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ABSTRACT

This dissertation deals with two open problems in control theory. The first prob-

lem concerns the synthesis of fixed structure controllers for Linear Time Invariant

(LTI) systems. The problem of synthesizing fixed structure/order controllers has

practical importance when simplicity, hardware limitations, or reliability in the im-

plementation of a controller dictates a low order of stabilization. A new method

is proposed to simplify the calculation of the set of fixed structure stabilizing con-

trollers for any given plant. The method makes use of computational algebraic

geometry techniques and sign-definite decomposition method. Although designing

a stabilizing controller of a fixed structure is important, in many practical applica-

tions it is also desirable to control the transient response of the closed loop system.

This dissertation proposes a novel approach to approximate the set of stabilizing

Proportional-Integral-Derivative (PID) controllers guaranteeing transient response

specifications. Such desirable set of PID controllers can be constructed upon an

application of Widder’s theorem and Markov-Lukacs representation of non-negative

polynomials.

The second problem explored in this dissertation handles the design and control

of linear systems without requiring the knowledge of the mathematical model of the

system and directly from a small set of measurements, processed appropriately. The

traditional approach to deal with the analysis and control of complex systems has

been to describe them mathematically with sets of algebraic or differential equations.

The objective of the proposed approach is to determine the design variables directly

from a small set of measurements. In particular, it will be shown that the functional

dependency of any system variable on any set of system design parameters can be

ii



determined by a small number of measurements. Once the functional dependency is

obtained, it can be used to extract the values of the design parameters.
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1. INTRODUCTION

This dissertation is organized in 9 chapters. Chapters 2 and 3 are dedicated to

the study of fixed structure controller synthesis based on mathematical model of the

plant. The problem of synthesizing stabilizing controllers of a fixed structure arises

in many practical applications and has been open for about five decades. Without

any restriction on the structure of the controller, the problem of controller design

can be handled through various techniques of modern control theory. However, the

constraint on structure yields non-convex constraints and the corresponding set of

stabilizing controller parameters is often non-convex and at times, is disconnected.

While the attempts on solving this problem have been numerous, in this dissertation,

we will restrict our study to a subset of these bodies of work and focus on methods

that deal with approximating the set of fixed structure controllers using algebraic

techniques such as elimination theory. The problem of deciding the existence of

a stabilization with a fixed structure/order controller reduces to the problem of

deciding the feasibility of a system of polynomial inequalities and this can be shown

to be decidable using a plethora of techniques such as Quantifier Elimination (QE) [1]

or using Groebner bases [2]. In [3], a method is proposed using sign-definite condition

and a special Quantifier Elimination (QE) technique to design robust controllers of

a fixed structure. Recently, the problem of optimal decentralized controller synthesis

using Groebner bases has been studied in [4, 5]. Parametric control design techniques

are well suited for approximating the set of stabilizing controllers and earlier work

concerning these techniques can be found in [6]. Recently, in [7] a systematic method

is provided for constructing the set of PID controllers. PID controllers are fixed

structure controllers that are widely being used in industrial applications. This work
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exploits the specific structure of PID controllers. A systematic method for arbitrarily

tight inner and outer approximation of the set of stabilizing controllers of a fixed order

for a single-input or a single-output system is presented in [8]. In [9], the properties

of positive polynomials have been used to obtain a convex inner approximation of

the set of stabilizing controllers in the space of controller parameters.

In Chapter 2, we plan to construct an approximation of the set of stabilizing

controllers for Linear Time Invariant (LTI) control systems. We use elimination

theory in polynomial rings, Groebner bases and sign-definite decomposition method

[10, 11] to construct an inner approximation of the set of stabilizing controllers [12].

Chapter 3 deals with the problem of controlling transient response of a system which

is a fundamental and open problem with a lot of practical applications. Typical

transient response specifications require the response of the closed loop system to

lie within a specified envelope. For instance, a transient specification is that the

overshoot in the response of a system to a unit step input be less than a specified

amount. The problem of controlling transient response of a system involves the

synthesis of a controller that guarantees such transient specifications. The problem

of achieving non-overshooting step response has been studied in [13, 14, 15, 16, 17,

18, 19, 20, 21]. For the discrete-time systems a non-overshooting step response can be

achieved based on the results provided in [22]. Applying the results in [22] to the class

of continuous-time Linear Time Invariant (LTI) systems results in controllers with

irrational transfer functions. However, in [23], it is shown that a non-overshooting

response can be achieved by proper, rational two parameter controllers. For the

class of discrete-time LTI systems, the problem of controlling the transient response

is studied in [24]. In [25] the problem of achieving transient specifications for LTI

systems using fixed order and PID controllers is considered. In this dissertation,

we show that the transient response specifications can be guaranteed using the non-
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negativity of polynomials whose coefficients are polynomial functions of the controller

parameters. We present a novel method to construct an outer approximation for the

set of PID controllers guaranteeing stability and transient response specifications

[26, 27]. We also provide a technique to tighten such outer approximation by which

we will be able to refine any outer approximation arbitrarily.

Chapters 4 though 9 of this dissertation explore a new approach to the design

and control of linear systems without requiring a mathematical model of the sys-

tem which instead can determine the design parameters directly from a small set

of measurements. In many fields of science and engineering such as control, signal

processing, communication networks, genomics, one has to deal with increasingly

complex systems. In many complex systems, one may isolate a few set of design

variables interacting with the complex system whose values are to be controlled or

determined. For the class of linear systems, this dissertation proposes a new ap-

proach which is able to determine the design parameters without the knowledge of

the mathematical model of the system. The proposed approach is developed based

on the properties of parameterized solution of linear system of equations and uses

a specific type of parameter dependence. It shows that a functional dependency

between system variables and design parameters holds which can be determined by

solving a set of linear equations obtained by taking few measurements. This map-

ping function can be inverted to impose performance specifications and extract the

design variables. Some recent related results on this problem are as follows. In [28],

a data-based method is proposed for stability analysis of discrete-time LTI systems.

The method presented in [29] uses data space to find the control input which min-

imizes a quadratic performance index. A procedure based on Qualitative Robust

Control (QRC) technique is proposed in [30] to synthesize controllers from a quali-

tative model of the plant. Quantitative Feedback Theory (QFT) is used in [31] to
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impose robustness bounds at different frequencies which are related to loop shaping.

Three term controllers can be designed directly from frequency response data [32]. A

Bode plot characterization of all stabilizing controllers is given in [33], and followed

in [34] to synthesize stabilizing controllers of fixed structure.

Chapter 4 presents the mathematical preliminaries required to develop such mea-

surement based approach. It describes some basic results on the parametrized so-

lution of linear equations. These results will be used in Chapter 5 to show how

measurements can be directly used to design and control linear DC circuits [35, 36].

It will be described that any circuit variable, such as current or power, can be ex-

pressed as a function of any set of circuit design variables, such as resistors, gyrators

and sources, and this function can be obtained by taking few measurements. The

extension of these results to linear AC circuits will be discussed in Chapter 6. In

Chapter 7, an application of this new measurement based approach to linear me-

chanical systems, truss structures and linear hydraulic networks will be studied [37].

Chapter 8 explores the synthesis of fixed structure controllers, satisfying closed loop

frequency response specifications, based on the proposed method. An extension of

this method to adaptive control and biological systems can be found in [38] and [39],

respectively. Chapter 9 concentrates on the class linear systems containing real pa-

rameters with interval uncertainties and presents an extremal result. The problem

of analyzing and controlling interval systems is important for practical applications

and has been open for the last few decades. Several results concerning robustness

analysis of systems with real parametric uncertainty can be found in the early works

presented in [6, 40, 41, 42, 43]. Kharitonov’s theorem [44], later generalized in [45],

provided a means to evaluate the stability of an interval plant by testing a finite num-

ber of polynomials for stability. An extension of the Kharitonov’s theorem, known as

the edge theorem, provided in [46], states that the stability of a polytope of polyno-
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mials is equivalent to the stability of its one-dimensional exposed edge polynomials.

The sign-definite decomposition method can be used to decide the robust positivity

(or negativity) of a polynomial over a box of uncertain parameters by evaluating the

sign of the decomposed polynomials at the vertices of the box [10, 11]. Also, recent

results on the robust control of linear systems are provided in [7]. In this dissertation,

we show that if in an unknown linear system the uncertain parameters appear with

rank one dependency in the system characteristic matrix, then the extremal values

of any system variable over a box in the parameter space occur at the vertices of

that box [47]. This enables us to evaluate the performance of an unknown interval

system over a box of uncertain parameters by checking the respective performance

index at the vertices. Finally, Chapter 10 summarizes concluding remarks.
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2. FIXED STRUCTURE CONTROLLER SYNTHESIS USING GROEBNER

BASES AND SIGN-DEFINITE DECOMPOSITION

This chapter presents a new method for computing stabilizing fixed structure

controllers using Groebner bases and sign-definite decomposition. An application of

Routh-Hurwitz stability condition results in a system of polynomial inequalities that

must be satisfied by the parameters of any stabilizing controller. We use positive

slack variables to convert the original system of polynomial inequalities to a system of

polynomial equations. This system of equations can be simplified using elimination

theory and Groebner bases which finally facilitates the computation of the set of of

stabilizing controllers using the sing-definite decomposition method.

Section 2.1 introduces some mathematical preliminaries and proposes our method.

In Section 2.2, we provide some illustrative examples to show how this method can

be applied to a given problem. Finally, we summarize our conclusions in Section 2.3.

2.1 Main Results

2.1.1 Routh-Hurwitz Criterion and Groebner Bases

Consider a unity feedback control system with a known plant transfer func-

tion P (s) = Np(s)

Dp(s)
and a controller transfer function C(s) = Nc(s,K)

Dc(s,K)
, where K =

[k1, k2, . . . , km]T is the vector of controller design parameters. The set of stabilizing

controllers is all vectors K for which the closed loop characteristic polynomial is

Hurwitz stable. The closed loop characteristic polynomial can be expressed as

δ(s,K) = Np(s)Nc(s,K) +Dp(s)Dc(s,K), (2.1)
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or in the following general form

δ(s,K) = an(K)sn + an−1(K)sn−1 + · · ·+ a0(K) = 0, (2.2)

where an(K) 6= 0. From Routh-Hurwitz stability criterion, the number of RHP roots

of the closed loop characteristic polynomial is equal to the number of changes in sign

of the elements of the first column of Routh-Hurwitz table. This means that

f0(K) > 0 , f1(K) > 0 , . . . , fn(K) > 0, (2.3)

where fi’s represent the elements in the first column of the Routh-Hurwitz table and

define the boundaries of the stability region in the space of the controller parameters.

In general, (2.3) is a set of multivariate polynomial inequalities in terms of the

controller design parameters K = [k1, k2, . . . , km], which is hard to solve and in some

cases practically impossible. The set of inequalities in (2.3) can be converted to set

of equalities by introducing strictly positive slack variables s0, s1, . . . , sn, so that

h0(K, s0) = f0(K)− s0 = 0,

h1(K, s1) = f1(K)− s1 = 0,

...

hn(K, sn) = fn(K)− sn = 0. (2.4)

In this set, the slack variables are dependent variables and expressed in terms of the

independent variables which are the controller parameters. The controller parameters

are coupled in (2.4). An approach that can decouple these parameters, expressing

them in terms of the slack variables, is now desirable. Such a decoupling can be

7



accomplished using elimination theory on polynomial rings and Groebner bases [2].

If we were to choose a Lexicographic ordering km > km−1 > km−2 > · · · > k1 >

sn > sn−1 > · · · > s1 > s0, then the variable km is eliminated first, followed by

km−1 and so on. Thus, the resulting reduced set of polynomial equations will involve

one less variable every time a variable is eliminated as is the case in a Gaussian

elimination, i.e. the system of polynomial equations will be triangular. Let the

system of polynomial equations after the elimination process be

g0(S) = 0,

g1(S) = 0,

...

gp(S) = 0, (2.5)

gp+1(K,S) = 0,

gp+2(K,S) = 0,

...

gt(K,S) = 0. (2.6)

We observe that equations (2.5) may not have the triangular structure because the

number of variables is m + n + 1, including the slack variables, and is more than

the number of polynomial equations, which are only n+ 1 in number. By specifying

the Lexicographic ordering in the above mentioned manner, we want to treat m of

the slack variables to be independent variables, which is given by equations (2.5),

and the rest of them, including the controller parameters, can be determined for any

given value of the m independent variables through the system of equations in (2.5)
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and the triangular system of equations in (2.6). It is possible that for the same set of

m independent variables, there may be more than one set of control parameters. The

equations (2.5), referred to as the slack constraints, define an algebraic variety in the

space of the slack variables. Since the slack variables are strictly positive, this variety

is confined to the first orthant of the space of the slack variables. All the vectors

S = [s0, s1, . . . , sn]T , where si > 0, i = 0, 1, . . . , n, satisfying the equations (2.5)

represent the stability region in the space of the slack variables. The computation

of the stability region, via the sign-definite decomposition, is simpler in the space of

the slack variables than in the space of the controller parameters because the slack

variables take positive values; however, the controller parameters take positive and

negative values. For a specific vector S = [s0, s1, . . . , sn]T satisfying the equations

(2.5), one can sequentially find k1, k2, . . . , km, using equations (2.6). Therefore the

procedure described above can be summarized as

1. Write the Routh-Hurwitz stability inequalities for the closed loop characteristic

polynomial,

2. Convert inequalities to equalities by introducing slack variables,

3. Find the Groebner bases of the system of polynomials obtained above, which

involve controller parameters and slack variables, using Lexicographic ordering.

It should be noted that the necessary condition for the Routh-Hurwitz stability

criterion is that all the coefficients of the characteristic polynomial must be non-zero

and must have the same sign. These conditions can be embedded into the set of

equations (2.4). This will induce more slack variables which will increase the num-

ber of slack constraints in (2.5), but may simplify the equations (2.5) and (2.6).
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2.1.2 Sign-definite Decomposition in Determining Positivity (Negativity) of

Polynomials

A method has been proposed in [10], and followed in [11], to determine the

robust positivity (negativity) of a real function f(x) as the real vector x varies over

a box X ∈ Rn by only checking a finite number of specially constructed points. Let

f(x) with x = (x1, x2, . . . , xn) be a real function of x and consider the problem of

determining if f(x) is positive over the box

X = {x : x−i ≤ xi ≤ x+
i , for all i}.

The function f(x) can be decomposed as

f(x) = f+(x)− f−(x), (2.7)

where f+(x) ≥ 0, f−(x) ≥ 0 for all x ∈ X . Now, assume that xi’s take only positive

values. Defining x+ and x− as

x+ = (x+
1 , x

+
2 , . . . , x

+
n ),

x− = (x−1 , x
−
2 , . . . , x

−
n ),

such that

f+(x+) = max
x∈X

f+(x),

f−(x+) = max
x∈X

f−(x),

f+(x−) = min
x∈X

f+(x),

f−(x−) = min
x∈X

f−(x). (2.8)
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Therefore

f+(x−) ≤ f+(x) ≤ f+(x+),

f−(x−) ≤ f−(x) ≤ f−(x+). (2.9)

Now, consider the rectangle formed by the following four points in the (f−, f+) plane

A =
(
f−(x−), f+(x−)

)
,

B =
(
f−(x−), f+(x+)

)
,

C =
(
f−(x+), f+(x+)

)
,

D =
(
f−(x+), f+(x−)

)
. (2.10)

It can be shown that for all x ∈ X (see Fig. 2.1)

f(x)

 ≥ 0, if f+(x−)− f−(x+) ≥ 0,

≤ 0, if f+(x+)− f−(x−) ≤ 0.
(2.11)

This relation can be used recursively to construct the robustly positive regions. For

more details see [10, 11]. We use (2.11) later to plot the stability region in the space

of the (free) slack variables.

2.2 Illustrative Examples

2.2.1 SISO: A Second-order Plant and a First-order Controller

Consider a general second-order plant and a general first-order controller in a

unity feedback control system. The corresponding transfer functions for the plant
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Figure 2.1: Condition for positivity of f(x)

and the controller are

P (s) =
q1s+ q0

s2 + p1s+ p0

,

C(s) =
k1s+ k2

s+ k3

, (2.12)

where the plant parameters p0, p1, q0, q1 are known and the controller parameters

K = [k1, k2, k3]T are unknown. The closed loop characteristic polynomial in this case

will be

δ(s,K) = s3 + (q1k1 + p1 + k3)s2

+(p0 + q0k1 + q1k2 + p1k3)s

+(p0k3 + q0k2). (2.13)
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The elements of the first column of the Routh-Hurwitz array must be strictly positive

in order to have a stable closed loop system, therefore

f0(K) = q1k1 + p1 + k3 > 0,

f1(K) = q0q1k
2
1 + p1k

2
3 + q2

1k1k2 + (p1q1 + q0)k1k3

+q1k2k3 + (p1q0 + p0q1)k1 + (p1q1 − q0)k2

+p2
1k3 + p0p1 > 0,

f2(K) = p0k3 + q0k2 > 0, (2.14)

where the term f1(K) represents only the numerator of the 3rd element in the Routh-

Hurwitz array because its denominator, f0(K), is already assumed to be positive.

