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ABSTRACT

Nuclei at very high energy, characterized by a saturation scale, can be described

by an effective theory of Quantum ChromoDynamics (QCD) called Color Glass Con-

densates. The earliest phase of the collision of two nuclei is modeled as the collision

of two sheets of color glass. The classical field resulting from the collision then decays

and equilibrates to a plasma of quarks and gluons. Using a recursive solution of the

Yang-Mills equations, we calculate analytic expressions for the gluon field created in

ultra-relativistic heavy ion collisions at small times τ . We have worked out explicit

solutions for the fields and the energy momentum tensor up to 4th order in an ex-

pansion in τ . We generalize the existing calculations to go beyond the limit of large

homogenous nuclei. This allows us to calculate radial and elliptic flow of gluon fields.

The resulting transverse and longitudinal structure of the Poynting vector field has

a rich phenomenology. Besides the well known radial and elliptic flow in transverse

direction, classical quantum chromodynamics predicts a rapidity-odd transverse flow

that tilts the fireball for non-central collisions, and it implies a characteristic flow

pattern for collisions of non-symmetric systems A+B. The rapidity-odd transverse

flow translates into a directed particle flow v1 which has been observed at RHIC

and LHC. The global flow fields in heavy ion collisions could be a powerful check

for the validity of classical Yang-Mill dynamics in high energy collisions. We also

propose a procedure to calculate the energy momentum tensor of gluon fields on an

event-by-event basis. The matching of the initial field energy momentum tensor to

viscous hydrodynamic initial conditions is discussed and some preliminary results

of a subsequent hydrodynamic evolution are shown. Our results can provide event-

by-event initial conditions for hydrodynamic simulations of nuclear collisions that
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include initial flow and initial shear stress.
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1. INTRODUCTION

Quantum ChromoDynamics (QCD) has been used to describe the interactions

of quarks and gluons very successfully. When momentum transfers are large, the

perturbative QCD (pQCD) is applicable due to asymptotic freedom [1, 2]. Lattice

QCD (lQCD) (for a recent review, see e.g. [3]) predicts that protons and neutrons will

melt into a deconfined phase called Quark Gluon Plasma (QGP) [4, 5] which exists

above a pseudo critical temperature Tc ∼ 150 − 160 MeV [6, 7]. The experiments

at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC)

provide physicists opportunities to explore matter under conditions of such extreme

density and pressure. Matter under those extreme conditions is of interest for several

reasons. Firstly, we can explore properties of QCD in the non-perturbative regime,

e.g. the structure of the phase diagram; secondly, QGP is believed to be relevant

for the earliest phase of the universe ∼ (10−5 s); furthermore, some high density

astrophysical objects, like neutron stars, are speculated to be made of dense quark

matter. Here we are mostly interested in the QGP, and the best way to create and

study it in the laboratory is through ultra-relativistic heavy-ion collisions (URHICs).

1.1 Quantum ChromoDynamics

The classical Lagrangian density of QCD has quark and gluon fields as its fun-

damental degrees of freedom. For a quark of mass mf according to its flavor f , the

Lagrangian can be written as,

Lcl =

Nf∑
f

q̄f (iγ
µDµ −mf )qf −

1

4
F µν
a F a

µν . (1.1)

1



Dµ is a covariant derivative which acts on colored quark fields qf (f = u, d, s, c, b, t),

Dµ = ∂µ − igtaAa
µ , (1.2)

where Aa
µ is the gluon field and ta, a = 1, ..., 8, are 3× 3 traceless hermitian matrices

which are a fundamental representation of the SU(3)c Lie algebra satisfying

[ta, tb] = ifabctc , (1.3)

with fabc being the structure constants of SU(3)c.

The field strength tensor F a
µν of gluons is given by

F a
µν = ∂µA

a
ν − ∂νA

a
µ + igfabcA

b
µA

c
ν , (1.4)

in terms of the gluon gauge fields Aa
µ (a = 1 · · · 8).

QCD has several properties that make it very intriguing and complicated. The

first fascinating property of QCD is the asymptotic freedom of the coupling constant

αs = g2/4π. Unlike in QED, where only fermions carry charges, in QCD quarks

and gauge boson – the gluons – carry color charge. This is explicitly shown by the

last term in Eq. (1.4) which leads to interactions between gluons. Consequently the

coupling constant of QCD αs decreases logarithmically as the momentum transfer

increases [1, 2, 8],

αs(Q) =
g2

4π
=

1

β0 ln(Q2/Λ2
QCD)

, (1.5)

where β0 = (33− 2nf )/(12π) for QCD. If the momentum transfer Q is smaller than

the scale ΛQCD ≃ 200 MeV, αs(Q) formally diverges. However Eq. (1.5) is obtained

2
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Figure 1.1: Energy density over temperature to the fourth order (T4) and three

times the pressure over T4 for physical light quark mass and ml = 0.1ms. Reprinted

figure with permission from M. Cheng et. al, Phys. Rev. D 81, 054504 (2010) [9].

Copyright (2010) by the American Physical Society.

from perturbative calculations and is not strictly applicable for small Q. In the ”per-

turbative” regime with large momentum transfer Q≫1GeV, theoretical predictions

have been tested up to very high precision by various experiments. However, pertur-

bative calculations break down already at momentum transfers well above ΛQCD. If

the momentum transfer is not significantly greater than ΛQCD, “non-perturbative”

techniques are required for QCD calculations.

Another intriguing property of QCD is confinement, which refers to the fact that

colored charged particles, e.g. quarks and gluons, cannot be isolated singularly, and

as a result we cannot directly observe a colored object. Nevertheless, the fact that

quarks carry three different color charges has been confirmed by experiments without

3
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Figure 1.2: The subtracted chiral condensate as function of the temperature cal-

culated at ml = 0.05ms and at 0.1ms. Reprinted figure with permission from M.

Cheng et. al, Phys. Rev. D 81, 054504 (2010) [9]. Copyright (2010) by the American

Physical Society.

a doubt. Heavy Ion Collisions give physicists opportunities to study the properties

of quarks and gluons in the deconfined phase at high temperature. Fig. 1.1 shows

the theoretical predictions from lattice QCD. The energy density of nuclear matter

increases rapidly at T ∼ 180 − 200 MeV, indicating a large jump in the number of

degrees of freedom when going from a hadronic gas to QGP.

One more very interesting phenomenon in QCD related to the QCD phase tran-

sition is chiral symmetry breaking. In the chiral limit where the light quark mass is

negligible mu,md → 0, the QCD Lagrangian can be approximated as,

Lchiral =
∑
l=u,d

q̄l(iγ
µDµ)ql −

1

4
F µν
a F a

µν . (1.6)

4



We define the left- and right-handed projector for quarks as PL = 1
2
(1 − γ5) and

PR = 1
2
(1− γ5)), respectively, where γ5 = iγ0γ1γ2γ3. We can decompose the quark

field q = (u, d)T into its chiral components,

qL = PLq, qR = PRq . (1.7)

Eq. (1.6) then can be written as,

Lchiral = q̄L(iγ
µDµ)qL + q̄R(iγ

µDµ)qR − 1

4
F µν
a F a

µν , (1.8)

and in the chiral limit the Lagrangian exhibits chiral symmetry, i.e. it is symmetric

under rotation in flavor space for each chirality. However, because of the nontrivial

structure of QCD vacuum, there is a non-vanishing expectation value

⟨q̄q⟩ = ⟨q̄RqL + qLqR⟩ ≈ Λ3
QCD . (1.9)

Quarks interacting with this condensate will acquire an effective mass about 300

MeV. The chiral symmetry is spontaneously broken for hadrons and it turns out

that the melting of chiral condensate and the restoration of chiral symmetry take

place around the same pseudo-critical temperature that matters became deconfined.

Fig. 1.2 shows the melting of chiral condensate predicted by lQCD [9, 10].

The above features of QCD can be summarized in a QCD phase diagram, see

Fig. 1.3. When both temperature and density are low, nuclear matter lives in a

hadronic phase with spontaneously broken chiral symmetry. The deconfined quark-

gluon phase exists at high temperature. Various forms of quark Cooper pairing in the

domain of high-density but low-temperature will give rise toColor-SuperConducting

(CSC) phases. The dashed line illustrates the chiral crossover transition predict by

5
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Figure 1.3: Schematic picture of the QCD phase diagram with respect to temperature

T and baryon chemical potential µB. Figure reprinted from [11] with permission from

ELSEVIER.

lQCD. Currently it is believed that the crossover will end at a hypothetical critical

point where a first-order phase transition (solid line) begins. Physicists at RHIC are

actively searching for the critical point at this time [12].

1.2 Relativistic Heavy Ion Collisions

There is convincing evidence that the QGP has been created in the laboratory

through heavy ion collision at RHIC [4, 5] and LHC [13, 14, 15]. The Relativistic

Heavy Ion Collider located at Brookheaven National Laboratory (BNL) is built to

collide nuclei at center of mass (c.m.) energy up to
√
sNN = 200 GeV per nucleon

pair. The Large Hadron Collider is located at the European Organization for Nuclear

Research (CERN), and the colliding energy of the nucleon pair can reach 5.5 TeV

for large nuclei.
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The idea of a heavy ion collider is that a large amount of energy will be deposited

into a very small spatial region by accelerating heavy nuclei to ultra-relativistic speed

and colliding them. A large amount of the kinetic energy will be converted to thermal

energy in a very short time scale (less than 100 fm /c∼ 10−22 s) resulting in extremely

high density and temperature. The top energy density created at RHIC is estimated

to be larger than 15 GeV / fm3 [4, 5], and the top energy density created at LHC

is estimated to be about 3 times larger [16].

Some of important experimental signatures of QGP can be summarized below

[4, 5]:

1. Signatures from the phase transition. New degrees of freedom by deconfining

quarks and gluons at sufficiently high temperature will result in a rapid increase

in energy density ϵ, entropy density s and pressure p around the critical tem-

perature, see Fig. 1.1. The drastic change in the number of degrees of freedom

will be reflected in various final observables, such as the hadron multiplicity

dN/dy, the transverse energy dE⊥/dy, and the average transverse momentum

⟨p⊥⟩, the collective behaviors and so on. Hydrodynamics and statistical models

are useful tools to explore these signatures.

2. Jet Quenching and Parton Energy Loss. Bjorken firstly pointed out that par-

tons traveling through bulk partonic matter might undergo significant energy

loss [18], which is can be observed by measuring subsequent hadrons of the

parton from fragmentation. More quantitative theoretical calculations showed

that gluon radiation induced by passage through the matter is significant [19]

and such induced gluon radiation would soften and broaden the jets. The

suppression and broadening of jets has been confirmed by experimental data

[20].
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3. Quark Recombination. Recombination models [21, 22, 23, 24, 25] were intro-

duced to explain observed features of hadron production RHIC collisions. The

recombination models predict effects on baryon and meson production rates

[26, 27] by assuming that coalescence proceeds via constituent quarks. Re-

combination models are able to explain the key properties of final particles

observed in experiments like elliptic flow [28], and allow a conclusion that such

properties are formed in the deconfined phase.

4. Electromagnetic Probes. Due to the fact that photons and dileptons only

interact electromagnetically with the surrounding matter, the mean free path

of photons and dileptons is much larger than the typical size of the hot quark

matter created by heavy ion collisions. As a result photons and dileptons can

provide undisturbed information inside the fireball, e.g. about the temperature

of the QGP. For recent review see [29].

5. Heavy quarks. It had first been pointed out by Matsui and Satz that the J/ψ

yield should be suppressed in URHIC if QGP is created. Due to the color

Debye screening, the binding potential becomes short-ranged [31, 32].

The space-time picture of a heavy ion collision (HIC) is sketched in Fig. 1.4.

This depicts the quark matter during various stages after the collision which we will

discuss now:

1. Preceding the collision, the two incoming nuclei can be described as two Lorentz–

contracted ‘pancakes’ in the laboratory frame. The Lorentz–contraction factor

is about 100 for RHIC and 3500 for LHC. The wavefunction of such a high

energy nucleus is dominated by gluons which carry small fractions of the lon-

gitudinal momenta of their parent nucleons, or more precisely, gluons with
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z = tz = -t

z 

t

Initial Singularity
Event Horizon
Quantum Fluctuations
τ~ 0 - 0.1 fm/c

Glasma
Topological Excitations
Density Fluctuations, Thermalization
τ~ 0.1 - 1 fm/c

Quark Gluon Plasma
Perfect Fluid
Hadronization
τ~ 1 - 10 fm/c

Figure 1.4: Schematic space-time picture of a HIC as a function of time t and the

longitudinal coordinate z along the beam axis. Figure reprinted from [33] with

permission from the author.

Bjorken-x ≪ 1. From measurement of parton distribution functions, we learn

that the density of small x gluons xg(x,Q2) increase rapidly at small x until

gluon fusion (g+g → g) is as important as gluon splitting (g → g+g) processes,

characterized by a saturation scale Qs. From the uncertainty principle, such

high density gluons should carry large transverse momentum. For example,

the transverse momentum k⊥ is roughly 2 GeV for a gluon with x = 10−4 [33].

The coupling constant in this regime with large scale Qs should be relatively

small because of asymptotic freedom. An effective theory of QCD called the

Color Glass Condensate (CGC) [36, 37] has been written down to describe such

nuclei at very high energy and large occupation number.

2. Two nuclei moving with the speed of light hit each other at time τ = 0, where

τ is the longitudinal proper time. From the uncertainty principal, the time

scale of an interaction is proportional to the inverse of the momentum transfer
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1/Q. Hard probes, i.e. particles with very high momentum Q ≫ 1 GeV, are

produced very fast after the two nuclei collide. From the CGC perspective, the

gluon fields in the initial incoming nuclei are liberated through the collisions

and the subsequent dynamics of their interaction and evolution of the matter,

so called Glasma, are governed by the Yang-Mills equations up to a time scale

τ ∼ 1/Qs. Where Qs is the saturation scale which characterize the scale which

parton density stops growing rapidly as x decreases. The value of Qs is about

1 GeV at RHIC and Qs ∼ 4 GeV at LHC [38, 39]. Here, we are particularly

interested in the evolution of such early time energy momentum tensor of the

glasma.

3. The classical Yang-Mills equations do not predict thermalization. However,

experimental data from both RHIC and LHC suggest a rapid thermalization of

the bulk matters produced in heavy ion collisions. The data, when compared

to hydrodynamic models, are consistent with a relatively short thermalization

time, of order τ ∼ 1 fm/c for RHIC [40] and thermalization time at LHC

is estimated to be even shorter than at RHIC but quantitative study is not

available yet. The microscopic understanding of equilibration requires a more

complete description of quantum non-abelian dynamics [41, 42, 43], and it is

outside the scope of this dissertation.

4. The thermalized, deconfined and strongly interacting phase of QCD matter

called the quark gluon plasma exists roughly for about τ ∼ 10 fm/c after the

collision happened. The properties of strongly interacting matter enable us to

depict its evolution using the relativistic hydrodynamics. We will introduce

the basic concepts of hydrodynamics in the next section.

5. As the hot and dense system is expanding, the temperature decreases. When
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the critical temperature (Tc ∼ 150−160) is reached, the deconfined quark-gluon

plasma undergoes a transition to a hadronic matter. The hadronic matter still

maintains approximately local thermal equilibrium, and hydrodynamics can

still characterize the evolution of the hot hadronic gas until kinetic freeze out

temperature around 100 MeV is reached. There is also work to study the

dynamics of the hadronic phase with transport models like Ultrarelativistic

Quantum Molecular Dynamics model (URQMD) [44].

1.3 Relativistic Hydrodynamics

The utilization of hydrodynamics in nuclear collision was first proposed by Lan-

dau [45] and successfully applied by Bjorken [46]. For a review please refer to [47, 48].

The general form of the energy-momentum tensor of an ideal relativistic fluid can be

written as,

T µν
ideal = e uµuν − p ∆µν (1.10)

where ∆µν = gµν − uµuν is a operator orthogonal to the fluid velocity uµ, and e

and p are energy density and pressure, respectively, in the local rest frame of the

fluid. If there are no external sources, as for the QGP created by HICs, the energy

momentum tensor should be conserved and satisfy

∂µT
µν
ideal = 0 . (1.11)

If there are conserved charges, like net baryon number, we also should have conser-

vation of the corresponding current jµ,

∂µj
µ = 0 . (1.12)
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Equation (1.10) can be written in terms of scalar quantities,

uµ∂µe+ (e+ p)∂µu
µ =0 (1.13)

(e+ p)uµ∂µu
α −∆µα∂µp =0 . (1.14)

These equation will reduce to the non-relativistic hydrodynamic equations for |v⃗| ≪

1.

