypergraph cover-opt problem has no PTAS algo-

rithm of time f(1/ε)no(1/ε) for any function f , unless all SNP problems are solvable

in subexponential time.

For the decision problem log adjustment, we define the log adjustment-

opt problem as its optimization problem.

log adjustment-opt: given a Boolean expression F in conjunctive nor-

mal form with n variables, and a truth assignment T , and also a satisfying

truth assignment T ′ whose Hamming distance from T is log n, try to find

a satisfying truth assignment with the minimum Hamming distance from

T .

By our definition, the parameterized version of the optimization problem log

adjustment-opt is

The log adjustment-para’ problem: given a Boolean expression F

in conjunctive normal form with n variables, a truth assignment T , a

satisfying truth assignment T ′ whose Hamming distance from T is log n,

and a parameter k, is there a satisfying truth assignment whose Hamming

distance from T is at most k?

114

We show that the rich hypergraph cover-para’ problem is fptl-reducible to

the log adjustment-para’ problem. Given an instance I1 of rich hypergraph

cover-para’, I1 = (H = (V, E), k), where |V | = n, each hyperedge of H contains

at least n/2 vertices, and k ≤ log n, we build an instance I2 = (F, T, T ′, k) as follows.

F is a conjunctive normal form with n positive input variables {v1, v2, ..., vn}. The

n positive input variables represent the n vertices of H. Each clause of F , which

corresponds to an edge e of the hypergraph H, is a disjunction of all the variables that

represent the vertices of the edge e. We assign all variables FALSE as the default truth

assignment T . From our discussion of the fptl-reduction from rich hypergraph

cover-para’ to log hypergraph-para’, we know that for the hypergraph H,

we can find a vertex set Vc = {v1, v2, ..., vlog n} that covers all the hyperedges of H.

We assign all variables that correspond to the vertices in Vc TRUE and all other

variables FALSE as the truth assignment T ′. T ′ is a satisfying truth assignment

whose Hamming distance from T is log n. I2 = (F, T, T ′, k) is an instance of the log

adjustment-para’ problem.

We show that the instance I1 is a yes-instance of rich hypergraph cover-

para’ if and only if the instance I2 is a yes-instance of log adjustment-para’:

suppose there is a cover C of size k for the hypergraph H. There are k variables in F

corresponding to the k vertices of C. We assign the k variables TRUE and get a truth

assignment T ′′. From the construction of F , T ′′ is a satisfying truth assignment and

its Hamming distance from T is k. On the other hand, suppose there is a satisfying

truth assignment T ′′ whose Hamming distance from T is k (that is, in T ′′ there are

k variables being assigned TRUE). In H, the k vertices that correspond to the k

variables cover all the hyperedges of H.

The reduction from rich hypergraph cover-para’ to log adjustment-

para’ is an fptl-reduction.

115

By the above fptl-reduction, Lemma IV.11 and Theorem III.25, we have

Lemma IV.15 The log adjustment-para’ problem has no algorithm of time

f(k)no(k) for any function f , unless all SNP problems are solvable in subexponen-

tial time.

Therefore, by Lemma IV.15 and Theorem IV.2, we have the following theorem.

Theorem IV.16 The log adjustment-opt problem has no PTAS algorithm of

time f(1/ε)no(1/ε) for any function f , unless all SNP problems are solvable in subex-

ponential time.

For the decision problem log dominating set, we define the log dominating

set-opt problem as its optimization problem.

log dominating set-opt: given a graph G = (V, E) and a subset VDS

of V , where |VDS| = log n and VDS is a dominating set of G, try to find a

minimum dominating set of G.

By our definition, the parameterized version of the optimization problem log

dominating set-opt is

The log dominating set-para’ problem: given a graph G = (V, E), a

subset VDS of V , where |VDS| = log n and VDS is a dominating set of G,

and a parameter k, is there a dominating set of size at most k?

We show that the log hypergraph cover-para’ problem is fptl-reducible

to the log dominating set-para’ problem. Given an instance I1 of log hyper-

graph cover-para’, I1 = (H = (VH , EH), Vc, k), where H is a hypergraph, |VH | =

n, Vc is a cover of size log n for H, we build an instance I2 = (G = (V, E), VDS, k),

where V = V1 ∪ V2, as follows. The vertex set V2 = VH contains n vertices. There

116

are edges between any two of the n vertices. For each hyperedge e ∈ EH , there is a

vertex ve ∈ V1 corresponding to e. There is an edge between a vertex ve ∈ V1 and a

vertex vi ∈ V2 if and only if in H the corresponding hyperedge e ∈ EH contains the

vertex vi ∈ VH . We can see that the vertex set V1 makes an independent set and the

vertex set V2 induces a clique. Since Vc is a cover of H which has log n vertices, we

can see that in G, the corresponding log n vertices consist of a dominating set VDS.

I2 = (G, VDS, k) is an instance of the log dominating set-para’ problem.

Similar to our discussion in the proof of Theorem III.19, we show that the instance

I1 is a yes-instance of log hypergraph cover-para’ if and only if the instance I2

is a yes-instance of log dominating set-para’: suppose H has a cover C of size k.

Then by the construction of the graph G, the corresponding k vertices in V2 consist

of a dominating set for G. On the other hand, suppose G has a dominating set D

of size k, by the discussion before Lemma III.15, we can assume that D is a subset

of V2. Since the k vertices in D dominate all the vertices in V1, the corresponding k

vertices in H cover all the hyperedges of H. That is, H has a cover of size k.

The reduction from log hypergraph cover-para’ to log dominating set-

para’ is an fptl-reduction.

By the above fptl-reduction, Lemma IV.13 and Theorem III.25, we have

Lemma IV.17 The log dominating set-para’ problem has no algorithm of time

f(k)no(k) for any function f , unless all SNP problems are solvable in subexponential

time.

Therefore, by Lemma IV.17 and Theorem IV.2, we have the following theorem.

Theorem IV.18 The log dominating set-opt problem has no PTAS algorithm

of time f(1/ε)no(1/ε) for any function f , unless all SNP problems are solvable in

subexponential time.

117

3. log n-partite Graph Clique

For the decision problem log clique, we define the log n-partite graph clique

problem as its optimization problem. A log n-partite graph G has log n partitions of

vertices with each partition n vertices.