Also the first element of the array is 1 which is positive and is not included in (2.14).

Defining slack variables s0 > 0, s1 > 0, s2 > 0, one can generate h0, h1, h2 as

h0(K, s0) = f0(K)− s0 = 0,

h1(K, s1) = f1(K)− s1 = 0,

h2(K, s2) = f2(K)− s2 = 0. (2.15)
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The Groebner bases of the polynomials in (2.15) with respect to Lexicographic or-

dering k1 > k2 > k3 > s2 > s1 > s0 are

g0(k3,S) = −q2
0s

2
1 − q2

1s0s1 + q0q1s0

+(q2
0p1 − q0p0q1)s1 + q0q1s2

+(p0q
2
1 − q0p1q1 + q2

0)s1k3,

g1(k2, k3,S) = q0k2 + p0k3 − s0,

g2(k1, k3,S) = q1k1 + k3 − s1 + p1. (2.16)

None of the above Groebner bases are in terms of only the slack variables, i.e. there

is no constraint on choosing slack variables, therefore the entire first orthant in the

space of (s0, s1, s2) is the stability region for this example. The set (2.16) can be

solved for the controller parameters k1, k2, k3 as

k3 =
q2

0s
2
1 + q2

1s0s1 − q0q1(s0 + s2) + (q0p0q1 − q2
0p1)s1

(p0q2
1 − q0p1q1 + q2

0)s1

, (2.17)

k2 =
−1

q0

(p0k3 − s0), (2.18)

k1 =
−1

q1

(p1 + k3 − s1). (2.19)

This example shows a special case of our method where there is no restriction on

choosing slack variables, i.e. the entire first orthant in the space of the slack variables

is the stability region. This is analogous to the pole placement problem where the

number of controller parameters is the same as the number of closed loop poles.
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2.2.2 SISO: A Third-order Plant and a First-order Controller

In this example we show a case where a constraint on slack variables exists.

Consider the following third-order plant and a general first-order controller as

P (s) =
s2 + s− 1

s3 + 2s2 + s− 1
,

C(s) =
k1s+ k2

s+ k3

, (2.20)

where the controller parameters K = [k1, k2, k3]T are unknown. The closed loop

characteristic polynomial is

δ(s,K) = s4 + (k3 + 2 + k1)s3

+(k1 + k2 + 1 + 2k3)s2

+(k2 − k1 + k3 − 1)s− k3 − k2. (2.21)

The Routh-Hurwitz array corresponding to the characteristic polynomial (2.21) can

be constructed easily. In this example embedding the positivity of the coefficients of

the characteristic polynomial simplifies the Groebner bases equations. Although this

increases the number of the slack variables and the slack constraints, the number of

the free slack variables, introduced later, does not change and therefore the stability

region in the space of the free slack variables can still be plotted in a 3-dimensional

space. Therefore there are 6 inequalities in this case. Defining strictly positive slack
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variables s0, s1, . . . , s5, one can construct h0, h1, . . . , h5 as

h0 = k3 + 2 + k1 − s0 = 0,

h1 = 3k1k3 + 4k1 + k1
2 + k2k3 + k2 + k2k1

+4k3 + 3 + 2k3
2 − s1 = 0,

h2 = −3− 7k1 + 6k2 + 3k3 + k1k3 − 5k1
2

+8k2k3 + 6k2k1 + 6k3
2 + k2

2 + k2
2k3

+k2
2k1 + 4k2k3

2 − k1
2k3 + 3k1k3

2

+k2k1
2 + 5k2k3k1 − k1

3 + 3k3
3 − s2 = 0,

h3 = −k3 − k2 − s3 = 0,

h4 = k2 − k1 + k3 − 1− s4 = 0,

h5 = k1 + k2 + 1 + 2k3 − s5 = 0. (2.22)

The Groebner bases of the polynomials in (2.22) with respect to Lexicographic or-

dering k1 > k2 > k3 > s2 > s1 > s3 > s0 > s4 > s5 are

g1 = 1 + s3 − s0 + s5 = 0,

g2 = −s5s0 + s4 + s1 = 0,

g3 = s4
2 − s0

2 − s5s4s0 − s5s0
2

+s2 + s0
3 = 0, (2.23)

g4 = 2− 2s0 − s4 + s5 + k3 = 0,

g5 = −3 + 3s0 + s4 − 2s5 + k2 = 0,

g6 = s0 + s4 − s5 + k1 = 0. (2.24)
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Equations (2.24) involve the controller parameters and they are decoupled. These

equations can be solved to obtain the controller parameters k1, k2 and k3 as

k3 = −2 + 2s0 + s4 − s5, (2.25)

k2 = 3− 3s0 − s4 + 2s5, (2.26)

k1 = −s0 − s4 + s5. (2.27)

In this example s0, s4 and s5 are the free slack variables. Equations (2.23) can be

solved for s3, s1 and s2 respectively as (recall that the slack variables are strictly

positive)

s3 = −1 + s0 − s5 > 0, (2.28)

s1 = s5s0 − s4 > 0, (2.29)

s2 = −s4
2 + s0

2 + s5s4s0 + s5s0
2 − s0

3 > 0. (2.30)

Now, s1, s2 and s3 are the constrained slack variables and the inequalities (2.28)-

(2.30) define the stability region in the first orthant of the space of the free slack

variables s0, s4 and s5. Any vector (s0, s4, s5) satisfying the above inequalities will

guarantee the positivity of s1, s2 and s3 and can be mapped into the space of the con-

troller parameters by (2.25)-(2.27). As mentioned earlier, one important advantage

of this approach is that the slack variables are positive. This simplifies the computa-

tions involving sign-definite decomposition because all the variables are positive and

therefore the approximation boxes should be constructed only in the first orthant

of the space of the free slack variables; however, on the other hand, applying the

sign-definite decomposition directly to the Routh-Hurtwitz inequalities requires con-

sideration of all orthants because the controller parameters can take negative values
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as well. For this example we define the following polynomials

s+
3 = s0,

s−3 = 1 + s5,

s+
1 = s5s0,

s−1 = s4,

s+
2 = s2

0 + s5s4s0 + s5s
2
0,

s−2 = s2
4 + s3

0. (2.31)

Now, each pair of (s+
i , s

−
i ), i = 1, 2, 3, are treated as f+(x), f−(x), introduced earlier,

and the approximation boxes are defined as

S = {s : s−i ≤ si ≤ s+
i , i = 0, 4, 5}.

The stability region defined by (2.28)-(2.30) in the space of the free slack variables

is plotted in Fig. 2.2 via the sign-definite decomposition method. Each vector

S = [s0, s4, s5]T in the plot of Fig. 2.2 corresponds to a vector K = [k1, k2, k3]T

by (2.25)-(2.27). Fig. 2.3 shows the stability region in the space of the controller

parameters (k1, k2, k3).
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Figure 2.2: The stability region in the space of the free slack variables for the feedback
system (2.20)

2.2.3 MIMO: A Feedback Control System

Consider the following characteristic polynomial corresponding to a MIMO feed-

back system. Here, the controller parameters are k1 and k2.

δ(s,K) = s4 + (k1 − 2 + k2) s3

+ (k1k2 + 2k2 + k1 − 3) s2

+ (4− 5k2 − 4k1 + 5k1k2) s

+4− 6k2 + 6k1k2 − 4k1. (2.32)

The stability inequalities from the Routh-Hurwitz array and the coefficients of the

characteristic polynomial are

19



Figure 2.3: The stability region in the space of the controller parameters for the
feedback system (2.20)

f0 = k1 − 2 + k2 > 0,

f1 = k1
2k2 − 4k1k2 + k1k2

2 − 2k2

+2k2
2 + k1

2 − k1 + 2 > 0,

f2 = −8 + 22k2 − 65k1k2 + 48k1
2k2 + 46k1k2

2

−10k2
2 − 12k1

2 − 41k1
2k2

2 − k1k2
3

−5k1
3k2 + 5k1

3k2
2 + 5k1

2k2
3

−4k2
3 + 20k1 > 0,

f3 = 4− 6k2 + 6k1k2 − 4k1 > 0,

f4 = 4− 5k2 − 4k1 + 5k1k2 > 0,

f5 = k1k2 + 2k2 + k1 − 3 > 0. (2.33)
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Defining strictly positive slack variables s0, s1, . . . , s5, the Groebner bases for this

example are

g0 = 20 + 120s0 + 20s3 − 56s5 + 180s0
2 + 28s0s3

+s3
2 − 168s5s0 − 12s5s3 + 36s5

2 = 0,

g1 = 2 + 6s0 − 3s3 − 2s5 + 4s4 = 0,

g2 = −2− 6s0 + 3s3 + 2s5 + 4s1 − 4s5s0 = 0,

g3 = 8 + 68s0 − 64s3 − 8s5 + 192s0
2 − 156s0s3

+40s3
2 − 44s5s0 + 60s5s3 + 180s0

3 + 100s3s0
2

+s0s3
2 − 60s0

2s5 − 66s0s3s5 + 72s2 = 0, (2.34)

g4 = −2 + 8k2 + 10s0 + s3 − 6s5 = 0,

g5 = −14− 18s0 − s3 + 6s5 + 8k1 = 0. (2.35)

Equations (2.35) can be solved for the controller parameters k2 and k1 in terms of

the free slack variables s0, s3 and s5. Solution to the first 3 equations in (2.34) for

s4, s1 and s2, respectively, yields (recall that the slack variables are strictly positive)

s4 = −1

2
− 3

2
s0 +

3

4
s3 +

1

2
s5 > 0, (2.36)

s1 =
1

2
+

3

2
s0 −

3

4
s3 −

1

2
s5 + s5s0 > 0, (2.37)

s2 = −1

9
− 17

18
s0 +

8

9
s3

+
1

9
s5 −

8

3
s0

2 +
13

6
s0s3 −

5

9
s3

2 +
11

18
s5s0

−5

6
s5s3 −

5

2
s0

3 − 25

18
s3s0

2 − 1

72
s0s3

2

+
5

6
s0

2s5 +
11

12
s0s3s5 > 0. (2.38)
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Equation (2.34), for g3, involves only the free slack variables s0, s3 and s5, thus is

an algebraic variety in the first orthant of the space of the free slack variables. In-

equalities (2.36)-(2.38) and the equation for g3 in (2.34) define the stability region in

the space of the free slack variables (s0, s3, s5). Fig. 2.4 shows this stability region

plotted using the sign-definite decomposition. The stability region in the space of the

controller parameters (k1, k2) can be plotted using the equations (2.35) (see Fig. 2.5).

Figure 2.4: The stability region for the MIMO example in the space of the free slack
variables
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Figure 2.5: The stability region for the MIMO example in the space the controller
parameters

2.3 Concluding Remarks

In this chapter we proposed a method to construct the set of stabilizing con-

trollers of fixed structure using strictly positive slack variables. This is accomplished

through a systematic use of elimination theory on the Routh-Hurwitz stability in-

equalities which allows for the computation of controller parameters in a sequential

manner. The presence of strictly positive slack variables in the equations simplifies

the computations of the stability region via the sign-definite decomposition method.

Also by introducing free slack variables and constrained slack variables, we showed

that the stability region can be plotted in the space of the free slack variables.

It is also possible to add performance to the problem. The performance re-

quirements can be embedded to the initial set of stability inequalities by additional

corresponding polynomial inequalities. In this case the region obtained in the space
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of the slack variables will satisfy both the stability and the performance of the closed

loop system.

24



3. APPROXIMATING THE SET OF STABILIZING PID CONTROLLERS

WITH GUARANTEED TRANSIENT RESPONSE

This chapter presents a new approach to approximating the set of stabilizing

continuous-time and discrete-time PID controllers for satisfying a class of transient

specifications. A typical transient specification requires the response of a closed loop

system be within a specified envelope. We show that this task can be carried out

as a problem of guaranteeing the impulse response of appropriate closed loop error

transfer functions to be non-negative. The set of stabilizing PID controllers for Linear

Time Invariant (LTI) systems can be constructed as a union of convex polygons in

ki−kd space, for kp’s lying in a specific range. Widder’s theorem, and its discrete-time

counterpart developed in this chapter, provide necessary and sufficient conditions for

the impulse response of a transfer function to be non-negative. These conditions

require a sequence of transfer functions, derivable from the given transfer function,

to have no zeros in specific intervals of real axis. An application of these theorems

yields a sequence of polynomials, whose coefficients are polynomial functions of the

controller parameters, which must be non-negative. For a specified kp, an application

of Markov-Lukacs theorem to every polynomial in the sequence gives a polynomial

inequality in ki and kd that must be satisfied by every controller satisfying the desired

transient specification.

In Section 3.1 we provide prerequisites which we will use to develop our ap-

proach. In Sections 3.2 and 3.3 we propose our method for continuous-time systems

and discrete-time systems, respectively. Section 3.4 provides some illustrative exam-

ples. Finally, in Section 3.5 we provide concluding remarks.

25



3.1 Mathematical Preliminaries

In this section we present useful theorems and previous related results which will

help us to develop our approach to the problem of designing stabilizing PID con-

trollers guaranteeing transient response specifications.

3.1.1 Calculation of the Stabilizing Set

Consider the continuous-time unity feedback control system depicted in Fig. 3.1.

The plant transfer function is denoted by P (s) = Np(s)/Dp(s) and the PID controller

is represented as C(s) = (kds
2 + kps+ ki)/s. Let K = [kp, ki, kd]

T denotes the vector

of controller parameters.

P(s)C(s)
r(t) e(t) y(t)

+
-

Figure 3.1: A continuous-time unity feedback control system

The set of all stabilizing continuous-time PID controllers in the ki − kd space,

for kp values lying in an admissible range, can be constructed as union of interior

of convex polygons [7], where each polygon is the feasible solution of a set of linear

inequalities in ki and kd, at a specified kp. The entire stabilizing set Sstb, can be

generated by sweeping kp values over an admissible range. The stabilizing set at
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kp = k∗p, denoted by Sstb(k∗p), can then be expressed as

Sstb(k∗p) = {(ki, kd) s.t. (k∗p, ki, kd) ∈ Sstb}.

The set of stabilizing digital PID controllers, for discrete-time systems, can be

constructed as follows. Consider the discrete-time unity feedback control system

in Fig. 3.2 where the plant transfer function is P (z) = Np(z)/Dp(z) and C(z) =

(k2z
2 + k1z + k0)/(z2 − z) represents a digital PID controller.

P(z)C(z)
r(k) e(k) y(k)

+
-

Figure 3.2: A discrete-time unity feedback control system

Let us define

k3 := k2 − k0, (3.1)

and denote the vector of controller parameters by K = [k1, k2, k3]T . Based on the

results in [7], for a given value of k3 in an admissible range, the stability set in the

k1− k2 space can be constructed as union of interior of convex polygons, where each

polygon is the feasible solution of a set of linear inequalities in k1 and k2. The entire

stabilizing set Sstb, can be obtained by sweeping k3 values over an admissible range.
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Denoting by Sstb(k∗3), the stabilizing set at k3 = k∗3, we have

Sstb(k∗3) = {(k1, k2) s.t. (k1, k2, k
∗
3) ∈ Sstb}.

Once the stabilizing set, Sstb, is calculated, we restrict the set further to find an

outer approximation Souter, of the desired set Sdes, which guarantee the transient

specifications of the closed loop system. Also, a method will be provided to refine

the outer approximation arbitrarily.

3.1.2 Transient Response Specification

A typical transient response specification requires the response, to a given input,

be within an envelope. This can be satisfied by guaranteeing the impulse response

of appropriate closed loop error transfer functions to be non-negative. Berstein and

Widder [48] provide necessary and sufficient conditions for the impulse response of

a continuous-time rational, proper transfer function to be non-negative in terms of

the derivatives of the transfer function.

Theorem 3.1. Given D(s,K) is Hurwitz, denote the impulse response of H(s,K) =

N(s,K)
D(s,K)

by h(t). Then, h(t) ≥ 0 for all t ≥ 0 if and only if

Hk(s,K) = (−1)k
dkH(s,K)

dsk
≥ 0, ∀k ≥ 0, ∀s ≥ 0. (3.2)

The necessity of this statement can be verified by recalling that the Laplace

transform of th(t) is −dH(s)
ds

, and furthermore for any integer k ≥ 0, tkh(t) ≥ 0 if

and only if h(t) ≥ 0. Since (3.2) holds for all k ≥ 0, by considering a finite number

of derivative terms, one can construct an outer approximation to the desired set.

The sufficiency part of the above statement will be used to propose a procedure to
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arbitrarily tighten the outer approximation of interest.

An application of Theorem 3.1 yields a sequence of polynomials, whose coefficients

are polynomial functions of the control design parameters K = [kp, ki, kd]
T , which

are required to be non-negative for all s ≥ 0.

For discrete-time systems, the counterpart of the Widder’s theorem is useful in

characterization. Denote by H(z), the Z-transform of the impulse response h(k), of

a discrete-time LTI system. Let us define {Hk(z,K)}∞k=0, the sequence of transfer

functions associated with H(z,K) as follows

H0(z,K) := H(z,K),

Hk+1(z,K) := −z dHk(z,K)

dz
, ∀k ≥ 0.

