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We study quantum interference corrections to the conductivity in (Ga,Mn)As ferromagnetic semiconductors
using a model with disordered valence-band holes coupled to localized Mn moments through a p-d kinetic-
exchange interaction. We find that at Mn concentrations above 1% quantum interference corrections lead to
negative magnetoresistance, i.e., to weak localization (WL) rather than weak antilocalization (WAL). Our work
highlights key qualitative differences between (Ga,Mn)As and previously studied toy-model systems and
pinpoints the mechanism by which exchange splitting in the ferromagnetic state converts valence-band WAL
into WL. We comment on recent experimental studies and theoretical analyses of low-temperature magnetore-
sistance in (Ga,Mn)As which have been variously interpreted as implying both WL and WAL and as requiring
an impurity-band interpretation of transport in metallic (Ga,Mn)As.
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I. INTRODUCTION

At low temperatures the conductivity of disordered metals
and semiconductors departs from the classical Drude formula
because of both electron-electron interaction and quantum
interference corrections.! The quantum interference correc-
tion to semiclassical transport theory is dominated by contri-
butions from self-intersecting paths. The interference may be
constructive or destructive depending on a combination of
intrinsic and extrinsic factors. The principal extrinsic factors
which help determine the sign of the quantum correction are
the strength of spin-orbit (SO) scattering off heavy
impurities>* and the presence (or absence) of spin-dependent
scatterers. When SO scattering is weak and spin-dependent
scatterers are absent interference between time reversed elec-
tron waves is constructive, which decreases conductivity and
leads to weak localization (WL). For sufficiently strong SO
scattering interference in paramagnetic systems becomes de-
structive and the conductivity is enhanced, leading to weak
antilocalization (WAL). The main intrinsic factor which
helps determine the sign of the quantum correction is helicity
in the band structure, which is often*> but not always®’ as-
sociated with spin-orbit interactions. Heuristically, WL
(WAL) is favored when the helicity of the band eigenstates is
such that quasiparticle spinors at opposite momenta are
parallel (antiparallel).”

Both WL and WAL are suppressed by an applied mag-
netic field which washes out quantum interference of the
carriers by effectively reducing their phase coherence length
14 The suppression, which is complete when the magnetic
length is smaller than the quasiparticle mean-free path, is the
most common experimental signature of the phenomenon
and manifests itself as a negative (in case of WL) or positive
(in case of WAL) magnetoresistance (MR).

Both the theory and the observation of WL or WAL are
more complex in ferromagnetic than in paramagnetic con-
ductors. Experimentally, internal magnetic fields, anisotropic
magnetoresistance (AMR), and isotropic magnetoresistance
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(IMR) can either destroy quantum interference or mask its
occurrence.® Difficulties in interpretation can be especially
severe in carrier mediated ferromagnets because of the sen-
sitivity of quasiparticle properties to the magnetic micro-
structure. Theoretically, the role of exchange splitting when
combined with intrinsic and extrinsic spin-orbit interactions
alters quantum interference in a way which has previously
been incompletely articulated. At any rate, it is agreed that
neither WL nor WAL survives in clean strong ferromagnets
for which the magnetic length [,=[#/(eH,,)]"* is smaller
than the quasiparticle mean-free path [. (Here H,,, is the in-
ternal field of the ferromagnet.) On the other hand, traces of
quantum interference are expected to survive when [y is
larger than /. Larger values of [y/l can be due either to
weaker internal fields or to stronger disorder.

Because their moments are dilute and randomly distrib-
uted, diluted magnetic semiconductors such as (Ga,Mn)As
have short mean-free paths (/=<5 nm) and weak internal
fields (I;=100 nm in the absence of external fields at 5%
Mn). Dilute moments also help support the sizeable coher-
ence lengths (=100 nm at 10 mK) observed in these
materials.”!'? Indeed, the presence of quantum interference
effects in (Ga,Mn)As has been clearly demonstrated by mea-
surements of universal conductance fluctuations and
Aharonov-Bohm effects in (Ga,Mn)As nanodevices.”!!
However, due to the aforementioned experimental subtleties
conflicting conclusions have been reached!®!%!4 on the mag-
nitude and even on the sign of quantum corrections to the
conductivity.

In this paper we report on a theoretical study which we
expect to be helpful in achieving a more complete under-
standing. Unlike earlier theoretical work!>!% which ad-
dressed quantum interference in ferromagnets, we focus our
study on a four-band model which is directly relevant to the
valence bands of (Ga,Mn)As. We demonstrate that the quan-
tum interference contribution to MR in robustly ferromag-
netic (Ga,Mn)As is negative. Our theoretical conclusion is at
odds with the outcome of the experimental study of Neu-
maier et al.'” and in partial agreement with the purported
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conclusion of the experimental study of Rokhinson et al.'*
As we discuss later, however, it is not yet completely clear
that either experimental study has completely succeeded in
separating the quantum interference correction to the semi-
classical conductivity from other magnetoresistance effects,
the most troubling of which is likely anisotropic magnetore-
sistance. In their experimental study of magnetoresistance in
(Ga,Mn)As, Rokhinson et al.'* argued that their observation
of negative MR is incompatible with quantum interference
theory and that it therefore implied that transport must be
occurring within an impurity band. The opposite conclusion,
namely, that ferromagnets should normally exhibit WL rather
than WAL was reached in an earlier theoretical contribution
by Dugaev et al.'> Nevertheless, in a recent comment Dug-
aev et al.'” explained that their theory can also lead to WAL
under some circumstances, arguing that it is not necessarily
at odds with the Neumaier e al.'® WAL finding in (Ga,M-
n)As. As the detailed theory presented in this paper makes
clear, Rokhinson et al.'* were incorrect in asserting that WL
cannot occur in ferromagnetic (Ga,Mn)As.

In this contribution we attempt to reduce the level of con-
fusion by studying a model which is directly relevant to
(Ga,Mn)As and by drawing attention to some of the compli-
cations which arise in separating quantum interference from
other MR effects. Negative MR (WL) is in fact readily com-
patible with transport in a disordered exchange-split valence
band, even when there is strong SO coupling in the band, and
is expected in (Ga,Mn)As. Existing experimental work!%-14
which isolates a low-temperature contribution to the MR of
(Ga,Mn)As is strongly suggestive of a quantum interference
effect. However, additional work will be needed to make this
identification conclusive and to test theory quantitatively by
accurately isolating the quantum interference contribution to
MR.