If dissipative effects are to be included, the energy momentum tensor of the fluid

will have additional terms to Eq. (1.10) and can be written as

T µν = T µν
ideal +Πµν , (1.15)

where Πµν is the viscous stress tensor which describes deviations from local thermal

equilibrium. It is conventional to decompose Πµν to a traceless part πµν and its

reminder ∆µνΠ. The shear viscous stress tensor must be orthogonal to the fluid

velocity uµπ
µν = 0.

The fundamental conservation equations then read,

uµ∂µe+ (e+ p)∂µu
µ − Πµν∇(µuν) = 0 ,

(e+ p)uµ∂µu
α −∆µα∂µp+∆α

ν∂µΠ
µν = 0 . (1.16)

where A(µBν) is short notation for symmetrization A(µBν) =
1
2
(AµBν + AνBµ)) .

In addition, one has to postulate equations for Πµν . In first-order viscous hydro-

dynamics they are given by gradients of the velocity field times the viscosity,

πµν = η∇<µuν> , Π = ζ∇αu
α , η ≥ 0 , ζ ≥ 0 , (1.17)
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where η is the shear viscosity and ζ the bulk viscosity coefficient, and A<µBν>is

the traceless part of A(µBν). Eq.(1.17) is called the Navier-Stokes approximation.

The Navier-Stokes approximation does not preserve causality. Consequently vari-

ous second order viscous hydrodynamic models were introduced. For example, the

Muller-Israel-Stewart theory [49, 50], and others [51, 52]. For a recent review of

viscous hydrodynamics refer to [53, 54].

These hydrodynamic equations together with an Equation of State (EOS) can

predict the long wavelength behavior of a fluid with given initial conditions.

The most convincing evidence that thermalized QPG is produced in heavy ion

collisions comes from the hydrodynamic behavior of transverse momentum distribu-

tion and collective flow of final particles. The m⊥ scaling

E
d3N

d3p
≈ exp(−m⊥/T ) (1.18)

observed in URHIC for particle with p⊥ < 2 is a strong evidence that a thermal equi-

librium matter has been created in URHIC. The azimuthal momentum distribution

of final particles can be expanded into a Fourier series,

dN

dϕ
=
N

2π
(1 + 2v1 cosϕ+ 2v2 cos 2ϕ+ ...) ,

vn =

∫
dϕ cos(nϕ)dN

dϕ∫
dϕdN

dϕ

= ⟨cos(nϕ)⟩ , (1.19)

where v1 is called directed flow and v2 is elliptical flow. The triangular flow v3

and higher flow received much attention recently. One of the achievements of this

dissertation is a derivation of rapidity-odd from CGC which could lead to directed

flow of final particles after hydrodynamics evolution.
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1.4 Initial Conditions for HICs

Currently there are two models that are widely used to calculate the initial values

of the energy momentum tensor at time of thermalization, the Glauber Model [55]

and CGC model [57]. The starting point of both models are usually the Woods-Saxon

profiles for the nucleon density in nuclei,

κA(x⃗) =
κ0

1 + exp[(|x⃗| −R)/a]
, (1.20)

where κ0 is a constant that should satisfy
∫
d3xκA(x⃗) = A, with A being the mass

number of colliding nuclei, R is the nuclear radius and a is the skin thickness pa-

rameter. For gold (197Au), we have, R = 6.38 fm and a = 0.535 fm; while for lead

(207Pb) we use, R = 6.62 fm and a = 0.546 fm [55]. It is useful to define a thickness

function by integrating the density along the longitudinal axis because of the Lorentz

contraction,

TA(x⊥) =

∫ ∞

−∞
dzκA(x⃗), (1.21)

The Glauber model assumes that in HICs, the initial energy density deposited

at position x⊥ is given by the density of binary nucleon-nucleon collisions ncoll and

the density of nucleons participating in collisions npart. ncoll is the product of the

number of nucleons at x⊥ in one nucleus, the number of nucleons at this position in

the other nucleus, and the probability that these nucleons hit each other, i.e.

ncoll(x⊥, b) ∼ TA(x+
b

2
, y)× TA(x−

b

2
, y)× σNN(

√
s) , (1.22)

where σNN(
√
s) is the nucleon-nucleon cross section. Generally, the energy density
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profile of two colliding nuclei is assumed to be a linear combination of binary collision

and number of participants, ϵ(x⊥, b) = αncoll(x⊥, b) + βnpart(x⊥, b).

Monte-Carlo Glauber models [55] are used to provide event-by-event (E-by-E) ini-

tial conditions. The difference between MC-Glauber models and the simple Glauber

model above is that, instead of using the average density Eq. (1.20), the actual

thickness function for one event is calculated by simulating the positions of nucle-

ons inside the nucleus using the Wood-Saxon distribution. Such E-by-E simulations

enable us to study fluctuation effects. Nucleon position fluctuations are crucial for

obtaining the observed odd flow coefficients.

The CGC [36, 37] as introduced above is an effective theory of QCD dealing

with the saturation physics at low Bjorken-x in high energy nuclear collisions. The

cross-section of gluon-gluon scattering in QCD is roughly σ ∼ αs(Q
2) π

Q2 with Q

being the momentum of the gluon. The density of gluons in the transverse plane

must be proportional to the number of nucleons over the area A/(πR2
0), where R0

is the nucleus radius. Gluons will interact with each other strongly if the scattering

probability,

A

πR2
0

σ = αs(Q
2)

A

R2
0Q

2
∼ 1 . (1.23)

is of order 1, where αs(Q
2) is strong interaction constant. Therefore, one finds that

there is a ”Saturation” scale Q2
s ∼ αs

A
R2

0
which define the saturation region. If Qs ≫ 1

GeV perturbation theory can be applied.

The most widely used initial conditions inspired by CGC are called the KLN

model [56], the transverse energy profile at τ = τ0 is given by

ϵ(x⊥, b) = const×
[

dNg

d2xTdY
(xT , b)

]4/3
(1.24)
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where Ng is the number of gluons produced in the collision,

dNg

d2xTdY
∼
∫
d2pT

p2T

∫ pT

d2kT αs(kT ) ϕ+

(
(pT + kT )

2

4
;xT

)
ϕ−

(
(pT − kT )

2

4
;xT

)
(1.25)

where

ϕ±(k
2
T ;xT ) =

1

αs(Q2
s)

Q2
s

max(Q2
s, k

2
T )

(
nA
part(x⊥,±b)

TA(x± b/2, y)
)(1− x)4 (1.26)

and Q2
s(x,x⊥) is determined by

2T 2
A(x± b/2, y)GeV2

nA
part(x⊥,±b)

(
fm2

1.53

)(
0.01

x

)0.288

(1.27)

with x = pT√
s
. There are also other models based on CGC, for example, the IP-Glasma

model [58, 59], which also considers the fluctuation on the nucleon level.

In this dissertation, we will give initial conditions that provides definite initial

velocities and shear stress profile with respect to transverse coordinates and space-

time rapidity η = 1
2
ln t+z

t−z
from a first principle CGC calculation.

1.5 Outline of the Dissertation

In chapter 2 we first give a brief overview of CGC. After formulating the Yang-

Mills equations for the classical gluon fields after the collision, we use a recursive

solution in powers of the longitudinal proper time τ [60] and carry the calculation

of gluon fields up to 4th order in τ . Comparison with a numerical solution is also

shown in this chapter. In chapter 3 we calculate the energy momentum tensor of

the gluon fields after the collision and check the energy-momentum conservation up

to O(τ 4). We generalize the McLerran-Venugopalan Model to go beyond the limit
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of large homogenous nuclei in chapter 4. We show that the transverse dynamics on

non-perturbative lengths can be safely separated from CGC dynamics. The energy

momentum tensor after averaging over color configurations is calculated. In chapter

5, the transverse and longitudinal structure of the Poynting vector field is discussed.

Besides the well known radial and elliptic flow in transverse direction, we find a

rapidity-odd transverse flow that tilts the fireball for non-central collisions. Instead

of just calculating average color configurations, we propose a procedure in chapter 6

to calculate the energy momentum tensor of glasma in an event-by-event framework.

Chapter 7 is devoted to matching the energy momentum tensor of the glasma to

viscous hydrodynamic initial conditions and the effects of rapidity-odd momentum

flow are discussed. We summarize this dissertation in Chapter 8 and present an

outlook on future work.

1.6 Useful Definitions

Some conventions and useful formulae used in the following are gathered here. 3-

vectors are denoted by bold symbols, vector arrows denote 2-vectors in the transverse

plane. E.g. xµ = (t,x) = (t, x⃗⊥, z). Light cone coordinates are defined by

x± =
1√
2

(
x0 ± x3

)
. (1.28)

with d4x = dx+dx−d2x⊥ and xµyµ = x+y− + x−y+ − xi⊥y
i
⊥. Small Latin indices i

indicate transverse components of a vector, i.e. i = 1, 2. Note that ∂µ = (∂/∂t,−∇)

and ∂± = ∂/∂x∓.
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Proper time τ and space time rapidity for a space-time point xµ are defined as

τ =
√
t2 − z2 =

√
2x+x−, (1.29)

η =
1

2
ln
t+ z

t− z
=

1

2
ln
x+

x−
. (1.30)

It is useful to express cartesian and light cone derivatives in hyperbolic ones through

∂± =
x±

τ

∂

∂τ
∓ 1

2x∓
∂

∂η
. (1.31)

and

∂

∂t
=cosh η

∂

∂τ
− 1

τ
sinh η

∂

∂η
, (1.32)

∂

∂z
=− sinh η

∂

∂τ
+

1

τ
cosh η

∂

∂η
. (1.33)

The momentum rapidity of a particle is defined as,

y =
1

2
ln
E + pz
E − pz

. (1.34)
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2. THE COLOR GLASS CONDENSATE

This chapter is devoted to the classical effective field approach of heavy ion colli-

sions called the color glass condensate. At ultra-relativistic energy, nuclei are highly

Lorentz contracted along the direction of motion and the gluons inside the nucleus

can be viewed as a thin sheet of color fields. The gluonic evolution time scale is much

larger than the time scale of collision, so the gluon fields are treated as ”glass”. The

wavefunction of the nuclei is dominated by high density, coherent gluons. Large

occupation numbers enable us to describe gluons inside the nuclei as semi-classical

color fields.

2.1 The Classical Effective Theory

The fundamental ingredient of CGC is a separation of partons based on their

longitudinal momenta k+ = xP+. Here P+ is the longitudinal momentum of the

nucleon and x is the momentum fraction carried by the parton. The soft partons

( x < x0, at RHIC x0 ∼ 10−2 and at LHC x0 ∼ 10−4 [33]) are treated as the

quasi-classical chromo field Aµ generated by fast partons whose x is larger than

some scale x0. The physics should only weakly depend on such separation and a

renormalization group equation can be written down to govern changes in x0, for

review refer to [34, 35]. The sources and fields are related by the classical Yang-Mills

equations,

[Dµ, F
µν ] = Jν . (2.1)
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For a nucleus moving along the positive light cone axis x+, we can write the compo-

nents of the currents in light cone coordinates as

J+(x) = δ(x−)ρ1(x⃗⊥), J i(x) = 0 . (2.2)

with transverse SU(Nc) charge distributions ρ(x⃗⊥) in the nuclei.

The components of the currents for two nuclei moving in light cone coordinates

are

J+
1 (x) = δ(x−)ρ1(x⃗⊥) , J−

1 (x) = 0 (2.3)

J−
2 (x) = δ(x+)ρ2(x⃗⊥) , J+

2 (x) = 0 (2.4)

J i
1,2(x) = 0. (2.5)

This current fulfills the equation of continuity,

[Dµ, J
µ] = 0. (2.6)

if we choose an axial gauge with

x+A− + x−A+ = 0. (2.7)

We will keep this choice of gauge throughout this dissertation except where we specif-

ically mention that we work in covariant gauge.

2.2 General Shape of the Field

Kovner, McLerran and Weigert [62] have first discussed the general space-time

structure of the gluon field in the collision of two such nuclei colliding on the light
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η = cst.

t

z

x+x−

(3)
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(4)

Aµ = 0

(2)
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(1)

Aµ = pure gauge 1

τ = cst.

Figure 2.1: Color fields in different region of the lightcone. Figure reprinted from

[63] with permission from ELSEVIER.

cone. They have argued that in axial gauge Aµ is a smooth function of xµ except

for the two light cone hypersurfaces with the currents where discontinuities appear.

The fields in the backward lightcone (region (4) in Fig. 2.1) vanish, and the fields

outside the lightcone (region (2) & (3)) should be pure gauge. It is easy to check

that, in the case of one nucleus moving on the light cone, the following field

A±(x) =0 (2.8)

Ai(x) =Θ(−x−)1
i
U1(x⃗⊥)∇iU †

1(x⃗⊥) + Θ(x−)
1

i
U2(x⃗⊥)∇iU †

2(x⃗⊥) (2.9)

is a solution to the Yang-Mills equations. Where U1(x⃗⊥) and U2(x⃗⊥) are different

gauge transformations on opposite sides of the sheet at x− = 0. The above solu-

tion indicates that the transverse vector potential can be describe by a pure two

dimensional gauge transformion.
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One thus can write down the following ansatz solution for the fields generated by

collision of two nuclei in different regions in the x+-x−-plane:

A+(x) =Θ(x+)Θ(x−)x+A(τ, x⃗⊥) , (2.10)

A−(x) =−Θ(x+)Θ(x−)x−A(τ, x⃗⊥) , (2.11)

Ai(x) =Θ(x−)Θ(−x+)Ai
1(x⃗⊥) + Θ(x+)Θ(−x−)Ai

2(x⃗⊥)

+ Θ(x+)Θ(x−)Ai
⊥(τ, x⃗⊥), (2.12)

with i = 1, 2 is index for transverse coordinates. Ai
1(x⃗⊥) and A

i
2(x⃗⊥) are the gluon

fields of the single nuclei before the collision, which are purely transverse in this

gauge. A(τ, x⃗⊥) and A
i
⊥(τ, x⃗⊥) are smooth functions in the forward light cone and

describe the field after the collision. They are the fields we will be interested in.

There is no explicit dependence on the space-time rapidity η = 1/2 lnx+/x− in A

and Ai
⊥, reflecting the boost-invariance of the system.

In each sector of the light cone the Yang-Mills equations have to be satisfied

separately. In the forward light cone they can be written in the convenient form [62]

1

τ

∂

∂τ

1

τ

∂

∂τ
τ 2A−

[
Di,
[
Di, A

]]
= 0 , (2.13)

igτ

[
A,

∂

∂τ
A

]
+

1

τ

[
Di,

∂

∂τ
Ai

⊥

]
= 0 , (2.14)

1

τ

∂

∂τ
τ
∂

∂τ
Ai

⊥ + igτ 2
[
A,
[
Di, A

]]
−
[
Dj, F ji

]
= 0 . (2.15)

The field strength tensor in the forward light cone can be expressed in terms of the
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gauge potentials A and Ai
⊥ in this gauge as

F+− = −1

τ

∂

∂τ
τ 2A, (2.16)

F i± = −x±
(
1

τ

∂

∂τ
Ai

⊥ ∓ [Di, A]

)
, (2.17)

F ij = ∂iAj
⊥ − ∂jAi

⊥ − ig[Ai
⊥, A

j
⊥]. (2.18)

Boundary conditions connect different light cone sectors. The ones for the forward

light cone read [62]

Ai
⊥(τ = 0, x⃗⊥) = Ai

1(x⃗⊥) + Ai
2(x⃗⊥), (2.19)

A(τ = 0, x⃗⊥) = −ig
2

[
Ai

1(x⃗⊥), A
i
2(x⃗⊥)

]
. (2.20)

We interpret them as initial conditions for the fields at τ = 0 for the fields in the

forward light cone τ > 0.

Eqs. (2.13) through (2.15) together with the conditions (2.19) and (2.20) pose

the boundary value problem to be solved. An analytic solution in closed form is not

known for the most general case. The weak field or abelian limit was first treated

in [62] and will be reproduced below. Several groups have also discussed numerical

solutions [64, 65, 66].

A different approach to solve the problem was advocated by Fries et al. in [60, 67].

The basic idea is to focus on analytic solutions for the near-field, i.e. for “small” τ .