The following lemma and theorem (see [24]) are useful.

Lemma 3.1. Let G(z) be a rational, proper transfer function with a decaying impulse

response, g(k). If G(z0) = 0 for some z0 ≥ 1, then g(k) changes sign at least once.

Proof. Since g(k) is decaying and z0 > 1, then

∞∑
k=0

g(k)z−k0 ,

converges and
∑∞

k=0 g(k)z−k0 = G(z0), based on the definition of Z-transform. G(z0) 6=

0 provided that g(k) does not change sign, because zk0 is always positive. However,

G(z0) = 0 by the hypothesis; hence, g(k) must change sign at least once.

Theorem 3.2. Given H(z) is analytic in |z| ≥ 1. Then h(k) ≥ 0 if and only if

Hk(z) ≥ 0, ∀k ≥ 0, ∀|z| ≥ 1.
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Proof. The necessity part can be proved as follows. We have

Hk(z) =
∞∑
l=0

lkh(l)z−l, ∀|z| ≥ 1.

The above relationship holds for k = 0. Suppose that it holds for k = 0, 1, 2, . . . ,m,

and consider

−zdHm(z)

dz
= −z d

dz
[
∞∑
l=0

lmh(l)z−l] =
∞∑
l=0

lm+1h(l)z−l = Hm+1(z).

Hm(z) is analytic for |z| ≥ 1; hence, its impulse response {lmh(l)}∞l=0 decays asymp-

totically to zero. From the statement of Lemma 3.1, the impulse response lmh(l)

changes sign provided Hm(z) having at least one real, positive zero for |z| > 1 and

any m. This implies that h(l), the impulse response of H(z), will also change sign.

The sufficiency part can be proved as follows. For every k and every t, being a

natural number, one can define

Dk,t(H(z)) := (
e

t
)kHk(e

k
t
),

and also define

Dt(H(z)) := lim
k→∞

Dk,t(H(z)).

Clearly,

Dk,t(H(z)) =
∞∑
l=0

h(l)lke−
lk
t (
e

t
)k =

∞∑
l=0

h(l)(
le

t
e−

l
t )k.

Let y = l
t

and consider the following sequence of functions

φk(y) := (ye−(y−1))k, k = 0, 1, . . . .
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It can be easily seen that φk(y) = φ0(y)k. Also, φ0(y) is a monotonically increasing

function in the interval [0, 1] and a monotonically decreasing function in the interval

[1,∞) and has exactly one maximum at y = 1, which is 1. It can be seen that

φk(y)→ δ(y − 1), the Kronecker delta function, as k →∞, which is 1 for y = 1 and

is 0 otherwise.

Based on this observation, for every natural number t, we have Dt(H(z)) →∑∞
l=0 h(l)δ( l

t
− 1) =

∑∞
l=0 h(l)δ(l − t) = h(t). Suppose there is a sign change in

the impulse response; this implies that there must exist a t1 and t2 > t1 such

that h(t1)h(t2) < 0. It is clear that for k being sufficiently large, it must be

Hk(e
k
t1 )Hk(e

k
t2 ) < 0; otherwise, the limit will not hold. Therefore, for all k, suf-

ficiently large, there will be a sign change in Hk(z) for some real positive z which

lies between e
k
t2 and e

k
t1 .

Applying Theorem 3.2 to an appropriate error transfer function yields a sequence

of polynomials, with coefficients as polynomial functions of the controller parameters

K = [k1, k2, k3]T , required to be non-negative for all z ∈ [1,∞).

3.1.3 A Representation of Non-negative Polynomials

Thus far we showed that the problem of satisfying transient response specifi-

cations can be cast a problem of guaranteeing a sequence of polynomials, whose

coefficients are polynomial functions of the control design parameters K, to be non-

negative on an appropriate interval of the real axis. The Markov-Lukacs theorem

[49] provides a sum-of-square representation for non-negative polynomials on any

interval of the real axis.

Theorem 3.3. A polynomial H(s) =
∑N

n=0 ans
n is non-negative on the interval

[0,∞) if and only if there exists polynomials f(s) of degree at most N
2

and g(s) of
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degree at most N−1
2

such that

H(s) = f 2(s) + sg2(s). (3.3)

The problem of existence of f(s) and g(s) can be checked by a semi-definite

program as follows. Consider the vector of monomials

M(s) = [1, s, . . . , sm],

of an appropriate dimension; then one can write the polynomial H(s) as

H(s) = M(s) F MT (s) + s M(s) G MT (s), (3.4)

where F and G are Hankel matrices of appropriate dimensions. By equating the

coefficients of the same powers of s in (3.4) one gets a set of equations that relate

the coefficients of H(s) to the entries of matrices F and G. Thus, the problem

of non-negativity of polynomial H(s) on the interval [0,∞) will be equivalent to

the feasibility of a semi-definite program defined by F � 0, G � 0 and the set of

equations relating the entries of the matrices F and G to the coefficients of H(s).

The following form of the Markov-Lukacs theorem provides a sum-of-square rep-

resentation for non-negative polynomials on the interval [1,∞).

Theorem 3.4. A polynomial H(z) =
∑N

n=0 anz
n is non-negative on the interval

[1,∞) if and only if there exists polynomials f(z) of degree at most N
2

and g(z) of

degree at most N−1
2

such that

H(z) = f 2(z) + (z − 1)g2(z). (3.5)
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One may check the existence of the functions f(z) and g(z) by a semi-definite

program. Let us write H(z) as

H(z) = M(z) F MT (z) + (z − 1) M(z) G MT (z), (3.6)

where F and G are Hankel matrices and M(z) = [1, z, . . . , zm]T is the vector of

monomials, all with appropriate dimensions. One may equate the coefficients of the

same powers of z in (3.6) to obtain a set of equations relating the coefficients of H(z)

to the entries of matrices F and G. Similar to the previous case, the semi-definite

feasibility problem defined by this set of equations and F � 0 and G � 0 has a

solution provide the existence of f(z) and g(z) satisfying (3.5).

3.2 Continuous-time Systems

In this section we present our approach to find an outer approximation of the set

of stabilizing PID controllers for continuous-time LTI systems guaranteeing transient

response specifications.

3.2.1 An Outer Approximation

Consider the continuous-time unity feedback control system in Fig. 3.1. Let us

denote by E(s,K) = NE(s,K)
DE(s,K)

, the appropriate error transfer function defined with

respect to the transient specification. Applying Theorem 3.1, the corresponding error

signal e(t) is non-negative for all t ≥ 0 if and only if

Ek(s,K) = (−1)k
dkE(s,K)

dsk
≥ 0, ∀k ≥ 0, ∀s ≥ 0. (3.7)
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Let us consider the k-th derivative, Ek(s,K), and write it as

Ek(s,K) =
NEk

(s,K)

DEk
(s,K)

=
αn(K)sn + · · ·+ α1(K)s+ α0(K)

DEk
(s,K)

, (3.8)

where DEk
(s,K) is of the form (DE(s,K))2k, and since DE(s,K) is Hurwitz stable

for K ∈ Sstb, then DEk
(s,K) ≥ 0 for all s ≥ 0. Therefore, the problem

Ek(s,K) ≥ 0, ∀s ≥ 0, (3.9)

is equivalent to

NEk
(s,K) ≥ 0, ∀s ≥ 0, (3.10)

where

NEk
(s,K) = αn(K)sn + · · ·+ α1(K)s+ α0(K). (3.11)

Using Theorem 3.3, (3.10) is satisfied if and only if there exists polynomials f(s,K)

and g(s,K) such that

NEk
(s,K) = f 2(s,K) + sg2(s,K). (3.12)

The polynomials f(s,K) and g(s,K) satisfying equation (3.12) exist if and only if

there exist positive semi-definite Hankel matrices F (y) � 0 and G(z) � 0 of the form

F (y) = y1F1 + y2F2 + · · · ,

G(z) = z1G1 + z2G2 + · · · , (3.13)
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where the matrices, F1, F2, . . . and G1, G2, . . . are known and symmetric. The scalar

parameters to be determined y1, y2, . . . and z1, z2, . . . will be referred to as Markov-

Lukacs variables and yi, zi are respectively the ith component of the vectors y and z.

Furthermore,

NEk
(s,K) = M F (y) MT + s M G(z) MT , (3.14)

where M = [1, s, . . . , sm].

The right hand side of (3.14) is linear in Markov-Lukacs variables; however, the

right hand side of (3.11) is linear in K for the first derivative of E(s,K), is quadratic

in K for the second derivative of E(s,K) and so on. Hence, the polynomial matrix

inequalities associated with the first derivative of the error transfer function reduces

to Linear Matrix Inequalities (LMIs); for the second derivative of the error transfer

function it reduces to Quadratic Matrix Inequalities (QMIs) and so on.

The outer approximation Skouter(k∗p), associated with the k-th derivative of the

error transfer function, at a fixed value of kp = k∗p, can be expressed as the feasible

solution of the following feasibility problem.

Feasibility Problem: Find all feasible values of ki, kd,y, z

subject to

Ej(k∗p, ki, kd) = Lj(y, z), j = 0, 1, 2, . . . , n

F (y) � 0, G(z) � 0,

Sq(k∗p, ki, kd) ≤ 0, q = 1, 2, . . . ,m, (3.15)

where Ej(k∗p, ki, kd) and Lj(y, z) are the coefficients of the sj terms in (3.11) and

(3.14), respectively; and the last constraint is the stability constraint determined by
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m number of linear inequalities in ki and kd.

If we were to represent by Skouter, the set of all feasible (kp, ki, kd) satisfying the

above feasibility problem, for kp values in a specific range, then, for every k, the set

Skouter is an outer approximation; and furthermore, the set Sdes := ∩kSkouter is also an

outer approximation. In fact, this is the desired set of stabilizing PID controllers sat-

isfying the given transient specification, based on the sufficiency part of the Widder’s

theorem. This approach can also be used to conclude if there exists no stabilizing

PID controller satisfying the desired transient specification; if the solution set to any

of the outer approximations Skouter, is empty, it can be concluded that there exists

no stabilizing PID controller satisfying the given transient response specification.

The feasibility region of (3.15) in the space of ki− kd can be approximated using

the following lemma.

Lemma 3.2. Let k be a given integer. Let (k∗p, k
∗
i , k
∗
d) be stabilizing controller gains.

If there is no solution corresponding to (3.15), then there exists a valid (nonlinear)

inequality in ki, kd to the set Sdes ∩ {kp = k∗p}.

Proof. Fixing k∗p, k
∗
i , k
∗
d, the problem (3.15) is a LMI. If (k∗p, k

∗
i , k
∗
d) does not satisfy

the constraints of the problem (3.15), then we have the following by the theorem of

alternatives: ∃λ,Q1 � 0, Q2 � 0, such that

g(λ,Q1, Q2) < 0, Q1 � 0, Q2 � 0, (3.16)

is feasible, where

g(λ,Q1, Q2) = inf
y,z∈D

L(y, z, λ,Q1, Q2) (3.17)

= inf
y,z∈D

{λ · [E(k∗p, k
∗
i , k
∗
d)− L(y, z)] + (Q1 · F (y)) + (Q2 ·G(z))},
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and D denotes the domain of Markov-Lukacs variables. Let Fdual(k∗p, k∗i , k∗d) be the

set of dual variables (λ,Q1, Q2) for which the function g(λ,Q1, Q2) is well defined.

It is clear that L(y, z, λ,Q1, Q2) is linear in y, z and by Ritz representation theorem

for linear operators, there exist constants αj, βj, j = 1, 2, . . . satisfying

L(y, z, λ,Q1, Q2) =
n∑
j=1

(αjyj + βjzj) + λ · E(k∗p, k
∗
i , k
∗
d), (3.18)

where the coefficients αj, βj, j = 1, 2, . . . , n, are functions of the dual variables

(λ,Q1, Q2) ∈ Fdual(k∗p, k∗i , k∗d). If αj’s and βj’s are non-zero, the infimum will be −∞,

since y and z are unconstrained. Hence, αj’s and βj’s must be zero which provide

additional linear constraints on λ,Q1, Q2. If that is the case, (3.17) simplifies to

g(λ,Q1, Q2) = λ · E(k∗p, k
∗
i , k
∗
d). (3.19)

The following is a valid (nonlinear) inequality to the set Sdes:

∑
j

λjEj(k∗p, ki, kd) ≥ 0. (3.20)

Remark 3.1. Deepest Cut: One can even find a deep (nonlinear) cut by solving
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the following problem:

min
∑
j

λjEj(k∗p, k∗i , k∗d) (3.21)

subject to αi(λ,Q1, Q2) = 0,

βi(λ,Q1, Q2) = 0, i = 1, . . . , n

(λ,Q1, Q2) ∈ Fdual.

Remark 3.2. Updating the Outer Approximation: Let Sbouter be the current

best outer approximation of the desired set Sdes. The idea is to pick a controller

(k∗p, k
∗
i , k
∗
d) ∈ Sbouter and check if it satisfies (3.15). If not, we then find a deep cut

using Lemma 3.2 and the cut for the chosen kp = k∗p may be plotted in the ki − kd

plane using the cut inequality:

∑
j

λ∗jEj(k∗p, ki, kd) ≥ 0. (3.22)

If we write

Souter(k∗p) := Sbouter ∩ {(kp, ki, kd) : kp = k∗p},

then, we may update the current outer approximation of the desired set Sdes, through

Souter(k∗p)←Souter(k∗p) ∩ {(kp, ki, kd) : kp = k∗p,
∑
j

λ∗jEj(k∗p, ki, kd) ≥ 0}.

We note that updating Souter(k∗p) for possible values of k∗p is equivalent to updating

Sbouter.
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3.2.2 First Outer Approximation

The first outer approximation S1
outer, of the set of stabilizing PID controllers

satisfying transient response specifications, can be computed by considering the non-

negativity of an appropriate error transfer function, defined with respect to the given

transient specification, and its first derivative:

E(s,K) ≥ 0, (3.23)

E1(s,K) = (−1)
dE(s,K)

ds
≥ 0, ∀s ≥ 0. (3.24)

The polynomial in the numerator of NE1(s,K), in (3.24), has coefficients which are

linear in K. The non-negativity of this polynomial can be stated as the following

feasibility problem.

Feasibility Problem: Find all feasible values of ki, kd,y, z

subject to

Ej(k∗p, ki, kd) = Lj(y, z), j = 0, 1, . . . , n

F (y) � 0, G(z) � 0,

Sq(k∗p, ki, kd) ≤ 0, q = 1, 2, . . . ,m, (3.25)

where Ej(k∗p, ki, kd) and Lj(y, z) are the coefficients of the sj terms in (3.11) and

(3.14), respectively. Since polynomials Ej(k∗p, ki, kd) are linear in ki and kd, in

this case, the cutting hyperplanes become linear inequalities in ki and kd. Let

(k∗p, k
∗
i , k
∗
d) ∈ Sstb(k∗p), but (k∗p, k

∗
i , k
∗
d) yields the feasibility problem (3.25) infeasi-

ble. The corresponding cutting hyperplane can be obtained using Lemma 3.2.
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3.2.3 Second Outer Approximation

The second outer approximation S2
outer, can be constructed by adding the non-

negativity condition for the second derivative of the appropriate error transfer func-

tion, to (3.23) and (3.24), i.e.

E(s,K) ≥ 0,

E1(s,K) = (−1)
dE(s,K)

ds
≥ 0,

E2(s,K) =
d2E(s,K)

ds2
≥ 0, ∀s ≥ 0. (3.26)

In this case, the numerator of NE2(s,K) has coefficients which are quadratic func-

tions of K. The non-negativity of this polynomial can be expressed as the following

feasibility problem.

Feasibility Problem: Find all feasible values of ki, kd,y, z

subject to

Ej(k∗p, ki, kd) = Lj(y, z), j = 0, 1, . . . , n

F (y) � 0, G(z) � 0,

Sq(k∗p, ki, kd) ≤ 0, q = 1, 2, . . . ,m, (3.27)

where Ej(k∗p, ki, kd) and Lj(y, z) are the coefficients of the sj terms in (3.11) and

(3.14), respectively. Since the polynomials Ej(k∗p, ki, kd) are quadratic functions of

ki and kd, in this case, the (nonlinear) cuts become quadratic inequalities in ki and

kd. Let (k∗p, k
∗
i , k
∗
d) ∈ S1

outer(k
∗
p), but (k∗p, k

∗
i , k
∗
d) yields the feasibility problem (3.27)

infeasible; then, one may find corresponding cutting hyperboloid using Lemma 3.2.
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3.2.4 Estimate of the Minimum Possible Overshoot

Let γ > 0 denotes the maximum allowable overshoot to a unit step input using

a PID controller. Thus, we want the error transfer function to have a non-negative

impulse response:

E(s,K) =
1 + γ

s
− 1

s

(kds
2 + kps+ ki)Np(s)

sDp(s) + (kds2 + kps+ ki)Np(s)
.