This paper is organized as follows. We begin by review-
ing the experimental studies of low-temperature magnetore-
sistance phenomena in (Ga,Mn)As (Sec. II). We follow in
Sec. III with an outline of the general formalism used here to
evaluate the Cooperon in multiband ferromagnets. In Sec. IV
we apply the formalism to the two-dimensional electron-gas
ferromagnet (magnetized two-dimensional electron gas,
M2DEG) model studied earlier by Dugaev et al.'> The re-
sults in this section are useful in discussing the competition
between WL and WAL in ferromagnets generally. Section V
is devoted to the more complicated four-band Kohn-
Luttinger model with a kinetic-exchange mean field, which
captures the essentials'® of ferromagnetism in (Ga,Mn)As.
We find that in this model, which employs the disordered
valence-band picture of states near the Fermi level in metal-
lic (Ga,Mn)As and typically overestimates the effect of SO
interactions, very small exchange fields are sufficient to con-
vert the positive MR (WAL) of the paramagnetic state to
negative MR (WL) in the ferromagnetic state. WL is pre-
dicted over the entire broad range of Mn concentrations for
which robust metallic ferromagnetism occurs in high quality
(Ga,Mn)As samples with a low density of Mn interstitials. In
the M2DEG model, on the other hand, relatively large ex-
change fields are necessary to convert WAL into WL. We
explain in Sec. V that this difference in WL behavior is due
to a difference in quasiparticle chirality between the two

PHYSICAL REVIEW B 79, 155207 (2009)

models. Motivated by the large semiclassical AMR effects in
(Ga,Mn)As which typically occur over a field range similar
to that over which WL(WAL) MR effects occur, we explore
anisotropy in the weak localization effect itself in Sec. VI.
Section VII summarizes our work and highlights our princi-
pal conclusions.

II. REVIEW OF EXPERIMENTAL RESULTS

As mentioned above, the measurement of WL or WAL in
magnetic systems is subtle because (i) the internal magneti-
zation of a ferromagnet partially dephases quantum interfer-
ence and (ii) quantum interference must be isolated from a
nontrivial background of semiclassical MR effects. The
background is usually primarily due to magnetization direc-
tion rotation combined with AMR (dependence of resistance
on magnetization direction) but may involve field-dependent
changes in magnetic microstructure (e.g., domain-wall distri-
bution) or field-dependent spin-disorder scattering. Due in
part to these subtleties experimental studies have reached
contradictory conclusions about WL in (Ga,Mn)As. In this
section we briefly review and comment on the experimental
literature. The detailed theoretical analysis presented in the
following sections was motivated both by experimental con-
fusion and by confusion about the theory which should be
used to guide its interpretation.

Matsukura et al.'? initiated the discussion of possible WL
or WAL contributions to transport in (Ga,Mn)As by identi-
fying it as a possible source of the isotropic negative MR
which is frequently observed in (Ga,Mn)As films. This nega-
tive MR does not saturate even at very high magnetic fields,
which may rule out the suppression of spin disorder as the
responsible factor. At the time of these measurements there
were no studies of coherence length scales in (Ga,Mn)As and
it was then plausible that the observed phenomenon be a
manifestation of weak localization.!? In fact, the data seem to
bear a reasonable fit to a H'? dependence at high magnetic
field H, which is characteristic of three-dimensional (3D)
WL in systems with negligible SO coupling. Given that the
intrinsic SO interaction in the valence band is by no means
negligible, the authors speculated that WL occurs rather than
WAL because spin-orbit coupling is rendered largely ineffi-
cient by the exchange splitting. However, no explicit calcu-
lation was provided to support this view. This interpretation
of the MR signal requires that the magnetic length scale [/
be shorter than the coherence length scale /, at that field
range. However, Ref. 12 includes measurements only at tem-
peratures (above 2 K) for which /, is expected, based on
more recent experimental work,”!! to be significantly smaller
than /;,. The MR effect studied by Matsukura et al.'? is there-
fore unlikely to be due to quantum interference.

Neumaier et al.'® studied magnetotransport in (Ga,Mn)As
by measuring the transport properties of arrays of nanowires
at temperatures down to ~10 mK. Like Matsukura et al.'
they observed a high-field negative MR in their samples
which is ascribed either to quantum interference or to the
suppression of spin disorder but is not analyzed in detail.
Closer inspection of the Neumaier et al.'® data reveals that
the temperature dependence of this high-field MR signal
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tracks the temperature dependence of the conductivity. Since
quantum interference should be stronger in more disordered
samples, WL is unlikely to be the origin of this MR effect.

The main focus of the work of Neumaier et al.'® was on
the low-field regime. At high temperatures a positive MR
effect, due to AMR, is visible at fields below ~0.4 T. This
low-field signal in their data is clearly altered at low tem-
peratures likely because of quantum interference corrections
to the conductivity. Neumaier et al.'® ascribed the low-
temperature MR effect to WAL, but this conclusion is subject
to uncertainty as we now explain. Both low-field effects ap-
pear on top of the broader-field background mentioned
above. The temperature dependence of the background is
likely due to electron-electron interactions, but its negative
MR field dependence is of uncertain origin. Attempts to iso-
late the WAL signal by taking the difference between low-
temperature and higher-temperature MR curves are compli-
cated by the substantial temperature dependence of the
background at both low and high fields. Neumaier et al.'®
chose to identify the quantum interference contribution by
examining the temperature dependence of the ratio of low-
field and high-field resistances and in this way concluded
that it has WAL character, i.e., that the correction gives a
positive contribution to the low-field magnetoresistance.
However, this interpretation is somewhat fragile because
changes in internal magnetization at these low fields can
yield resistance changes which are difficult to accurately
anticipate.? Other contributions to MR can play an impor-
tant role, can be temperature dependent, and are therefore not
uniquely separable from the WL/WAL effects. As noted by
Neumaier et al.,'® the experimentally extracted contribution
ascribed to the WAL saturates at lower magnetic fields than
expected from the inferred [, and /. These saturation fields
are similar to the magnetic anisotropy fields in the material,
suggesting that the present interpretation is not complete.?!
Our theoretical results in Secs. V and VI suggest rather
strongly that WAL is in fact not expected to prevail in
metallic (Ga,Mn)As.

Although our calculations do not support the WAL inter-
pretation of the positive low-field MR of Neumaier et al.,'”
they do not provide an immediate alternative interpretation
of the data. We explore one possibility in Sec. VI by theo-
retically examining the anisotropy of the quantum interfer-
ence corrections. In our theory the symmetry breaking
mechanism for this anisotropy is the same as that responsible
for the higher-temperature AMR effect. We conclude that
anisotropy of the WL corrections to conductivity also cannot
account for the changes in MR observed in experiment at
low temperatures. It is possible that still more elaborate ex-
perimental studies with magnetic fields applied along differ-
ent directions and using materials with both in-plane and
out-of-plane magnetic easy axes and various nanobar geom-
etries will be able to separate AMR and quantum interference
effects to achieve a complete picture of low-temperature MR
in (Ga,Mn)As. Effects that may compete with the WL/WAL
include higher order (cubic, etc.) AMR terms, spin-disorder
scattering, or electron-electron interactions.