The log n-partite graph clique problem: given a log n-partite graph

G, try to find the maximum clique of the graph G.

We can see that the size of the maximum clique of a log n-partite graph is less than

or equal to log n.

Note that the log n-partite graph clique problem has found applications in

computational biology [76, 20].

By our definition, the parameterized version of the optimization problem log n-

partite graph clique is

The log n-partite graph clique-para problem: given a log n-partite

graph G and a parameter k, is there a clique of size at least k in G?

It is not difficult to show that the log clique-para problem we defined in Chap-

ter III is fptl-reducible to the log n-partite graph clique-para problem. Given

an instance I1 of log clique-para, I1 = (G = (V, E), k), where V = {v1, v2, ..., vn}

and k ≤ log n, we build an instance I2 of log n-partite graph clique-para,

I2 = (G′ = (V ′, E ′), k) as follows. G′ has log n copies of the vertices in G. We

denote V ′ = {V1, V2, ..., Vlog n}, where each copy Vi has n vertices {vi1, vi2, ..., vin}, for

1 ≤ i ≤ log n. The vertex vix in G′, where 1 ≤ i ≤ log n and 1 ≤ x ≤ n, corresponds

to the vertex vx in G. We build edges between two vertices vix and vjy in G′ if and

only if i 6= j and (vx, vy) ∈ E. We can see that the graph G′ is a log n-partite graph,

118

with each copy of the vertices in G as a partition, and there are edges between vertices

from different partitions.

We show that G has a clique of size k if and only if G′ has a clique of size k.

Suppose G has a clique C = {vc1 , vc2 , ..., vck
}, where each ci ∈ {1, 2, ..., n}. Then from

the construction of G′, there is a clique C ′ = {v1c1 , v2c2 , ..., vkck
} in G′. On the other

hand, suppose there is a clique C ′ of size k in G′, we know that all the k vertices in

C ′ should be from different partitions and any two of them are not copies of the same

vertex of G (since by the construction of G′, there are no edges between copies of the

same vertex of G). Then the k vertices in C ′ corresponds to k different vertices in G.

Furthermore, since there is an edge between any two of the k vertices in C ′ (C ′ is a

clique), there is an edge between any two of the corresponding k vertices in G. That

is, G has a clique of size k.

The reduction from log clique-para to log n-partite graph clique-para

is an fptl-reduction.

By the above fptl-reduction, Theorem III.26 and Theorem III.25, we have

Lemma IV.19 The log n-partite graph clique-para problem has no algorithm

of time f(k)no(k) for any function f , unless all SNP problems are solvable in subex-

ponential time.

Therefore, by Lemma IV.19 and Theorem IV.2, we have the following theorem.

Theorem IV.20 The log n-partite graph clique problem has no PTAS algo-

rithm of time f(1/ε)no(1/ε) for any function f , unless all SNP problems are solvable

in subexponential time.

Before ending the section, we point out that for the decision problem log

chordless path, we do not have a natural optimization version.

119

CHAPTER V

STUDY OF EPTAS ALGORITHMS ON PLANAR GRAPHS

So far we can prove lower bound results for NP optimization problems when the

parameterized versions of these problems are W[t]-hard, t ≥ 1. In this chapter, we

discuss the lower bounds for the parameterized problems that are fixed-parameter

tractable.

We prove computational lower bounds on the EPTAS algorithms for some famous

planar graph NP-hard optimization problems. Based on the result in [17] (Lemma

6), the parameterized versions of these optimization problems are in FPT.

A. EPTAS Lower Bound Results

Based on the outer-planarity of planar graphs, Baker [7] designed EPTAS algorithms

of time O(2O(1/ε)n) for several famous NP-hard optimization problems on planar

graphs, such as planar vertex cover, planar independent set, and pla-

nar dominating set, where ε > 0 is the given error bound, and n is the number of

vertices of the planar graph.

Alber et. al [3] designed parameterized algorithms of time 2O(
√

k)nO(1) for the

parameterized versions of the above NP-hard optimization problems on planar graphs.

A lot of research has been done on these problems to try to further improve the

time complexity of the parameterized algorithms. Interested readers are referred to

[2, 56, 41, 42].

Cai et. al [15] proved the following lower bound result for the parameterized

algorithms of these problems.

Theorem V.1 ([15]) planar vertex cover, planar independent set, and

120

planar dominating set do not have parameterized algorithms of time 2o(
√

k)nO(1),

unless all SNP problems are solvable in subexponential time.

From Theorem V.1 and Theorem IV.2, we have

Theorem V.2 planar vertex cover, planar independent set, and planar

dominating set have no EPTAS of running time 2o(
√

1/ε)nO(1), where ε > 0 is the

given error bound, unless all SNP problems are solvable in subexponential time.

Note that the upper bound of the EPTAS algorithms for the above problems in

Baker [7] is 2O(1/ε)nO(1) (also [62]). We can see that there is a gap between the upper

bound and our lower bound result. To come up with new approaches to improve

the upper bound of the EPTAS algorithms in [7] will be interesting research. To

study this issue, we concentrate on the planar vertex cover problem in the next

section.

B. Planar Vertex Cover and EPTAS Upper Bound

We study the EPTAS algorithm of the vertex cover problem on planar graphs

of degree bounded by 3, abbreviated as p-vc-3. The vertex cover problem on

general planar graphs is abbreviated as p-vc.

From Theorem IV.2, we get the following lemma:

Lemma V.3 The p-vc-3 problem has no EPTAS of running time 2o(
√

1/ε)nO(1),

where ε > 0 is the given error bound, unless the p-vc-3 problem has a parameterized

algorithm of time 2o(
√

k)nO(1).

It is well known that a planar embedding of a planar graph can be constructed

in linear time [51]. We define an operation, called the unfolding operation, based on

a planar embedding of a planar graph.

121

tvt
v6

tv3

tv5 tv4

tv1

t
v2

tv1

tv2

t
v3

t v4

tv5

t
v6 tx1

tx2tx3

ty1

ty2

ty3

ty4
J

J
JJ

@
@

@

J
J

JJ

@
@

@

�
�

�
@

@
@�

�
�-

Fig. 3. Unfolding operation on the vertex v (with degree 6).