This can be rewritten by γ̄ := 1
γ

as

Ē(s,K) := γ̄E(s,K) =
(1 + γ̄)Dp(s) + (kds

2 + kps+ ki)Np(s)

s (sDp(s) + (kds
2 + kps+ ki)Np(s))︸ ︷︷ ︸
∆cl(s)

.

The design process requires the impulse response of Ē(s,K) to be non-negative.

We can apply the methodology developed here to calculate an outer approximation

Souter, for the desired set of controllers satisfying this overshoot specification. In fact,

if we have an outer approximation defined by linear constraints, denoted by Slinear,

in terms of variables γ̄, kp, ki and kd, then one may calculate a lower bound on the

minimum possible overshoot by solving the following linear optimization problem:

max
γ̄,kp,ki,kd

γ̄

subject to the constraint (γ̄, kp, ki, kd) ∈ Slinear.

3.3 Discrete-time Systems

In this section we propose our approach for calculating an outer approximation of

the set of stabilizing digital PID controllers for the class of discrete-time LTI systems
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guaranteeing transient response specifications.

3.3.1 An Outer Approximation

Consider the discrete-time unity feedback control system depicted in Fig. 3.2.

Let us denote by E(z,K) = NE(z,K)
DE(z,K)

, the appropriate error transfer function defined

with respect to the transient specification. Applying Theorem 3.2, the corresponding

error signal e(k) is non-negative for all k ≥ 0 if and only if

Ek+1(z,K) = −z dEk(z,K)

dz
≥ 0, ∀|z| ≥ 1, ∀k ≥ 0, (3.28)

where E0(z,K) = E(z,K) which is also non-negative for |z| ≥ 1. Let us consider

the k-th derivative, Ek(z,K), and write it as

Ek(z,K) =
NEk

(z,K)

DEk
(z,K)

=
αn(K)zn + · · ·+ α1(K)z + α0(K)

DEk
(z,K)

, (3.29)

where the denominator is always non-negative for all |z| ≥ 1, because DEk
(z,K)

is of the form (DE(z,K))2k, and DE(z,K) is Schur stable for K ∈ Sstb. Therefore,

problem reduces to the non-negativity of NEk
(z,K) on the interval [1,∞). NEk

(z,K)

is a polynomial with coefficients as polynomial functions of the controller parameters

K, i.e.

NEk
(z,K) = αn(K)zn + · · ·+ α1(K)z + α0(K). (3.30)
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By Markov-Lukacs theorem (Theorem 3.4), NEk
(z,K) is non-negative on the interval

[1,∞) provided that there exists polynomials f(z,K) and g(z,K) such that

NEk
(z,K) = f 2(z,K) + (z − 1)g2(z,K). (3.31)

The existence of polynomials f(z,K) and g(z,K) is guaranteed through the existence

of positive semi-definite symmetric matrices F (v) � 0, G(w) � 0 satisfying

NEk
(z,K) = M(z) F (v) MT (z) + (z − 1)M(z) G(w) MT (z), (3.32)

where M(z) = [1, z, . . . , zm]; v and w are vectors of the Markov-Lukacs variables

and

F (v) = v1F1 + v2F2 + · · · ,

G(w) = w1G1 + w2G2 + · · · .

The right hand side of (3.32) is linear in Markov-Lukacs variables v,w; however, the

right hand side of (3.30) is linear in K for the first derivative of the error transfer

function, i.e. E1(z,K); is quadratic in K for the second derivative of the error

transfer function, i.e. E2(z,K), and so on.

The outer approximation Skouter(k∗3), associated with the k-th derivative of the

error transfer function, at a fixed value of k3 = k∗3, can be expressed as the feasible
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solution of the following feasibility problem.

Feasibility Problem: Find all feasible values of k1, k2,v,w

subject to

Ej(k1, k2, k
∗
3) = Lj(v,w),

F (v) � 0, G(w) � 0, j = 0, 1, 2, . . . , n,

Sq(k1, k2, k
∗
3) ≤ 0, q = 1, 2, . . . ,m, (3.33)

where Ej(k1, k2, k
∗
3) and Lj(v,w) are the coefficients of the zj terms in (3.30) and

(3.32), respectively; and the last constraint is the stability constraint determined by

m number of linear inequalities in k1 and k2.

The feasibility region of (3.33) in the space of k1−k2 can be approximated in the

same way as with the continuous-time controllers.

3.4 Illustrative Examples

3.4.1 Continuous-time Systems: Non-overshooting Step Response

The following example illustrates how the method developed for the continuous-

time systems can be used to construct an outer approximation of the set of stabilizing

PID controllers satisfying transient response specifications. Consider the following

unstable plant

P (s) =
s+ 1

s3 + 2s2 + s+ 3
, (3.34)
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and a PID controller represented as

C(s) =
kds

2 + kps+ ki
s

, (3.35)

in a unity feedback control system. Assume that the transient specification requires

the unit step response of the closed loop system to be non-overshooting.

One may construct the entire stabilizing set as union of interior of convex poly-

gons through an application of the method proposed in [7]. For this example, The

stabilizing set is shown in Fig. 3.3, for −2.5 < kp < 7.

Figure 3.3: Stabilizing set for −2.5 < kp < 7
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Consider the stability region in the ki − kd plane, at k∗p = 5, defined by

ki > 0,

kd − 0.2ki + 0.5 > 0, (3.36)

which is plotted in Fig. 3.4.

Figure 3.4: Stability region at kp = 5

In this example, the appropriate error function is defined as e(t) = r(t) − y(t),

and is non-negative for t ≥ 0 when response is non-overshooting. The corresponding

error transfer function to a unit step input can be written as

E(s,K) =
s3 + 2s2 + s+ 3

s4 + (kd + 2) s3 + (kp + kd + 1) s2 + (kp + ki + 3) s+ ki
. (3.37)
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The first outer approximation of the non-overshooting step response set, denoted by

S1
outer, can be obtained by enforcing

E(s,K) ≥ 0, (3.38)

E1(s,K) ≥ 0. (3.39)

The denominator of (3.37) is Hurwitz stable for (kp, ki, kd) ∈ Sstb; and hence, is

non-negative for all s ≥ 0. The numerator of (3.37) is always non-negative for all

s ≥ 0, because s3 + 2s2 + s + 3 ≥ 0 for all s ≥ 0. Therefore, (3.38) is automatically

satisfied for K ∈ Sstb, which does not add any further constraint than the stability

constraints to the problem. Equation (3.39) is satisfied if NE1(s,K) ≥ 0, which can

be calculated as

NE1(s,K) = s6 + 4s5 + (6− kp + kd) s
4

+ (−2kp + 10 + 2kd − 2ki) s
3

+ (−kp + 13 + 10kd − 5ki) s
2

+ (6 + 6kd − 4ki + 6kp) s

+ (2ki + 3kp + 9) ≥ 0, ∀s ≥ 0. (3.40)

The non-negativity condition for NE1(s,K) is satisfied though the existence of posi-

tive semi-definite matrices

F (y) =



y1 y2 y3 y4

y2 y5 y6 y7

y3 y6 y8 y9

y4 y7 y9 y10


� 0, (3.41)
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G(z) =



z1 z2 z3 z4

z2 z5 z6 z7

z3 z6 z8 z9

z4 z7 z9 z10


� 0, (3.42)

where the entries of the matrices F (y) and G(z) are related to the controller param-

eters by the following set of linear equations

y1 = 2ki + 3kp + 9,

2y2 + z1 = 6 + 6kd − 4ki + 6kp,

2z2 + y5 + 2y3 = − kp + 13 + 10kd − 5ki,

2y6 + 2y4 + 2z3 + z5 = − 2kp + 10 + 2kd − 2ki,

2z4 + y8 + 2y7 + 2z6 = 6− kp + kd,

2y9 + z8 + 2z7 = 4,

y10 + 2z9 = 1,

z10 = 0. (3.43)

The set of all feasible (ki, kd), assuming kp = 5, satisfying (3.36), (3.41)-(3.43) forms

the first outer approximation of the set of stabilizing PID controllers that guarantee

the step response of the closed loop system to be non-overshooting. This outer

approximation can be constructed by choosing stabilizing controller gains for which

the set of constraints (3.41)-(3.43) is infeasible. Corresponding to such stabilizing

controllers, there exist cutting hyperplanes which refine the stabilizing set and yield

the outer approximation. Fig. 3.5 shows the first outer approximation of the stable,

non-overshooting step response region for this example by considering 10 number of

cutting hyperplanes.
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Figure 3.5: First outer approximation at kp = 5

For the calculations of the second outer approximation, the feasibility problem

corresponding to NE2(s,K) ≥ 0 will be:

Feasibility Problem: Find all feasible values of ki, kd,y, z

subject to

F (y) =



y1 y2 y3 y4 y5

y2 y6 y7 y8 y9

y3 y7 y10 y11 y12

y4 y8 y11 y13 y14

y5 y9 y12 y14 y15


� 0, (3.44)

49



G(z) =



z1 z2 z3 z4 z5

z2 z6 z7 z8 z9

z3 z7 z10 z11 z12

z4 z8 z11 z13 z14

z5 z9 z12 z14 z15


� 0, (3.45)

y1 = 8ki
2 + 4kikp + 6kp

2 + 24ki

+ 36kp + 54− 6kdki,

2y2 + z1 = − 6kdki + 18kp
2 + 54kd

− 24ki + 72kp + 54

+ 18kdkp + 6ki
2 + 12kikp,

2z2 + y6 + 2y3 = 126 + 90kd − 18ki + 72kp

+ 18kd
2 − 6kdki + 54kdkp

+ 6ki
2 − 6kikp + 18kp

2,

2y7 + 2y4 + 2z3 + z6 = 46kdkp + 2ki
2 − 2kikp

+ 50kd
2 + 130kd − 62ki

+ 104kp − 36kdki + 128,

y10 + 2y8 + 2y5 + 2z4 + 2z7 = 120 + 36kp − 6kdkp + 180kd

− 102ki + 42kd
2 − 24kdki,

2y9 + 2y11 + 2z5 + z10 + 2z8 = − 60ki − 30kp − 6kdkp

+ 102kd + 102− 6kdki + 6kd
2,
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2z9 + 2z11 + 2y12 + y13 = 58− 22kp + 22kd − 14ki

+ 2kd
2 − 2kdkp,

z13 + 2z12 + 2y14 = 6kd − 6kp + 30,

y15 + 2z14 = 12,

z15 = 2. (3.46)

Here, the set of all feasible (ki, kd), assuming kp = 5, satisfying (3.36), (3.41)-(3.46)

forms the second outer approximation of the stable, non-overshooting step response

region for this example. Fig. 3.6 shows the second outer approximation generated

by 10 number of cutting hyperplanes and 10 number of cutting hyperboloids.

Figure 3.6: Second outer approximation at kp = 5

In order to show that the outer approximations obtained for this example contains
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the controllers satisfying the stability and non-overshooting step response of the

closed loop system, we picked the controller parameters as kp = 5, ki = 1, kd = 20,

which is inside the second outer approximation shown in Fig. 3.6, and plotted the

corresponding unit step response of the closed loop system as depicted in Fig. 3.7.

It can be seen from Fig. 3.7 that the unit step response is non-overshooting.
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Figure 3.7: Step response of the closed loop system using the controller kp = 5, ki =
1, kd = 20

We also picked the controller parameters as kp = 5, ki = 5, kd = 3, which is inside

the first outer approximation, but outside of the second outer approximations, and

plotted the corresponding unit step response of the closed loop system (Fig. 3.8).

Fig. 3.8 shows that the response has an overshoot as we expected since the controller

chosen here is not inside the second outer approximation.
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Figure 3.8: Step response of the closed loop system using the controller kp = 5, ki =
5, kd = 3

3.4.2 Continuous-time Systems: Maximum Allowable Overshoot

In this example we illustrate how to obtain an outer approximation of the set of

PID controllers that guarantee the step response of the closed loop system to have

an overshoot less than a maximum allowable value. Recalling the unstable plant

from the previous example, and denoting the maximum allowable overshoot by γ,

one may define a new error signal as e(t) = (1 + γ)r(t) − y(t). The corresponding

error transfer function can be obtained as

E(s,K) =
1 + γ

s
− 1

s

(kds
2 + kps+ ki)(s+ 1)

s(s3 + 2s2 + s+ 3) + (kds2 + kps+ ki)(s+ 1)
.

Let us assume that the maximum allowable overshoot is γ = 5%. Using this error

transfer function, and following the same steps presented in the previous example,

one may obtain an outer approximation of the set of PID controllers guaranteeing

the step response of the close loop system to have an overshoot less than 5%. Fig.
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3.9 shows the first and second outer approximations for this example.

Figure 3.9: Second outer approximation at kp = 5 for the maximum allowable over-
shoot example

3.4.3 Discrete-time Systems: Non-overshooting Step Response

This example considers a discrete-time system and shows how the approach devel-

oped in the previous section can be used to obtain the set of all stabilizing digital PID

controllers guaranteeing non-overshooting unit step response. Consider the following

discrete-time plant

P (z) =
z + 0.5

z2 − 0.1z
, (3.47)
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and the digital PID controller

C(z) =
k2z

2 + k1z + k0

z2 − z
, (3.48)

and define k3 := k2 − k0. The entire set of stabilizing controller gains (k1, k2, k3)

can be constructed upon an application of the method presented in [7]. This set is

plotted in Fig. 3.10.

Figure 3.10: Stability set for −0.5 < k3 < 2

Let us fix the value of k3 to k∗3 = 1 . At this k3 value, the stability region can be
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expressed as the following set of linear inequalities in k1 and k2:

0.4k1 + 0.9k2 − 0.4 > 0,

k1 + 0.3k2 − 0.6 < 0,

0.4k1 − 0.9k2 + 2.5 > 0, (3.49)

which is plotted in Fig. 3.11.

Figure 3.11: Stability region at k3 = 1

In this example, the appropriate error signal is e(k) = r(k) − y(k), which is

non-negative for k ≥ 0 when response is non-overshooting. The corresponding error
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transfer function to a unit step input signal can be written as

E(z,K) =
NE(z,K)

DE(z,K)
, (3.50)

where

NE(z,K) = (10z − 1)z3,

DE(z,K) = 10z4 + (10k2 − 11)z3 + (5k2 + 1 + 10k1)z2

+ (−10k3 + 10k2 + 5k1)z + 5k2 − 5k3. (3.51)

The error transfer function E(z,K) in non-negative on the interval [1,∞). The first

outer approximation, S1
outer, of the set of all stabilizing digital PID controllers which

render the non-overshooting step response of the closed system can be obtained by

enforcing E1(z,K) to be non-negative on the interval [1,∞). This means that

NE1(z,K) = (100− 100k2) z7 + (−200k1 − 100k2 − 20) z6

+ (−140k1 − 295k2 + 300k3 + 1.0) z5

+ (10k1 − 180k2 + 180k3) z4

+ (−15k3 + 15k2) z3 ≥ 0, ∀z ∈ [1,∞). (3.52)

This requirement can be satisfied through the existence of positive semi-definite

matrices:

F (v) =



v1 v2 v3 v4

v2 v5 v6 v7

v3 v6 v8 v9

v4 v7 v9 v10


� 0, (3.53)
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G(w) =



w1 w2 w3 w4

w2 w5 w6 w7

w3 w6 w8 w9

w4 w7 w9 w10


� 0, (3.54)

where the entries of the matrices F (v) and G(w) are related to the controller pa-

rameters by the following set of linear equations:

v1 − w1 = 0,

2v2 − 2w2 + w1 = 0,

v5 + 2v3 − 2w3 − w5 + 2w2 = 0,

2v6 + 2v4 + 2w3 + w5 − 2w4 − 2w6 = − 15k3 + 15k2,

2v7 + v8 + 2w4 + 2w6 − 2w7 − w8 = 10k1 − 180k2 + 180k3,

2v9 − 2w9 + 2w7 + w8 = − 140k1 − 295k2 + 300k3 + 1,

v10 − w10 + 2w9 = − 200k1 − 100k2 − 20,

w10 = 100− 100k2. (3.55)

The set of all feasible (k1, k2, k3) satisfying (3.49), (3.53)-(3.55) forms the first outer

approximation S1
outer, of the desired set Sdes. Fig. 3.12 shows the first outer approx-

imation obtained for this example.

The second outer approximation can be constructed by adding the non-negativity

condition for the second derivative of the error transfer function, to the feasibility

problem defined for the first outer approximation. The second outer approximation

for this example is plotted in Fig. 3.13.

We picked the controller k1 = −0.8, k2 = 0.92, k3 = 1, inside the second outer

approximation, and another controller k1 = 0.38, k2 = 0.47, k3 = 1, inside the first
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Figure 3.12: First outer approximation at k3 = 1

outer approximation and obtained the unit step response of the closed loop system

as plotted in Figs. 3.14, 3.15, respectively.