Finally we would like to comment on the work by
Rokhinson et al.'* in which they observe an intriguing MR
peak at low temperature and low fields in (Ga,Mn)As films
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which is interpreted as a signature of the WL. Although our
results in Secs. V and VI may appear to corroborate this
experimental work, the character and field range of the mea-
sured negative MR seem to be incompatible with WL theory.
In particular, the expected higher-field ~H'"? MR tail is not
seen in the measured data. Also the experimental dependence
of the MR on the orientation of the magnetic field is not
understood theoretically. Further experiments and analyses
will be necessary to conclusively establish the origin of the
low-temperature MR seen in these experiments.

Our theoretical work does directly address the qualitative
conclusion drawn in Ref. 14 concerning the nature of Fermi-
level states in metallic (Ga,Mn)As. Rokhinson et al.'* argued
on qualitative grounds that the WL quantum interference ef-
fect they apparently observed was not compatible with con-
duction in a disordered valence band. They then leap to the
conclusion that the itinerant holes in (Ga,Mn)As must be in
an impurity band, arguing that spin-orbit interactions would
be weaker in that case. In doing so they are connecting with
an issue which has been controversial?>2’ in the (Ga,Mn)As
literature, namely, whether transport electrons in metallic
(Ga,Mn)As should be viewed as being in a valence band or
an impurity band. Although there is a sharp distinction be-
tween metallic and insulating behaviors, there is in fact no
sharp distinction between a disordered valence band and an
impurity band in a semiconductor. In the present context the
statement that the transport electrons are in an impurity band
presumably is a statement that the scattering potential be-
tween valence-band electrons and the Mn impurities is suf-
ficiently strong that the relevant Hilbert space can be ob-
tained by projecting the direct product of isolated impurity
acceptor levels from the valence band. Presumably the per-
turbative treatment of disorder used in quantum interference
theory would then be invalid. Although there is no theory for
quantum interference in the impurity-band limit, Rokhinson
et al.'"* nevertheless argued that impurity-band conduction
might explain their observation of WL instead of the WAL
they expect. Since, as we show in Secs. V and VI, standard
quantum interference theory in the disordered SO-coupled
exchange-split valence band of (Ga,Mn)As implies WL not
WAL, the experimental finding of Rokhinson et al.'* is in
fact perfectly consistent with transport in a valence band
with disorder which can be treated perturbatively.

III. EVALUATION OF THE COOPERON IN CONDUCTING
FERROMAGNETS

In this section we present a formalism to evaluate quan-
tum interference corrections to conductivity in multiband
disordered ferromagnets with intrinsic SO interactions. In the
diffusive regime (14> 1) these corrections are captured by
a geometric sum of the maximally crossed diagrams,' which
are encoded in the so-called Cooperon C (Fig. 1).The devia-
tions from the Drude conductivity may be read out from Fig.
1, i.e.,

ez N
b=~ J dkv’, jK)v, (- K)GRK)GE (- k)G

X (k)G (- k) f dQ 7 (k.Q). (1)

where we set Ai=1, «,f,... label band eigenstates of the
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FIG. 1. (Color online) Diagrammatic expressions for the quan-
tum interference correction to the conductivity and the Cooperon.
Crosses stand for scattering events off impurities.

ferromagnet, v is the carrier velocity operator, vfw(kl,kz)
= (ak,|v|Bk,), G*® is the advanced (retarded) Green’s
function in the first Born approximation, and Q is the “center
of mass” momentum of the Cooperon. Q ranges approxi-
mately from the inverse phase coherence length, 1/14, to the
inverse mean-free path, 1//. Following standard practice, we
have kept Q in the Cooperon propagator only in Eq. (1),
setting Q=0 elsewhere in the integrand. Additionally, we ig-
nore the contribution from nonbackscattering processes,?®?’
which are unimportant in the diffusive regime.

The main challenge resides in evaluating C, which obeys
the Bethe-Salpeter equation (see Fig. 1)

CBP (k.Q) = u'TY, 5 (k~k+ Q)% (~k+Q.k)

(k’ k”)‘]‘;r o'

n._.a
+Jdk MJZ’B,,

X(-k+Q,-k" +Q)Gp(k")GY,
X(- K"+ Q)57 (kK" Q). 2)

In Eq. (2) we include short-range disorder potentials which
can differ between the ferromagnet’s majority and minority
spins but do not include spin-flip disorder which would not
play a distinct role because we retain spin-orbit coupling in
the band structure. Accordingly J is the carrier spin-density
operator (with component a=0 reserved for charge density)
and Jy,g(k;,ky) = (aky|J'| Bk,) is the matrix element of this
operator between Bloch states. In our calculations we include
only a a=0 spin-independent contribution to the disorder po-
tential which we refer to as Coulomb scattering and a a=z
spin-dependent contribution which we refer to as magnetic
impurity scattering. (Z is the direction of magnetization.) A
sum over a, «”,B" is implicit. The quasiparticle lifetimes are
given by Fermi’s golden rule

1
— :277J dk'u 2 I, T N Ee—Exrg), ()

Tk,a

where u?=n,V3(q=0) for a € {0,z}, n, is the density of scat-
terers, and V,(q) is the scattering potential [dimensions:
(energy) X (volume)]. This model of disorder assumes inde-
pendent incoherent scattering of Coulomb and magnetic im-
purities and is sufficient for the main purposes of this work.
However, in Sec. VI we shall consider the case of coherent
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magnetic and nonmagnetic scatterings, which more faithfully
describes the nature of the randomly distributed substitu-
tional Mn impurities in (Ga,Mn)As which carry local mo-
ments exchange coupled to the holes and are charged accep-
tors. Accounting for correlations between Coulomb and spin-
dependent scattering allows us to asses the strength of the
WL and WAL contributions, including their anisotropies with
respect to the magnetization orientation,'* on a more quanti-
tative level.

Equation (2) is an integral equation of considerable com-
plexity mainly due to the k" dependence of the Cooperon
inside the integrand. Rather than attempting to solve it fully
numerically, we shall proceed to simplify Eq. (2) analyti-
cally. The simplest approach would be to try an ansatz in
which the Cooperon depends only on the center of mass
momentum rather than on the incoming and outgoing mo-
menta separately; however, this ansatz fails whenever the
eigenstates of the ferromagnet are momentum dependent.
The approach we use is based fundamentally on the property
that the disorder potentials is local. On each site the disorder
potential can be expressed in any representation for the
bands included in the model, for example, the four bands
included in the J=3/2 Kohn-Luttinger valence-band model.
We therefore express matrix element of the spin operator in
the basis spanned by J° eigenstates”®

J‘L’m, =(a,k

Ja',~k+Q)

= 2 (akm)m'|a’ .~k +Q)(m/|Im"),  (4)

’
m,m

where |m) satisfies J?|m)=m|m). Now the entire k depen-
dence of J¢ , is contained on (a,k|m)(m'|a’,~-k+Q). In
the same spirit, we can decompose C in the J* basis

PP (k.Q) = (a.-k+Q| & (BKNC(B .~k +Q) & |ak))
= 2 (a,-k+Q|m')BKm)n|p'—k+Q)
X(n'|ak)Ch" (Q). &)

The critical property which simplifies our calculation is the
observation that C,;", depends only on Q in the case of
local disorder; the dependence on k is captured by the over-
lap matrix elements in Eq. (5). Applying the same transfor-
mation to the terms on the right-hand side of Eq. (2) and
eliminating common factors on both sides we arrive at

O (Q) = (U + mm u) 8,8, 0 + 2 Ui /(Q)C),(Q),
L’

(6)

where
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UZ}IJ/(Q) =+ mm’uz)f dk{m|ak)G4(k){ak|l)

X(m'|a’',~k+Q)G" (- k + Q){a',~ k+Q|I').