Definition Suppose that G is a planar graph with a planar embedding π(G), and

that v is a degree-d vertex in G, where d > 3, with neighbors v1, v2, . . ., vd, such that

when one traverses around the vertex v on the embedding π(G), the edges incident

to v are in the cyclic order [v, v1], [v, v2], . . ., [v, vd]. The unfolding operation on the

vertex v will do the following: remove the vertex v from π(G), and add a path of

length 2d− 5:

Pv = {y1, x1, y2, x2, . . . , yd−3, xd−3, yd−2}

where each vertex xi is of degree 2 and adjacent to the vertices yi and yi+1, and each

vertex yi is of degree 3 such that y1 is adjacent to {v1, v2, x1}, yd−2 is adjacent to

{vd−1, vd, xd−3}, and yi is adjacent to {vi+1, xi−1, xi}, for 2 ≤ i ≤ (d− 3).

As an example, please refer to the unfolding operation on the vertex v of degree

6 shown in Fig. 3. Note that the unfolding operation does not change the planarity

of a graph: the path Pv can be drawn on a small disc on which the vertex v was

embedded in π(G), and the edges from the vertices v1, . . ., vd to the path Pv can be

drawn on the plane without edge crossing.

Suppose we are given a planar graph G1 = (V1, E1), V1 = V≤3 ∪ V>3, where V≤3

is the set of vertices whose degree is less than or equal to 3, V>3 is the set of vertices

whose degree is greater than 3. We apply the unfolding operation on a vertex v ∈ V>3.

122

We get a new planar graph G2 = (V2, E2), where G2 has one fewer vertex of degree

larger than 3, compared with G1.

We first consider a vertex cover C2 of the graph G2.

• Suppose for some i, 1 ≤ i ≤ d − 3, the three vertices xi, yi, and yi+1 are all in

C2. Then we simply remove xi from C2. It is obvious that C2 − {xi} is still a

vertex cover of G2, with one fewer vertex compared with C2. Call this operation

clean-one.

• Suppose for some i, 1 ≤ i ≤ d − 3, exactly two of the three vertices xi, yi, and

yi+1 are in C2. If one of these two vertices is xi, then we can replace the two

vertices by yi and yi+1, resulting in a new vertex cover of the same size. Call

this operation clean-two.

Note that at least one of the three vertices xi, yi, and yi+1 must be in the vertex cover

C2 in order to cover the edges [xi, yi] and [xi, yi+1]. Therefore, besides the above cases,

the only remaining case is that for the three vertices xi, yi, and yi+1, only one of them

is in C2. In this case, this vertex in C2 must be xi.

In the following discussion, cleaning a vertex cover C2 means that we apply the

processing of clean-one and clean-two on C2. After the cleaning process, we say that

the vertex cover C2 is clean. By the above discussion, in a clean vertex cover C2 of

the graph G2, we have

Claim 1 Either all d− 3 vertices xi, 1 ≤ i ≤ d− 3, are in C2 and none of the d− 2

vertices yj, 1 ≤ j ≤ d− 2, is in C2; or all d− 2 vertices yj, 1 ≤ j ≤ d− 2, are in C2

and none of the d− 3 vertices xi, 1 ≤ i ≤ d− 3, is in C2.

Let C1 be any vertex cover of the graph G1 such that C1 has k1 vertices. If

v ∈ C1 (so v covers the d edges [v, v1], . . ., [v, vd] in G), then by replacing v in C1 by

123

the d− 2 vertices y1, y2, . . ., yd−2 in G2, we obviously get a clean vertex cover C2 for

the graph G2. The vertex cover C2 has k1 + (d− 3) vertices. On the other hand, if v

is not in C1 (so the edges [v, v1], . . ., [v, vd] must be covered by the vertices v1, . . ., vd

in C1), then by adding the d− 3 vertices x1, x2, . . ., xd−3 to C1, we get a clean vertex

cover C2 for the graph G2 and C2 contains k1 +(d−3) vertices. In conclusion, from a

vertex cover of k1 vertices for the graph G1, we can always construct a (clean) vertex

cover of k1 + (d− 3) vertices for the graph G2.

Conversely, suppose that we are given a clean vertex cover C2 of the graph G2,

where C2 has k2 vertices. If C2 contains the d − 2 vertices y1, y2, . . ., yd−2, then

replacing the d − 2 vertices y1, y2, . . ., yd−2 in C2 by a single vertex v gives a vertex

cover of k2 − (d− 3) vertices for the graph G1. On the other hand, if C2 contains the

d−3 vertices x1, x2, . . ., xd−3, then removing these d−3 vertices from C2 gives a vertex

cover of k2 − (d− 3) vertices for the graph G1. In conclusion, from a vertex cover of

k2 vertices for the graph G2, we can always construct a vertex cover of k2 − (d − 3)

vertices for the graph G1.

Now suppose that the set of vertices of degree larger than 3 in the graph G1 is

V>3 = {u1, u2, . . . , ur}. Denote by deg(u) the degree of the vertex u. Inductively,

suppose that the graph Gi+1 is obtained from the graph Gi by unfolding the vertex

ui, for 1 ≤ i ≤ r. Note that the graph Gr has its degree bounded by 3, and we say

that the graph Gr is obtained from the graph G1 by unfolding all vertices of degree

larger than 3. Let C1 be a vertex cover for the graph G1 with |C1| = k1. By the

above discussion, we can construct from C1 a vertex cover C2 of k1 + (deg(u1) − 3)

vertices for the graph G2; then from C2, we can construct a vertex cover C3 of

k1 + (deg(u1) − 3) + (deg(u2) − 3) vertices for the graph G3,, and finally we

construct a vertex cover Cr of k1 +
∑r

i=1(deg(ui)− 3) vertices for the graph Gr.

On the other hand, let Cr be a vertex cover of kr vertices for the graph Gr. First

124

we clean Cr to get a clean vertex cover C ′
r for Gr. Since cleaning does not increase

the size of the vertex cover, we have |C ′
r| ≤ |Cr| = kr. Now by the above discussion,

we can get a vertex cover Cr−1 of |C ′
r| − (deg(ur) − 3) ≤ kr − (deg(ur) − 3) vertices

for the graph Gr−1. Cleaning the vertex cover Cr−1 gives us a clean vertex cover C ′
r−1

for the graph Gr−1, and by the above processing we can get a vertex cover Cr−2 of

|C ′
r−1| − (deg(ur−1)− 3) ≤ kr − (deg(ur)− 3)− (deg(ur−1)− 3) vertices for the graph

Gr−2,, finally, we will construct a vertex cover of at most kr−
∑r

i=1(deg(ui)−3)

vertices for the graph G1.