In that case one can utilize a systematic expansion of the Yang-Mills equation in

powers of τ . The rationale is that the approximation of coherent classical fields will

not be sufficient anymore after a typical time scale ∼ 1/Qs anyway [68, 69]. At

that time decoherence, particle production, particle-field interactions, and eventu-

ally thermalization have to be taken into account. We will see that the expansion
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technique can actually provide more. One can write down a recursive solution to the

field equations that is in principle valid at any arbitrary order in τ .

2.3 τ -Expansion and Recursive Solution

The assumptions justifying the dominance of classical fields in the collision cease

to be valid at long times after the collision, τ ≫ 1/Qs. Thus let us define the power

series

A(τ, x⃗⊥) =
∞∑
n=0

τnA(n)(x⃗⊥), (2.21)

Ai
⊥(τ, x⃗⊥) =

∞∑
n=0

τnAi
⊥(n)(x⃗⊥). (2.22)

We employ an equivalent power series for the field strength, covariant derivatives and

the energy-momentum tensor. Eqs. (2.13) – (2.15) permit a set of singular solutions,

but only the solutions regular at τ = 0 are physical solutions for the boundary value

problem.

Let us discuss this point for the abelianized version of the equations in more detail.

In the case of weak fields the non-linear terms in the YM equations can be neglected,

leading to a greatly simplified, abelian version of the boundary value problem for

which an analytic solution in closed form can be given [61, 62]. After dropping the

non-linear terms and applying a Fourier transformation of the transverse coordinate,

∂i → −iki⊥, equations (2.13) and (2.15) take the shape of Bessel equations

1

z

d2

dz2
zA+

1

z2
d

dz
zA+

1

z
zA− 1

z3
zA = 0 (2.23)

z2
d2

dz2
Ai

⊥ + z
d

dz
Ai

⊥ + z2Ai
⊥ = 0 (2.24)

where z = k⊥τ and with a physical polarization ∇iAi
⊥ = 0 chosen for the transverse
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vector [62]. There are two independent sets of solutions, Bessel functions of the first

kind A ∼ J1(z)/z, A
i
⊥ ∼ J0(z) which are regular at τ = 0, and Neumann functions

A ∼ N1(z)/z, A
i
⊥ ∼ N0(z) which lead to A ∼ z−2 and a singularity Ai

⊥ ∼ ln τ for

τ → 0. The solution with Neumann functions is not compatible with Eq. (2.14)

which imposes ∂/∂τAi
⊥ = 0. The singular solution therefore has to be excluded. It

is easy to see that the non-abelian field equations do not change this argument.

Let us now return to the solution of the general non-abelian problem. The power

series turns the set of 3 differential equations (2.13), (2.14), (2.15) in x⊥ and τ into

an infinite system of differential equations in x⊥. As first shown by Fries, Kapusta

and Li [60], we can solve this system recursively. The boundary conditions (2.19),

(2.20) provide the starting point of the recursion

Ai
⊥(0) = Ai

1 + Ai
2 , (2.25)

A(0) = −ig
2

[
Ai

1, A
i
2

]
. (2.26)

Next one can prove that all odd-power contributions vanish, A(2k+1) = 0, Ai
⊥(2k+1) =

0. Finally, one finds the recursion relations for even n, n > 1,

A(n) =
1

n(n+ 2)

∑
k+l+m=n−2

[
Di

(k),
[
Di

(l), A(m)

]]
, (2.27)

Ai
⊥(n) =

1

n2

( ∑
k+l=n−2

[
Dj

(k), F
ji
(l)

]
(2.28)

+ ig
∑

k+l+m=n−4

[
A(k), [D

i
(l), A(m)]

])
.

One can easily check that these expressions solve (2.13) - (2.15).

One can use the abelianized case for a cross check. After dropping non-linear

terms and after applying a Fourier transformation to the transverse coordinates the
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recursive solutions can be easily resummed to give

ALO
(n) =

2

n!!2(n+ 2)
(−k2⊥)n/2Aab

(0) , (n > 1) (2.29)

ALOi
⊥(n) =

1

n!!2
(−k2⊥)n/2ALOi

⊥(0) (2.30)

where the double factorial is n!! = n(n− 2)(n− 4) · · · and the index LO signals the

abelian case. These terms are just the coefficients of the Bessel functions already

discussed above,

ALO(τ, k⊥) =
2ALO

(0) (k⊥)

k⊥τ
J1 (k⊥τ) (2.31)

ALOi
⊥ (τ, k⊥) =A

LOi
⊥(0)(k⊥)J0 (k⊥τ) . (2.32)

Hence we have shown that the small-τ expansion works for all τ in the abelian case.

2.4 The Near Field

A resummation similar to the abelian case seems elusive for the general solution.

Nevertheless one can analyze the few lowest order terms which are equivalent to

describing the “near field” close to the light cone. We do this in terms of the more

physical field strength tensor. The near field up to order τ 3 order has been worked

out by Fries et al [61]. We observe that only the longitudinal components of the

electric and magnetic chromofield have non-vanishing values at τ = 0:

E3
(0) = F+−

(0) = ig
[
Ai

1, A
i
2

]
, (2.33)

B3
(0) = F 21

(0) = igϵij
[
Ai

1, A
j
2

]
. (2.34)
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We denote these initial values briefly with E0 ≡ E3
(0) and B0 ≡ B3

(0) to emphasize

their importance as the “seed” values for τ → 0. The transverse fields vanish at

τ = 0: F i±
(0) = 0.

The dominance of longitudinal fields at early times has been rediscovered a few

years back [70] and has since then been discussed as the reason for a variety of

physical effects. The color flux tubes associated with these fields could lead to

particle production via the Schwinger mechanism [71], imply non-trivial topological

configurations [72, 73], and induce long-range rapidity correlations. It also is a

posteriori justification for the color capacitor picture. Interestingly the longitudinal

magnetic field can be of the same size as the longitudinal electric field.

The next order O(τ 1) brings no further contribution to the longitudinal fields,

F+−
(1) = 0 = F 21

(1), but it is the leading order for the transverse fields

F i±
(1) = − e±η

2
√
2

(
[Dj

(0), F
ji
(0)]± [Di

(0), F
+−
(0) ]
)
. (2.35)

Hence the transverse electric and magnetic chromofields grow linearly from their zero

value at τ = 0. We can express them in terms of the initial longitudinal fields as

Ei
(1) = −1

2

(
sinh η[Di, E0] + cosh η ϵij[Dj, B0]

)
(2.36)

Bi
(1) =

1

2

(
cosh η ϵij[Dj, E0]− sinh η[Di, B0]

)
. (2.37)

Note that we suppress the index (0) on transverse covariant derivatives in the fol-

lowing and write Di ≡ ∂i − igAi
⊥(0), unless noted otherwise.

Fries et al also computed the next-to-leading correction in τ to all components

[61]. The first correction to the initial value of the longitudinal fields appears at
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order O(τ 2) and is in our short notation

E3
(2) =

1

4
[Di, [Di, E0]] , (2.38)

B3
(2) =

1

4
[Di, [Di, B0]] . (2.39)

There is no correction to the transverse fields at this order, F i±
(2) = 0. Generally,

the longitudinal fields have only contributions for even powers of τ , the transverse

fields pick up contributions exclusively for odd powers of τ . From generalizing to all

orders in τ we can also conclude that the longitudinal electric and magnetic fields are

independent of η while the transverse fields are a superposition of terms depending

on cosh η and sinh η.

Going beyond previous work by Fries et al [60], we calculated the order τ 3 results

[74]. The order O(τ 3) for the transverse fields are

F i±
(3) = − e±η

4
√
2

(
[Dj, F ji

(2)]± [Di, F+−
(2) ]
)
+
ig

8

(
ϵij[B0, F

j±
(1) ]± [E0, F

i±
(1)]
)

∓ ig

8

e±η

2
√
2
ϵij[Dj, [E0, B0]] (2.40)

whereas E3
(3) = 0 = B3

(3). In terms of the initial fields the third order fields are

Ei
(3) =− 1

16

(
cosh η ϵij[Dj, [Dk, [Dk, B0]]] + sinh η [Di, [Dk, [Dk, E0]]]

)
(2.41)

− ig

16
ϵij sinh η

(
[B0, [D

j, E0]] + [E0, [D
j, B0]]

)
− ig

16
cosh η

(
[E0, D

i, E0]− [B0, [D
i, B0]]

)
− ig

16
sinh ηϵij[Dj, [E0, B0]] ,
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Bi
(3) =− 1

16

(
sinh η[Di, [Dk, [Dk, B0]]]− cosh ηϵij[Dj, [Dk, [Dk, E0]]]

)
− ig

16
cosh η

(
[B0, [D

i, E0]] + [E0, [D
i, B0]]

)
− ig

16
sinh ηϵij

(
[B0, [D

j, B0]]− [E0, [D
j, E0]]

)
− ig

16
cosh η[Di, [E0, B0]] .

The longitudinal field survives at order O(τ 4) are

E3
(4) =

1

64
[Di, [Di, [Dj, [Dj, E0]]]] +

1

16
igϵij[[Di, E0], [D

j, B0]] ,

B3
(4) =

1

64
[Di, [Di, [Dj, [Dj, B0]]]]−

1

64
igϵij[[Di, E0], [D

j, E0]]

+
3

64
igϵij[[Di, B0], [D

j, B0]] .

Our explicit expressions provide truncated expressions which approximate the

full solutions to an accuracy

E3 =E3
trunc +O(τ 6) , (2.42)

Ei =Ei
trunc +O(τ 5) (2.43)

for the electric field. The same scheme holds for the magnetic field B⃗. Explicit ex-

pressions for even higher powers of τ could in principle be derived from the recursion

relations (2.27) and (2.28).

2.5 Comparison to Numerical Results

We just make a few remarks on how numerical solutions of the Yang-Mills equa-

tion quantitatively confirm important aspects of the series expansion in τ . We com-
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Figure 2.2: Squares of components of the color field as function of τ in a numerical

calculation by Lappi. Figure reprinted from [63] with permission from ELSEVIER.

pare our results to numerical solutions of the classical Yang-Mills equations obtained

by Lappi [63]. Fig. 2.2 shows the squares of longitudinal and transverse electric and

magnetic fields. Immediately after the collision, there are only longitudinal fields

which decrease as τ increases. The transverse fields build up linearly for small τ .

The growth is cut off when τ 3 terms become important and the increase will stop.

We note that the key features of these fields are provided by the small-τ expansion

if terms up to τ 4 are considered. Initially, at τ = 0, the value of longitudinal fields

should be given by the τ 0 order series expansion E0 and B0. The τ 2 terms account

for the rapid decrease of longitudinal fields as τ increases for small τ . The τ 4 order

terms should be positive and will approximately determine the inflection point for

the longitudinal fields in Fig. 2.2. The cut off in the slope of transverse fields is

almost a straight line for very small τ , which confirms that the behavior is domi-

nated by the first order in τ . The τ 3 terms will increase. In short, the longitudinal

fields can be written as a aτ 4 − bτ 2 + c function and transverse fields can be fitted
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by a′τ − b′τ 3 function for 0 < g2µτ < 0.5 1 with a, a′, b, b′, c > 0. In the following

sections we will determine these coefficients in more detail.

1Note that the color charge density µ defined in this work (see Chapter 4 for definition) corre-
sponds to µ2 in Lappi’s notation.
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3. THE ENERGY MOMENTUM TENSOR OF THE FIELD

From the field strength tensor we can easily calculate the energy momentum

tensor of the field

T µν = F µλF ν
λ +

1

4
gµνF κλFκλ . (3.1)

For brevity we employ a notation where SU(Nc) indices are summed over implicitly

unless said otherwise. Thus AB = AaBa = 2Tr(AB), a = 1, . . . , N2
c − 1, are

equivalent notations for a singlet formed from the contraction of two SU(Nc) objects

A and B. We discuss the first few orders in τ of the components of the tensor.

3.1 Components of the Energy Momentum Tensor up to Order τ 2

3.1.1 Order τ 0

It is straightforward to see that only the diagonal elements of T µν have finite

values at τ = 0. We define ε0 to be the initial value for the energy density

ε0 = T 00
(0) =

1

2

(
E2

0 +B2
0

)
= −g

2

2

(
δijδkl + ϵijϵkl

) (
[Ai

1, A
j
2][A

k
1, A

l
2]
)

(3.2)

The other diagonal elements of the energy momentum tensor are

T 11
(0) = T 22

(0) = ε0 (3.3)

T 33
(0) = −ε0 (3.4)

Hence the structure of the energy momentum tensor for τ → 0 is the same as that

for a longitudinal field in classical electrodynamics. There is a maximum “pressure”

anisotropy between the transverse and longitudinal directions. Despite being far

from equilibrium we take the liberty to use the notations of longitudinal pressure
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pL = T 33 and transverse pressure pT = T 11 = T 22. We find the transverse pressure

to be very large, pT = ε0, compared to an equilibrated system (an ideal relativistic

gas with the same energy density would have a transverse pressure pT = ϵ0/3) while

the longitudinal pressure pL = −pT = −ε0 is equally large and negative.

The sign of the longitudinal pressure is not surprising. It means that there is

a deceleration of the nuclei, as if a plates of the ”color capacitor” are being pulled

together by the longitudinal fields. This is the mechanism that removes kinetic

energy from the nuclei and deposits it as field strength between them. However keep

in mind that in our setup we do not calculate the field and the motion of the nuclei

selfconsistently. We assume that they move along the light cone undisturbed. The

BRAHMS experiment has reported that the initial nuclei (represented by the baryon

number in the system) lose about 70 to 75% of their kinetic energy in collisions of gold

nuclei at RHIC [75]. This means the nuclei or their fragments stay ultrarelativistic

throughout the collision and it is a viable approximation to keep their motion fixed

on the light cone.

The qualitative behavior of the system is then clear from the simple form of T µν

for τ → 0. While the negative longitudinal pressure leads to the deceleration of the

colliding nuclei, the transverse pressure forces the system to expand in transverse

direction. This transverse expansion can happen immediately, without any need for

equilibration or decoherence. In fact the transverse pressure is 3 times larger than

naively assumed. If the fields decohere and thermalize, the longitudinal pressure pL

has to change sign. In fact this change of sign has to happen fast enough since oth-

erwise the deceleration work dW = pLdV done on the nuclear debris would become

too large and lead to a yo-yo effect.
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3.1.2 Order τ 1

At the next order O(τ 1) the components T 0i and T 3i are the only ones to pick

up contributions. They describe the flow of energy and longitudinal momentum into

the transverse direction. Note that T 0i is the transverse component of the Poynting

vector S⃗ = E⃗ × B⃗. Therefore the expected transverse expansion sets in linearly in

τ . We have

T 0i
(1) =ϵ

ij
(
B0E

j
(1) − E0B

j
(1)

)
(3.5)

=
1

2
cosh η αi +

1

2
sinh η βi ,

T 3i
(1) =− E0E

i
(1) −B0B

i
(1) (3.6)

=
1

2
sinh η αi +

1

2
cosh η βi .

Recall that we agreed to omit the index (0) on covariant derivatives: Di = ∂i −

igAi
⊥(0).

We notice that we have two contributions to the flow. The first term is the

flow driven by the gradient of the transverse pressure as we would expect from a

hydrodynamic picture

αi = −∇iε0 . (3.7)

The second term involves the 2-vector

βi = ϵij
(
[Dj, B0]E0 − [Dj, E0]B0

)
. (3.8)

It is anomalous in the sense that it is not driven by the transverse pressure and enters

the energy momentum tensor as a rapidity-odd flow. It can, among other things,

lead to directed flow and has been first presented in [76] and is discussed in detail in
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[77]. We will explore its meaning in Chapter 5.

3.1.3 Order τ 2

At the order O(τ 2) the diagonal elements of T µν receive their first corrections and

all the previously vanishing components acquire their leading contribution. On the

other hand the transverse flow of energy and longitudinal momentum is not affected,

T 0i
(2) = 0 = T 3i

(2) . (3.9)

The expressions for the energy density, the longitudinal flow of energy and the flow

of longitudinal momentum are

T 00
(2) =E0E

3
(2) +B0B

3
(2) +

1

2
Ei

(1)E
i
(1) +

1

2
Bi

(1)B
i
(1)

=− 1

4
(∇iαi + δ)− 1

8
sinh 2η∇iβi +

1

8
cosh 2ηδ , (3.10)

T 03
(2) =ϵ

ijEi
(1)B

j
(1) (3.11)

=− 1

8
cosh 2η∇iβi +

1

8
sinh 2η δ ,

T 33
(2) =− E0E

3
(2) −B0B

3
(2) +

1

2
Ei

(1)E
i
(1) +

1

2
Bi

(1)B
i
(1)

=
1

4
(∇iαi + δ)− 1

8
sinh 2η∇iβi +

1

8
cosh 2η δ . (3.12)

The only new combination of fields appearing is related to longitudinal flow and

reads

δ = [Di, E0][D
i, E0] + [Di, B0][D

i, B0] . (3.13)

Clearly δ is a measure for longitudinal flow of energy which does not mix with

transverse flow at this order in τ . On the other hand we see that the flow βi cou-

ples transverse and longitudinal degrees of freedom. We will discuss energy and
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momentum conservation in more detail below.