(7)
Equation (6) may be conveniently expressed in matrix form
C=(1-0)"'c, (8)

where CO=(u’+mm'u?)8,,,,8,,+ in the J* representation.
From Eg. (8), we see that the quantum interference correc-
tion to conductivity is largely governed by modes or chan-
nels for which the eigenvalues of U(Q) are equal to (or clos-
est to) 1. For the models we study, and in almost any
physically realistic situation, the largest eigenvalues of U are
smaller than or equal to 1 and occur at Q=0. The Q depen-
dence of all eigenvalues is given approximately by —DQ?,
where D is the diffusion constant. It follows that the main
contribution to quantum interference comes from small Q
region. Thus it is appropriate to simplify Eq. (7) as

UZ;’J, = (u® + mm'u%) J (m|ak)GA(K){ak]|l)
k

X{m'|a’,~ k)G, (k)(a',~ K|I")

X[1 4+ (Viar - Q)GH (K) + (Vi o - Q)*GR (K)2],
(9)

where vy ,=0dE ./ kK is the quasiparticle velocity. In Eq. (9)
we have assumed that the momentum dependence of the
scattering rate is small, have omitted 0(Q?) terms that are
negligible for kz/> 1, and have made use of G(-k)=G(k).
Moreover, we have neglected the Q dependence of the eigen-
states because the most singular behavior originates from the
Q dependence of the Green’s functions. The combination of
Egs. (1), (5), (8), and (9) yields the complete solution to the
problem in hand. In the following sections we apply them to
the two-band M2DEG toy-model ferromagnet studied previ-
ously by Dugaev et al'® and to the four-band Kohn-
Luttinger Kinetic-exchange model of ferromagnetic (Ga,M-
n)As.

IV. QUANTUM CORRECTIONS TO CONDUCTIVITY
IN A M2DEG

A M2DEG is a minimal model to describe a ferromagnet
with intrinsic SO interactions. Although it is overly simplis-
tic, the M2DEG model provides a versatile theoretical plat-
form where the formalism developed in Sec. III may be
tested while at the same time gaining insight on how ex-
change fields, intrinsic SO, and quasiparticle chirality influ-
ence quantum interference.'” From a more pragmatic stand-
point, a M2DEG is known to capture the qualitative features
of magnetization relaxation in ferromagnetic semiconductors
both in presence and absence of a transport current;” it is
then not unreasonable to expect a similar qualitative guid-
ance regarding weak localization.*

The Hamiltonian that describes a M2DEG is
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2

k
=-—+bg-J, (10)
2m

where by=(=Nk,,Nk,h;), h, is the exchange field (perpen-
dicular to the 2DEG), \ is the Rashba SO coupling, and J is
the spin operator for spin-1/2 quasiparticles. The correspond-

ing eigenvalues and eigenstates are
2

k
Eiy= o = VR + N2,
m

ak) = e b0 o)) (11)
|ak)

N
where ¢=—tan"!(k,/k,) and @=cos™(h./Vh:+\*k?) are the
spinor angles and ==+ is the band index. Given Eq. (11),
one may attempt to solve Egs. (1), (5), (8), and (9). Due to
the rotational symmetry in the plane of the two-dimensional
electron gas (2DEG), the azimuthal integration in Eq. (9)
yields U" ’,I’Z,(O) % 8ym’ 147> Whereupon we obtain

ul 0 0 o0
a—
uy Ui 0

YO 0wl u "
0 0 0 U
in the {|m,,m)}={|T1),1T1),]L1),|L 1)} basis. Assuming that

the band splitting is small (Aky,h, <€), the matrix elements
of Eq. (12) may be obtained analytically

0 % 1l % 0
Ul(0) = cos4<—) + sin4(—> + l—,cosz(—>sin2<—)
2 2 -2b+il’ 2 2
T
+ l cos2<—0>sin2(g>,
2b+il’ 2 2
U1(0) = U}(0),
0 z ;
Ve W —ul4 of OV o0 ir g
VIO = | 2 o\ 2 9 )+ T 2
ir ' 4( 0):|
+ s | — 5
2b+il’ 2

Ut(0)=[U]}(0)]",

U“(O) ul — uz/4< 5 il il )
= -2+ +
u W+ U4 —2b+il'  2b+il
6
Xcosz(—>sin2(g),
2 2
U (0)=[U[HO)]* = U[}(0), (13)
——

where b:\rh§+)\2kfF and I'=1/7 are the band splitting and
the scattering rates at the Fermi energy. We are ultimately
interested in the Q #0 generalization of Eq. (13), which is
straightforward if we assume UZ’,IJ,(Q)OC(Serm/,Hr. While
this assumption neglects the departure from azimuthal sym-
metry at Q #0, we find it to be in good quantitative agree-
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TABLE 1. Quantum correction to conductivity in simple limits
of the M2DEG model. We have set the external magnetic field and
u® to zero in constructing this table. doy= f;log:f and I'=1/7is
the band eigenstate energy uncertainty, which is assumed to be
smaller than the Fermi energy.

do/ by Singular channel(s)
A=h=0 -1 [T 11D 1)
0<h.<T
A=0 -1 AN ERIAY
0<Mkp<T
h,=0 -1 [T ILDTDL U
I'<h,<ep
A=0 -1 1.1
T <\p<ep
h.=0 3 STD=111)

ment with the full numerical calculation.>' With this proviso,
integration of Eq. (9) yields

Ul L(Q) = U L (0)(1 - DQ*7), (14)

where D=v77/2 is the diffusion constant in two dimensions
(2D). Substituting Egs. (13) and (14) in Eq. (8) it is feasible
to derive concise analytical expressions for Eq. (1) in limit-
ing cases; the following discussion and Table I summarizes
the results. These calculations are described in greater detail
in Appendix A.

When Nkz=h.=0, U is diagonal in the |m,m’) basis and
all four eigenvalues are unity (for Q=0 and u*=0). Ulti-
mately only two of the modes (|77) and || |)) contribute to
the conductivity correction because, in the absence of SO,
conductivity corrections originate from spin-up and spin-
down carriers independently. The resulting WL expression

agrees with long-established results:' 50':—%10g1f, where
Ty= l(zﬁ/ D is the coherence time. This result remains un-
changed when 0# h,<I" and 0# Nkp< l/(7'7¢)”2 because
the broadening of energy levels overcomes the band splitting
and the SO-induced rotation of spins in momentum space is
averaged out by momentum scattering.