In particular, the above discussion enables us to derive a relation between the

minimum vertex covers for the graphs G1 and Gr. Let k1 and kr be the sizes of

minimum vertex covers of the graph G1 and Gr, respectively. By the above discussion,

from a minimum vertex cover for the graph G1, we can construct a vertex cover of

k1 +
∑r

i=1(deg(ui)− 3) vertices for the graph Gr. Therefore, k1 +
∑r

i=1(deg(ui)− 3) ≥

kr. On the other hand, from a minimum vertex cover of the graph Gr, we can

construct a vertex cover of no more than kr −
∑r

i=1(deg(ui) − 3) vertices for the

graph G1, thus kr −
∑r

i=1(deg(ui) − 3) ≥ k1. Combining these two relations, we get

k1 +
∑r

i=1(deg(ui)− 3) = kr.

Summarizing the above discussion, we get the following:

Claim 2 Let G1 be a graph in which the set of vertices of degree larger than 3 is V>3.

Let Gr be a graph obtained by unfolding all vertices of degree larger than 3 in G1.

Then from a vertex cover C1 for the graph G1, we can construct in polynomial time a

vertex cover of |C1|+
∑

u∈V>3
(deg(u)−3) vertices for the graph Gr; and from a vertex

cover Cr for the graph Gr, we can construct in polynomial time a vertex cover of at

most |Cr| −
∑

u∈V>3
(deg(u) − 3) vertices for the graph G1. Moreover, the size of a

minimum vertex cover of the graph Gr is equal to the size of a minimum vertex cover

125

of the graph G1 plus
∑

u∈V>3
(deg(u)− 3).

Using the unfolding operations, we can prove

Lemma V.4 The p-vc-3 problem has no parameterized algorithm of time 2o(
√

k)nO(1),

unless the p-vc problem has a parameterized algorithm of time 2o(
√

k)nO(1).

Proof. Suppose the p-vc-3 problem has a parameterized algorithm A of time

2o(
√

k)nO(1). We have the following algorithm A′ shown in Fig 4 for the p-vc problem.

Algorithm A′

Input: A planar graph G1 = (V1, E1), V1 = V≤3 ∪ V>3, and an integer k > 0.

Output: Output “Yes”, if the size of the minimum vertex cover OPT1 of G1 satisfies
|OPT1| ≤ k. Otherwise, output “No”.

begin

1. Let V>3 be the set of all vertices of degree larger than 3 in the graph G1. Construct
a planar graph G2 by unfolding all vertices of degree larger than 3 in G1.

2. Run the algorithm A on the graph G2 with the parameter k2 = 1, 2, ..., |V2|. We
get a minimum vertex cover OPT2 for the graph G2.

3. Construct a vertex cover OPT1 for the graph G1 from OPT2 such that
|OPT1| = |OPT2| −

∑
u∈V>3

(deg(u)− 3).

4. If |OPT1| ≤ k, Return “Yes”; Otherwise, Return “No”.

end

Fig. 4. Parameterized algorithm for planar vertex cover.

We prove the algorithm A′ is correct. By Claim 2, OPT1 is a vertex cover for

126

the graph G1 with |OPT2| −
∑

u∈V>3
(deg(u) − 3) vertices and OPT1 is computable

in time nO(1). Since OPT2 is a minimum vertex cover for the graph G2, by Claim 2

again, a minimum vertex cover for the graph G1 contains |OPT2|−
∑

u∈V>3
(deg(u)−3)

vertices. In conclusion, OPT1 is a minimum vertex cover for the graph G1.

We analysis the running time of A′ in the following.

For the graph G1 = (V1, E1), V1 = V≤3 ∪ V>3, where |V1| = n and |E1| = m,

we can always assume |OPT1| ≥ n/2 by applying the NT-theorem [26]. That is, the

parameter k ≥ n/2. After applying the unfolding operation on each v ∈ V>3, we get

the new planar graph G2 = (V2, E2) with degree bounded by 3. The construction of

G2 can be done in polynomial time.

For a planar graph with n vertices and m edges, we have [32]:

m ≤ 3n− 6. (5.1)

By 5.1, for the graph G1, the total degree of all its vertices satisfies:

∑
v∈V1

deg(v) = 2m ≤ 2(3n− 6) < 6n, (5.2)

We have

|V2| = |V≤3|+
∑

v∈V>3

((deg(v)− 3) + (deg(v)− 2))

< |V≤3|+ 2
∑

v∈V>3

deg(v)

≤ |V1|+ 2
∑
v∈V1

deg(v)

≤ n + 12n = 13n = O(n).

Therefore, the calls to the algorithm A on the graph G2 takes time 2o(
√
|V2|)|V2|O(1) =

2o(
√

n)nO(1) = 2o(
√

k)nO(1). All the other steps of the algorithm A′ takes polynomial

time nO(1). Therefore the algorithm A′ has running time 2o(
√

k)nO(1).

127

Therefore, from Lemma V.3, Lemma V.4 and Theorem V.2, we have

Theorem V.5 The p-vc-3 problem has no EPTAS of running time 2o(
√

1/ε)nO(1),

where ε > 0 is the given error bound, unless all SNP problems are solvable in subex-

ponential time.

Theorem V.5 implies the difficulty of improving the EPTAS algorithm for the

p-vc-3 problem.

Baker [7] provided an EPTAS algorithm of time 2O(1/ε)p(n) for the p-vc problem.

By applying that algorithm, we get an EPTAS algorithm of time 2O(1/ε)p(n) for the

p-vc-3 problem. Since the p-vc-3 problem seems simpler, one might suspect that

we could have a better EPTAS algorithm for it than that for the p-vc problem.

In the following we show that if we can improve the EPTAS algorithm for the

p-vc-3 problem, then we can improve the EPTAS algorithm for the p-vc problem.