In the case of discrete-time control systems, one may take an alternative approach

to find the non-overshooting transient response region. Let us write the realization

of the error transfer function E(z,K), as

x(k + 1) = A(K)x(k) +Br(k),

e(k) = C(K)x(k) +Dr(k), (3.56)

where r(k) = 1, ∀k ≥ 0 is the unit step input, in this problem, and K is the vector

of the controller parameters. The transient response is non-negative provided that
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Figure 3.13: Second outer approximation at k3 = 1

e(k) ≥ 0, ∀k ≥ 0, which is (assume that x(0) = 0)

e(0) = D ≥ 0,

e(1) = C(K)B +D ≥ 0,

e(2) = C(K)(A(K)B +B) +D ≥ 0,

... (3.57)

where the inequality corresponding to e(1) ≥ 0 is linear in K, and the one corre-

sponding to e(2) ≥ 0 becomes quadratic in K and so on.

In order to compare the method proposed in this chapter to this alternative

approach we obtained A(K), B, C(K), D in (3.56) by realizing the error transfer
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Figure 3.14: Step response of the closed loop system using the controller k1 =
−0.8, k2 = 0.92, k3 = 1

function E(z,K), for this example, as

A(K) =


0 1 0 0

0 0 0 1

0 0 0 1

.5(k3 − k2) k3 − k2 − .5k1 −k1 − .5k2 − .1 1.1− k2

 ,

B = [0, 0, 0, 1]T ,

C(K) = [.5(k3 − k2), k3 − k2 − .5k1,−k1 − .5k2,−k2],

D = 1. (3.58)

Considering the system of inequalities (3.57), it can be easily verified that e(0) =
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Figure 3.15: Step response of the closed loop system using the controller k1 =
0.38, k2 = 0.47, k3 = 1

D = 1 ≥ 0. The linear inequality corresponding to e(1) ≥ 0 will be

−k2 + 1 ≥ 0, (3.59)

which is plotted as the hatched region in Fig. 3.16.

As can be seen in Fig. 3.16, the alternative method cuts off a smaller region, from

the stabilizing set, compared to the first outer approximation computed through our

proposed approach.

3.4.4 Discrete-time Systems: Response within an Envelope

Recall the previous example and suppose that the transient specification requires

that the unit step response of the closed loop system to lie within the envelope shown

in Fig. 3.17.

The entire set of stabilizing controller gains (k1, k2, k3) is obtained in the previous
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Figure 3.16: Comparing our proposed approach with the alternative approach

Figure 3.17: The defined envelope
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example. Let us fix the value of k3 to k∗3 = 1 . At this k3 value, the stability region

can be expressed by the following set of linear inequalities in k1 and k2:

0.4k1 + 0.9k2 − 0.4 > 0,

k1 + 0.3k2 − 0.6 < 0,

0.4k1 − 0.9k2 + 2.5 > 0, (3.60)

which is plotted in Fig. 3.18.

Figure 3.18: Stability region at k3 = 1 (revisited)

In order to compute the set of desired digital PID controllers for which the tran-

sient specification is satisfied, appropriate error transfer functions, defined with re-

spect to the bounds of the envelope shown in Fig. 3.17, and their derivatives must

be non-negative for |z| ≥ 1. For instance, the error transfer function to a unit step
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input signal with respect to the lower bound in Fig. 3.17 can be written as

E(z,K) =
NE(z,K)

DE(z,K)

= 0.12(10z−1)(z−1)(10z+7)z
(10z4+(10k2−11)z3+(5k2+1+10k1)z2+(−10k3+10k2+5k1)z+5k2−5k3)(2z+1)

, (3.61)

which is non-negative on the interval [1,∞). The first outer approximation, S1
outer, of

the set of all stabilizing digital PID controllers which render the step response of the

closed system above the lower bound of the envelope in Fig. 3.17 can be obtained

by enforcing E1(z,K), as defined in (3.28), to be non-negative on the interval [1,∞).

This means that

NE1(z,K) = 240z9 − 192z8 + (−316.8− 240k1 − 336k2) z7

+ (236.16− 480k1 − 921.6k2 + 480k3) z6

+ (46.92− 244.8k1 − 710.4k2 + 624k3) z5

+ (81.6k1 − 14.4k2 + 48k3 − 15.12) z4

+ (57k1 + 253.8k2 − 249.6k3 + 0.84) z3

+ (80.4k2 − 80.4k3) z2 + (−4.2k2 + 4.2k3) z ≥ 0, ∀z ∈ [1,∞).

(3.62)

This requirement can be satisfied through the existence of positive semi-definite

matrices:

F (v) =



v1 v2 v3 v4 v5

v2 v6 v7 v8 v9

v3 v7 v10 v11 v12

v4 v8 v11 v13 v14

v5 v9 v12 v14 v15


� 0, (3.63)
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G(w) =



w1 w2 w3 w4 w5

w2 w6 w7 w8 w9

w3 w7 w10 w11 w12

w4 w8 w11 w13 w14

w5 w9 w12 w14 w15


� 0, (3.64)

where the entries of the matrices F (v) and G(w) are related to the controller pa-

rameters by the following set of linear equations:

v1 − w1 = 0,

2v2 − 2w2 + w1 = −4.2k2 + 4.2k3,

−2w3 − w6 + 2w2 + v6 + 2v3 = 80.4k2 − 80.4k3,

2v7 + 2v4 − 2w4 − 2w7 + 2w3 + w6 = 57k1 + 253.8k2 − 249.6k3 + 0.84,

v10 + 2v8 + 2v5 − 2w5

−2w8 − w10 + 2w4 + 2w7 = 81.6k1 − 14.4k2 + 48k3 − 15.12,

2v9 + 2v11 − 2w9 − 2w11 + 2w5 + 2w8 + w10 = −244.8k1 − 710.4k2 + 624k3 + 46.92,

−2w12 − w13 + 2w9 + 2w11 + 2v12 + v13 = −480k1 − 921.6k2 + 480k3 + 236.16,

−2w14 + 2w12 + w13 + 2v14 = −240k1 − 336k2 − 316.8,

v15 − w15 + 2w14 = −192,

w15 = 240. (3.65)

The set of all feasible (k1, k2, k3) satisfying (3.60), (3.63)-(3.65) forms the first outer

approximation S1
outer, of the desired set Sdes, with respect to the lower bound of

the envelope. A corresponding set of constraints, as obtained in (3.63)-(3.65), can

be derived with respect to the upper bound of the envelope as well. The second
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outer approximation can be constructed by adding the non-negativity condition for

the second derivative of the appropriate error transfer function, defined with respect

to the bounds of the envelope, to the feasibility problem defined for the first outer

approximation.

The first and second outer approximations for this example are plotted in Fig.

3.19.

Figure 3.19: First and second outer approximations at k3 = 1

Let us now pick the following 3 stabilizing controllers:

Controller 1 : k1 = −0.5, k2 = 1.05, k3 = 1, (3.66)

Controller 2 : k1 = −1, k2 = 1.6, k3 = 1, (3.67)

Controller 3 : k1 = −0.5, k2 = 1.7, k3 = 1, (3.68)
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where Controller 1 is inside the second outer approximation, Controller 2 is inside the

first outer approximation but outside of the second approximation, and Controller

3 is outside of the both approximations. We obtained the unit step response of the

closed loop system corresponding to (3.66), (3.67) and (3.68) as plotted, by square

markers, in Figs. 3.20, 3.21 and 3.22, respectively. In these figures the envelope

defined in Fig. 3.17 is also shown by circle markers.

Figure 3.20: Step response of the closed loop system using the controller k1 =
−0.5, k2 = 1.05, k3 = 1

3.5 Concluding Remarks

In this chapter, we proposed a method to construct an outer approximation of

the set of all stabilizing PID controllers for the class of continuous-time and discrete-

time LTI control systems guaranteeing transient response specifications. This is
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Figure 3.21: Step response of the closed loop system using the controller k1 =
−1, k2 = 1.6, k3 = 1

Figure 3.22: Step response of the closed loop system using the controller k1 =
−0.5, k2 = 1.7, k3 = 1
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accomplished by solving a sequence of Semi-Definite Programs (SDPs) developed

based on the Widder’s theorem, its counterpart for discrete-time transfer functions,

and Markov-Lukacs theorem. We also presented a technique to tighten the outer

approximation of interest arbitrarily.
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4. LINEAR EQUATIONS WITH PARAMETERS*

This chapter describes some basic results on the solution of linear equations con-

taining parameters and the properties of the parametrized solutions.

4.1 Introduction

Consider the system of linear equations

Ax = b, (4.1)

where A is an n× n matrix, and x and b are n× 1 vectors all with real or complex

entries. Let |.| denotes the determinant. Assuming that |A| 6= 0, there exists a

unique solution x and, by Cramer’s rule, the ith component xi of x is given by

xi =
|Ai(b)|
|A|

, i = 1, 2, . . . , n, (4.2)

where Ai(b) is the matrix obtained by replacing the ith column of A by b.

In many physical problems, A and b contain parameters that need to be chosen

or designed, as illustrated in the example below.

Example 4.1. Consider the circuit in Fig. 4.1. V is the ideal voltage source,

I is the ideal current source, R1, R2, R3 are linear resistors, and R4 is a gyrator

resistance. The gyrator is a linear two port device where the instantaneous currents

and the instantaneous voltages are related by V2 = R4I2 and V1 = −R4I3. Vamp

*Part of the data reported in this chapter is reprinted with permission from “Linear Circuits:
A Measurement Based Approach” by N. Mohsenizadeh, H. Nounou, M. Nounou, A. Datta and S.
P. Bhattacharyya, 2013, Int. J. Circ. Theor. Appl., Copyright 2013 John Wiley & Sons, Ltd.
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is the dependent voltage of the amplifier where Vamp = KI1, and K represents the

amplifier gain. The equations of the system can be written in the following matrix

form by applying Kirchhoff’s laws,

I1 I2

I

I3

R2 R4 R3R1

V
Vamp = K I1

+

-

A

+ +

--

Figure 4.1: A motivational circuit example


1 −1 0

R1 R2 −R4

K −R4 R3


︸ ︷︷ ︸

A


I1

I2

I3


︸ ︷︷ ︸

x

=


I

V

0


︸ ︷︷ ︸

b

. (4.3)

To fix notation, we introduce the parameter vector p and the vector of sources q:

p :=



R1

R2

R3

R4

K


=



p1

p2

p3

p4

p5


and q :=

 I

V

 =

 q1

q2

 , (4.4)
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so that (4.1) can be rewritten showing explicitly the dependence on the parameter

vector p and the source vector q as

A(p)x = b(q). (4.5)

Thus, (4.2) can also be rewritten explicitly showing the parametrized solution as

xi(p,q) =
|Ai(p,b(q))|
|A(p)|

:=
|Bi(p,q)|
|A(p)|

, i = 1, 2, . . . , n. (4.6)

Furthermore, if y(p,q) = cTx(p,q) = c1x1(p,q) + · · · + cnxn(p,q) is an output of

interest, it follows that

y(p,q) =
n∑
i=1

ci

(
|Bi(p,q)|
|A(p)|

)
. (4.7)

4.2 Parametrized Solutions

Motivated by the above example we consider henceforth the general representa-

tion of an arbitrary linear system to be given by (4.5), (4.6) and (4.7). To develop the

formula (4.6) in more detail, we note that in (4.3) the parameter p appears affinely

in A(p). Thus, we can write

A(p) = A0 + p1A1 + p2A2 + · · ·+ plAl. (4.8)

To proceed, consider the special case of a scalar parameter p = p1 and

A(p) = A0 + p1A1. (4.9)
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Lemma 4.1. With A(p) as in (4.9), |A(p)| is a polynomial of degree at most r1 in

p1 where

r1 = rank [A1] . (4.10)

Proof. The proof follows easily from the properties of determinants.

Lemma 4.2. With A(p) as in (4.8), let

ri = rank [Ai] , i = 1, 2, . . . , l. (4.11)

Then, |A(p)| is a multivariate polynomial in p of degree ri or less in pi, i = 1, 2, . . . , l

and

|A(p)| =
rl∑
il=0

· · ·
r2∑
i2=0

r1∑
i1=0

αi1i2···ilp
i1
1 p

i2
2 · · · p

il
l := α(p). (4.12)

Also, if the parameter q is fixed, say q = q0, then

|Bi(p,q0)| =
tl∑
il=0

· · ·
t2∑
i2=0

t1∑
i1=0

βi1i2···ilp
i1
1 p

i2
2 · · · p

il
l := βi(p,q0), (4.13)

where Bi(p,q0) is the matrix obtained by replacing the ith column of A(p), in (4.5),

by the vector b(q0), and

ti = rank [Bi] ≤ ri, i = 1, 2, . . . , l. (4.14)

Proof. This follows immediately from Lemma 4.1.

Remark 4.1. In the formula (4.12), the number of coefficients αi1i2···il are

l∏
i=1

(ri + 1). (4.15)

74



Based on the above formula, we have the following characterization of parametrized

solutions.

Theorem 4.1. With A(p) as in (4.8),

xi(p,q0) =
βi(p,q0)

α(p)
, i = 1, 2, . . . , n, (4.16)

where βi(p,q0), i = 1, 2, . . . , n, and α(p) are multivariate polynomials in p.

Proof. The proof follows from (4.6) and Lemma 4.2.

4.3 Concluding Remarks

In this chapter we explored some properties of the parametrized solutions of

sets of linear equations. We expressed these parametrized solutions based on specific

type of parameter dependence. These results will be useful in subsequent chapters to

develop a measurement based approach to the design and control of linear systems.
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5. APPLICATION TO DC CIRCUITS*

In a circuit analysis problem, one can calculate all the currents knowing the circuit

model, by applying Kirchhoff’s laws [50, 51, 52] and solving a set of linear equations.

If the circuit model is unavailable, which is usually the case in practical applications,

one can resort to determining the circuit currents by extensive experiments.

In this chapter, we present an alternative new approach which can determine

the functional dependency of any circuit variable with respect to any set of design

parameters directly from a small set of measurements. The obtained functional de-

pendency can then be used to solve a synthesis problem wherein one or more circuit

variables are to be controlled by adjusting the design parameters. We use the results

obtained in Chapter 4 to develop this new measurement based approach [35, 36].

Here, we consider current and power level control problems. A similar approach can

be used for voltage control problems.

5.1 Current Control

Consider a circuit design problem wherein the current in any branch of an un-

known linear DC circuit is to be controlled by a set of design elements at arbitrary

locations of the circuit. We consider several cases for the set of design parameters,

such as a single or multiple resistors, sources and amplifier gains.

The governing equations of a linear DC circuit can be written in the following

*Part of the data reported in this chapter is reprinted with permission from “Linear Circuits:
A Measurement Based Approach” by N. Mohsenizadeh, H. Nounou, M. Nounou, A. Datta and S.
P. Bhattacharyya, 2013, Int. J. Circ. Theor. Appl., Copyright 2013 John Wiley & Sons, Ltd.
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matrix form

A(p)x = b(q), (5.1)

where A(p) is called the circuit characteristic matrix, p is the vector of circuit

parameters, including resistors, amplifier gains, gyrators, but excluding independent

voltage and current sources, x represents the vector of unknown currents and q

denotes the vector of independent voltage and current sources. The vector b(q) can

be written as

b(q) = q1b1 + q2b2 + · · ·+ qmbm, (5.2)

where q1, q2, . . . , qm are the independent sources. Suppose that we want to control

the current Ii, in the i-th branch of the circuit. An application of the Cramer’s rule

to (5.1) yields

xi = Ii =
|Bi(p,q)|
|A(p)|

, (5.3)

where Bi(p,q) is the matrix obtained by replacing the i-th column of the character-

istic matrix A(p) by the vector b(q). We emphasize that in an unknown circuit the

matrices Bi(p,q) and A(p) are unknown. However, based on Lemma 4.2 and (5.2),

if the ranks of the parameters are known, a general rational function for Ii, in terms
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of the design parameters, can be derived as

Ii =

1∑
jm=0

· · ·
1∑

j1=0

tl∑
il=0

· · ·
t1∑
i1=0

αi1···ilj1···jm pi11 · · · p
il
l q

j1
1 · · · qjmm

rl∑
il=0

· · ·
r1∑
i1=0

βi1···il p
i1
1 · · · p

il
l

. (5.4)

In the above formula, α’s and β’s are constants, t1, . . . , tl are the ranks of the coeffi-

cient matrices of the parameters p1, . . . , pl in the matrix Bi(p,q), and r1, . . . , rl are

the ranks of the coefficient matrices of the parameters p1, . . . , pl in the matrix A(p).

5.1.1 Current Control using a Single Resistor

Consider the unknown linear DC circuit shown in Fig. 5.1. Assume that the

objective is to control Ii, the current in the i-th branch, by adjusting the resistor

Rj at an arbitrary location. In general, Rj will appear in A, in (5.1), with rank 1

dependency, unless it is a gyrator resistance, in which case the rank dependency is

2.

Unknown

Linear

D.C.

Circuit

IiRi

Rj

Figure 5.1: An unknown linear DC circuit for Section 5.1.1
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Theorem 5.1. In a linear DC circuit, the functional dependency of any current Ii

on any resistance Rj can be determined by at most 3 measurements of the current Ii

obtained for 3 different values of Rj.