On the other hand, when /. >TI" and Nkp=0, U is still
diagonal in the |m,m’) basis but only two eigenvalues are
equal to one in this case. However, these modes are precisely
|T1) and || ]), hence once again 50:—%10;;7—;’5.

In contrast, when s,=0 and Nk>T', U is diagonalized by
the total angular-momentum basis |J, M) and the only diver-
gent mode corresponds to the singlet (|0,0)) state. It follows
that the quantum interference correction changes sign yield-

ing WAL: 50=%ﬁlog%". This limit of the M2DEG model
also corresponds to long-established theoretical results.

In the most general case both Aky and s, may be compa-
rable to the Fermi energy. U is then not diagonal in either
|m,m") or |[J,M) representations. In this case, analytical ex-
pressions become cumbersome and it is more convenient to
display the results graphically (Figs. 2-5). Figure 2 shows

the competing influences of i, and Akp; the former favors

PHYSICAL REVIEW B 79, 155207 (2009)

1.00

0.00

5 (e'/h)

e—eoh=0
=—ah=0.1¢
&—4h=03¢

-1.00

E

F

-2.00 '

0.0 0.2 0.8

04
Ak /€,

FIG. 2. (Color online) M2DEG: Quantum correction to conduc-
tivity in the absence of an external magnetic field for (Ref. 32)
€p7=20, 74=427, and u*=0. There is a WAL-to-WL crossover
when the exchange field becomes comparable to the SO interaction
strength. (Note that the band splitting due to the exchange field is
2h.). In limiting cases there is good agreement with the expressions
of Table I. The fact that So(A\=0) is weakly dependent on A, indi-
cates that an exchange splitting per se does not suppress weak lo-
calization unless it becomes comparable to €z. We have separately
evaluated the /,=0 curve for a different values of /, (not shown)
and found a good agreement with Fig. 1 of Ref. 3.

WL whereas the latter leads to WAL. This trend may be
understood by recognizing that most of the conductivity cor-
rection stems from intraband transitions; interband interfer-
ence is suppressed due to band splitting. When h,> Nkp(h,
< \kp), the spinor at |a,Kk) is nearly parallel (antiparallel) to
the spinor at |a,—k>, hence as mentioned in the Sec. I the

0.80
Ak =05¢
0.60 L F F i
¢ 1-40
040 | ]
) =——u g 1=10
~~
=
N\
o 020 F il
N
o)
<)
0.00 | ]
~0.20 | 1
—0.40 L L L L
0.0 0.2 0.4 06 08 1.0

h /e,

FIG. 3. (Color online) M2DEG: Exchange field dependence of
the conductivity correction for Akp=0.5€p, €774=840, and u*=0.
Note that the value of the exchange field at which the transition
from WAL to WL occurs (h,=0.25€f in this figure) is independent
of the scattering rate. This is true because the WAL-to-WL transi-
tion in a M2DEG is largely determined by changes in intraband
correlations.
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FIG. 4. M2DEG: effect of exchange scatterers in a unmagne-
tized (h,=0) two-dimensional electron gas with Rashba SO interac-
tions and er7y=20, where 7 is the scattering time due to nonmag-
netic impurities. Exchange impurities dephase the singlet Cooperon
responsible for WAL and leave the triplet Cooperons unchanged.
Hence there is a WAL-to-WL transition. The magnitude of WL
keeps increasing at larger u* because the total scattering rate too is
increasing.

outcome is WL (WAL). This argument rests crucially in the
fact that the Rashba SO interaction reverses spinors under
space inversion.** The crossover between WAL and WL oc-
curs when Nkp=2h_, namely, when the exchange splitting
and SO splitting are nearly identical.

Figure 3 shows that the value of the exchange field at
which the WAL to WL crossover occurs is independent of
the scattering rate; this is so because for 4,,Nk>1", do in a
M2DEG is largely governed by intraband correlations. Fig-
ure 4 studies the effect of magnetic impurities in the
M2DEG. As can be inferred from Eq. (13), u* dephases op-
posite spin correlations, yet does not affect equal spin
channels.>* Consequently, incorporating magnetic impurities
may turn WAL into WL.

Table I and Figs. 2—4 omit the internal magnetic field
inherent to ferromagnets. This neglect is justified in thin-film
geometries when the magnetization is perpendicular to the
2DEG and the demagnetization field cancels out the internal
field. In addition, we have not yet considered the dephasing
due to a perpendicular external magnetic field H,,,. Analyz-
ing the influence of H.,, is important because it may uncover
nonmonotonic MR e.g., when the magnitudes of the ex-
change and SO splitting are close to one another. In such
scenario a positive (negative) value of So(H,.=0) does not
rule out WL (WAL) for certain range of H,,,. We shall return
to these considerations in Sec. V, where we study the four-
band kinetic-exchange model relevant to (Ga,Mn)As.

V. QUANTUM CORRECTIONS TO CONDUCTIVITY
IN (Ga,Mn)As

The goal of this section is to compute the quantum cor-
rections to conductivity for (Ga,Mn)As. Our calculation is
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FIG. 5. (Color online) (Ga,Mn)As: Interband vs intraband con-
ductance correction vs Mn fraction x for /,=100 nm and #*=0 in
absence of an external field. p stands for the hole density. In this
figure we have set interband matrix elements of the velocity opera-
tor to zero in order to make the distinction between interband and
intraband contributions to quantum interference clearer. The inter-
band correlations responsible for WAL in GaAs decay rapidly as the
exchange field due to Mn ions lifts band degeneracies. In contrast,
intraband correlations are relatively indifferent to exchange splitting
and are responsible for the eventual crossover to WL. For p
=0.4 nm~ and e;7=2.5 (these values are within the experimentally
relevant range), h,=1/7 is satisfied at x=0.05—note that interband
correlations are nearly vanished at that point. Assuming a thin-film
geometry with square cross section, the conductance in this figure is
defined as G=ot, where o is the calculated conductivity and ¢ is the
thickness of the film (100 nm).

motivated in part by the recent controversy'%!417:18 concern-

ing the sign of quantum MR in (Ga,Mn)As. Prior to our
work, it was clear that the confusion surrounding this ques-
tion could be reduced by a convincing theoretical answer to
the following question: is the standard theory of quantum
interference in a disordered valence band compatible with
the observation of negative MR? Since the SO splitting in
the valence band of GaAs (Ago=341 meV) is larger than the
typical exchange splitting (#,=240 meV at 8% Mn concen-
tration), the answer would be no, in agreement with Rokhin-
son et al.,'* if guessed from studies of the M2DEG model
described in Sec. IV. However, the detailed calculation for
the Kohn-Luttinger kinetic-exchange model performed in
this section shows that the WL dominates despite the strong
SO coupling. The key difference between M2DEGs and
(Ga,Mn)As is that the respective quasiparticles have qualita-
tively different chiralities, which renders WAL significantly
more fragile in the latter system than in the former. We
elaborate on this point below.