Theorem V.6 If the p-vc-3 problem has an EPTAS of running time f(1/ε)nO(1),

then the p-vc problem has an EPTAS of running time f(13/ε)nO(1), where f is a

recursive function and ε > 0 is the given error bound.

Proof. Given an EPTAS algorithm A of running time f(1/ε)nO(1) for the p-vc-3

problem, we provide an EPTAS algorithm B of running time f(13/ε)nO(1) for the

p-vc problem. The description of algorithm B is given in Fig. 5.

We claim that the vertex set C1 is the required vertex cover for the graph G1.

By 5.1 and Claim 2, we have

|OPT2| = |OPT1|+
∑

u∈V>3

(deg(u)− 3)

≤ |OPT1|+
∑
u∈V1

deg(u)

≤ |OPT1|+ 6n

128

Algorithm B

Input: A planar graph G1 = (V1, E1), and a constant ε > 0.

Output: A vertex cover C1 for G1, such that |C1| ≤ (1 + ε) ∗ |OPT1|.

begin

1. Let V>3 be the set of all vertices of degree larger than 3 in the graph G1. Unfold
all vertices of degree larger than 3 in G1, let the resulting graph be G2 = (V2, E2),
whose degree is bounded by 3.

2. Run the algorithm A with ε′ = ε/13 on the graph G2. We get a vertex cover C2

for the graph G2.

3. From C2 construct a vertex cover C1 of at most |C2| −
∑

u∈V>3
(deg(u)− 3) vertices

for the graph G1.

4. Return C1.

end

Fig. 5. EPTAS algorithm for planar vertex cover.

129

≤ |OPT1|+ 12|OPT1|

≤ 13|OPT1|.

Therefore,

|OPT2| ≤ 13|OPT1|. (5.3)

By Claim 2, we have

|OPT1| = |OPT2| −
∑

u∈V>3

(deg(u)− 3)

and

|C1| ≤ |C2| −
∑

u∈V>3

(deg(u)− 3)

Therefore, we have

|C2| − |C1| ≥ |OPT2| − |OPT1|

or equivalently

|C2| − |OPT2| ≥ |C1| − |OPT1|

From this, we derive immediately

|C1|/|OPT1| − 1

= (|C1| − |OPT1|)/|OPT1|

≤ (|C2| − |OPT2|)/|OPT1|

≤ 13(|C2| − |OPT2|)/|OPT2|

= 13(|C2|/|OPT2| − 1)

≤ 13 ∗ (ε/13)

= ε.

Here we have used the assumption that C2|/|OPT2| ≤ 1 + ε′ = 1 + ε/13, and the fact

130

|OPT2| ≥ 13|OPT1|.

The call of the algorithm A on the graph G2 takes time f(1/ε′)nO(1). All the other

steps of the algorithm B take polynomial time nO(1). Therefore, the running time of

the algorithm B is f(13/ε)nO(1), and the approximation ratio for the algorithm B is

1 + ε.

131

CHAPTER VI

CONCLUSIONS

A. Summary

In this thesis, we study the structures of parameterized problems with respect to

their parameterized tractability and the relationship between parameterized com-

plexity and approximability. The study has offered powerful techniques for deriving

strong computational lower bounds for parameterized algorithms and approximation

algorithms. We discussed the applications of these techniques.

In chapter II, we gave characterizations of two important approximation classes

FPTAS and EPTAS. We proved that an NP optimization problem has a fully polynomial-

time approximation scheme if and only if the problem is efficiently fixed-parameter

tractable. By enforcing a constraint of planarity on the W -hierarchy studied in pa-

rameterized complexity theory, we obtained a class of NP optimization problems,

the planar W -hierarchy, and proved that all problems in this class have efficient

polynomial-time approximation schemes. Our new characterization of FPTAS has

a number of advantages over the previous characterizations of this approximation

class. Our characterization of EPTAS, which is significantly different from the PTAS

characterization of Khanna and Motwani [57], is the first attempt to a systematic

investigation of the structural properties of this new but important approximation

class. Moreover, as a byproduct of our result, we answered an open problem posed

by Downey and Fellows [37].

In Chapter III, based on our study of the structural properties of parameterized

complexity theory, we introduced the concept of linear fpt-reductions, and used it

to derive tight computational lower bounds for many well-known NP-hard problems,

132

such as the independent set, clique and dominating set problems. We also

derived computational lower bound results for some Non NP-hard problems in the

class lognp.

In Chapter IV, we extended our techniques developed in parameterized complex-

ity to derive computational lower bounds for PTAS algorithms for NP-hard optimiza-

tion problems, such as the distinguishing substring selection problem and the

longest common subsequence problem. This seems to open a new direction for

the study of computational lower bounds on the approximability of NP-hard opti-

mization problems. We then discussed the inapproximability of the lognp problems.

Our inapproximation result for v-c dimension answered an open problem posed in

literature.

In Chapter V, we derived computational lower bounds for EPTAS algorithms

for some well-known NP-hard problems on planar graphs, such as planar vertex

cover, planar independent set, and planar dominating set. Since there

is a gap between our lower bound results and the current upper bound results, in

particular, we investigated the possibility of improving the upper bound of the EPTAS

algorithm for the planar vertex cover problem. Our study showed that any

asymptotic improvement on the EPTAS algorithms for the vertex cover problem

on planar graphs of degree bounded by 3 will result in an improvement on the EPTAS

algorithms for the problem on general planar graphs.

B. Future Work

There seems to be intrinsic and interesting connections between the approximability

and parameterized complexity of NP optimization problems. In Chapter II of this

thesis we have studied the characterizations of the two approximation classes FPTAS

133

and EPTAS using parameterized complexity theory. The relationship between the

approximation class APX (the class of optimization problems that have constant-

ratio polynomial time approximation algorithms) and the parameterized class FPT

is worth exploring. For example, the problems in the class MAX SNP introduced by

Papadimitriou and Yannakakis [65] and the class MIN F+ π1 introduced by Kolaitis

and Thakur [59], are constant-ratio approximable, that is, in the class APX. In [12],

Cai and Chen proved that all maximization problems in the class MAX SNP and all

minimization problems in the class MIN F+ π1 are fixed-parameter tractable. We

would like to define a set of optimization problems such that the problem is in APX

if and only if the corresponding parameterized problem is in FPT. In [8], the author

introduced the definition of covering problems, which include vertex cover, k-

set cover, hypergraph vertex cover, feedback vertex set on undirected

graphes, and gave a unified approach for approximating these problems to constant

ratios. We conjecture that if limited to covering problems, we can show that the class

of APX is equal to the class of FPT. This research work might also throw light on the

well-known problem in approximation area of getting an approximation ratio better

than 2 for the vertex cover problem.