Proof. Consider two cases: 1) i 6= j, and 2) i = j.

Case 1: i 6= j

In this case, Bi(p,q) and A(p), in (5.3), are both of rank 1 with respect to Rj.

According to the statement of Lemma 4.1, the functional dependency of Ii on Rj,

i.e. Ii(Rj), can be expressed as

Ii(Rj) =
α̃0 + α̃1Rj

β̃0 + β̃1Rj

, (5.5)

where α̃0, α̃1, β̃0, β̃1 are constants. If β̃0 = β̃1 = 0, then, Ii → ∞, for any value of

the resistance Rj, which is physically impossible. Therefore, we rule out this case.

Assuming that β̃1 6= 0, one can divide the numerator and denominator of (5.5) by

β̃1 and obtain

Ii(Rj) =
α0 + α1Rj

β0 +Rj

, (5.6)

where α0, α1, β0 are constants. In order to determine α0, α1, β0 one conducts 3 ex-

periments by setting 3 different values to the resistance Rj, say Rj1, Rj2, Rj3, and

measuring the corresponding currents Ii, say Ii1, Ii2, Ii3. Then, the following set of
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measurement equations can be formed


1 Rj1 − Ii1

1 Rj2 − Ii2

1 Rj3 − Ii3


︸ ︷︷ ︸

M


α0

α1

β0


︸ ︷︷ ︸

u

=


Ii1Rj1

Ii2Rj2

Ii3Rj3


︸ ︷︷ ︸

m

. (5.7)

This set can be uniquely solved for the unknown constants α0, α1, β0, if and only if

|M| 6= 0. If |M| = 0, then the last column of the matrix M can be written as a

linear combination of the first two columns because by assigning different values to

the resistance Rj, the first two columns of M become linearly independent. In this

case, Ii(Rj) will be

Ii(Rj) = α0 + α1Rj, (5.8)

where α0, α1 are constants that can be determined from any two of the experiments

conducted earlier. The functional dependency in (5.8) corresponds to the case where

β̃1 = 0 in (5.5), and the numerator and denominator of (5.5) are divided by β̃0.

Case 2: i = j

Here, A(p) is of rank 1 with respect to Ri; however, Bi(p,q) is of rank 0 with

respect to Ri. Based on Lemma 4.1, Ii(Ri) can be expressed as

Ii(Ri) =
α̃0

β̃0 + β̃1Ri

, (5.9)

where α̃0, β̃0, β̃1 are constants. Assuming β̃1 6= 0, and dividing the numerator and
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denominator of (5.9) by β̃1, gives

Ii(Ri) =
α0

β0 +Ri

, (5.10)

where α0, β0 are constants that can be determined by conducting 2 experiments,

by setting 2 different values to the resistance Ri, say Ri1, Ri2, and measuring the

corresponding currents Ii, say Ii1, Ii2. The following set of measurement equations

can then be formed  1 − Ii1

1 − Ii2


︸ ︷︷ ︸

M

 α0

β0


︸ ︷︷ ︸

u

=

 Ii1Ri1

Ii2Ri2


︸ ︷︷ ︸

m

, (5.11)

which has a unique solution for α0, β0 if |M| 6= 0. For the case where |M| = 0 in

(5.11), it can be easily seen that Ii is a constant,

Ii(Ri) = α0, (5.12)

where this constant can be determined from any prior measurements. The functional

dependency in (5.12) corresponds to the situation where β̃1 = 0 in (5.9), and the

numerator and denominator of (5.9) are divided by β̃0.

Remark 5.1. Suppose that i 6= j and |M| 6= 0 in (5.7), then taking the derivative

of Ii(Rj) in (5.6), with respect to Rj, yields

dIi
dRj

=
α1β0 − α0

(β0 +Rj)2
. (5.13)

If β0 ≥ 0, we have the following:
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1. The function (5.6) is monotonic in Rj, i.e. Ii(Rj) monotonically increases or

decreases as Rj increases from 0 to large values. The upper and lower bounds

are: Ii(0) = α0

β0
and Ii(∞) = α1. If α0

β0
> α1, then (5.6) will monotonically

decrease, and if α0

β0
< α1, then (5.6) will monotonically increase.

2. The achievable range for Ii, by varying Rj in the interval [0,∞), is

min

{
α0

β0

, α1

}
< Ii < max

{
α0

β0

, α1

}
. (5.14)

3. In a current control problem of this type, this monotonic behavior allows us to

uniquely determine a range of values of the design parameter Rj, R
−
j ≤ Rj ≤

R+
j , for which the current Ii lies within a desired prescribed range, I−i ≤ Ii ≤

I+
i , which of course must be within the achievable range (5.14).

These observations also are clear from the graph of (5.6). For instance, if β0 > 0,

α0 < 0 and α1 > 0, the graph of (5.6) has the general shape as depicted below (see

Fig. 5.2).

Thevenin’s Theorem (the special case i = j): Thevenin’s Theorem of circuit

theory (see [53, 54, 55]) follows as a special case of the results developed here. To

see this, consider the current functional dependency given in (5.10). From this re-

lationship, it is clear that the short circuit current Isc is given by Isc = α0

β0
, which

is obtained by setting Ri = 0. Similarly, the open circuit voltage Voc is obtained by

multiplying both sides of (5.10) by Ri and taking the limit as Ri →∞. This yields

Voc = VTh = α0. Thus, the Thevenin resistance is given by RTh = Voc
Isc

= β0, so that
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α0/β0

α1

Ii

Rj

Figure 5.2: Graph of (5.6) for β0 > 0, α0 < 0 and α1 > 0

(5.10) becomes

Ii(Ri) =
VTh

RTh +Ri

, (5.15)

which is exactly Thevenin’s Theorem. We point out that in our approach, it is not

necessary to measure short circuit current or open circuit voltage; indeed two ar-

bitrary measurements suffice. This has practical and useful implications in circuits

where short circuiting and open circuiting may sometimes be impossible. Theorem

5.1 and the subsequent results in this chapter represent generalizations of Thevenin’s

Theorem.

Current Assignment Problem: After obtaining the desired functional depen-

dency, one of the forms in (5.6), (5.8), (5.10) or (5.12), a synthesis problem can be

solved. For example, suppose that it is desirable to assign Ii = I∗i using Rj, and i 6= j.

Based on the statement of Theorem 5.1, and the fact that i 6= j, one may conduct 3

experiments by setting 3 different values to Rj, and measuring the corresponding Ii.
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The matrix M in (5.7) can then be evaluated from the measurements. If |M| 6= 0,

then the functional dependency will be of the form in (5.6), and if |M| = 0, then

(5.8) is the functional dependency. Assume that |M| 6= 0 is the case here; therefore,

the functional dependency is of the form in (5.6). In order to determine the value of

Rj, for Ii = I∗i is attained, one may solve (5.6) for Rj, with Ii = I∗i ,

Rj(I
∗
i ) =

α0 − I∗i β0

I∗i − α1

. (5.16)

Interval Design Problem: Suppose now that the current Ii is to be controlled to

lie within the following range by adjusting Rj, and i 6= j:

I−i ≤ Ii ≤ I+
i , (5.17)

Assume that the above range is inside the achievable range (5.14) and also after con-

ducting 3 experiments, we got |M| 6= 0 in (5.7) and β0 ≥ 0. This implies that Ii(Rj)

is of the form in (5.6) and thus is monotonic. One can find a unique corresponding

interval for Rj values where (5.17) is met. Supposing that Ii, in (5.6), monotonically

increases as Rj increases, one gets

R−j ≤ Rj ≤ R+
j , (5.18)

where

R−j =
α0 − I−i β0

I−i − α1

, R+
j =

α0 − I+
i β0

I+
i − α1

. (5.19)

Following the same strategy, one can solve a design problem for the case i = j.
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The problem of maintaining several currents in the circuit within prescribed intervals

can be tackled in a similar way.

5.1.2 Current Control using Two Resistors

Suppose that the objective is to control the current Ii using any two resistors Rj

and Rk at arbitrary locations (see Fig. 5.3). Assume that Rj and Rk are not gyrator

resistances. We have the following theorem.

Unknown Linear

D.C. Circuit
IiRi

Rj Rk

Figure 5.3: An unknown linear DC circuit for Section 5.1.2

Theorem 5.2. In a linear DC circuit, the functional dependency of any current Ii

on any two resistances Rj and Rk can be determined by at most 7 measurements of

the current Ii obtained for 7 different sets of values (Rj, Rk).

Proof. Consider two cases: 1) i 6= j, k and 2) i = j or i = k.

Case 1: i 6= j, k

In this case, Bi(p,q) and A(p), in (5.3), are both of rank 1 with respect to Rj
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and Rk. Using Lemma 4.2, the functional dependency of Ii(Rj, Rk) will be

Ii(Rj, Rk) =
α̃0 + α̃1Rj + α̃2Rk + α̃3RjRk

β̃0 + β̃1Rj + β̃2Rk + β̃3RjRk

, (5.20)

where α̃0, α̃1, α̃2, α̃3, β̃0, β̃1, β̃2, β̃3 are constants. Assuming that β̃3 6= 0 and dividing

the numerator and denominator of (5.20) by β̃3, yields

Ii(Rj, Rk) =
α0 + α1Rj + α2Rk + α3RjRk

β0 + β1Rj + β2Rk +RjRk

, (5.21)

where α0, α1, α2, α3, β0, β1, β2 are constants. In order to determine these 7 constants,

one needs to conduct 7 experiments by assigning 7 different sets of values to the

resistances (Rj, Rk), and measuring the corresponding Ii. The following set of mea-

surement equations will be obtained



1 Rj1 Rk1 Rj1Rk1 −Ii1 −Ii1Rj1 −Ii1Rk1

1 Rj2 Rk2 Rj2Rk2 −Ii2 −Ii2Rj2 −Ii2Rk2

1 Rj3 Rk3 Rj3Rk3 −Ii3 −Ii3Rj3 −Ii3Rk3

1 Rj4 Rk4 Rj4Rk4 −Ii4 −Ii4Rj4 −Ii4Rk4

1 Rj5 Rk5 Rj5Rk5 −Ii5 −Ii5Rj5 −Ii5Rk5

1 Rj6 Rk6 Rj6Rk6 −Ii6 −Ii6Rj6 −Ii6Rk6

1 Rj7 Rk7 Rj7Rk7 −Ii7 −Ii7Rj7 −Ii7Rk7


︸ ︷︷ ︸

M



α0

α1

α2

α3

β0

β1

β2


︸ ︷︷ ︸

u

=



Ii1Rj1Rk1

Ii2Rj2Rk2

Ii3Rj3Rk3

Ii4Rj4Rk4

Ii5Rj5Rk5

Ii6Rj6Rk6

Ii7Rj7Rk7


︸ ︷︷ ︸

m

.

(5.22)

This set of equations has a unique solution if |M| 6= 0 in (5.22). In the case

where |M| = 0, one can resort to the same procedure used in Section 5.1.1 to obtain
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the corresponding functional dependency Ii(Rj, Rk). We provided the details of this

case in the Appendix.

Case 2: i = j or i = k

Suppose that i = j and recall (5.3). Here, A(p) is of rank 1 with respect to

Ri and Rk; however, Bi(p,q) is of rank 0 with respect to Ri and is of rank 1 with

respect to Rk. Using Lemma 4.2 and according to these rank conditions, Ii(Ri, Rk)

can be written as

Ii(Ri, Rk) =
α̃0 + α̃1Rk

β̃0 + β̃1Ri + β̃2Rk + β̃3RiRk

. (5.23)

Assuming that β̃3 6= 0, one can divide the numerator and denominator of (5.23) by

β̃3 and obtain

Ii(Ri, Rk) =
α0 + α1Rk

β0 + β1Ri + β2Rk +RiRk

, (5.24)

where α0, α1, β0, β1, β2 are constants that can be determined by conducting 5 ex-

periments, by assigning 5 different sets of values to the resistances (Ri, Rk), and

measuring the corresponding Ii. The following set of measurement equations can

then be formed
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

1 Rk1 − Ii1 − Ii1Rj1 − Ii1Rk1

1 Rk2 − Ii2 − Ii2Rj2 − Ii2Rk2

1 Rk3 − Ii3 − Ii3Rj3 − Ii3Rk3

1 Rk4 − Ii4 − Ii4Rj4 − Ii4Rk4

1 Rk5 − Ii5 − Ii5Rj5 − Ii5Rk5


︸ ︷︷ ︸

M



α0

α1

β0

β1

β2


︸ ︷︷ ︸

u

=



Ii1Rj1Rk1

Ii2Rj2Rk2

Ii3Rj3Rk3

Ii4Rj4Rk4

Ii5Rj5Rk5


︸ ︷︷ ︸

m

. (5.25)

Again, this set has a unique solution for |M| 6= 0 in (5.25). If |M| = 0, following

the same strategy used in Section 5.1.1, one can derive the corresponding functional

dependency for Ii(Ri, Rk). The details of this case can be found in the Appendix.

The current Ii(Rj, Rk) can be plotted as a 3D surface. In a synthesis problem,

any constraint on Ii results in a corresponding region in the Rj-Rk plane, if the so-

lution set for that constraint is not empty.

5.1.3 Current Control using m Resistors

In this subsection, we want to control Ii by any m resistors Rj, j = 1, 2, . . . ,m,

that are not gyrator resistances, at arbitrary locations (see Fig. 5.4).

Theorem 5.3. In a linear DC circuit, the functional dependency of any current Ii

on any m resistances Rj, j = 1, 2, . . . ,m, can be determined by at most 2m+1 − 1

measurements of the current Ii obtained for 2m+1 − 1 different sets on values of the

vector (R1, R2, . . . , Rm).

Proof. Consider two cases: 1) i 6= j for j = 1, 2, . . . ,m, and 2) i = j for some

j = 1, 2, . . . ,m.
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Unknown Linear

D.C. Circuit
IiRi

R1 Rm

...

Figure 5.4: An unknown linear DC circuit for Section 5.1.3

Case 1: i 6= j, j = 1, 2, . . . ,m

In this case, Bi(p,q) and A(p), in (5.3), are both of rank 1 with respect to Rj,

j = 1, 2, . . . ,m. Based on Lemma 4.2, Ii(R1, R2, . . . , Rm) can be written as

Ii(R1, R2, . . . , Rm) =

∑1
im=0 · · ·

∑1
i2=0

∑1
i1=0 α̃i1i2···im Ri1

1 R
i2
2 · · ·Rim

m∑1
im=0 · · ·

∑1
i2=0

∑1
i1=0 β̃i1i2···im Ri1

1 R
i2
2 · · ·Rim

m

, (5.26)

where α̃i1i2···im ’s and β̃i1i2···im ’s are constants. Assuming that β̃11···1 6= 0 and dividing

the numerator and denominator of (5.26) by β̃11···1, gives

Ii(R1, R2, . . . , Rm) =

∑1
im=0 · · ·

∑1
i2=0

∑1
i1=0 αi1i2···im Ri1

1 R
i2
2 · · ·Rim

m∑1
im=0 · · ·

∑1
i2=0

∑1
i1=0 βi1i2···im Ri1

1 R
i2
2 · · ·Rim

m

, (5.27)

where β11···1 = 1, and αi1i2···im ’s and βi1i2···im ’s are 2m+1 − 1 constants. In order to

determine these constants, one conducts 2m+1 − 1 experiments.

Case 2: i = j for some j = 1, 2, . . . ,m

Without loss of generality, suppose that i = m and recall (5.3). In this case,

A(p) is of rank 1 with respect to Rj, j = 1, 2, . . . ,m; however, the matrix Bi(p,q)
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is of rank 0 with respect to Rm and is of rank 1 with respect to Rj, j = 1, 2, . . . ,m−

1. According to these rank conditions and based on Lemma 4.2, the functional

dependency Ii(R1, R2, . . . , Rm) will be

Ii(R1, R2, . . . , Rm) =

∑1
im−1=0 · · ·

∑1
i2=0

∑1
i1=0 α̃i1i2···im−1 R

i1
1 R

i2
2 · · ·R

im−1

m−1∑1
im=0 · · ·

∑1
i2=0

∑1
i1=0 β̃i1i2···im Ri1

1 R
i2
2 · · ·Rim

m

, (5.28)

where α̃i1i2···im−1 ’s and β̃i1i2···im ’s are constants. Supposing β̃11···1 6= 0, one can divide

the numerator and denominator of (5.28) by β̃11···1 and get

Ii(R1, R2, . . . , Rm) =

∑1
im−1=0 · · ·

∑1
i2=0

∑1
i1=0 αi1i2···im−1 R

i1
1 R

i2
2 · · ·R

im−1

m−1∑1
im=0 · · ·

∑1
i2=0

∑1
i1=0 βi1i2···im Ri1

1 R
i2
2 · · ·Rim

m

, (5.29)

where β11···1 = 1, and there are 3 (2m−1) − 1 constants. These constants can be

determined by conducting 3 (2m−1)− 1 experiments.