The results for the remaining new contributions to this order are

T ii
(2) =

(−1)i

2

(
E1

(1)E
1
(1) +B1

(1)B
1
(1) (3.14)

−E2
(1)E

2
(1) −B2

(1)B
2
(1)

)
+ E0E

3
(2) +B0B

3
(2)

=− 1

4
(−△ϵ0 + δ + ωi) ,

T 12
(2) =− E1

(1)E
2
(1) −B1

(1)B
2
(1) = γ . (3.15)

△ here is the 2-dimensional Laplace operator. There is no implicit summation over

the double index i = 1, 2 in the first equation. The new quantities are

ωi =
(−1)i

2

(
[D1, E0]

2 − [D2, E0]
2 (3.16)

+ [D1, B0]
2 − [D2, B0]

2
)
,

γ =[D1, E0][D
2, E0] + [D1, B0][D

2, B0] . (3.17)

Note that ωi does not transform like a 2-vector. In the last equations one has to be

careful not to confuse upper vector indices 2 with squares.
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3.2 Order τ 3 and τ 4.

At order τ 3 the only contributions are the first corrections for the transverse flow

components T 0i and T 3i. They are

T 0i
(3) =ϵ

ij
(
B0E

j
(3) +B3

(2)E
j
(1) − E0B

j
(3) − E3

(2)B
j
(1)

)
=

1

16

(
cosh η ξi + sinh η ζ i

)
, (3.18)

T 3i
(3) =− E0E

i
(3) − E3

(2)E
i
(1) −B0B

i
(3) −B3

(2)B
i
(1)

=
1

16

(
sinh η ξi + cosh η ζ i

)
. (3.19)

The transverse flow vectors ξi and ζ i defined in Eq. (3.19) are given in terms of

E0 and B0 by

ξi =
[
Di, E0[D

l, [Dl, E0]] +B0[D
l, [Dl, B0]]

]
+ [Di, E0][D

l, [Dl, E0]]

+ [Di, B0][D
l, [Dl, B0]]− igϵijB0[E0, [D

j, E0]] , (3.20)

ζ i =ϵij
([
Dj, E0[D

l, [Dl, B0]]−B0[D
l, [Dl, E0]]

]
− 3[Dj, E0][D

l, [Dl, B0]]

+ 3[Dj, B0][D
l, [Dl, E0]]

)
− 3igE0[B0, [D

i, B0]] . (3.21)

At order τ 4 corrections to the energy density, longitudinal flow of momentum and

longitudinal flow of energy are

T 00
(4) =ρ+ κ

1

32
cosh 2η + σ

1

32
sinh 2η , (3.22)

T 33
(4) =− ρ+ κ

1

32
cosh 2η + σ

1

32
sinh 2η (3.23)

T 03
(4) =σ

1

32
cosh 2η + κ

1

32
sinh 2η (3.24)
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Where

ρ =B0B(4) + E0E(4) +
1

2
(B(2)B(2) + E(2)E(2))

κ =[Di, B0][D
i, [Dk, [Dk, B0]]] + [Di, E0][D

i, [Dk, [Dk, E0]]

+ igϵij[Di, B0]([B0, [D
j, B0]]− [E0, [D

j, E0]])

+ igϵij[Di, E0]([B0, [D
j, E0]] + [E0, [D

j, B0]] + [Dj, [E0, B0]]])

σ =ϵij[Di, E0][D
j, [Dk, [Dk, B0]]]

− ϵij[Di, B0][D
j, [Dk, [Dk, E0]]]

+ ig[Di, B0]([B0, [D
i, E0]]

+ [E0, [D
i, B0]] + [Di, [E0, B0]])

+ ig[Di, E0]([E0, [D
i, E0]]− [B0, [D

i, B0]])

This completes the list of contributions we have calculated. The truncated series

for the energy momentum tensor presented here is accurate up to corrections of order

O(τ 5) for the T 0i and T 3i components and of order O(τ 6) for all other components.

3.3 Checking Energy and Momentum Conservation

The solutions of the Yang-Mills equations automatically satisfy energy and mo-

mentum conservation, i.e. ∂µT
µν = 0 + corrections of higher order in τ . This can

be checked explicitly order by order. ∂µT
µ0 and ∂µT

µ3 receive contributions only for

odd powers of τ , whereas ∂µT
µi exclusively consists of even powers.

Transverse momentum conservation, ν = 1, 2, is obvious at order τ 0. From the
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corresponding equation

∂µT
µi
∣∣∣
τ0

=

(
cosh η − sinh η

∂

∂η

)
T 0i
(1) (3.25)

−
(
sinh η − cosh η

∂

∂η

)
T 3i
(1) +∇iT ii

(0)

=αi +∇iε0 .

all terms containing the anomalous flow βi drop out and the remaining expression

obviously vanishes using the known result for the hydrodynamic flow αi. Note that

the index i is not summed in the term containing T ii.

At order τ 1 we have,

∂µT
µ0
∣∣∣
τ1

= (cosh η
∂

∂τ
− 1

τ
sinh η

∂

∂η
)T 00

(2)

+ (− sinh η
∂

∂τ
+

1

τ
cosh η

∂

∂η
)T 30

(2) +∇iT i0
(1)

=− 1

2
cosh η(∇iαi + δ)

+
1

2
cosh η(− sinh 2η∇iβi + cosh 2ηδ)

− 1

2
sinh η(− cosh 2η∇iβi + sinh 2ηδ)

+
1

2
cosh η∇iαi +

1

2
sinh η∇iβi

=0 . (3.26)

The proof for ν = 3 is completely analogous.
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At order τ 2 we have a very similar picture

∂µT
µi
∣∣∣
τ2

=

(
3 cosh η − sinh η

∂

∂η

)
T 0i
(3) (3.27)

−
(
3 sinh η − cosh η

∂

∂η

)
T 3i
(3)

+∇iT ii
(2) +∇jT ji

(2)

=ξi −∇i (−△ϵ0 + δ + ωi) +∇jγ .

with the anomalous flow contributions ζ i canceling. Again, the index i = 1, 2 is not

summed upon multiple appearance and in addition we define j to be the transverse

index with j ̸= i. Momentum conservation holds if the equation

ξi = ∇i (−△ϵ0 + δ + ωi)−∇jγ . (3.28)

is true. We can check it explicitly:

∇x (−△ϵ0 + δ + ωx)−∇yγ (3.29)

=−∇x
(
((E0[D

l, [Dl, E0]] +B0[D
l, [Dl, B0]])

+ ([Dl, E0][D
l, E0] + [Dl, B0][D

l, B0])

− ([Dl, E0][D
l, E0] + [Dl, B0][D

l, B0])
)

+
1

2

(
[Dx, [Dx, E0]

2] + [Dx, [Dx, B0]
2]

− [Dy, [Dy, E0]
2]− [Dy, [Dy, B0]

2]
)

+ [Dy, [Dx, E0][D
y, E0] + [Dx, B0][D

y, B0]]

=
[
Dx, E0[D

l, [Dl, E0]] +B0[D
l, [Dl, B0]]

]
+ [Dx, E0][D

l, [Dl, E0]] + [D1, B0][D
l, [Dl, B0]] = ξx
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Overall we have now established that our truncated expression for the energy mo-

mentum tensor satisfies

∂µT
µ0 = 0 +O(τ 3) , (3.30)

∂µT
µi = 0 +O(τ 4) , (3.31)

∂µT
µ3 = 0 +O(τ 3) . (3.32)

We are confident that this is a solid basis for further analysis.
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4. AVERAGING OVER COLOR SOURCES WITH TRANSVERSE DYNAMICS

So far we have held the charge distributions ρk in the two nuclei fixed and have

expressed the fields and the energy momentum tensor after the collision in terms

of the initial fields E0 and B0. E0 and B0 are in turn determined by the gauge

potentials Ai
k in the two nuclei before the collision using our choice of axial gauge.

In a given nuclear collision the color charge densities are not known. In fact when

integrating over transverse space the total color charge should be zero, and if we look

at the expectation value (or long time average) of ρik in nucleus k at any fixed point

in the transverse plane it should vanish as well, ⟨ρik⟩ = 0. However fluctuations can

result in non-vanishing color charge at a given point in time and space. The internal

dynamics of the fluctuations are much slower than the time scale of the high energy

collision such that we can treat the ρik as frozen but random with average fluctuation

strength ⟨ρikρil⟩ = µδkl where µ > 0 is an average squared color charge density. This

opens the way to two possible implementations. We could analyze random samples

of charge densities with Monte-Carlo methods. This will lead to an event-by-event

determination of the energy momentum tensor. Such MC techniques have recently

been explored in [59]. We will investigate this option in Chapter 6. Here we calculate

expectation values for observables which will allow us to analytically study important

aspects.

In this and the following chapter we will ensemble-average classical gluon fields

over all possible charge distributions with the conditions above and calculate expec-

tation values. For an observable O measured after the collision of two nuclei this

would be

⟨O⟩ρ1,ρ2 =
∫
d[ρ1]d[ρ2]O(ρ1, ρ2)w(ρ1)w(ρ2) (4.1)
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where the w are appropriate weights. In the McLerran-Venugopalan model the weight

functions are chosen to have the simplest Gaussian shape

w(ρk) = e−
∫
d2x⊥ρ2k(x⃗⊥)/2g2µk , (4.2)

where the fluctuation strength is set by average densities g2µk.

The averaging corresponds to a random walk in the space of SU(Nc) valued

functions. In the following we will calculate these expectation values for the energy

momentum tensor using a slightly generalized McLerran Venugopalan model.

4.1 The McLerran Venugopalan Model with Transverse Dynamics (MVTD)

We start with a brief review of the MV model. We implement the averaging over

color sources in a given nucleus by fixing the expectation value

⟨ρa(x∓, x⃗⊥)ρb(y∓, y⃗⊥)⟩ =
g2

(N2
c − 1)

δabλ(x
∓, x⃗⊥)δ(x

∓ − y∓)δ2(x⃗⊥ − y⃗⊥), (4.3)

for a nucleus moving along the + or − light cone respectively, together with the

condition that expectation values of any odd number of ρ-fields vanish. We drop the

index k labeling a particular nucleus here for ease of notation. We have explicitly

written out the coupling constant g that was contained in ρ as defined in Eqs. (2.1)

and (2.3). λ and µ are then number densities summed over color degrees of freedom.

Note that the normalization of µ differs by a factorN2
c −1 from many other definitions

in the literature [63]. We allow a dependence of the expectation value on both the

longitudinal coordinate x∓ and the transverse coordinate x⃗⊥.

The longitudinal smearing is necessary to compute expectation values correctly

as first realized in [78]. A nucleus has to be given a small, but finite, thickness across
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the light cone which we will do by introducing

λ(x∓, x⃗⊥) = µ(x⃗⊥)h(x
±) (4.4)

where h is a non-negative function with finite width ϵ around x± = 0 such that

∫
dx−λ(x−, x⃗⊥) = µ(x⃗⊥) . (4.5)

We do not need to specify it further (but we could imagine e.g. a Gaussian of width

ϵ).

We have introduced the dependence of the area charge density µ on x⃗⊥ as a

generalization of the assumptions of the proper McLerran-Venugopalan model, where

the nuclei are infinitely large in the transverse direction and on average invariant

under rotations and translations. Real nuclei break these symmetries, and it is a

worthwhile goal to investigate the stability of the MV results under small deviations

from these symmetries. Our motivation here is that no transverse dynamics can be

generated in the strict MV model.

We will allow the following relaxation of the MV conditions: in each domain of

size ∼ 1/m in the transverse plane µ is almost constant, more precisely we want that

|µ(x⃗⊥)| ≫ m−1
∣∣∇iµ(x⃗⊥)

∣∣≫ m−2
∣∣∇i∇jµ(x⃗⊥)

∣∣≫ . . . . (4.6)

The purpose here is that inside domains of size 1/m the well-defined physics of the

color glass is applicable, while on length scales larger than 1/m unrelated infrared

behavior is allowed to occur. Fig. 4.1 shows that the first inequality in Eq. (4.6) is

true for more than 90% of matter in a nucleus if reasonable values of the infrared
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Figure 4.1: The ratio of gradients of charge density over charge density for a realistic

gold nucleus with Woods-Saxon profile. Eq. (4.6) is true for more than 90% of

matter in a nucleus if a realistic infrared cutoff 1 fm−1 ∼ 200 MeV is chosen.

scale are chosen. Thus we imagine a hierarchy

1/Qs ≪ 1/m≪ RA (4.7)

and m hence is an infrared scale which separates color glass physics from long-range

QCD.

We have two main goals in this expanded McLerran-Venugopalan (MVTD) model:

(i) Results must be well behaved under these small deviations from translational and

rotational invariance, otherwise the original MV model would not be infrared safe.

In practice this means that observables should be only weakly dependent on the

infrared scale. We will explicitly check this condition below. (ii) The results will

provide a long-range dynamics, expanded in gradients of µ, which is compatible with

color glass physics at small distances. This will allow us to safely apply the MV

model locally to realistic nuclei as long as the location is sufficiently far away from
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the boundary of the nucleus where the density µ starts to fall off quickly. We also

have a chance to address the consequences of inhomogeneities in the transverse plane

as long as their typical length scale is larger than the typical color glass length scale.

It is this feature that will allow us to calculate flow in color glass.

4.2 The Gluon Distribution

The most important expectation value is the two-point gluon function, or gluon

distribution ⟨Ai
a(x⃗⊥)A

i
a(y⃗⊥)⟩ in light cone gauge. The Yang-Mills equations (2.1) for

a single nucleus on the +-light cone are most easily solved in a covariant gauge where

Aµ
cov = δµ+α. The equations then reduce to

∆α(x−, x⃗⊥) = −ρcov(x−, x⃗⊥) (4.8)

where the Laplace operator ∆ acts on the transverse directions. The explicit solution

is

α(x−, x⃗⊥) =

∫
dz2⊥G(x⃗⊥ − z⊥)ρcov(x

−, z⃗⊥) (4.9)

with a Green’s function G(x⊥) = − ln(x2⊥/Λ
2)/(4π) where Λ is an arbitrary length

scale. However, we will be better served by introducing a physically motivated

regularization through a gluon mass m which can be inserted into the Fourier trans-

formation of the Green’s function G̃(k) = 1/k2 → 1/(k2 +m2) [79]. 1 This leads to

the representation

G(x⊥) =
1

2π
K0(mx⊥) (4.10)

using Bessel functions K0. This Green’s function reproduces the previous expression

in the limit m→ 0 with Λ = 2e−γE/m, where γE is Euler’s constant. The two-gluon

1Note that the gluon mass could be an unrelated infrared scale but for simplicity we choose the
IR cutoff in the gradient expansion of µ to be identical.
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correlation function in covariant gauge as the average of two gluon fields can then

be easily derived from (4.3) as

⟨αa(x
−, x⃗⊥)αb(y

−, y⃗⊥)⟩ =
g2

N2
c − 1

δabδ(x
− − y−)γ(x−, x⃗⊥, y⃗⊥) (4.11)

where we have introduced the Green’s function

γ(x−, x⃗⊥, y⃗⊥) =

∫
d2z⃗⊥G(x⃗⊥ − z⃗⊥)G(y⃗⊥ − z⃗⊥)λ(x

−, z⃗⊥) . (4.12)

We will show below that γ depends strongly on the IR regularization scale m. It

diverges like 1/m2 in the limits |x⃗− y⃗| → 0.

The gluon field Ai in light cone gauge can be derived from the covariant expression

with the help of the Wilson line

U(x−, x⊥) = P exp

[
−ig

∫ x−

−∞
α(z−, x⃗⊥)dz

−

]
. (4.13)

Here P denotes path ordering of the fields α from right to left. One can show that

the correct gauge transformation to arrive at the light cone potential is [78].