Based on the study in chapter III of this thesis, we can introduce variants of

fpt-reductions, such as linear fpt-reduction, simple fpt-reduction, and linear simple

fpt-reduction to prove computational lower bounds for parameterized algorithms. We

point out that the difference between these reductions in parameterized complexity

and the ratio-preserving L-reduction in approximation, and the classical polynomial

time reduction in NP-completeness theory is worth studying. The following are several

simple observations. A polynomial time reduction from problem A to problem B can

not guarantee an linear fpt-reduction since the parameters of the two problems may

not be linearly related. Linear fpt-reductions are not sufficient to demonstrate a

134

problem is NP-complete, for the reason that the reductions may be exponential in k

[35]. The linear fpt-reductions are not L-reductions, as is discussed in chapter IV. We

would like to further explore the relations between these reductions.

We are interested in the structural properties of parameterized complexity theory.

In classical complexity, if the lower level of the polynomial hierarchy collapses, it would

imply the collapse of the higher levels. That is, the polynomial hierarchy has what is

called the “upward collapse” property. However, it is still open for the W -hierarchy in

parameterized complexity whether W [t] = FPT would imply W [t+1] = FPT. Based

on our work in this thesis, we can see that such an upward collapse theorem is unlikely

to hold for the W -hierarchy, as explained as follows. Suppose W [t] = FPT implies

W [t + 1] = FPT. By Theorem III.10, if the W [t + 1]-complete problem wcs∗[t + 1] is

solvable in time f1(k)no(k) for a recursive function f1, then W [t] = FPT, which by the

assumed upward collapse theorem, would imply W [t+1] = FPT. In consequence, the

problem wcs∗[t + 1] would be solvable in time f2(k)nO(1). Thus, the upward collapse

theorem would imply the following result:

The problem wcs∗[t + 1] either can be solved in time f2(k)nO(1) for a re-

cursive function f2, or cannot be solved in time f1(k)no(k) for any recursive

function f2.

Note that this result would be unconditional, i.e., not dependent of any complexity

theory hypothesis. We feel that this would be a very strong result and if true, may

require new and breakthrough techniques in complexity theory. For example, this

would mean that if we could find a clique of size k in a graph of n vertices in time

no(k), then we would also be able to find the clique in time f(k)nc for a constant c.

This invites further research work.

In future, we would like to explore the applications of our techniques for proving

135

computational lower bounds for parameterized algorithms and approximation algo-

rithms for other important problems. One example is the motif finding problem,

which has applications in finding conserved regions in molecular biology, as well as

applications in coding theory [61]. A graph theoretical formulation of the motif

finding problem was proposed in [69]. It reduces the motif finding problem to

finding a maximum clique in a k-partite graph. According to the parameterized

complexity theory, it has been proved in [76, 77] that this problem formulation is

W [1]-complete with respect to the number of strings k as the parameter. We can

derive computational lower bounds of the parameterized algorithms for this problem

based on our work in the thesis. We are working on the parameterized complexity of

the problem with respect to the maximum allowed Hamming distance d. The maxi-

mum allowed Hamming distance d is considered as the value of the objective function

in designing a polynomial-time approximation scheme in [61]. If we can prove that

the problem is W [1]-hard with respect to the parameter d, this would imply that

the PTAS algorithm proposed in [61] could not be improved to an approximation

algorithm of practical use. To resolve the parameterized complexity of this problem

with respect to the parameter d will answer the open problem posed in [39, 46, 45].

Another interesting problem for further research, as we pointed out in Chapter V, is

to close the gap between our lower bound results and the current upper bound results

for the EPTAS algorithms for NP-hard problems on planar graphs.

136

REFERENCES

[1] K. A. Abrahamson, R. G. Downey, and M. R. Fellows, “Fixed-parameter

tractability and completeness IV: on completeness for W [P] and PSPACE

analogs,” Annals of Pure and Applied Logic, vol. 73, pp. 235-276, 1995.

[2] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier, “Fixed

parameter algorithms for dominating set and related problems on planar graphs,”

Algorithmica, vol. 33, pp. 461-493, 2002.

[3] J. Alber, H. Fernau, R. Niedermeier, “Parameterized complexity: exponential

speed-up for planar graph problems,” J. Algorithms, vol. 52, pp. 26-56, 2004.

[4] S. Arora, “Polynomial time approximation schemes for Euclidean traveling sales-

man and other geometric problems,” Journal of the ACM, vol. 45, pp. 753-782,

1998.

[5] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and

M. Protasi, Complexity and Approximation, Combinatorial Optimization Prob-

lems and Their Approximability Properties, New York: Springer-Verlag, 1999.

[6] G. Ausiello, A. Marchetti-spaccamela, and M. Protasi, “Toward a unified ap-

proach for the classification of NP-complete optimization problems,” Theoretical

Computer Science, vol. 12, pp. 83-96, 1980.

[7] B.S. Baker, “Approximation algorithms for NP-complete problems on planar

graphs,” Journal of the ACM, vol. 41, pp. 153-180, 1994.

[8] R. Bar-Yehuda, “One for the Price of Two: a Unified Approach for Approximat-

ing Covering Problems,” Algorithmica, vol. 27, pp. 131-144, 2000.

137

[9] R. Beigel, “Finding maximum independent sets in sparse and general graphs,”

in Proc. 10th Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 856-857,

1999.

[10] H. L. Bodlaender, R. G. Downey, M. R. Fellows, M. T. Hallett, and H. T. Ware-

ham, “Parameterized complexity analysis in computational biology,” Computer

Applications in the Biosciences, vol. 11, pp. 49-57, 1995.

[11] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and H. T. Wareham, “The pa-

rameterized complexity of sequence alignment and consensus,” Theor. Comput.

Sci., vol. 147, pp. 31-54, 1995.

[12] L. Cai and J. Chen, “On fixed-parameter tractability and approximability of NP

optimization problems,” Journal Of Computer and System Sciences, vol. 54, pp.