We adopt the four-band Kohn-Luttinger Hamiltonian
within the spherical approximation using parameters appro-
priate for GaAs and combine it with a kinetic-exchange
mean-field theory model for the ferromagnetic ground state
of Mn-doped GaAs
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1 5
H=—|:<71+—72)k2—2)/3(k-,])2}+thz, (15)
2m 2

where J is the spin operator projected onto the J=3/2 total
angular-momentum subspace at the top of the valence band
and {y,=6.98, y,=y;=2.5} are the Luttinger parameters for
the spherical approximation to the valence bands of GaAs. In
Eq. (15) h,=J,,SNy, is the exchange field, J,,
=55 meV nm’ is the p-d exchange coupling, S=5/2 is the
spin of Mn ions, x is the Mn fraction, Ny, =4x/a’ is the
density of Mn ions, and a=0.565 nm is the lattice constant
of GaAs.»

Since Eq. (15) cannot be diagonalized analytically (except
for x=0), Egs. (1), (5), (8), and (9) must be solved numeri-
cally. As in Sec. IV the central quantity to be computed is
U(Q), which in this case is a 16 X 16 matrix. For =0, many
of its matrix elements vanish due to the rotational symmetry
around the exchange field, which renders UZ’,IJ,(O)
% Sy s+ UpON azimuthal integration. As in Sec. IV, we
assume that UZ’,I, ;(Q) is also proportional to 8,,,,7 ;+;» Which

expedites the numerical calculations considerably. In addi-
tion, we regard Q as a three-dimensional momentum, i.e.,
assume that all three dimensions of the (Ga,Mn)As conduct-
ing channel are not significantly smaller than /.

Let us first consider the case where the exchange splitting
(the density of ordered Mn local moments) is very small. In
this case the energy spectrum of Eq. (15) consists of nearly
degenerate heavy-hole bands (HH1 and HH2) and nearly de-
generate light-hole bands (LH1 and LH2). Our numerical
studies confirm that there is only one eigenvalue in U(0) that
is nearly equal to unity and that it corresponds to the zero
total angular-momentum (singlet) mode, namely, [0,0)
:% %,—%)—|—%,% +|—%,%)— %,—%)]. The conductivity cor-
rection from this correlation mode is positive, giving rise to
WAL. In agreement with Ref. 36, we find that the Cooperons
correlating HH1 with HH2 and LH1 with LH2 are promi-
nent, while the remaining Cooperons are much weaker. This
indicates that WAL in (Ga,Mn)As is due to interband inter-
ference (HH1-HH2 and LH1-LH2). This scenario is qualita-
tively different from that of the M2DEG, where WAL is
encoded in intraband correlations. The source of this crucial
difference is that the four-band Kohn-Luttinger Hamiltonian
is invariant under k — —k, while the M2DEG Hamiltonian is
not. Accordingly, the spinor |[HH1,k) is parallel to |HH1,
-k) and antiparallel to |[HH2,-k);*" as pointed in Sec. IV,
the state of affairs is quite opposite in M2DEGs. Since WAL
(WL) follows from correlations between spinors pointing in
the opposite (same) direction, there are competing intraband
(WL) and interband (WAL) correlations in (Ga,Mn)As. The
latter prevails for very low exchange splitting because SO
interactions dephase all Cooperon channels except for the
singlet.

As the Mn concentration is increased, the HH1-HH2 and
LHI1-LH2 degeneracies are lifted. Had WAL in GaAs relied
mostly on intraband correlations as in a M2DEG, this split-
ting would not have changed the sign of the conductivity
correction until . =Ago. Yet, the WAL contribution in
(Ga,Mn)As is sustained by interband (HH1-HH2 and LHI-
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FIG. 6. (Color online) (Ga,Mn)As: Total conductance correction
for two different values of disorder. Since the interband contribution
which favors positive conductance contributions vanishes when £,
~ 1/, the value of the Mn concentration at which the WAL-to-WL
crossover occurs depends on the scattering rate. This behavior is
different from that of the M2DEG model.

LH2) correlations, which weaken significantly when the ex-
change splitting becomes comparable to the scattering rate
of the quasiparticles. This may be understood by the follow-
ing simple argument. When the bands are split, the minimum
interband momentum sum is Q.¢~ h /v, where vy is the
Fermi velocity. Interband interference becomes negligible
when DQ?;~ 1/, i.e., when h_~ 1/ 7. Meanwhile, the intra-
band correlations (which favor WL) have zero center-of-
mass momentum regardless of the splitting. Furthermore,
since oppositely directed momenta already have parallel
spinors in the absence of a field, these intraband correlations
are insensitive to exchange splitting. This behavior also con-
trasts with the M2DEG behavior in which intraband WL cor-
relations are enhanced by /.. As a consequence the crossover
from interband-dominated to intraband-dominated interfer-
ence occurs already when 7, <1/7 in (Ga,Mn)As, a condi-
tion which is qualitatively less stringent than the h,=Agq
condition that applies in M2DEGs and in other systems with
similar chirality.

Figures 5 and 6 illustrate the preceding observations. Fig-
ure 5 demonstrates the competition between interband
(WAL) and intraband (WL) correlations and the crossover
that occurs as band degeneracies are lifted by the exchange
field. On the other hand, Fig. 6 shows that the crossover
between positive and negative conductance corrections oc-
curs at smaller Mn concentration for cleaner samples in
which the interband contribution is destroyed by weaker ex-
change fields. The saturation of the magnitude of do at larger
x reflects a nearly complete decay of interband correlations
and the weak dependence of intraband correlations on /..

It follows that negative MR is not only possible in (Ga,M-
n)As, but expected through most of the metallic regime to
which this theory is intended to apply. To address the ques-
tion of whether positive MR can occur in any parameter and
field range, even when the total conductivity change is nega-
tive, we investigate the influence of an external magnetic
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FIG. 7. (Color online) (Ga,Mn)As: Magnetoresistance for u®
=0 for several different Mn concentrations. The short mean-free
paths of (Ga,Mn)As imply that the magnetoresistive signal persists
up to relatively large fields. The conductance is defined as G=ot,
where o is the calculated conductivity and 7 is the thickness of a
square film (100 nm). At very small x, we find the positive MR
characteristic of WAL; the sign changes as a function of Mn
concentration.