Ai(x−, x⃗⊥) =
i

g
U(x−, x⃗⊥)∂

iU †(x−, x⃗⊥) (4.14)

This enables us to calculate the expectation value of a pair of gluons in the MV

model in the light cone gauge which is related to the gluon distribution

⟨F+i
a (x−, x⃗⊥)F

+j
b (y−, y⃗⊥)⟩ =

⟨(
U †
ac∂

iαc

)
(x−, x⃗⊥)

(
U †
bd∂

jαd

)
(y−, y⃗⊥)

⟩
. (4.15)

In this equation we have used gauge transformations F = UFcovU
† to covariant
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gauge and then expressed the Wilson lines U by their counterparts in the adjoint

representation, U , by virtue of the relation

UtaU
† = Uabtb . (4.16)

Let us take a small detour here to discuss expectation values of adjoint, parallel

Wilson lines in the MV model [78]. A systematic study was recently carried out by

Fukushima and Hidaka [80]. For a single line we get

⟨Uab(x
−, x⃗⊥)⟩ = δab exp

[
− g4Nc

2(N2
c − 1)

×
∫ x−

−∞
γ(z−, x⃗⊥, x⃗⊥)dz

−
]
. (4.17)

This expectation value is suppressed since γ(z−, x⃗⊥, y⃗⊥) tends to diverge in the limit

m→ 0.

For a double line we have

⟨
Uab(x

−, x⃗⊥)Ucd(x
−, y⃗⊥)

⟩
= δadδbcd(x

−, x⃗⊥, y⃗⊥) (4.18)

where

Γ(z−, x⃗⊥, y⃗⊥) = 2γ(z−, x⃗⊥, y⃗⊥)− γ(z−, x⃗⊥, x⃗⊥)− γ(z−, y⃗⊥, y⃗⊥) . (4.19)

is a subtracted version of γ, and

d(x−, x⃗⊥, y⃗⊥) = exp

[
g4Nc

2(N2
c − 1)

∫ x−

−∞
dz−Γ(z−, x⃗⊥, y⃗⊥)

]
(4.20)

is the exponentiation of the integral of Γ along the light cone. In the original MV

model the subtraction in Γ removes the 1/m2 singularity in γ for smallm and renders
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the exponential d finite. In particular, Γ(x−, x⃗⊥, y⃗⊥) vanishes in the ultraviolet limit

y⃗⊥ → x⃗⊥. We will show below that this crucial cancellation is still valid for our

generalization. Here we have also dropped contributions from non-color singlet pairs

[80].

We return to the discussion of the correlation function of fields. One can prove

that the only possible contraction of fields on the right hand side of (4.15) comes

from a factorization into correlators ∼ ⟨U †U †⟩⟨∂iα∂jα⟩. The latter factor can be

derived from (4.11)

⟨∂iαa(x
−, x⃗⊥)∂

jαb(y
−, y⃗⊥)⟩ =

g2

N2
c − 1

δabδ(x
− − y−)∇i

x∇j
yγ(x

−, x⃗⊥, y⃗⊥) . (4.21)

This leads to the result

⟨F+i
a (x−, x⃗⊥)F

+j
b (y−, y⃗⊥)⟩ =

g2

N2
c − 1

δabδ(x
− − y−)

×
[
∇i

x∇j
yγ(x

−, x⃗⊥, y⃗⊥)
]
d(x−, x⃗⊥, y⃗⊥) (4.22)

for the expectation value of fields in light cone gauge. The correlation function of

two gauge potentials in light cone gauge follows from an integration with retarded

boundary conditions

Ai(x−, x⃗⊥) = −
∫ x−

−∞
dz−F+i(z−, x⃗⊥) . (4.23)
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One integral is easily taken to give

⟨Ai
a(x

−, x⃗⊥)A
j
b(y

−, y⃗⊥)⟩ = g2δab
2∇i

x∇j
yγ(x⃗⊥, y⃗⊥)

g4NcΓ(x⃗⊥, y⃗⊥)

×
∫ min{x−,y−}

−∞
dx′−

∂

∂x−
exp

[
g4Nc

2(N2
c − 1)

Γ(x⃗⊥, y⃗⊥)

∫ x′−

−∞
dz−h(z−)

]
. (4.24)

Note that we have taken a factor h(x−) from both γ and Γ and we have rewritten

one factor of h(x−) as a derivative ∂/∂x− of the exponential. We formally define γ

[and Γ] (x⃗⊥, y⃗⊥) as the integral of γ [and Γ] (x−, x⃗⊥, y⃗⊥) over x
− from −∞ to +∞,

respectively.

We can then take the second integral. We will only be interested in min{x−, y−} >

0 and upon taking the limit of vanishing width ϵ of h we have

⟨Ai
a(x⃗⊥)A

j
b(y⃗⊥)⟩ = 2g2δab

∇i
x∇j

yγ(x⃗⊥, y⃗⊥)

g4NcΓ(x⃗⊥, y⃗⊥)

×
(
exp

[
g2Nc

2(N2
c − 1)

Γ(x⃗⊥, y⃗⊥)

]
− 1

)
. (4.25)

This result holds for both the McLerran-Venugopalan model [78] and our general-

ization. For further evaluation we have to understand the correlations functions γ

and Γ. We will calculate them next. Before we proceed let us briefly write down the

gluon distribution function in the ultraviolet limit y⃗⊥ → x⃗⊥. In that limit Γ → 0,

and we can expand the exponential function around 0 using only the two leading

terms to arrive at the simple expression

⟨Ai
a(x⃗⊥)A

j
b(x⃗⊥)⟩ = δab

g2

N2
c − 1

∇i
x∇j

yγ(x⃗⊥, y⃗⊥)
∣∣∣
y⃗⊥→x⃗⊥

. (4.26)
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4.3 Gluon Fields in the Generalized MV Model

The cancellation of the singularity in γ through the subtraction in Eq. (4.19)

is a classic result of the proper McLerran-Venugopalan model. We will now show

that this benign result holds for the inhomogeneous charge densities λ that we have

permitted. This will also prove that the original assumptions of the MV model

regarding homogenous charge distributions are well defined, since stable under small

perturbations. Let us introduce center and relative coordinates for two points x⃗⊥

and y⃗⊥ in the transverse plane via R⃗ = (x⃗⊥ + y⃗⊥)/2 and r⃗ = y⃗⊥ − x⃗⊥.

We first recall the argument in the original McLerran-Venugopalan model. For

constant µ(x⃗⊥) = µ0 we need to calculate the correlation function

γ0(r) ≡ γ0(x⃗⊥, y⃗⊥) = µ0

∫
d2z⊥G(x⃗⊥ − z⃗⊥)G(y⃗⊥ − z⃗⊥)

= µ0

∫
d2k⊥
(2π)2

eik⃗⊥r⃗ 1

(k2⊥ +m2)2
= λ0

r

4πm
K1(mr) (4.27)

which only depends on the relative distance r due to isotropy and translational in-

variance . Due to the factorization of h(x−) all results also hold for the correlation

functions not integrated over x−. As mentioned before γ0 exhibits a quadratic depen-

dence on the infrared cutoff m for small r. In particular, we have γ0(0) = λ0/(4πm
2).

Hence the subtracted 2-point function (4.19) in this case, in the ultraviolet limit

r → 0 becomes

Γ0(r) = 2γ0(r)− 2γ0(0) = µ0
r2

8π

(
ln
r2m2

4
+ 2γE − 1

)
+O(m2r4) . (4.28)

This is equivalent to the result in [78] using a finite gluon mass regularization. The

power singularity 1/m2 is replaced by a weak logarithmic dependence on m for small
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r.

Let us now check that the same cancellation takes place if λ is weakly varying

on length scales 1/m as permitted above. We are only interested in typical values

of r = |y⃗⊥ − x⃗⊥| . Q−1
s since the inverse distance should be larger than the infrared

regulator, r−1 ≫ m. In fact the computation of the energy momentum tensor only

requires the limit mr ≪ 1 (which we have called the ultraviolet limit). Next we

recall that the Green functions G(z⊥) ∼ K0(mz⊥) fall off on a scale ∼ 1/m ≫ r.

Under these conditions, we can restrict ourselves to the first few terms of a Taylor

expansion of µ around R⃗ in the calculation of γ:

µ(z⃗⊥) = µ(R⃗) + (z⃗⊥ − R⃗)i∇iµ(R⃗) + . . . (4.29)

which leads to the expression

γ(R⃗, r⃗) ≡ γ(x⃗⊥, y⃗⊥) = γ0(R⃗, r) +
1

2
∇i∇jµ(R⃗)γij(r⃗) + . . . . (4.30)

Here we have γ0(R⃗, r) = µ(R⃗)rK1(mr)/(4πm) analogous to (4.27), representing the

constant term. The linear term vanishes due to

∫
d2z⃗⊥G(z⃗⊥ + r⃗/2)G(z⃗⊥ − r⃗/2)zi⊥ = 0 , (4.31)

and the second order term is

γij =

∫
d2z⃗⊥G(z⃗⊥)G(r⃗− z⃗⊥)zi⊥z

j
⊥ = δij

r2

24πm2
K2(mr)+

rirj

r2
13r3

96πm
K1(mr) (4.32)

These correlations functions can be conveniently computed in Fourier space, similar

to the technique in Eq. (4.27).
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The subtraction of γ(0) removes the leading quadratically divergent term in m

as in the original McLerran-Venugopalan model. In the relevant limit rm → 0 we

have

Γ(R⃗, r⃗) = λ(R⃗)
r2

8π

(
ln m̂2r2 − 2

)
+O(λm2r4)

+∇i∇j λ(R⃗)

[
−δij + rirj

r2
13

2

]
r2

48πm2
+O([∇2λ]m0r4) +O(∇4λ) . (4.33)

where m̂ = κm and κ = exp(γE + 1/2)/2 ≈ 1.47. Indeed, the dependence on the

cutoff m is at most logarithmic for the small variations of λ that are permitted. Note

that we will never keep gradients of µ larger than order 2 since higher orders will be

hard to control phenomenologically.

Besides the subtracted correlation function Γ we need to check the double deriva-

tive ∇i
x∇j

yγ(x⃗, y⃗) in the gluon distribution (4.26). Up to second order gradients we

obtain

∇i
x∇j

yγ(x⃗, y⃗) = µ(R⃗)
1

4π

[
δijK0(mr)−

rirj

r2
mrK1(mr)

]
+

[
−∇i∇jµ(R⃗)

7

2
+△µ(R⃗)δij

]
r

48πm
K1(mr) +O(∇3µ) . (4.34)

We take the limit mr → 0 and keep only terms isotropic in r⃗ by setting rirj/r2 →

δij/2, as no dependence on the direction of r⃗ should remain in this limit. The leading

terms of the correlation function with two derivatives read

∇i
x∇j

yγ(R⃗, r)
∣∣∣
r→0

= −µ(R⃗) 1

8π
δij ln(m̂2r2)

+

[
−∇i∇jµ(R⃗)

7

2
+△µ(R⃗)δij

]
1

48πm2
, (4.35)
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where m̂ = em̄ ≈ 1.47m

Eqs. (4.33), (4.34) together with (4.25) or (4.26) determine the gluon distribution

in the generalized McLerran-Venugopalan model. For the case of constant µ we

recover the standard expression for the gluon distribution [78, 63]

⟨Ai
aA

i
a⟩ =

4(N2
c − 1)

g2Ncr2

(
1− (m̂2r2)

g4Nc
16π(N2

c−1)
µr2
)
. (4.36)

Recall that our definition of µ has an additional factor N2
c − 1 compared to [78, 63].

The generalized result in the ultraviolet limit is

⟨Ai
a(x⃗⊥)A

j
b(x⃗⊥)⟩ = δab

g2µ(x⃗)

8π(N2
c − 1)

[
δij ln

Q2

m̂2
+

∇k∇lµ(x⃗)

m2µ(x⃗)

(
1

6
δklδij − 7

12
δikδjl

)]
.

(4.37)

up to second order in gradients. Here we have regularized the limit r → 0 by an

ultraviolet cutoff Q ∼ 1/r in the logarithm.

4.4 Higher Twist Gluon Correlation Functions

For the components of the energy momentum tensor beyond the leading term

in the τ expansion we will need expectation values of expressions of the gluon field

beyond the gluon distribution function. We will compute those correlation functions

in this subsection. With more fields or more derivatives they are akin to “higher

twist” gluon distributions, and we will see that there is indeed a power counting

hierarchy.

With one additional transverse derivative in the 2-gluon correlation function we
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have

⟨∂kAi
a(x

−, x⃗⊥)A
j
b(y

−, y⃗⊥)⟩ =
∫ x−

−∞
dx′

−
∫ y−

−∞
dy′

−
(⟨

(DkF+i)a(x
′−, x⃗⊥)F

+j
b (y′−, y⃗⊥)

⟩
+ig

⟨[
Ak, F+i

]
a
(x′−, x⃗⊥)F

+j
b (y′−, y⃗⊥)

⟩)
. (4.38)

Using the same change to covariant gauge as in Sec. 4.2 the first and second expec-

tation value can be transformed into

⟨
U †
aa′(x

′−, x⃗⊥)U †
bb′
(y′−, y⃗⊥)∂

k∂iαa′(x
′−, x⃗⊥)∂

jαb′(y
′−, y⃗⊥)

⟩
= δab

g2

N2
c − 1

δ(x′− − y′−)
[
−∇i

x∇k
x∇j

yγ(x
′−, x⃗⊥, y⃗⊥)

]
d(x′−, x⃗⊥, y⃗⊥) , (4.39)

ifcda

∫ x−

−∞
dx′′

−
⟨
F+k
c (x′′−, x⃗⊥)F

+i
d (x′−, x⃗⊥)F

+j
b (y−, y⃗⊥)

⟩
= ifcda

∫ x−

−∞
dx′′

−
⟨
U †
cc′(x

′′−, x⃗⊥)U †
dd′
(x′−, x⃗⊥)U †

bb′
(y′−, y⃗⊥)

×∂kαc′(x
′′−, x⃗⊥)∂

iαd′(x
′−, x⃗⊥)∂

jαb′(y
′−, y⃗⊥)

⟩
= 0 , (4.40)

respectively. The second term vanishes since an even number of adjoint Wilson lines

and fields α have to be contracted with each other (combinations ⟨Uα⟩ ∼ 0 are

suppressed) [80]. For the first term we recall that in covariant gauge Dk
covF

+i
cov =

∂k∂iα. The two integrals over x′− and y− can be dealt with exactly as in the case of

the gluon distribution. The result for arbitrary longitudinal positions x− > 0 (after

taking the thickness ϵ of light cone sources to zero) in the relevant UV limit is

⟨∂kAi
a(x⃗⊥)A

j
b(x⃗⊥)⟩ = − g2

N2
c − 1

δab∇i
x∇k

x∇j
yγ(x⃗⊥, y⃗⊥)

∣∣∣
y⃗⊥→x⃗⊥

. (4.41)
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Similarly we can treat two more expectation values with 2 derivatives each. We

obtain

⟨∂kAi
a(x⃗⊥)∂

lAj
b(x⃗⊥)⟩ =

g2δab
(N2

c − 1)

[
∇i

x∇k
x∇j

y∇l
yγ(x⃗⊥, y⃗⊥)

+
g2Nc

2(N2
c − 1)

∇i
x∇j

yγ(x⃗⊥, y⃗⊥)∇k
x∇l

yγ(x⃗⊥, y⃗⊥)

]
y⃗⊥→x⃗⊥

. (4.42)

The expectation value can be written as a sum of four terms ∼ DFDF , ∼ FFDF ,

∼ DFFF , FFFF as in (4.39). The second and third vanish for the same reasons the

second term in (4.39) dissappears. The other two terms can be shown to correspond

to the two contributions in the equation above. In the same spirit we have

⟨∂k∂lAi
a(x⃗⊥)A

j
b(x⃗⊥)⟩ =

g2δab
(N2

c − 1)

[
∇i

x∇k
x∇l

x∇j
yγ(x⃗⊥, y⃗⊥)−

g2Nc

2(N2
c − 1)

×∇i
x∇j

yγ(x⃗⊥, y⃗⊥)∇k
x∇l

xγ(x⃗⊥, x⃗⊥)

]
y⃗⊥→x⃗⊥

. (4.43)

The higher derivatives of the correlation function γ are straightforward to calcu-

late. We have

∇i
x∇k

x∇j
yγ(x⃗⊥, y⃗⊥) =

µ(R⃗)

4π

[(
δij
rk

r
+ δik

rj

r
+ δjk

ri

r

)
mK1(mr)

rirjrk

2r3
m2rK2(mr)

]
+

∇lµ(R⃗)

8π

(
δjl
rirk

r2
− δil

rjrk

r2
− δkl

rirj

r2

)
mrK1(mr)

− ∇lµ(R⃗)

8π

(
δjlδik − δilδjk − δklδij

)
K0(mr) (4.44)

where we have kept the two leading orders, ∼ 1/r and ∼ m, in our power counting

in mr. One can check that the contribution of the leading term to observables (e.g.

to βi) vanishes due to the odd number of powers in ri. Hence the relevant term in
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the UV limit is

∇i
x∇k

x,y∇j
yγ(x⃗⊥, y⃗⊥)

∣∣
y⃗⊥→x⃗⊥

=
∇lµ(R⃗)

16π
ln
Q2

m̂2

(
∓δjlδik ± δilδjk + δklδij

)
. (4.45)

The lower signs are valid if the derivative ∇k acts on y⊥ instead of x⊥. As discussed

above we have dropped a term O(g2µQ) that does not contribute to observables. One

can check from the lower signs in (4.45) that ⟨Ai
a∂

kAj
b(x⃗⊥)⟩ has the same form modulo

a permutation {i, a} ↔ {j, b} consistent with the symmetry of the expression.