465-474, 1997.

[13] L. Cai, J. Chen, R. Downey, and M. Fellows, “On the structure of parameterized

problems in NP,” Information and Computation, vol. 123, pp. 38-49, 1995.

[14] L. Cai, M. Fellows, D. Juedes, and F. Rosamond, “On effcient polynomial-time

approximation schemes for problems on planar structures,” Manuscript of Un-

published Paper, 2002.

[15] L. Cai and D. W. Juedes, “On the existence of sub-exponential time parameter-

ized algorithms,” Journal of Computer and System Sciences, vol. 67, pp. 789-807,

2003.

[16] L. Cai, D. W. Juedes, and I. Kanj, “The inapproximability of non-NP-hard

optimization problems,” Theoretical Computer Science, vol. 289, pp. 553-571,

2002.

138

[17] M. Cesati and L. Trevisan, “On the efficiency of polynomial time approximation

schemes,” Information Processing Letters, vol. 64, pp. 165-171, 1997.

[18] J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege, and P. J. Taillon, “Solving

large FPT problems on coarse-granined parallel machines,” Journal of Computer

and System Sciences, vol. 67, pp. 691-701, 2003.

[19] J. Chen, “Characterizing parallel hierarchies by reducibilities,” Information Pro-

cessing Letters, vol. 39, pp. 303-307, 1991.

[20] J. Chen, “Parameterized computation and complexity: a new approach dealing

with NP-hardness,” Survey, 2004.

[21] J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes, I. Kanj, and G. Xia, “Tight

lower bounds for parameterized NP-hard problems,” in Proc. of the 19th Annual

IEEE Conference on Computational Complexity, pp. 150-160, 2004.

[22] J. Chen, X. Huang, I. Kanj, and G. Xia, “Strong lower bounds on time com-

plexity of PTAS for certain computational biology problems,” Manuscript of

Unpublished Paper, 2003.

[23] J. Chen, X. Huang, I. Kanj, and G. Xia, “Linear FPT reductions and com-

putational lower bounds,” in Proc. of the 36th ACM Symposium on Theory of

Computing, pp. 212-221, 2004.

[24] J. Chen, X. Huang, I. Kanj, and G. Xia, “Polynomial time approximation

schemes and parameterized complexity,” Lecture Notes in Computer Science,

vol. 3153, pp. 500-512, 2004.

[25] J. Chen, X. Huang, I. A. Kanj, and G. Xia, “Strong computational lower bounds

via parameterized complexity,” Tech. Report, Department of Computer Science,

139

Texas A&M University, 2004.

[26] J. Chen, I. Kanj, and W. Jia, “Vertex Cover: Further observations and further

improvements,” Journal of Algorithms, vol. 41, pp. 280-301, 2001.

[27] J. Chen and A. Miranda, “A polynomial time approximation scheme for general

multiprocessor job scheduling,” SIAM Journal on Computing, vol. 31, pp. 1-17,

2001.

[28] Y. Chen and J. Flum, “Machine characterizations of the classes of the W -

hierarchy,” Lecture Notes in Computer Science, vol. 2803, pp. 114-127, 2003.

[29] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic pro-

gression,” Journal of Symbolic Computation, vol. 9, pp. 251-280, 1990.

[30] X. Deng, G. Li, Z. Li, B. Ma, and L. Wang, “A PTAS for distinguishing

(sub)string selection,” Lecture Notes in Computer Science, vol. 2380, pp. 740-

751, 2002.

[31] X. Deng, G. Li, Z. Li, B. Ma, and L. Wang, “Genetic design of drugs without

side-effects,” SIAM Journal on Computing, vol. 32, pp. 1073-1090, 2003.

[32] R. Diestel, Graph Theory, New York: Springer, 2000.

[33] R. Downey, “Parameterized complexity for the skeptic,” in Proc. 18th IEEE

Annual Conference on Computational Complexity, pp. 132-153, 2003.

[34] R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto-Rodriguez, and F. Rosa-

mond, “Cutting up is hard to do: the parameterized complexity of k-cut and

related problems,” Electronic Notes in Theoretical Computer Science, vol. 78,

pp. 205-218, 2003.

140

[35] R. Downey, P. Evans, and M. Fellows, “Parameterized Learning Complexity,” in

Proc. 6th ACM Workshop on Computational Learning Theory, pp. 51-57, 1993.

[36] R. Downey and M. Fellows, “Parameterized computational feasibility,” in Proc.

of the Second Cornell Workshop on Feasible Mathematics, (Feasible Mathematics

II, P. Clote and J. Remmel eds.), Birkhauser Boston, pp. 219-244, 1995.

[37] R. Downey and M. Fellows, Parameterized Complexity, New York: Springer-

Verlag, 1999.

[38] M. Fellows, “Parameterized complexity: the main ideas and some research fron-

tiers,” Lecture Notes in Computer Science, vol. 2223, pp. 291-307, 2001.

[39] M. Fellows, J. Gramm, and R. Niedermeier, “On the parameterized intractability

of CLOSEST SUBSTRING and related problems,” Lecture Notes in Computer

Science, vol. 2285, pp. 262-273, 2002.

[40] J. Flum and M. Grohe, “Describing parameterized complexity classes,” Lecture

Notes in Computer Science, vol. 2285, pp. 359-371, 2002.

[41] F. V. Fomin and D. M. Thilikos, “Dominating sets in planar graphs: branch-

width and exponential speed-up,” in Proc. of the Fourteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, pp. 168-177, 2003.

[42] F. V. Fomin and D. M. Thilikos, “A simple and fast approach for solving problems

on planar graphs,” Lecture Notes in Computer Science, vol. 2996, pp. 56-67, 2004.

[43] M. Frick and M. Grohe, “Deciding first-order properties of locally tree-

decomposable structures,” Journal of the ACM, vol. 48, pp. 1184-1206, 2001.

[44] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, W. H. Freeman, New York, 1979.

141

[45] J. Gramm, R. Niedermeier, and P. Rossmanith, “Fixed-parameter algorithms

for CLOSEST STRING and related problems,” Algorithmica, vol. 37, pp. 25-42,

2003.

[46] J. Gramm, J. Guo, and R. Niedermeier, “On exact and approximation algorithms

for distinguishing substring selection,” Lecture Notes in Computer Science, vol.