5.1.4 Current Control using Gyrator Resistance

Now, suppose that the design element is the resistance of a gyrator. The gyrator

resistance appears in the matrix A(p) with rank 2 dependency. Thus, we want to

control Ii by a gyrator resistance, denoted by Rg, at an arbitrary location of the

circuit.

Theorem 5.4. In a linear DC circuit, the functional dependency of any current Ii

on any gyrator resistance Rg can be determined by at most 5 measurements of the

current Ii obtained for 5 different values of Rg.

Proof. Consider the following two cases:

1) the i-th branch is not connected to either port of the gyrator (Fig. 5.5 left),
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2) the i-th branch is connected to one port of the gyrator (Fig. 5.5 right).

Unknown

Linear

D.C.

Circuit

IiRi

Rg

Unknown

Linear

D.C.

Circuit

Ii

Rg

Figure 5.5: An unknown linear DC circuit for Section 5.1.4

Case 1: The i-th branch is not connected to either port of the gyrator

In this case, Bi(p,q) and A(p), in (5.3), are both of rank 2 with respect to Rg.

Therefore, according to Lemma 4.2, the functional dependency Ii(Rg) can be written

as

Ii(Rg) =
α̃0 + α̃1Rg + α̃2R

2
g

β̃0 + β̃1Rg + β̃2R2
g

, (5.30)

where α̃0, α̃1, α̃2, β̃0, β̃1, β̃2 are constants. Assuming that β̃2 6= 0, one can divide the

numerator and denominator of (5.30) by β̃2 and obtain

Ii(Rg) =
α0 + α1Rg + α2R

2
g

β0 + β1Rg +R2
g

, (5.31)

where α0, α1, α2, β0, β1 are constants. In order to determine these constants, one

conducts 5 experiments by setting 5 different values to the gyrator resistance Rg,
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and measuring the corresponding currents Ii. In this case, the set of measurement

equations will be



1 Rg1 R2
g1 −Ii1 −Ii1Rg1

1 Rg2 R2
g2 −Ii2 −Ii2Rg2

1 Rg3 R2
g3 −Ii3 −Ii3Rg3

1 Rg4 R2
g4 −Ii4 −Ii4Rg4

1 Rg5 R2
g5 −Ii5 −Ii5Rg5


︸ ︷︷ ︸

M



α0

α1

α2

β0

β1


︸ ︷︷ ︸

u

=



Ii1R
2
g1

Ii2R
2
g2

Ii3R
2
g3

Ii4R
2
g4

Ii5R
2
g5


︸ ︷︷ ︸

m

, (5.32)

which has a unique solution for the constants α0, α1, β0, β1, β2, if and only if |M| 6= 0

in (5.32). If |M| = 0 is the case, one can use the same procedure presented in Section

5.1.1 to derive the corresponding functional dependency of Ii on Rg. The details of

this case are provided in the Appendix.

Case 2: The i-th branch is connected to one port of the gyrator

In this case, the matrix Bi(p,q) is of rank 1 with respect to Rg; however, the

matrix A(p) is of rank 2 with respect to Rg. Therefore, using Lemma 4.2, the

functional dependency Ii(Rg) will be written as

Ii(Rg) =
α̃0 + α̃1Rg

β̃0 + β̃1Rg + β̃2R2
g

, (5.33)

where α̃0, α̃1, β̃0, β̃1, β̃2 are constants. Supposing β̃2 6= 0 and dividing the numerator

and denominator of (5.33) by β̃2, one gets

Ii(Rg) =
α0 + α1Rg

β0 + β1Rg +R2
g

, (5.34)
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where α0, α1, β0, β1 are constants that can be determined by conducting 4 exper-

iments, by assigning 4 different values to the gyrator resistance Rg, and measuring

the corresponding currents Ii. Then, the following set of measurement equations can

be formed



1 Rg1 − Ii1 − Ii1Rg1

1 Rg2 − Ii2 − Ii2Rg2

1 Rg3 − Ii3 − Ii3Rg3

1 Rg4 − Ii4 − Ii4Rg4


︸ ︷︷ ︸

M



α0

α1

β0

β1


︸ ︷︷ ︸

u

=



Ii1R
2
g1

Ii2R
2
g2

Ii3R
2
g3

Ii4R
2
g4


︸ ︷︷ ︸

m

. (5.35)

As before, the system of equations (5.35) can be uniquely solved for the constants α0,

α1, β0, β1, provided |M| 6= 0. For the situations where |M| = 0, one can follow the

same procedure used in Section 5.1.1 to find the corresponding functional dependency

of Ii on Rg. The details for this case are presented in the Appendix.

5.1.5 Current Control using m Independent Sources

Here, we consider the problem of controlling the current Ii, by only using the

independent current/voltage sources, denoted by q = [q1, q2, . . . , qm]T , at arbitrary

locations of the circuit (see Fig. 5.6).

Theorem 5.5. In a linear DC circuit, the functional dependency of any current Ii

on the independent sources can be determined by m measurements of the current Ii

obtained for m linearly independent sets of values of the source vector q.

Proof. Recall (5.2),

b(q) = q1b1 + q2b2 + · · ·+ qmbm, (5.36)
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IiRi
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...

Figure 5.6: An unknown linear DC circuit for Section 5.1.5

where q1, q2, . . . , qm are the independent sources. Bi(p,q) in (5.3) can be expanded

as

Bi(p,q) = [A1(p), . . . ,Ai−1(p),b(q),Ai+1(p), . . . ,An(p)], (5.37)

which can be seen that is of rank 1 with respect to every independent sources

q1, q2, . . . , qm. Thus, |Bi(p,q)| can be expressed as a linear combination of q1, q2, . . . , qm,

|Bi(p,q)| = q1|Bi1(p)|+ q2|Bi2(p)|+ · · ·+ qm|Bim(p)|, (5.38)

where

Bij(p) = [A1(p), . . . ,Ai−1(p),bj,Ai+1(p), . . . ,An(p)], (5.39)

for j = 1, 2, . . . ,m. A(p) is of rank 0 with respect to q1, q2, . . . , qm, implying that
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|A(p)| is a constant, according to Lemma 4.1. Hence, Ii(q1, q2, . . . , qm) simplifies to

Ii(q) := Ii(q1, q2, . . . , qm)

= α1q1 + α2q2 + · · ·+ αmqm, (5.40)

where α1, α2, . . . , αm are constants that can be determined by assigning m sets of

linearly independent values to (q1, q2, . . . , qm), measuring the corresponding Ii, and

solving the obtained set of measurement equations.

Remark 5.2.

1. Theorem 5.5 is the well-known Superposition Principle of circuit theory.

2. If the independent sources vary in the intervals q−j ≤ qj ≤ q+
j , j = 1, 2, . . . ,m,

then the current Ii will vary in an interval whose end values can be computed

using the vertices (q−j , q
+
j ), j = 1, 2, . . . ,m. For example suppose that Ii is

given as below,

Ii(q) = 2q1 − q2 + 5q3 − 3q4, (5.41)

where q−j ≤ qj ≤ q+
j , q−j ≥ 0, j = 1, 2, 3, 4. One may decompose Ii as

Ii(q) = 2q1 − q2 + 5q3 − 3q4 = (2q1 + 5q3)− (q2 + 3q4). (5.42)

Then, the maximum and minimum values of Ii, denoted by Imax
i and Imin

i ,
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respectively, can be obtained from

Imax
i = (2q+

1 + 5q+
3 )− (q−2 + 3q−4 ), (5.43)

Imin
i = (2q−1 + 5q−3 )− (q+

2 + 3q+
4 ). (5.44)

5.2 Power Level Control

In this section we consider synthesis problems where, in an unknown linear DC

circuit, the power in an arbitrary resistor is to be controlled by adjusting the design

elements at arbitrary locations. For the sake of simplicity, suppose that the resistor

Ri is located in the i-th branch of the circuit and we want to control the power level

Pi, in the resistor Ri, by some design elements.

5.2.1 Power Level Control using a Single Resistor

Here, assume that the resistor Rj is not a gyrator resistance and recall the results

developed in Section 5.1.1.

Theorem 5.6. In a linear DC circuit, the functional dependency of the power level

Pi, in the resistor Ri, on any resistance Rj can be determined by at most 3 measure-

ments of the current Ii (passing through Ri) obtained for 3 different values of Rj,

and 1 measurement of the voltage across the resistor Ri, corresponding to one of the

resistance settings.

Proof. Consider two cases: 1) i 6= j, and 2) i = j.
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Case 1: i 6= j

We write the power as Pi = Vi
Ii
I2
i . The functional dependency Ii(Rj) is of

either forms (5.6) or (5.8). Since the ratio Vi
Ii

is the same for each experiment, then

only one measurement of the voltage Vi, across the resistor Ri, in addition to the

3 measurements of the current Ii, is required to determine Pi(Rj). Assuming one

measures Vi1 from the first experiment, then Pi(Rj) will be of the following forms:

• If |M| 6= 0 in (5.7):

Pi(Rj) =
Vi1
Ii1

(
α0 + α1Rj

β0 +Rj

)2

, (5.45)

where Vi1 and Ii1 are the voltage and current signals, at the resistor Ri, mea-

sured from the first experiment, and the constants α0, α1, β0 are obtained by

solving (5.7), as explained in Section 5.1.1.

• If |M| = 0 in (5.7):

Pi(Rj) =
Vi1
Ii1

(α0 + α1Rj)
2, (5.46)

where Vi1 and Ii1 are the voltage and current signals, at the resistor Ri, mea-

sured from the first experiment, and the constants α0, α1 can be determined

using any two of the conducted experiments, as discussed in Section 5.1.1.

Case 2: i = j

Let us write the power as Pi = Ri I
2
i . Based on the results of Section 5.1.1, Ii(Ri)

will be of either forms in (5.10) or (5.12). Hence, Pi(Ri) will be:
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• If |M| 6= 0 in (5.11):

Pi(Ri) = Ri

(
α0

β0 +Ri

)2

, (5.47)

where the constants α0, β0 can be obtained as explained in Section 5.1.1.

• If |M| = 0 in (5.11):

Pi(Ri) = α2
0Ri, (5.48)

where α0 is a constant that can be determined as discussed in Section 5.1.1.

Remark 5.3. Maximum Power Transfer Theorem. Suppose that i = j and

|M| 6= 0 in (5.11), then the derivative of Pi(Ri), in (5.47), with respect to Ri, is

dPi
dRi

=
α2

0(β0 −Ri)

(β0 +Ri)3
. (5.49)

We have the following statements:

1. The functional dependency Pi(Ri), in (5.47), in this case, is not monotonic.

For Ri → 0, Pi → 0 and for Ri → ∞, Pi → 0. Therefore, as Ri varies from

0 to ∞, Pi increases from 0 to the maximum achievable value of
α2
0

4β0
, and then

decreases to 0 at very large values of Ri. The maximum occurs at Ri = β0.

2. The achievable range for the power level Pi, by varying Ri in [0,∞), is

0 ≤ Pi <
α2

0

4β0

. (5.50)
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3. In a power level control problem of this type, for any desired prescribed inter-

val of power Pi, which is within the achievable range (5.50), one may find two

ranges of values for the design resistance Ri.

5.2.2 Power Level Control using Two Resistors

For this case, assuming that Rj and Rk are not gyrator resistances and recall the

results of Section 5.1.2.

Theorem 5.7. In a linear DC circuit, the functional dependency of the power level

Pi, in any resistor Ri, on any two resistances Rj and Rk can be determined by at

most 7 measurements of the currents Ii (passing through Ri) obtained for 7 different

sets of values (Rj, Rk), and 1 measurement of the voltage across the resistor Ri,

corresponding to one of the resistance settings.

Proof. The proof is similar to the previous case and thus omitted here.

The power level Pi(Rj, Rk) can be depicted as a 3D surface. In a design problem,

any constraint on Pi yields in a corresponding region in the Rj-Rk plane, if the

solution set to that constraint is not empty.

Remark 5.4. For the case of m resistors and gyrator resistance, corresponding func-

tional dependencies can be derived using the results of Sections 5.1.3 and 5.1.4, re-

spectively.

5.3 Illustrative Examples

Example 5.1. In this illustrative example we show how the method proposed in

Sections 5.1.1 and 5.2.1 can be used toward synthesis problems in unknown linear

DC circuits. Consider the unknown circuit in Fig. 5.7.
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Figure 5.7: An unknown resistive circuit example

In this example, it is desired to find the functional dependency of the current I1

on the resistance R9. Based on the results given in Section 5.1.1, one conducts 3

experiments, by setting 3 different values to R9, and measuring the corresponding

currents I1. Suppose that experiments are done and let Table 5.1 summarize the

numerical values, for this example, obtained from the 3 experiments.

Table 5.1: Measurements for the DC circuit example 5.1

Exp. No. R9 (Ω) I1 (A)
1 1 0.054
2 5 0.056
3 10 0.058
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Substituting the numerical values obtained from the experiments into the matrix

M in (5.7) resulted in |M| 6= 0. Therefore, (5.7) can be uniquely solved for the

constants and yield the following functional dependency which is plotted in Fig. 5.8.

I1(R9) =
78.4 + 0.66R9

181.3 +R9

. (5.51)
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Figure 5.8: I1 vs. R9

Remark 5.5.

1. The current I1 monotonically increases as R9 increases.

2. By varying R9 in the range [0,∞), the achievable range for I1 becomes [α0

β0
, α1] =

[0.43, 0.66].

3. In a synthesis problem where the current I1 is to be controlled to stay within an

acceptable interval, since I1 is monotonic in R9, one can find a corresponding
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interval for R9 values for which the current I1 stays within the acceptable range.

Suppose that we wish to design R9 such that I1 lies within the following achievable

range

0.5 ≤ I1 ≤ 0.6 (A). (5.52)

Using (5.51), or Fig. 5.8, the corresponding range for the design resistor R9 can be

obtained as

79 ≤ R9 ≤ 550 (Ω).

Example 5.2. For this example we constructed a resistive DC circuit. Our objective

was to find the functional dependency of the voltage, V , across a specific resistor,

in terms of a design resistor, R. We performed 3 experiments and obtained the

numerical values given in Table 5.2.

Table 5.2: Measurements for the DC circuit example 5.2

Exp. No. R (Ω) V (V)
1 10.3 0.651
2 98.8 0.613
3 984 0.425

These numerical values resulted in the following function for V (R):

V (R) =
618.2962 + 0.2038R

942.6883 +R
. (5.53)
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We set the resistor R to some other values and measured the corresponding voltage

V as shown in Table 5.3. The evaluation of function (5.53) for these values of R is

also provided in Table 5.3.

Table 5.3: Additional measurements for the DC circuit example 5.2

R (Ω) V (V) (practice) V (V) (evaluating (5.53))
51.5 0.632 0.633
501.5 0.499 0.499
741 0.456 0.457
2023 0.348 0.348

As we expected, there is a very good agreement between the practical measure-

ments and the evaluation of the obtained functional dependency.

Example 5.3. Consider the same circuit as in the Example 5.1 (Fig. 5.7). Sup-

pose now that the power levels within R1, R3 and R9, denoted by P1, P3 and P9,

respectively, must remain in the following ranges:

6 (W ) ≤P1 ≤ 7 (W ), (5.54)

7 (W ) ≤P3 ≤ 8 (W ), (5.55)

3 (W ) ≤P9 ≤ 3.5 (W ). (5.56)

Assume that the design resistor is R9. Based on the results of Section 5.2.1, one

conducts 3 experiments by assigning 3 different values to R9, and measuring the

corresponding currents I1, I3 and I9, passing through the resistors R1, R3 and R9,

respectively. In this problem, one also needs to measure the voltage across R1 and R3
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from one of the experiments. Suppose that the experiments are done and let Table

5.4 summarize the numerical values for this example, obtained from the experiments.

Table 5.4: Measurements for the DC circuit example 5.3

Exp. No. R9 (Ω) I1 (A) I3 (A) I9 (A)
1 1 0.437 0.964 0.301
2 5 0.438 0.972 0.295
3 10 0.444 0.982 0.287

Exp. No. R9 (Ω) V1 (V) V3 (V)
1 1 8.67 4.82

Substituting the numerical values from Table 5.4 into the matrix M in (5.7), for

the currents I1 and I3, and into the matrix M in (5.11), for the current I9, yields

|M| 6= 0, for all cases. Therefore, the functional dependencies of P1, P3 and P9 on

R9 will be

P1(R9) =
8.67

0.437

(
78.4 + 0.66R9

181.3 +R9

)2

, (5.57)

P3(R9) =
4.82

0.964

(
174.4 + 1.34R9

181.3 +R9

)2

, (5.58)

P9(R9) = R9

(
54.9

181.3 +R9

)2

. (5.59)

Fig. 5.9 shows the plots of the power levels P1, P3 and P9 obtained above.