Caution is needed when we are calculating four derivatives on γ. The leading

behavior of ∇i
x∇j

y∇k
x∇l

x,yγ(x⃗⊥, y⃗⊥)
∣∣
y⃗⊥→x⃗⊥

is similar to △ ln r which vanishes every

where excerpt r → 0. A proper integration will give us the leading term, together

with the next leading term, we have (again regularizing 1/r by Q),

∇i
x∇j

y∇k
x∇l

x,yγ(x⃗⊥, y⃗⊥)
∣∣
y⃗⊥→x⃗⊥

=∓ µ(R⃗)

4π
Q21

8

(
δijδkl + δikδjl + δjkδil

)
(4.46)

+
∇m∇nµ(R⃗)

32π
ln
Q2

m̂2
(δijδkmδln − δikδjmδln

∓ δilδjmδkn + δjkδimδln ± δjlδimδkn ∓ δklδimδjn) .

The leading term only depends on the charge density at the transverse position while

the next leading term depends on 2nd gradients on charge density, which essentially

contribute to energy momentum tensor at the same order of ∇iαi and ∇iβi. Thus we

have all the ingredients to calculate expectation values of components of the energy

momentum tensor up to 2nd order in time which we will do in the next chapter.
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5. ENERGY MOMENTUM TENSOR AND FLOW OF GLASMA

We now return to the case of two colliding nuclei and calculate expectation values

for the energy momentum tensor. We will further break down the expressions for the

components of the energy momentum tensor in the small time expansion in terms of

the initial longitudinal fields such that they can be written in terms of the fields Ai
1

and Ai
2 in the individual nuclei. It is then straightforward to apply the results of the

last section to obtain the proper expectation values that can be observed in nuclear

collisions. 1

5.1 Energy Density and Flow

The expectation value of the initial energy density ϵ0 from Eq. (3.2) can be written

as [63],

ε0 ≡ ⟨ε0⟩ =
g2

2
fabefcde

(
δijδkl + ϵijϵkl

)
⟨Ai

1,aA
k
1,c⟩ρ1⟨A

j
2,bA

l
2,d⟩ρ2 . (5.1)

Note that in this chapter we calculate only averages of components of the energy

momentum tensor and will henceforth suppress the symbol ⟨. . .⟩ in the notation for

simplicity.

Applying (4.37) for each nucleus the initial energy density is

ε0(x⃗⊥) = T 00
(0)(x⃗⊥) =

g6Nc

32π2(N2
c − 1)

µ1(x⃗⊥)µ2(x⃗⊥) ln
2 Q

2

m̂2
≡ c0µ1(x⃗⊥)µ2(x⃗⊥) . (5.2)

µ1 and µ2 are the expectation values of the densities of charges, as discussed in the

1Part of the contents in this chapter is reprinted from Global flow of glasma in high energy
nuclear collisions by G. Chen and R. J. Fries, 2013, Phys. Lett. B, 723, 417-420. Copyright [2013]
by Elsevier.
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last section, in nuclei 1 and 2, respectively. We have dropped terms ∼ ∇∇µ/m2

subleading for the energy density.

We have defined the coefficient c0 as,

c0 =
g6Nc

32π2(N2
c − 1)

ln2 Q
2

m̂2
. (5.3)

Eq. (5.2) is consistent with the expression derived by Lappi in [63] up to a factor of

(N2
c − 1)2 coming from different definition of charge density µ.

The expectation value of flow in transverse direction at order O(τ) is given by

αi = −c0∇i (µ1µ2) , (5.4)

for rapidity-even contribution. We assume here that we can choose Q2 and m̂ uni-

versally and that they do not depend on x⃗⊥. If Q = Qs that would not be true.

The rapidity odd flow vector needs to be evaluated with the same technique as the

energy density. Separation of contributions from both nuclei leads to

βi = g2fabefcdeϵ
ij
(
ϵmnδkl − ϵklδmn

) [
⟨(∂iAm

1,a)A
k
1,c⟩⟨An

2,bA
l
2,d⟩

+ ⟨(Am
1,a)A

k
1,c⟩⟨(∂An

2,b)A
l
2,d⟩
]

(5.5)

Recall that terms with an odd number of fields, e.g. ∼ ⟨AAA⟩ have a vanishing

expectation value. The expectation value then takes a form surprisingly similar to

αi:

βi = −c0
[
µ2∇iµ1 − µ1∇iµ2

]
. (5.6)

59



5.2 The Energy Momentum Tensor up to Order τ3

The longitudinal flow of energy at order τ 2 can be calculated in the same way,

δ =⟨[Dm, E0][D
m, E0] + [Dm, B0][D

m, B0]⟩

=g2fabefcde
(
δijδkl + ϵijϵkl

)
(⟨(∂mAi)1,a(∂

mAk)1,c⟩ρ1⟨A
j
2,bA

l
2,d⟩ρ2

+ ⟨Ai
1,aA

k
1,c⟩ρ1⟨(∂mAj)2,b(∂

mAl)2,d⟩ρ2 + ⟨(∂mAi)1,aA
k
1,c⟩ρ1⟨A

j
2,b(∂

mA)l2,d⟩ρ2

+ ⟨Ai
1,a(∂

mAk)1,c⟩ρ1⟨(∂mA)
j
2,bA

l
2,d⟩ρ2)

+ 2
g4

2
fabAfeABfcdCffcB

(
δijδkl + ϵijϵkl

)
×
(
⟨Am

1,eA
m
1,f⟩ρ1⟨Ai

1,aA
k
1,c⟩ρ1⟨A

j
2,bA

l
2,d⟩ρ2

+ ⟨Ai
1,aA

k
1,c⟩ρ1⟨A

j
2,bA

l
2,d⟩ρ2⟨Am

2,eA
m
2,f⟩ρ2

)
. (5.7)

Using formulas we derived in Chapter 4 Sec. 4.4, we have

δ =4Q2ϵ0 ln
−1 Q

2

m̂2
(5.8)

+ c0
[
(△µ1)µ2 +∇iµ1∇iµ2 + µ1(△µ2)

]
+

g4Nc

4π(N2
c − 1)

ln
Q2

m̂2
(µ1 + µ2)ϵ0 .

Other new contributions to the energy momentum tensor at order τ 2 can be

obtained by the same procedure,

ωi =
(−1)i

2
c0
[
∂1∂1(µ1µ2)− ∂2∂2(µ1µ2)

]
, (5.9)

γ =
1

2
c0∂

1∂2(µ1µ2) . (5.10)

ωi will break the isotropy of the pressure such that T 11 ̸= T 22 .

The energy flow ξi at order τ 3 can be expressed as derivatives of second order
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quantities. This has been proved explicitly in Eq. (3.30).

ξi = ∇i(−△ϵ0 + δ + ωi)−∇jγ . (5.11)

The rapidity odd flow at order τ 3 ζ i = 0 if we assume the correlator of three fields

vanishes.

Hence after average the color configuration, the energy momentum tensor up to

order O(τ 3) in the (t, x, y, z) coordinates can be written as

T µν
f =



T 00
(0) + τ 2T 00

(2) τT 01
(1) + τ 3T 01

(3) τT 02
(1) + τ 3T 02

(3) T 03
(0) + τ 2T 03

(2)

τT 01
(1) + τ 3T 01

(3) T 11
(0) + τ 2T 11

(2) τ 2T 12
(2) τT 13

(1) + τ 3T 13
(3)

τT 02
(1) + τ 3T 02

(3) τ 2T 12
(2) T 22

(0) + τ 2T 22
(2) τT 23

(1) + τ 3T 23
(3)

T 03
(0) + τ 2T 03

(2) τT 13
(1) + τ 3T 13

(3) τT 23
(1) + τ 3T 23

(3) T 33
(0) + τ 2T 33

(2)


. (5.12)

Explicit expression can be obtained by combining the results of Chapters 3 and this

Chapter. The full structure is too large to be listed here. For convenience, let us

also give the energy momentum tensor up to order O(τ 3) for brevity in the τ, x, y, η

coordinate system. The metric tensor in that system is gmn =diag(1,−1,−1,−1/τ 2).

Then the energy momentum tensor can be written in a more compact form as

Tmn
f =



ϵ0 − τ2

8
(−2△ϵ0 + δ) τ

2
αx + τ3

16
ξx τ

2
αy + τ3

16
ξy τ

8
∇iβi

τ
2
αx + τ3

16
ξx ϵ0 − τ2

4
(−△ϵ0 + δ + ωx) γ 1

2
βx

τ
2
αy + τ3

16
ξy γ ϵ0 − τ2

4
(−△ϵ0 + δ + ωy)

1
2
βy

τ
8
∇iβi 1

2
βx 1

2
βy − ϵ0

τ2
+ 1

8
(−2△ϵ0 + 3δ)


.

(5.13)

It is obvious that the energy momentum tensor is boost invariant since the compo-

nents are independent of η in the τ, x, y, η coordinate system. This is a check that

the original assumption of the MV model is intact. Eq. (5.13) and the detailed
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expressions (5.2), (5.4) , (5.6), (5.9), (5.10) and (5.11) are one main result of this

dissertation. The consequences of matching this energy momentum tensor to fluid

dynamics will be discussed later.

5.3 An Electrodynamic Analogue

The rapidity-odd energy flow βi is a surprising result. Traditionally boost-

invariance in models of heavy ion collisions have led to only rapidity-even quantities.

However, as we have already shown above, the energy momentum tensor (5.13) is ex-

plicitly boost-invariant despite the presence of βi. Here we want to give an intuitive

interpretation of the astonishing origin of such rapidity odd flow. Let us consider

the following equivalent boundary value problem in classical electrodynamics. In the

forward light cone τ > 0 we have the Maxwell Equations ∂µF
µν = 0 without sources.

On the light cone τ = 0 we demand the boundary conditions E⃗(τ = 0, r⃗) = E0(r⃗)e⃗z,

B⃗(τ = 0, r⃗) = B0(r⃗)e⃗z, i.e. the initial fields are purely longitudinal. We also assume

that those fields are related through transverse fields Ai
1 and Ai

2 as E0 = δijAi
1A

j
2

and B0 = ϵijAi
1A

j
2. The abelian problem for fixed initial conditions has been solved

analytically in chapter 2 section 2.3, see also [62], but it will suffice here to give the

solution order by order in powers of τ as we did in the case of QCD. From the QCD

solutions we can immediately conclude that the longitudinal fields in the abelian case

are

E3 =

(
1 +

t2 − z2

4
∇2

)
E0 (5.14)

B3 =

(
1 +

t2 − z2

4
∇2

)
B0 , (5.15)
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while the transverse fields are

Ei =
z

2
∇iE0 +

t

2
ϵij∇jB0 (5.16)

Bi =
z

2
∇iB0 −

t

2
ϵij∇jE0 , (5.17)

for small times τ , i.e. t2 ≈ z2. The Cartesian coordinates permit simple checks of

these solutions with Gauss’, Ampère’s and Faraday’s Laws.

There is a straight-forward interpretation of some aspects of these results. Let

us choose, just as an example, a transverse position where E0, B0 > 0 and ∇2E0,

∇2B0 < 0 so that the longitudinal fields decrease away from the light cone t2 = z2.

Two observers at fixed points z = z0 > 0 and z = −z0 would observe the same electric

(magnetic) flux through a small transverse area a2 with an initial value E0a
2 (B0a

2)

at t = z0 which then diminishes at the same rate ∇2E0a
2t/2 (∇2B0a

2t/2) for both.

Due to Ampère’s (Faraday’s) Law this reduction induces magnetic (electric) fields

curling with a negative (positive) chirality around the longitudinal fields, respectively,

see Fig. 5.1.

On the other hand the same two observers at fixed points z0 and −z0 can at time

t = z0 count the electric or magnetic flux through small cubes of volume a3 whose

sides are aligned with the coordinate axes. One side is held at z = ±z0, while the

opposite side is at z = ±z0∓a for the observer at z0 or−z0, respectively. In the former

case the total flux out of the box due to the longitudinal field is −z0a3∇2E0/2 > 0

while for the observer at −z0 the net flux of longitudinal field has the opposite sign.

Thus at z0 a net flux of transverse field has to enter into the box while at −z0 the

same amount has to flow out of the box to satisfy Gauss’ Law.

To summarize, the transverse fields naturally have a part due to Gauss’ Law with

vanishing circulation (ϵij∇j), which is odd in η, and they have a part due to Ampère’s
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Figure 5.1: Two observers at z = z0 and z = −z0 test Ampère’s and Faraday’s

Laws with areas a2 in the transverse plane and Gauss’ Law with a cube of volume

a3. The transverse fields from Ampère’s and Faraday’s Laws (black solid arrows) are

the same in both cases, while the transverse fields from Gauss’ Law (black dashed

arrows) are observed with opposite signs. Initial longitudinal fields are indicated by

solid grey arrows, thickness reflects field strength. Picture reprinted from [77] with

permission from ELSEVIER.

and Faraday’s Law (and with different signs between the magnetic and electric part

due to the Lenz rule) with vanishing transverse divergence (∇i), which is even in

η. Fig. 5.2 shows the transverse electric and magnetic fields for two rapidities η for

random fields Ai
1 and A

i
2 in a sector of the transverse plane. One can check that this

statement about transverse fields translates directly into a matching statement about

the transverse flow of energy since the initial transverse Poynting vector is linear in
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Figure 5.2: Transverse electric fields (left panels) and magnetic fields (right panels)

at η = 0 (upper panels) and η = 1 (lower panels) in an abelian example for a random

distribution of fields Ai
1, A

i
2. The initial longitudinal fields B0 (left panels) and E0

(right panels) are indicated through the density of the background (lighter color =

larger values). At η = 0 the fields are divergence-free and clearly following Ampére’s

and Faraday’s Laws, respectively. Picture reprinted from [77] with permission from

ELSEVIER.

the transverse fields, T 0i = ϵij(EjB0 − BjE0). Thus we have the four contributions

already discussed in the case of QCD, two of them odd in η. Fig. 5.3 shows the flux

of energy in the transverse plane for two rapidities for the same random configuration

of fields Ai
1, A

i
2.

In order to make the connection between the electromagnetic analogue and QCD

we note that the non-abelian terms at order O(τ) contain odd numbers of fields

which disappear upon averaging.
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Figure 5.3: Example for transverse flow of energy for η = 0 (left panel) and η = 1

(right panel) in the abelian example for the same random distribution of fields Ai
1,

Ai
2 as in Fig. 5.2. The initial energy density T 00 is shown through the density of the

background (lighter color = larger values). At η = 0 the flow follows the gradient

in the energy density in a hydro-like way while away from mid-rapidity energy flow

gets quenched in some directions and amplified in others. Picture reprinted from [77]

with permission from ELSEVIER.

5.4 Discussion of the Glasma Flow at O(τ)

Let us now explore some of the phenomenological consequences of color glass

flow. The prediction of classical QCD for the initial average transverse energy flow

normalized by the average initial energy density is

V i =
T 0i

ϵ0
= −τ

2

(
cosh η

∇i (µ1µ2)

µ1µ2

+ sinh η
µ2∇iµ1 − µ1∇iµ2

µ1µ2

)
(5.18)

which is independent of the UV cutoff Q and the IR m regulator. In the following

we have calculated V i in several situations using Woods-Saxon profiles for incident

nuclei. Fig. 5.4 shows the average flow field V i for the collision of two gold nuclei

at impact parameter b = 6 fm in the transverse plane for two space-time rapidities.
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Figure 5.4: Flow field V i (black arrows) and energy density ϵ0 (shading) in the

transverse plane for Au+Au collisions at b = 6 fm. The nucleus centered at x = 3

fm travels into the plane which is the positive η-direction. Left Panel: η = 0. Right

Panel: η = 1. Picture reprinted from [77] with permission from ELSEVIER.