2751, pp. 195-209, 2003.

[47] M. Grohe, “Parameterized complexity for the database theorist,” SIGMOD

Record, vol. 31, pp. 86-96, 2002.

[48] J. Hastad, Computational Limitations for Small-Depth Circuits, The MIT Press,

Cambridge, MA, 1986.

[49] M. T. Hallett, An Integrated Complexity Analysi of Problems for Computational

Biology, Ph.D. Thesis, University of Victoria, 1996.

[50] D. S. Hochbaum, Approximation Algorithms for NP-hard Problems, PWS Pub-

lishing Company, Boston, MA, 1997.

[51] J. E. Hopcroft and R. E. Tarjan, “Efficient planarity testing,” Journal of the

ACM, vol. 21, pp. 549-568, 1974.

[52] O. H. Ibarra and C. E. Kim, “Fast approximation algorithms for the knapsack

and sum of subset problems,” Journal of the ACM, vol. 22, pp. 463-468, 1975.

[53] R. Impagliazzo, R. Paturi, and F. Zane, “Which problems have strongly expo-

nential complexity?” J. Comput. Syst. Sci., vol. 63, pp. 512-530, 2001.

[54] T. Jian, “An O(20.304n) algorithm for solving maximum independent set prob-

lem,” IEEE Transactions on Computers, vol. 35, pp. 847-851, 1986.

142

[55] T. Jiang and M. Li, “On the approximation of shortest common supersequence

and longest common subsequences,” SIAM Journal on Computing, vol. 24, pp.

1112-1139, 1995.

[56] I. Kanj and L. Perkovic, “Improved parameterized algorithms for planar domi-

nating set,” Lecture Notes in Computer Science, vol. 2420, pp. 399-410, 2002.

[57] S. Khanna and R. Motwani, “Towards a syntactic characterization of PTAS,” in

Proc. 28th Annual ACM Symp. on Theory of Computing, pp. 468-477, 1996.

[58] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani, “On syntactic versus com-

putational views of approximability,” SIAM Journal on Computing, vol. 28, pp.

164-191, 1998.

[59] P. Kolaitis and M. Thakur, “Approximation Properties of NP Minimization

Classes.” J. Comput. Syst. Sci., vol. 50, pp. 391-411, 1995.

[60] D. Maier, “The complexity of some problems on subsequences and superse-

quences,” Jounal of the ACM, vol. 25, pp. 322-336, 1978.

[61] M. Li, B. Ma, and L. Wang, “On the closest string and substring problems,”

Jounal of the ACM, vol. 49, pp. 157-171, 2002.

[62] R. J. Lipton, R. E. Tarjan, “Applications of a planar separator theorem,” SIAM

J. Comput., vol. 9, pp. 615-627, 1980.

[63] J. Nes̆etr̆il and S. Poljak, “On the complexity of the subgraph problem,” Com-

mentationes Mathematicae Universitatis Carolinae, vol. 26, pp. 415-419, 1985.

[64] R. Niedermeier and P. Rossmanith, “Upper bounds for vertex cover further

improved,” Lecture Notes in Computer Science, vol. 1563, pp. 561-570, 1999.

143

[65] C. Papadimitriou and M. Yannakakis, “Optimization, approximation, and com-

plexity classes,” Journal Of Computer and System Sciences, vol. 43, pp. 425-440,

1991.

[66] C. Papadimitriou and M. Yannakakis, “On limited nondeterminism and the com-

plexity of VC dimension,” Journal of Computer and System Sciences, vol. 53,

pp. 161-170, 1996.

[67] C. Papadimitriou and M. Yannakakis, “On the complexity of database queries,”

Journal of Computer and System Sciences, vol. 58, pp. 407-427, 1999.

[68] A. Paz and S.Moran, “Non deterministic polynomial optimization problems and

their approximations,” Theoretical Computer Science, vol. 15, pp. 251-277, 1981.

[69] P. A. Pevzner and S.-H. Sze, “Combinatorial approaches to finding subtle signals

in DNA sequences,” in Proc. 8th International Conference on Intelligent Systems

for Molecular Biology, pp. 269-278, 2000.

[70] K. Pietrzak, “On the parameterized complexity of the fixed alphabet shortest

common supersequence and longest common subsequence problems,” Journal of

Computer and System Sciences, vol. 67, pp. 757-771, 2003.

[71] J. Robson, “Algorithms for maximum independent sets,” Journal of Algorithms,

vol. 7, pp. 425-440, 1986.

[72] J. Robson, “Finding a maximum independent set in time O(2n/4)?” LaBRI,

Universite BordeauxI, 1251-01, 2001.

[73] C. Roth-Korostensky, Algorithms for Building Multiple Sequence Alignments

and Evolutionary Trees, Ph.D. Thesis, No. 13550, ETH Zürich, 2000.

144

[74] S. Sahni, “Algorithms for scheduling independent tasks,” Journal of the ACM,

vol. 23, pp. 116-127, 1976.

[75] U. Stege, Resolving Conflicts from Problems in Computational Biology, Ph.D.

Thesis, No. 13364, ETH Zürich, 2000.

[76] S.-H. Sze and J. Chen, “Finding specific motifs in DNA sequences via cliques in

k-partite graphs,” Manuscript of Unpublished Paper, 2003.

[77] S.-H. Sze, S. Lu, and J. Chen, “Integrating sample-driven and pattern-driven

approaches in motif finding,” in Proc. 4th Workshop on Algorithms in Bioinfor-

matics, accepted, 2004.

[78] R. Tarjan and A. Trojanowski, “Finding a maximum independent set,” SIAM

Journal on Computing, vol. 6, pp. 537-546, 1977.

[79] G. Woeginger, “When does a dynamic programming formulation guarantee the

existence of an FPTAS?” in Proc. 10th Annual ACM-SIAM Symp. on Discrete

Algorithms, pp. 820-829, 2001.

145

VITA

Name: Xiuzhen Huang

Address: Computer Science Department, P.O. Box 9, State University, AR 72467

Email: xzhuang@csm.astate.edu

Education: M.S. in computer science, Shandong University, China, July 1999;

B.S. in computer science, Shandong University, China, July 1996.

The typist for this thesis was Xiuzhen Huang.