field on the quantum correction to conductivity. This task is
most simply (yet not most accurately) accomplished by
smoothly replacing the coherence length [, by the magnetic
length ;=[7i/(eH,)]"* through the substitution of 1/, by
(l:ﬁ2+l;,2)”2. The outcome is Fig. 7, which showcases the
transition from positive to negative MR as a function of Mn
concentration. The effect of the external field becomes sig-
nificant when [ is smaller than an effective coherence length
lf‘/ff which will be smaller than [, due to the SO coupling
dephasing and effects of dephasing due to the exchange split-
ting. For no exchange splitting, x=0, lf;f=l¢2 100 nm and
the suppression of WAL becomes visible as H.,=0.17. For
x>0, the competition between the exchange field and the SO
interaction removes the singularity from the singlet channel.
The removal of this singularity is qualitatively akin to reduc-
ing the decoherence length with respect to the x=0 value,
ie., lfgt< L4 Accordingly, a larger H,, is required to make a
dent in the quantum correction to conductivity, thereby yield-
ing shallower MR curves.’® At any rate, the quantum correc-
tion to conductivity and its subsequent suppression under an
external field ought to be observable so long as > 1. We
note that the substitution of 1/7, by (lj+l,_{2)” 2 is not quan-
titatively accurate for [;>1,(0<H,,=<0.06T); yet as we
show below this does not eradicate the possibility of WAL
from our theory. In viewing all these figures it should be kept
in mind that an impurity band is expected®* to form in
(Ga,Mn)As for x=<0.01, close to but possibly at larger values
of x than the metal insulator transition (MIT). Our model
results in this parameter range should be viewed with cau-
tion. In Fig. 8 we take a closer look at the doping region
where So(H,,=0) changes sign (which is this regime) and
we find a nonmonotonic magnetoresistance. In spite of some
qualitative similarities, these results are quantitatively dis-
tinct from the measurements of Neumaier et al.:'® our WAL
“bumps” are less pronounced and they disappear as doping
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FIG. 8. (Color online) (Ga,Mn)As: Magnetoresistance for u®
=0,p=0.4 nm™, e;7=2.5 at several different Mn concentrations
near the crossover from negative to positive MR.

increases. More to the point, the samples studied by Neu-
maier et al.'® have larger values of x.

Finally, Fig. 9 highlights the effect of spin-dependent
scattering, which is inevitable due to the random distribution
Mn moments. As in the case for the M2DEG, magnetic scat-
terers dephase WAL correlations mainly, further reducing the
likelihood of the appearance of positive MR.

VI. ANISOTROPIC WEAK LOCALIZATION

Most experimental queries of quantum interference in
(Ga,Mn)As involve external magnetic fields that are mis-
aligned with the easy axis. Consequently, experimenters at-
tempt to identify and subtract a background made of AMR.
However, the anisotropic quantum interference that accom-
panies the normal AMR receives little mention; in this sec-
tion we study its possible implications.

0.5000
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0.0000 [ 8
~
S
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FIG. 9. (Color online) (Ga,Mn)As: Exchange impurities reverse
the sign of magnetoresistance in GaAs by decreasing the WAL cor-
relations while leaving the WL correlations unaffected. 7, is the
scattering time of nonmagnetic impurities.
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FIG. 10. (Color online) Dependence of magnetoresistance on
the relative orientation between the electric current and the mag-
netic easy axis (Z) in (Ga,Mn)As. oy=(0,+0,,)/2 is the average
value of the Boltzmann conductivity.

While there are a variety of crystalline and noncrystalline
sources for AMR, in the spherical four-band model that we
study in this paper only the noncrystalline term given by the
relative angle between the magnetization and current is non-
zero. The noncrystalline AMR in (Ga,Mn)As has been shown
to stem from scattering from Mn impurities whose magnetic
and Coulomb potentials are treated coherently when evaluat-
ing the anisotropic lifetimes. In order to allow for scatter-
ing centers that have correlated spin-dependent and spin-
independent parts, the formalism introduced in Sec. III must
be modified slightly; we relegate the details to Appendix B
and instead present the results directly.

Figure 10 reveals a sizeable (=20%) anisotropy in the
quantum corrections to conductivity which is similar per-
centage wise to the anisotropy in the Boltzmann conductiv-
ity. We find that the Boltzmann conductivity is larger when
magnetization is along the current due to the anisotropy of
the scattering lifetime; likewise, the WL correction is en-
hanced when current and magnetization are parallel. This
leads to a smaller absolute change in the total conductivity
when magnetization is rotated from along to perpendicular to
current in the presence of the WL but in the same time the
conductivity itself is also suppressed due to the WL. The
resulting relative AMR ratio is therefore nearly independent
on whether the WL corrections are included or not. These
results agree qualitatively with analytical considerations on
simpler models.*°

In the experiment by Neumaier et al.'” the relative AMR
ratio seems to depend on temperature and, more importantly,
the shape of the low-field MR curve develops additional fea-
tures when lowering the temperature. The anisotropic WL
effects we calculated cannot account for these observations.

VII. CONCLUSIONS

Motivated by the recent experimental studies of the influ-
ence of quantum interference on the transport properties of
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(Ga,Mn)As, we have presented a theory of quantum interfer-
ence corrections to conductivity in disordered ferromagnets
with intrinsic SO interaction. We have focused on two simple
models: a toy two-dimensional electron-gas ferromagnet
with Rashba SO interaction and a four-band Kohn-Luttinger
kinetic-exchange model, the latter of which provides an ap-
proximate representation of (Ga,Mn)As. Our results for
(Ga,Mn)As show that in spite of the very strong SO coupling
of holes in the valence band, a negative MR is not only
possible but also overwhelmingly likely. Starting from van-
ishing exchange fields, i.e., vanishing Mn concentration, we
find a transition from WAL to WL as the Mn local-moment
concentration is increased. This transition occurs at relatively
low doping concentrations, close to the values at which the
disordered valence-band model of (Ga,Mn)As starts to be-
come valid. The transition occurs at weak exchange fields
because the chirality of the (Ga,Mn)As quasiparticles en-
codes WAL in interband correlations, which decay substan-
tially as the exchange splitting becomes comparable to the
scattering rate off impurities.

Although our theory does allow for the possibility of a
nonmonotonic MR at small Mn fractions, near the theory’s
validity limits, it does not explain the character of the posi-
tive MR observed in the experiment of Neumaier et al.'® and
therefore does not confirm the WAL interpretation of the
data. It is desirable to generalize our calculation to more
accurate models that account for departures from the spheri-
cal approximation and include the two split-off valence
bands, strain, and electron-electron interactions. Nevertheless
we believe that the present calculation has uncovered the
essence of WL/WAL physics in (Ga,Mn)As and explained
essential differences between this system and the M2DEG
model studied previously. Since the four-band Kohn-
Luttinger kinetic-exchange model studied in this paper rep-
resents the high SO coupling limit of the more accurate six-
band Kohn-Luttinger Hamiltonian, the dominance of the WL
we obtained here is unlikely to be suppressed by the inclu-
sion of higher bands.