One can clearly see the evolution in rapidity from a hydro-like flow field at η = 0 to

a preferred flow direction at forward rapidity.

In Fig. 5.5 the same collision is shown in the η−x-plane. Clearly the flow tilts the

fireball clockwise. The orientation of rotation is as if the gluon flux tubes preferred

to expand in the wake of spectator nucleons in such a way that the flow increases

with increasing separation from the spectators in rapidity. However this can not be

taken literally as the origin of the effect. Our calculation is based on a small time

expansion and the response of the energy density to the flow will come in at the next

order. Note that the normalization of the vector fields in the figures are arbitrary.

Typical values of the flow V i at the surface for Au+Au collisions are ∼ 0.1 at τ = 0.1

fm/c at midrapidity. Fig. 5.6 shows the average flow fields V i for Au+Cu collisions

at impact parameters b = 0 fm and b = 2 fm in the η − x-plane. In the central case

the flow field leads to an expansion which is much more pronounced on the Cu-side of

the system, consistent with the rule of thumb that flux tubes like to expand into the
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Figure 5.5: Same as Fig. 5.4 but plotted in the η − x-plane defined by y = 0. The

flow will lead to a tilted fireball. Picture reprinted from [77] with permission from

ELSEVIER.

wake of spectators (which here are solely from the gold nucleus). The flow pattern

becomes more involved for Au+Cu collisions at finite impact parameter. In Fig. 5.7

the flow in the transverse plane is shown for forward and backward rapidity for the

b = 2 fm Au+Cu system. We notice that the azimuthal modulation of the flow is

non-trivial but can again be understood through the position of spectator nucleons

from the Au nucleus (centered at x = 1 fm). This and the previous figures make it

clear that β⃗i contributes not only to directed flow but also to the elliptic flow.

The flow of energy in the classical field before thermalization time τth will translate

into a flow of energy in the hydrodynamic phase after thermalization due to local

energy and momentum conservation [67]. One expects remnants of this flow to

survive in hydrodynamics due to the inertia of fluid cells and we will follow up this
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Figure 5.6: The same as Fig. 5.5 for Au+Cu (Au traveling to the right). Left Panel:

b = 0 fm. Right Panel: b = 2 fm. Picture reprinted from [77] with permission from

ELSEVIER.

idea in Chapter 7. In particular, this should result in a directed flow of particles

which is odd in momentum rapidity y. In fact such a y-odd directed flow, measured

by the first Fourier component v1, has been observed at RHIC [81, 82, 83]. Fig.

5.8 shows experimental data for v1(η) of charged particles. The sign of the effect

is consistent with the expectation from color glass, moreover the data points as a

function of rapidity could be fitted with a sinh y-shaped function. At this point it

is too early to draw strong conclusions but the coincidence of sign and shape of the

effect with data is encouraging.

Some of the qualitative features of the flow field discussed here have been gener-

ated in hydrodynamic simulations by initializing a tilted source [84], e.g. postulated

in the fire streak model [85]. Our calculation suggests that color glass could account

for this phenomenon without invoking additional model assumptions. In addition,

classical QCD adds several unique predictions in particular for the case of collisions of

asymmetric nuclei. A systematic study of flow as a function of rapidity and different

nuclear systems could find this unique fingerprint of color glass.
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Figure 5.7: The same as Fig. 5.4 for Au+Cu at b = 2 fm. Left Panel: η = 1, Right

Panel: η = −1. Picture reprinted from [77] with permission from ELSEVIER.
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Figure 5.8: Experimental data for v1(η) of charged particles. Results for three cen-

tralities in Au+Au collisions at 200 GeV are shown. The direction of arrows indicate

the algebraic sign of v1 for spectator neutrons, and the positions of arrows on the η

axis correspond to beam rapidity. The mid-η region is shown in more detail in the

inset. The statistical errors are represented by error bars, and the shaded bands show

systematic errors. Mid-central collisions results from PHOBOS [83] are also shown.

Reprinted figure with permission from STAR Collaboration, Phys. Rev. Lett. 101,

252301 (2008) [81]. Copyright (2008) by the American Physical Society.
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6. EVENT-BY-EVENT INITIAL CONDITIONS

In the previous chapter we calculated the energy momentum tensor averaged

over all possible color configurations in nuclear collisions, which corresponds to the

results coming from the average over many collisions. They can be compared to

experimental data averaged over many events. We made the important discovery of

rapidity-odd flow.

While traditionally observables averaged over many events have been the focus

of attention, recently event-by-event analysis of heavy ion collisions have led to new

discoveries like triangular flow v3 [93]. Event-by-event analysis is critical for the

study of physical quantities with large fluctuations around their mean values, or

even theoreticaly vanishing mean value (like v3). Consequently event-by-event initial

conditions for hydrodynamics are desired. Only recently the first event-by-event color

glass condensate calculation was presented by Schenke et al. [59]. However, the focus

of that study was solely on the energy momentum density ϵ and flow was neglected.

Here we would like to simulate the entire dynamics.

6.1 Gluon Fields of an Incoming Nucleus

We assume the color charges correlator satisfy the following relation, which is the

discrete version of Eq. (4.3) ,

⟨ρa(y∓k , y⃗(i,j))ρb(y
∓
k′ , y⃗(i′,j′))⟩ =

g2µ(y⃗(i,j))

N∓(N2
c − 1)

δabδ
kk′δii

′
δjj

′
(6.1)

where xk and x′k with k, k′ = 1, ..., N∓ are the discrete − or + coordinates re-

spectively, and x(i,j), x(i′,j′) with i, i′ = 1, ..., Nx and j, j′ = 1, ..., Ny are discrete

coordinates on the transverse plane.
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Figure 6.1: Gluon field as a function of radial distance calculated from the original

MV model and a modified MV model with color neutrality constraints. The original

MV model is shown by circles, while squares correspond to the Color Neutral II

prescription in [87]. Results from Green’s function with gluon mass 1 fm−1 are

shown by triangles. Picture reprinted from [87] with permission from ELSEVIER.

For simplicity we assume

µ(x⃗⊥) = µ0TA(x⃗⊥) , (6.2)

where x⃗⊥ is the transverse coordinate vector respect to the center of the nucleus,

TA(x⃗⊥) =
∫∞
−∞ dz κ(r⃗⊥) is a thickness function from the Woods-Saxon nuclear density

profile κ(r⃗⊥), and µ0 is the color charge squared per unit area in the center of each

nucleus.

It has been point out by Lam and Mahlon [86] that a δ-function correlator of
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color charges in the transverse plane as in Eq. (4.3) does not enforce color neutrality

of the entire nucleus. In principal, a color neutrality condition should be imposed for

consistency. However, Krasnitz et al. [87] showed that an IR regularization with a

gluon mass effectively leads to confinement. They have checked that transverse gluon

fields are almost the same with a gluon mass and with the color neutral condition

imposed, see Fig.6.1. Since we impose a gluon mass m in our calculation color

neutrality should be satisfied to good approximation in our calculation.

Let us recall from chapter 4 that the charge density ρ is assumed to be Gaussian

distributed,

P [ρ] = exp(−
∫
dx−d2x⃗⊥

ρa(x
∓, x⃗⊥)ρa(x

∓, x⃗⊥)

2µ(x∓, x⃗⊥)
) (6.3)

and that the Yang-Mills equations (2.1) with ρcov(x
−, x⃗⊥) given for a single nucleus

on the +-light cone in a covariant gauge reduces to the Laplace equation,

∆α(x−, x⃗⊥) = −ρcov(x−, x⃗⊥) (6.4)

for where Aµ
cov = δµ+α. The explicit solution is,

α(x−, x⃗⊥) =

∫
dz2⊥G(x⃗⊥ − z⊥)ρcov(x

−, z⃗⊥) (6.5)

where the Green’s function is given by its Fourier transformed counterpart G̃(k) =

1/(k2 +m2).

Now we describe the numerical implementation of these equations. First we

simulate a random distribution of the charge density in x− and x⃗⊥ (indexed by (k,i,j))

given by the probability distribution (6.3). Then we use fast Fourier transformation

in the two transverse coordinates to obtain ρ̃cov,a(x
−
k , k⃗(i,j)). The convolution (6.5)
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then becomes a simple product,

α̃a(x
−
k , k⃗(i,j)) = ρ̃cov,a(x

−
k , k⃗(i,j))× G̃(k⃗(i,j)) . (6.6)

An inverse Fourier transformation then will give us the αa(x
−
k , x⃗i,j) on the space time

lattice site.

The gluon field Ai in light cone gauge can be derived from the covariant expression

with the help of the Wilson line

U(x−, x⊥) = P exp

[
−ig

∫ x−

−∞
α(z−, x⃗⊥)dz

−

]
. (6.7)

Here P denotes path ordering of the fields α from right to left. The discrete form of

path integral then can be written as [89],

U(x(i,j)) =

N−∏
k=1

exp
[
−igαa(x

−
k , x⃗i,j)

]
. (6.8)

Recall that x−k are the grid sites along the x− coordinate. The pure gauges at the

site (i, j) are defined on the lattice as

V m(x⃗(i,j)) = U(x⃗(i,j))U
†(x⃗(i,j) + êm), (m = 1, 2) . (6.9)

While the gluon fields Am(x⃗(i,j)) are related to V m(x⃗(i,j)) by,

V m(x⃗(i,j)) = exp[igaAm(x⃗(i,j))], (m = 1, 2) . (6.10)
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Figure 6.2: A typical gluon distribution AiAi in the transverse plane.

6.2 Gluon Correlator from One Event

Following the procedure described in the last section, we simulate the charge

distribution of two nuclei on a 10× 10 fm transverse square with a 0.02 fm grid and

10 grid points in longitudinal direction. The convolution is done using a Fast Fourier

Transformation (FFT) code. The gauge transformations Eq. (6.7) on each lattice site

is then determined. The initial gluon fields on both nuclei can thus be easily obtained

using Eq. (6.10). Fig. 6.2 shows the gluon distribution function Ai
aA

i
a of one nucleus

in the transverse plane. In order to make sure our simulation is consistent with the

original prediction of the MV model, we simulate many events and average the results

for the gluon distribution function to obtain ⟨AiAi⟩E−by−E. A comparison of one

simulation, the event averaged ⟨AiAi⟩E−by−E simulation and the prediction ⟨AiAi⟩

of the original MV model (see Eq. (4.37)) are shown in Fig. 6.3. We make two

important observations. First, the event-by-event average and the analytic average
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Figure 6.3: A plot of the gluon correlator AiAi in light cone gauge. Along a line

through the center of a gold nucleus, the average distribution simulated, predicted by

the original MV model (green line), from the simulation of one typical configuration

(note: this is not a particular nucleus; it would change with time!) (blue line) and

the average over 500 configuration (red line) are shown.

agree well. Residual deviations might be the effect of different implementations of

IR and UV cutoffs in both calculations. Second, we note that fluctuations in single

events are sizable but not dominant. Thus the analytic, averaged results from the

previous chapter will play an important role in single events as well.

6.3 Physical Observables from Numerical Simulations

After the acquisition of the gluon distribution, the components of the energy

momentum tensor then can be calculated using the formulas we derived in Chapter

5. The energy density from one typical event with impact parameter b = 6 fm is

shown in Fig. 6.4. It exhibits strong fluctuations compare to the previous averaged

results. Such fluctuations may have significant influences on final observables, e.g.

jet quenching [88] and odd terms of flow. A comparison of the initial energy density

ϵ0 of random event, the average over many events and the prediction of the original
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Figure 6.4: Energy density of one event of colliding gold nuclei from the above

procedure, b=6 fm, arbitrary scale on the vertical axis.

MV model is shown in Fig. 6.5.

The transverse flow can also be calculated event by event. Fig. 6.6 shows the

hydro-like flow α⃗ for the same event as in Fig. 6.4 and an event averaged α⃗ . We

quantify the net effect of α⃗ by calculating a dimensionless quantity

⟨α⟩ =
∫
d2r⃗

r

α⃗(r⃗)

ϵ0(r⃗)
· r⃗
|r|

, (6.11)

which is the radial component of the energy flow per energy density averaged over

the transverse plane. The prediction by the original MV model for b = 6 fm is

⟨α⟩MV = 52.226. ⟨α⟩ calculated by averaging over 500 events is ⟨α⟩E−by−E = 99.88

for matching integration domains in the transverse plane. We also can define a
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Figure 6.5: A plot of the energy density ϵ0 in Au+Au collisions along the direction

of the impact vector (collision center located at 10 fm). Energy densities predicted

by the original MV model (green line), from simulation of one event (blue line) and

the averaged over 500 events (red line) are shown respectively.

measure of the initial elliptic flow as,

⟨Q⟩ =
∫
d2r⃗

r

α⃗(r⃗)

ϵ0(r⃗ cos(2ϕ))
· r⃗
|r|

, (6.12)

where ϕ is the azimuthal angle. We have ⟨Q⟩MV = −11.22 in the original MV model

and ⟨Q⟩E−by−E = −20.80 after averaging over 500 events.

Fig. 6.7 shows the η-odd flow component β⃗ simulation of the same single event

as before and the event-averaged β⃗. We can also quantify the net effect of β by

calculating a dimensionless quantity

⟨β⟩ =
∫
d2r⃗

r

β⃗ · êx
ϵ0(r⃗)

, (6.13)

which integrates the flow component along the impact vector per energy density.
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Figure 6.6: Hydro-like flow component α⃗ from simulation of one event (left) and

averaged α⃗ of 500 simulations (right) respectively.

The prediction by the original MV model for b = 6 fm is ⟨β⟩MV = −29.9. ⟨β⟩

calculated by averaging over 500 events is ⟨β⟩E−by−E = −57.42. The event-by-event

average gives larger flow than the original MV model prediction. The reason could

be the original MV model, with the charge distribution totally uncorrelated in the

transverse plane, is corresponding to settingm→ 0 in numerical simulation. If we use

the charge distribution proposed by Lam and Mahlon [86], the value of ⟨α⟩, ⟨β⟩ and

⟨Q⟩ then are comparable to our numerical simulation. In the future a more thorough

study is required to understand how average flow effects emerge from event-by-event

flow fields.

The discussion above leads to the conclusion that our numerical simulation can

provide the correct energy momentum tensor of glasma fields for single nuclear colli-

sions. The results reproduce the original MV model predictions if we average over a

large enough number of events. We emphasize that for the first time a simulation of
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Figure 6.7: The η-odd flow component β⃗ from simulation of one event (left) and

event-averaged β⃗ of 500 simulations (right) respectively.

collisions on an event-by-event basis will give fluctuations of the energy density and

the flow profile at the same time. Higher order terms in τ results can be obtained

similarly but we skip details for brevity. In principal, nucleon position fluctuations

can be implemented on top of the Woods-Saxon profile, Eq. (6.2) using the same

procedure for more realistic results.
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7. FROM GLASMA TO PLASMA

In order to make comparison with experimental data, we need a model to trans-

late the flow of glasma into flow of final particles observed by the detector. From

experimental data we have learned that the matter produced in heavy ion collisions

thermalizes very early, at a time scale < 1 fm/c [40]. The classical Yang-Mills

equations do not predict thermalization. However the phenomenology is clear: the

classical gluon field has to decay into quarks and gluons in chemical equilibrium

and those particles have to equilibrate. There have been attempts in the literature

to model this process [43]. Here we simply extract information about thermalized

plasma from the energy momentum tensor of the glasma. We assume a very rapid

thermalization, from which we can derive matching conditions for ideal hydrody-

namics analytically. A matching to viscous hydrodynamics initial conditions can

also be derived. We then discuss some of the phenomenological consequences, which

include a tilted fireball which has the potential to explain the directed flow observed

at RHIC. Preliminary results of a further 3+1 D viscous hydrodynamic evolution

from such initial conditions are presented as well.

7.1 Matching to Ideal Hydrodynamics

The energy momentum tensor Tideal of an ideal fluid in the lab frame is given by

its local energy density e, pressure p and the 4-velocity uµ of the fluid,

T µν
ideal = (e+ p)uµuν − pgµν (7.1)

We assume instantaneous thermalization from glasma to plasma at thermalization

time τth, so the energy momentum tensor has the following structure in τ , first
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proposed in [60],

T µν = Θ(τth − τ)T µν
f +Θ(τ − τth)T

µν
pl . (7.2)

Where T µν
f is the energy momentum tensor of the gluon field and T µν

pl is its counter-

part for quark gluon plasma. In this section we assume T µν
pl = T µν

ideal. Whatever the

microscopic mechanism for gluon fields to decay into plasma, energy and momentum

should be conserved, i.e. ∂µT
µν = 0. This gives us four equations connecting T µν

f

and T µν
pl . Together with the equation of state (EOS) p(e), we have enough equations

to solve for e, pressure p and fluid velocity.

Using the parametrization of T µν
f from Eq. (5.13), we can find the following

analytic solution from energy momentum conservation [60, 92],

v⃗⊥ =
1

cosh η

α⃗

ϵ0 −
τ2th
8
(−2△ϵ0 + δ) + p

,

vL =tanh η,

e+ p =(ϵ0 −
τ 2th
8
(−2△ϵ0 + δ) + p)

(
1− α⃗2

(ϵ0 −
τ2th
8
(−2△ϵ0 + δ) + p)2

)
. (7.3)

Here e is the local energy density of the fluid and ϵ0 is the energy density of the

gluon fields at τ = 0 as defined in (3.2).

It is interesting to note that even though we do not require the hydrodynamic

fluid to be boost-invariant at the outset, the matching of a ideal hydrodynamic

fluid to the initial fields automatically gives boost-invariant results. We note two

shortcomings of the matching to ideal hydrodynamics. First, one can check that

individual components of T µν can be non-continuous at τth. This clearly is an artifact

of the 4 matching equations not doing justice to the ten degrees of freedom of the
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energy momentum tensor. Secondly, the space time rapidity-odd flow β⃗ we discussed

in Chapter 5 does not enter at all. It will turn out this is due to our requirement

that only energy and momentum be conserved while β⃗ is related to a tilting of the

fireball and thus angular momentum in the system. This leads to the idea to also

impose angular momentum conservation.

7.2 Matching to Viscous Hydrodynamics

Clearly angular momentum should also be conserved during thermalization. A

3-rank angular momentum density tensor can be introduced to deal with angular

momentum conservation of fields,

Mµνρ = xµT νρ − xνT µρ (7.4)

If we set ρ = 0 we can have an antisymmetric tensor,

Mµν =

∫
d3x⃗Mµν0 (7.5)

It is easy to check that Mµν = ϵijkLk, where Lk is the usual angular momentum

operator and ϵijk is the Levi-Civita symbol.

We require that the total angular momentum density tensor

Mµνρ = Θ(τ0 − τ)Mµνρ
f +Θ(τ − τ0)Mµνρ

pl (7.6)

is conserved such that,

∂ρMµνρ = 0 . (7.7)

Eq. (7.7) together with ∂µT
µν = 0 and the equation of state, give us ten independent
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equations. It turns out that the number of equations and the number of degrees of

freedom in the viscous hydrodynamic energy momentum are the same at ten and

thus a component by component match between T µν
f and T µν

pl is the natural solution.

We recall the most general form of the energy momentum tensor is,

T µν
viscous = (e+ p+Π)uµuν − (p+Π)gµν + πµν . (7.8)

Where πµν is the shear stress tensor and Π is the bulk stress as discussed in Chapter

1. The shear stress tensor πµν must be traceless, symmetric and also orthogonal to

the 4-velocity of the fluid,

uµπ
µν = 0 = πµνuµ , (7.9)

so it only has five independent components. e , uµ and Π give us five more quantities

to be determined in the matching. Note that the energy momentum tensor T µν
f

is always traceless by construction, while T µν
pl can have non-vanishing trace for a

realistic equation of state and bulk stress tensor. It turns out that the matching

will only determine the combination p + Π and the equation of state will separate

equilibrium pressure and bulk stress.

We can choose five independent components for πµν arbitrarily, but we found it

is convenient to work with π11,π12,π13,π22 and π23 as independent components. The
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other components then can be written down as,

π00 =(π11v2x + 2π12vxvy + 2π13vxvz + π22v2y + 2π23vyvz

− π11v2z − π22v2z)/(1− v2z) ,

π01 =π11vx + π12vy + π13vz ,

π02 =π12vx + π22vy + π23vz ,

π03 =(π11v2xvz + π13vx + 2π12vxvyvz + π13vxv
2
z + π22v2yvz + π23vy

+ π23vyv
2
z − π11vz − π22vz)/(1− v2z) ,

π33 =π00 − π11 − π22 , (7.10)

due to the orthogonality condition (7.9) and traceless condition. Next we will discuss

some analytical solution at special positions in the fireball to interpret some basic

properties of matching to a viscous hydrodynamics fluid assuming instantaneous

thermalization. Then a numerical solution for the entire fireball will be presented.

7.2.1 Analytical Solution at the Center

Let us match the viscous plasma tensor to a 1st order in time gluon field energy

momentum tensor at time τth in order to study the effect of β⃗, which was missing in

ideal hydrodynamics. Keep in mind that at the center αx = 0 , αy = 0 and βy = 0,

i.e.

T µν
f =



ϵ0
τth
2
βx sinh η 0 0

τth
2
βx sinh η ϵ0 0 τth

2
βx cosh η

0 0 ϵ0 0

0 τth
2
βx cosh η 0 −ϵ0


. (7.11)
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There is an analytical solution,

e = ϵ0, (p+Π) =
1

3
ϵ0, vx = vy = 0, vz = tanh η

π11 = π22 =
2

3
ϵ0, π13 =

τth
2
βx cosh η, π01 =

τth
2
βx sinh η . (7.12)

There are a few features we can conclude from the above analytical solution. First,

π33 = −4
3
ϵ0. Hence the negative longitudinal pressure in T µν

f will result in shear

stress components at the order of the equilibrium pressure p. Practically the effec-

tive longitudinal pressure should be positive at time of thermalization. However,

without detailed knowledge of the thermalization mechanism, we rely on viscous

hydrodynamics to relax the far off-equilibrium bulk and shear stress toward their

Navier-Stokes values for further approach to equilibrium. We also note that interest-

ingly the rapidity-odd flow β⃗ translates into viscous energy and momentum flow π01,

π13 etc. We expect the hydrodynamic evolution to relax those shear components to

their Navier-Stokes values and thereby to shift the corresponding flow to the velocity

field uµ.

7.2.2 Numerical Solutions

It is not clear that the set of ten independent non-linear equations from the

matching always have analytical solutions, in particular if we match to more com-

plicated tensors T µν
f beyond 1st order in time. One option is a non-linear equations

solving algorithm such as Newton-Raphson and we have developed a code based on

this method. There is also an elegant method to turn the matching to a eigenvalue

problem.
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It is obvious, that if a ideal fluid is moving with 4-velocity

uµ = γ(1, vx, vy, vz), (7.13)

where γ is the Lorentz factor γ = 1/
√
1− v2x − v2y − v2z , we should have,

(
(e+ p)uµuν − pgµν

)
uν = euµ . (7.14)

On the other hand, the shear stress tensor should be orthogonal to the 4-velocity,

πµνuν = 0. As a result, for any given total energy momentum tensor of a viscous

hydrodynamic fluid, it must have an eigenvalue and corresponding eigenvector such

that,

T µν
viscousuν = euµ . (7.15)

Thus we can find the energy density and 4-velocity by diagonalizing the energy

momentum tensor of the fields T µ
f,ν(τth, x⃗, η) and selecting the eigenvector which must

be time-like in Minkowski space. This works as long as the eigenvalues are not

degenerate. The eigenvalues for the field energy momentum tensor including only τ 0

and τ 1 terms,

T µν
f =



ϵ0
τth
2
(αx cosh η + βx sinh η) τth

2
(αy cosh η + βy sinh η) 0

τth
2
(αx cosh η + βx sinh η) ϵ0 0 τth

2
(αx sinh η + βx cos η)

τth
2
(αy cosh η + βy sinh η) 0 ϵ0

τth
2
(αy sinh η + βy cos η)

0 τth
2
(αx sinh η + βx cos η) τth

2
(αy sinh η + βy cos η) −ϵ0


,

(7.16)

can be found analytically and the eigenvalues are generally not degenerate. The

expressions for the eigenvalues are too lengthy to be shown. In the special case, αy =
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βy = 0, the eigenvalues are ϵ0, −ϵ0 ,
√
ϵ20 + (βx)2 − (αx)2 and −

√
ϵ20 + (βx)2 − (αx)2

and they are not degenerate. Hence except under some very rare circumstances, the

eigenvalue method can uniquely determine the energy density and 4-velocity of the

viscous fluid. The shear stress tensor then immediately follows by subtracting the

ideal part from the energy momentum tensor of the fields. Keep in mind that the

physical eigenvalue must be positive, and the physical eigenvector must be a time

like vector.

For more complicated tensors T µ
f,ν(τth, x⃗, η) we employ the QR algorithm [90] to

find the eigenvalues and eigenvectors of the energy momentum tensor numerically.

We have created viscous hydrodynamic initial conditions for T µν
f up to second order

in time. The most surprising results of viscous matching (and thus taking into

account β⃗) is a tilting of the fireball in the direction of β⃗. Of course this should not

really be surprising given the nature of the flow field β⃗.

7.3 Results from Matching

Here we show some results for viscous matching using O(τ 2) gluon fields in the

x-η plane at y = 0 to illustrate how the viscous hydrodynamics fields are tilted. Fig.

7.1 shows the longitudinal velocity vz = 0 in the x-η plane at y = 0. At x = 0,

vz = tanh η. We observe that the node line for which vz = 0 moves away from x = 0,

representing a rotation of the vz = 0 node line. At transverse position x = 5 fm, the

position of vz = 0 is shifted to η ≈ 0.4, which gives quite a strong tilting effect.

Fig. 7.2 shows the transverse velocity field vx in the x-η plane at y = 0. We

recall that the hydro-like flow has a dominate ∼ 1
cosh η

dependence at x = 0 (see

Eq. (7.3)) and an increase with increasing radial gradient, i.e. toward larger |x|.

However in addition we notice that the transverse velocity field vx exhibits the same

tilting effects as the vz field. The shear stress tensor π01 in the x-η plane at y = 0
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Figure 7.1: Longitudinal velocity vz in the x-η plane at y = 0. Note that the node

line for vz = 0 is tilted away from η = 0.

is determined by β⃗ and shows an unaumbigous pattern of tilting. We expect that in

a hydrodynamic evolution, π01 will eventually relax to its Navier-Stokes value and a

rapid-odd transverse flow in x will be built up instead. We will see this happen in

the next section.

7.4 Preliminary Results from Viscous Hydrodynamics Evolution

A (3+1)D viscous hydrodynamic code is currently being developed by S. So-

manathan [91], but is not part of this dissertation. Preliminary results from this code

using the initial conditions from the last section have confirmed that a rapidity-odd

flow pattern emerges that could explain the directed flow observed in RHIC. At this

time, we can not calculate spectra of particles as the hydrodynamic code does not

have a freeze-out module yet. A simple ideal gas EOS e = 3p has been used in this

calculation.
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Figure 7.2: Left: Transverse velocity vx in the x-η plane at y = 0. Right: Shear

stress tensor π01 in the x-η plane at y = 0. It shows a pattern of tilting.

Fig. 7.3 shows the energy density and the shear stress component π11 averaged

over transverse coordinates at thermalization time τth = 0.2 fm (blue line) and at 0.8

fm (red line) after viscous hydrodynamic evolution. π11 decreases very fast towards

its Navier-Stokes value. π22 and π33 behave similarly to π11.

Fig. 7.4 shows the shear stress π13 averaged over transverse coordinates at ther-

malization time τth = 0.2 fm (blue line) and at 0.8 fm (red line) after viscous

hydrodynamic evolution. Shear stress components π01 and π03 also decrease very

fast towards their Navier-Stokes values. A finite η-odd effective transverse velocity

vx develops from the decrease of the shear stress tensor as expected. Fig 7.5 shows

the fluid velocities vx and vy averaged over transverse coordinates as functions of η

at thermalization time τth = 0.2 fm (blue line) and at 0.8 fm (red line) after viscous

hydrodynamic evolution. Thus indeed the η-odd flow of glasma has been translated

to a η-odd flow in hydrodynamics.
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Figure 7.3: Left: The energy density averaged over transverse coordinates as a func-

tion of η at thermalization time τth = 0.2 fm (blue line) and at 0.8 fm (red line)

after viscous hydrodynamic evolution. Right: The shear stress π11 averaged over

transverse coordinates at thermalization time τth = 0.2 fm (blue line) and at 0.8 fm

(red line) after viscous hydrodynamic evolution.

To summarize, our results show that the η-odd flow of the glasma we calculated

from the CGC will indeed result in a tilted hydrodynamic fireball with a rapidity-odd

flow component. We expect it to contribute, among other sources, to the directed

flow observed in RHIC [81]. We plan to perform a thorough study when the viscous

hydrodynamic code with realistic EOS and freeze-out is available.
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Figure 7.4: The shear stress π13 averaged over transverse coordinates as a function

of η at thermalization time τth = 0.2 fm (blue line) and at 0.8 fm (red line) after

viscous hydrodynamic evolution.
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Figure 7.5: Left: The fluid velocity vx averaged over transverse coordinates as a

function of η at thermalization time τth = 0.2 fm (blue line) and at 0.8 fm (red line)

after viscous hydrodynamic evolution. Right: The fluid velocity vy averaged over

transverse coordinates at thermalization time τth = 0.2 fm (blue line) and at 0.8 fm

(red line) after viscous hydrodynamic evolution.
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8. CONCLUSIONS AND REMARKS

The quest for understanding QGP is a challenging task. Significant achievements

have been made since the launch of RHIC more than a decade ago. Aided by the

recent run of LHC, we have reasons to believe that we will pin down properties of

QGP at much more accurate precision in the near future. There are two questions

that are of particular interest to nuclear physicists right now. First, is Color Glass

Condensate the correct initial stage of heavy ion collision? Second, how perfect is the

QGP fluid and what is the equation of state? Progress on these questions depends

largely on improving our knowledge of the initial conditions of QGP. The research

conducted in this dissertation can help us address these two questions.

We have generalized the McLerran-Venugopalan Model to accommodate trans-

verse dynamics. The infrared safety of the color class description of an inhomo-

geneous nucleus is proved for the first time. With our generalization, color glass

dynamics and long-distance dynamics, which is not described by CGC can be safely

separated. The first (3+1)D solution of the glasma field including transverse flow

is presented in this dissertation. Analytic expressions for event-averaged quantities

have been provided as well as a code to produce event-by-event results. We also

proposed a procedure of matching the glasma energy momentum tensor to viscous

hydrodynamic to obtaining corresponding initial conditions.

The generalized McLerran-Venugopalan Model (MVTD) makes unique predic-

tions for transverse flow of the glasma which have been overlooked in simple boost-

invariant MV implementations. We find a rapidity-odd flow of energy. After match-

ing to viscous hydrodynamics, the rapidity-odd flow of glasma will eventually trans-

late into a directed flow of particles which is odd in momentum rapidity y, which
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could contribute to directed flow v1. Future phenomenological research using the

(3+1)D viscous hydrodynamics will enable us to make predictions of directed flow of

final particles from the CGC model. Moreover, the flow pattern for collision between

asymmetric nuclei, e.g. Au+Cu collisions, becomes more involved. A systematic

study of flow as a function of rapidity and different nuclear systems could help us

find this characteristic feature of color glass. Such predictions, relating the momen-

tum distribution of final particles to the energy momentum tensor of the glasma, if

confirmed by experimental data, would be a unique signature for a CGC discovery

claim.

Enormous efforts has been made to extract the shear viscosity of the QGP fluid

[94]. Right now the largest uncertainty comes from initial conditions, which con-

tribute almost 100% uncertainty [94]. The initial conditions at hand right now,

usually set the initial velocities to 0, and set the initial shear stress tensor either

to 0 or to its Navier-Stokes value. However the CGC predicts large initial trans-

verse flow of the fireball [77, 58]. A theoretical calculation of the initial velocity and

shear stress is critical to extract the viscosity of QGP correctly. In this dissertation,

the first initial conditions for 3+1 viscous hydrodynamics with initial velocities and

initial shear stress tensor is calculated from first principle CGC calculation.
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