ACKNOWLEDGMENT

We thank K. Vyborny, V. Fal’ko, B. Gallagher, and J.
Wunderlich for fruitful conversations. This work was sup-
ported by ONR under Grant No. onr-n000140610122, by
NSF under Grant No. DMR-0547875, by SWAN-NRI, by the
Welch Foundation, by EU under Grant No. IST-015728, FP7
under Grant No. 214499 (NAMASTE), and Praecmium Aca-
demiae, Czech Republic under Grants No. AV0Z1-010-914,
No. KAN400100625, No. LC510, and No. FON/06/E002.
J.S. is a Cottrell Scholar of the Research Corporation.

APPENDIX A: DERIVATION OF TABLE I

Starting from Eq. (13) we derive the results shown in
Table I.

1. h;=0,A=0

In this case U}=Ul{=1,U}{=Ui|=0,U]|=U}
=(u®—u?/4)/ (u®+u?/4). Then the Cooperon is diagonal in

the J* representation
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cll o 0o o0
o cll o o
C=(1—U)_1C(0)= ll ll s (Al)
0 0 cit o
1l
o o o ci
where
cll = cH 1 1
2N, rDQ?r
%)? - (u?)?/16
cll=cl= ) A2
L= w2 + (u’ — u/4)DQ* 7 (42)

Recalling Eq. (1), the quantum correction to conductivity
reads

2
S0 = —f vl a(k)vz, o
27ty O ’

X (- K)GR(K) G, (k) GAK) G, (K) f ' (k,Q),
Q

(A3)

where we have used the fact that the velocity operators are
dlagonal in spin space. It is clear from Eq. (A3) that C and
cll || do not contribute to dc; the physical significance of this
has been explained in Sec. III

e2
do=- ;Jk U)zc(GR)z(GA)ZfQ (cii+cC
(A4)

where we have used O, =(D74)""* and 0y, =(D7)7"% Re-
marks: (i) the exchange impurities have no effect in this case
because they do not dephase Cooperons with maximal pro-
jection of angular momentum; (ii) for 0<h,<I" we would
get the same answer to order O[1/(h.7)].

)—— log

2. T<h,<ep, A=0
Here
1= 1= 1
= LU}=Ui|=0.U][=- Uy
=- (u — u*/4)iTNyplh,.
U and Ull are different from the previous case; however,

smce CE and CH do not contribute to the conductivity cor-
rection, once again we arrive at

2
£
Toa2 8,

Therefore, an exchange field per se does not decrease the
WL correction to the conductivity. However, we have ne-
glected the orbital effect due to the magnetization of the
ferromagnet; if strong enough, this may entirely suppress
quantum interference.

So = T3, (A5)

3. h,=0, 0<Nkp<1/(775)"2<T

In this case Ull=Ui=1,U}}=U}|=0, UH_U#
=(’—u?14) (P +u?/4). Hence we have the same U matrix
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as in the first case; however, the eigenstates are different
now. Then,

62 X X
b=~ fk v jK)UY (- K)GE(K)
X G, (K)GAK) G, (k) f c* (x,Q)
Q

2
_ < f o (KU, (— k) (GRA(GY? f ' (k,Q),
277 k Q

(A6)

where we have used v,z% 8,4, which is a good approxima-
tion provided that Ak,<< €. Then

2
So = — 26_77f vi(GR)Z(GA)Zf (Cyi+Chi+Cr+C0D)
k

-— f vA(GRA(Gy)? f (cll

-3 77210g (A7)
where we have used C)7= C"—- CH Cﬁ) and CT7}
—C;,_—-(C +C%) (these relations can be derived stralght—
forwardly by a basis transformation). We thus conclude that
when the SO interaction weaker than the spin-orbit dephas-
ing rate there is no effect of SO in the quantum correction to
conductivity. However, if Nkz=1/(77,)"? it can be shown
from Eq. (13) that the dephasing of the triplet Cooperon is no
longer negligible, which leads to a smaller magnitude of WL.
While the actual analytical expressions are cumbersome in
this case, the influence of spin-orbit dephasing may be
roughly captured by replacing [, with the spin-orbit length
lso=1/(m\) in the lower bound of the Q integral.

4. h,=0 and I' <Nkp<ep

Since the band splitting is larger than the scattering rate,
we shall neglect the contributions from interband transitions.
In this case UT Uu 1/2, UTT—Uﬂ:—l/Z(uO—uzM)/(uo
+u’/4),U||= UU 12— 11 4))

(u®+u?/ 4) Clearly, the Cooperon is no longer dragonal 1n
the {|m,m’')} basis; instead it is diagonal in the
where J=0,1 and M=0, = 1. We arrive at

1 1
Cii=C= 1 2 N\
27N,pT5(1 + DO 1)
1 1
Coo= s A8
00 27N>pr . u’—u4 (A8)

- _ 2
1 Z/4(1 DQ*7)

where we have ignored C| , because it will not contribute to
do. Note that the triplet channel (Cy ) is dephased, while
the singlet channel (Cy ) is singular provided that there are
no exchange impurities. For simplicity, let us take u*=0.
Then
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1 1
CO 0= B (A9)
’ 2’7TN2DTDQ T
Consequently, the correction to conductivity reads
2
oo = —f vh (Kl (- k)(Gi)z(Gﬁ)zf coe
27T Kk Q
(A10)

With further basis transformations, one can show that C}'7
- C . . '
=C2=5(Cy = Cop) =—-5% with which we reach

S0 = ~—log—2 (A11)

This is nothing but WAL, with a magnitude that is half of the
traditional WL.

APPENDIX B: ANISOTROPIC WEAK LOCALIZATION

In Sec. IIl we have developed a procedure to evaluate the
Cooperon in arbitrary, SO-coupled ferromagnets with inco-
herent magnetic, and Coulomb scatterers. In this Appendix
we generalize such procedure so as to allow for coherent
charge- and spin-scatterers.

On one hand, the new Bethe-Salpeter equation for the
Cooperon reads

PHYSICAL REVIEW B 79, 155207 (2009)

BB _  ab b b b A ~R ~B".B'
Ca/’a— u® JZ»B/J‘I/’Q-i- f u® J‘[Zg,ﬁ"‘,a’,a”GB"GD/'Ca",Oz 5

k”
(B1)

where we have omitted the momenta labels and u%°=u0,

u“ =%, and u®*=u*"=\uu® are the only nonzero elements
of u®?. Carrying out the same transformations as in Sec. III,
we arrive at

J—
Co Q) = [+ wfmm” + Nulu(m +m")18,, Oy

+ 2 U (B2)

n'
L’

where
UZ’,[J, = [ + wfmm’ + Nulu*(m + m’)]f <m|,3,k>G2<,8,k|l>
K

X{m'|a,-k + Q)G —k + Q|I). (B3)

On the other hand, the expression for the transport lifetime is
now

1

_=27TJ l/la’b(k—k’)z.]‘;a,.]z, aﬁ(Ek’a—Ek,!a/)
Tk,a Kk’ o ’ ’

X(1-k-Kk'), (B4)

where the factor (1 -k- 12’) stems from the renormalization of
the velocity vertex.*
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