Using (5.57)-(5.59), shown graphically in Fig. 5.9, one imposes the power level

constraints (5.54)-(5.56) to find the corresponding ranges of R9 values. A necessary
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Figure 5.9: P1, P3, P9 vs. R9

condition for the existence of a solution is that the constraints (5.54)-(5.56) must

be within their corresponding achievable ranges. For this example, the power level

constraints are within the achievable ranges; hence, we can find the following ranges

for R9 values:

190 (Ω) ≤R9 ≤ 450 (Ω), (5.60)

250 (Ω) ≤R9 ≤ 690 (Ω), (5.61)

60 (Ω) ≤ R9 ≤ 80 ∪ 420 (Ω) ≤ R9 ≤ 580 (Ω), (5.62)

corresponding to the power level constraints (5.54), (5.55) and (5.56), respectively.

Therefore, the range for R9 values where (5.54), (5.55) and (5.56) are achieved si-
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multaneously is the intersection of the ranges calculated above, that is

420 (Ω) ≤ R9 ≤ 450 (Ω). (5.63)

Example 5.4. Consider the unknown linear DC circuit depicted in Fig. 5.10.

R4

J2

R2

R5

R3R1

V V1

+

-

+ +

--J1

R6

R7

R8 R9 R11R10

R12 R13

+ -

V2

Figure 5.10: An unknown linear DC circuit example

In this example, Ri, i = 1, 2, . . . , 13, i 6= 5 are resistors, R5 is a gyrator resistance,

V, J1, J2 are independent sources and V1, V2 are dependent sources. Suppose that the

design objective is to control the power levels in R3, R6 and R11, denoted by P3, P6
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and P11, respectively, to lie within the ranges below:

40 (W ) ≤P3 ≤ 60 (W ), (5.64)

1 (W ) ≤P6 ≤ 8 (W ), (5.65)

0.5 (W ) ≤P11 ≤ 5 (W ). (5.66)

Assume that the design parameters are R1 and R6. Thus, we need to find the region

in the R1-R6 plane where (5.64), (5.65) and (5.66) are met. Based on the approach

presented in Section 5.2.2, in order to find the functional dependency of any power

level in terms of any two arbitrary resistances, one has to do at most 7 measurements

of current and one measurement of voltage. Let us treat each power level problem

separately as follows:

• P3 vs. R1 and R6:

Based on the results in Section 5.2.2, P3(R1, R6) can be determined by con-

ducting 7 experiments by setting 7 different sets of values to (R1, R6), and

measuring the corresponding I3. In addition, one measurement of the voltage,

across the resistor R3, is needed. Suppose that this measurement is taken from

the first experiment and denote it by V31. Let Table 5.5 summarize the numer-

ical values assigned to the resistances R1 and R6 along with the corresponding

measurements of I3 and V31. Substituting the numerical values of Table 5.5

into the matrix M, in (5.22), it can be checked that |M| 6= 0. Thus

P3(R1, R6) =
V31

I31

(
α0 + α1R1 + α2R6 + α3R1R6

β0 + β1R1 + β2R6 +R1R6

)2

︸ ︷︷ ︸
I23 (R1,R6)

, (5.67)

where the constants α0, α1, α2, α3, β0, β1, β2 can be determined by solving (5.22),
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Table 5.5: Measurements for the DC circuit example 5.4

Exp. No. R1(Ω) R6(Ω) I3(A)
1 7 1 3.33
2 13 8 2.71
3 21 19 2.47
4 35 26 2.57
5 40 32 2.52
6 52 45 2.47
7 59 56 2.44

Exp. No. R1(Ω) R6(Ω) V31(V )
1 7 1 33.3

using the numerical values of Table 5.5. For this example, the constants are

obtained as: α0 = 98.4, α1 = 36, α2 = 6.6, α3 = 2.4, β0 = 58.5, β1 = 5, β2 =

11.7. Hence, P3(R1, R6) will be

P3(R1, R6) =
33.3

3.33

(
98.4 + 36R1 + 6.6R6 + 2.4R1R6

58.5 + 5R1 + 11.7R6 +R1R6

)2

. (5.68)

Fig. 5.11 shows the plot of P3 as a function of R1 and R6, obtained in (5.68).

Applying constraint (5.64) on P3, one may obtain the region in the R1-R6 plane,

shown in black color in Fig. 5.12, where this constraint is satisfied.

• P6 vs. R1 and R6:

The functional dependency P6(R1, R6) can be determined by at most 5 mea-

surements of current and one measurement of voltage as discussed in Section

5.2.2 (Case 2). The plot of P6(R1, R6) is shown in Fig. 5.13. Applying con-

straint (5.65) on P6, one gets the region in the R1-R6 plane, shown in black

color in Fig. 5.14, where this constraint is valid.
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Figure 5.11: P3 vs. R1 and R6

• P11 vs. R1 and R6:

Following the same procedure used to determine P3(R1, R6), one may find

P11(R1, R6). The plot of P11(R1, R6) is depicted in Fig. 5.15. Applying con-

straint (5.66) on P11, one gets the region in the R1-R6 plane, shown in black

color in Fig. 5.16, where this constraint is satisfied.

In order to satisfy the constraints in (5.64), (5.65) and (5.66), simultaneously, one

needs to intersect the regions shown in Figs. 5.12, 5.14 and 5.16. Fig. 5.17 shows

the region (in black color) in the R1-R6 plane where the constraints (5.64), (5.65)

and (5.66) are satisfied, simultaneously.
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Figure 5.12: Region (in black color) where (5.64) is satisfied.

5.4 Concluding Remarks

This chapter showed that the analysis and design problems in linear DC circuits

can be carried out without knowledge of the circuit model, provided a few measure-

ments can be made. These measurements, processed appropriately, can yield the

complete information regarding the functional dependency of circuit variables on the

design elements.
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Figure 5.13: P6 vs. R1 and R6
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Figure 5.14: Region (in black color) where (5.65) is satisfied.
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Figure 5.15: P11 vs. R1 and R6
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Figure 5.16: Region (in black color) where (5.66) is satisfied.
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Figure 5.17: Region (in black color) where (5.64), (5.65) and (5.66) are simultane-
ously satisfied.
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6. APPLICATION TO AC CIRCUITS*

In this chapter we extend the proposed measurement based approach to the do-

main of AC circuits operating in steady state at a fixed frequency. The main differ-

ence between application of this method to AC circuits and its DC circuit counterpart

(Chapter 5) is that in an AC circuit the variables are complex quantities which are

usually called phasors and impedances, rather than real quantities.

6.1 Current Control

Suppose that a linear AC circuit is operating at a fixed frequency ω, Let us write

its governing steady state equations in the following matrix form

A(p(jω))x(jω) = b(q(jω)), (6.1)

where A(p(jω)) is called the circuit characteristic matrix which contains the circuit

impedances, x(jω) represents the vector of unknown current phasors and q(jω) is

the vector of independent voltage and current sources. Suppose that the current

phasor in the i-th branch of the circuit, denoted by Ii(jω), is of interest. Applying

Cramer’s rule to (6.1), Ii(jω) can be calculated from

xi(jω) = Ii(jω) =
|Bi(p(jω),q(jω))|
|A(p(jω))|

, (6.2)

where Bi(p(jω),q(jω)) may be obtained by replacing the i-th column of A(p(jω))

by b(q(jω)). We emphasize that if the circuit is unknown, then the matrices

*Part of the data reported in this chapter is reprinted with permission from “Linear Circuits:
A Measurement Based Approach” by N. Mohsenizadeh, H. Nounou, M. Nounou, A. Datta and S.
P. Bhattacharyya, 2013, Int. J. Circ. Theor. Appl., Copyright 2013 John Wiley & Sons, Ltd.
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Bi(p(jω),q(jω)) and A(p(jω)) are unknown. In the following subsections, for each

case of the design elements, a general rational form for the current phasor Ii(ω), as a

function of the design elements, will be derived. For the sake of simplicity, we drop

the argument (jω) in writing the equations from now on.

6.1.1 Current Control using a Single Impedance

Suppose that in an unknown linear AC circuit we want to control the current

phasor in the i-th branch, Ii, using any impedance Zj at an arbitrary location (see

Fig. 6.1). Assume that Zj is not a gyrator resistance. We have the following theorem.

Unknown

Linear

A.C.

Circuit

Ii(jω)

Zi(jω)

Zj(jω)

Figure 6.1: An unknown linear AC circuit for Section 6.1.1

Theorem 6.1. In a linear AC circuit, the functional dependency of any current

phasor Ii on any impedance Zj can be determined by at most 3 measurements of the

current phasor Ii obtained for 3 different complex values of Zj.

Proof. The proof is similar to its DC circuit counterpart presented in Section 5.1.1.
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The main difference is that the circuit variables and the constants appearing in the

functional dependencies will be complex quantities rather than real numbers. Hence,

we provide the results and leave the details to the reader.

Case 1: i 6= j

The function Ii(Zj) will be

Ii(Zj) =
α0 + α1Zj
β0 + Zj

, (6.3)

where α0, α1, β0 are complex quantities that can be uniquely determined by solving

the following set of measurement equations,


1 Zj1 − Ii1

1 Zj2 − Ii2

1 Zj3 − Ii3


︸ ︷︷ ︸

M


α0

α1

β0


︸ ︷︷ ︸

u

=


Zj1Ii1

Zj2Ii2

Zj3Ii3


︸ ︷︷ ︸

m

, (6.4)

provided |M| 6= 0. These complex quantities can be written as

α0(jω) =α0r(ω) + jα0i(ω),

α1(jω) =α1r(ω) + jα1i(ω),

β0(jω) =β0r(ω) + jβ0i(ω).

If |M| = 0 in (6.4), then Ii(Zj) can be written as

Ii(Zj) = α0 + α1Zj, (6.5)
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where α0, α1 can be determined from any 2 of the experiments conducted earlier.

Case 2: i = j

In this case, Ii(Zi) can be written as

Ii(Zi) =
α0

β0 + Zi
, (6.6)

where α0, β0 can be calculated by solving the following set of measurement equations,

 1 −Ii1

1 −Ii2


︸ ︷︷ ︸

M

 α0

β0


︸ ︷︷ ︸

u

=

 Ii1Zi1

Ii2Zi2


︸ ︷︷ ︸

m

. (6.7)

if and only if |M| 6= 0. In a situation where |M| = 0 in (6.7), Ii will be a constant,

Ii(Zi) = α0, (6.8)

where α0 may be obtain from one of the experiments conducted earlier.

As noted earlier, since the main difference between the results of this chapter and

their D.C. circuit counterparts is that in AC circuits the variables are complex quan-

tities, rather than real numbers, the proofs of the following theorems are omitted.

6.1.2 Current Control using Two Impedances

In this subsection we want to control Ii using any two impedances Zj and Zk,

that are not gyrator resistances, at arbitrary locations (see Fig. 6.2).

Theorem 6.2. In a linear AC circuit, the functional dependency of any current
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Unknown Linear

A.C. Circuit

Zj(jω) Zk(jω)

Zi(jω)

Ii(jω)

Figure 6.2: An unknown linear AC circuit for Section 6.1.2

phasor Ii on any two impedances Zj and Zk can be determined by at most 7 mea-

surements of the current phasor Ii obtained for 7 different sets of complex values

(Zj, Zk).

Remark 6.1. For the case of m impedances, one may resort to the results in Section

5.1.3 to derive the corresponding functional dependencies.

6.1.3 Current Control using Gyrator Resistance

Here, the design parameter is the resistance of a gyrator, Rg, located at an

arbitrary location of the circuit. We can state the following theorem.

Theorem 6.3. In a linear AC circuit, the functional dependency of any current pha-

sor Ii on any gyrator resistance Rg can be determined by at most 5 measurements of

the current phasor Ii obtained for 5 different values of Rg.

6.1.4 Current Control using m Independent Sources

Consider the problem of controlling the current phasor Ii using the independent

current and voltage sources, denoted by q1, q2, . . . , qm, at arbitrary locations of the
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circuit (Fig. 6.3).

Unknown

Linear

A.C.

Circuit

q1(jω)

...

Ii(jω)

Zi(jω)

qm(jω)

Figure 6.3: An unknown linear AC circuit for Section 6.1.4

Theorem 6.4. In a linear AC circuit, the functional dependency of any current

phasor Ii on the independent sources can be determined by m measurements of the

current phasor Ii obtained for m linearly independent sets of values of the source

vector q = [q1, q2, . . . , qm]T .

6.2 Power Control

6.2.1 Power Control using a Single Impedance

In this problem, the objective is to control the complex power Pi, in the impedance

Zi, located in the i-th branch of an unknown linear AC circuit, by adjusting any

impedance Zj at an arbitrary location of the circuit. Assuming that Zj is not a

gyrator resistance and recalling the results presented in Section 6.1.1, we can state
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the following theorem.

Theorem 6.5. In a linear AC circuit, the functional dependency of the complex

power Pi on any impedance Zj can be determined by at most 3 measurements of the

current phasor Ii (passing through Zi) obtained for 3 different complex values of Zj,

and 1 measurement of the voltage across the impedance Zi, for one such setting of

the impedance.

6.2.2 Power Control using Two Impedances

Suppose that the power Pi is to be controlled by any two impedances Zj and Zk,

that are not gyrator resistances, at arbitrary locations. Using the results of Section

6.1.2, we have the following theorem.

Theorem 6.6. In a linear AC circuit, the functional dependency of the power level

Pi, in any impedance Zi, on any two impedances Zj and Zk can be determined by

at most 7 measurements of the current phasor Ii (passing through Zi) obtained for

7 different sets of complex values (Zj, Zk), and 1 measurement of the voltage across

the impedance Zi, for one of the impedance settings.

Remark 6.2. For the case of m impedances, the corresponding functional dependen-

cies can be derived using the results presented in Section 5.1.3.

6.2.3 Power Control using Gyrator Resistance

In this case, the power Pi is to be controlled by a gyrator resistance Rg, at an

arbitrary location. We use the results obtained in Section 6.1.3.

Theorem 6.7. In a linear AC circuit, the functional dependency of the complex

power Pi on any gyrator resistance Rg can be determined by at most 5 measurements
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of the current phasor Ii obtained for 5 different values of Rg, and 1 measurement of

the voltage across the impedance Zi, corresponding to one of the impedance settings.

6.3 Illustrative Example

Example 6.1. Consider the unknown linear AC circuit depicted in Fig. 6.4 which

is operation at the frequency f = 60 (Hz).

R1

J2

C2

L1

V

V1

+-

J1

R2

R5

R6

AC

C1

R3

R4

R7 R8

L2

L3

L4 L5 L6

C3

C4

C5 C6

I3

I9

Figure 6.4: An unknown linear AC circuit example

We want to control the current phasors I3 and I9 to lie within the following

ranges:
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0 (A) ≤|I3| ≤ 4 (A), (6.9)

10 (deg) ≤∠I3 ≤ 30 (deg), (6.10)

0 (A) ≤|I9| ≤ 2.5 (A), (6.11)

−30 (deg) ≤∠I9 ≤ −10 (deg). (6.12)

Assume that the design elements are the inductor L1 and the capacitor C2. Thus,

we need to calculate the region in the L1-C2 plane where (6.9)-(6.12) are met. Based

on the results developed in Section 6.1.2, one can determine the functional depen-

dency of any current phasor in terms of any two impedances by taking at most

7 measurements of the current phasor. Let us treat each current phasor problem

separately as follows:

• I3 vs. L1 and C2:

To determine I3(L1, C2), one has to do 7 measurements of current phasor I3

for 7 different sets of values (L1, C2). Let Table 6.1 summarize the numerical

values assigned to L1 and C2 and the corresponding measurements of I3. For

this case, the general functional dependency can be written as

I3(L1, C2) =
α0 + α1L1jω0 + α2/(C2jω0) + α3L1/C2

β0 + β1L1jω0 + β2/(C2jω0) + L1/C2

, (6.13)

where the complex constants α0, α1, α2, α3, β0, β1, β2 can be determined by solv-

ing the set of 7 measurement equations.

Substituting the numerical values given in Table 6.1 into the measurement
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Table 6.1: Measurements for the AC circuit example

Exp. No. L1(mH) C2(µF ) I3(A)
1 13 10 3.3-2.9i
2 25 20 2.7-3.2i
3 32 23 2.3-3.4i
4 45 29 1.4-3.6i
5 54 33 .7-3.5i
6 68 40 -.5-2.9i
7 90 47 -1.4-1.3i

equations and solving for the unknown complex constants gives

α0 = −1502− 2772j, α1 = 173 + 74j,

α2 = 106 + 151j, α3 = 0,

β0 = −481− 316j, β1 = 13 + 13j,

β2 = 30 + 15j.

(6.14)

The function I3(L1, C2) will then be

I3(L1, C2) =
(−1502− 2772j) + (173 + 74j)L1jω0 + (106 + 151j)/(C2jω0)

(−481− 316j) + (13 + 13j)L1jω0 + (30 + 15j)/(C2jω0) + L1/C2

.

(6.15)

Figs. 6.5 and 6.6 depict the magnitude and the phase of I3 as a function of the

design elements L1 and C2, as obtained in (6.15). Applying constraints (6.9)

and (6.10) on I3, one can find the region in the L1-C2 plane, shown in black

color in Fig. 6.7, where these constraints are satisfied.
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Figure 6.5: |I3(jω0)| vs. L1 and C2

• I9 vs. L1 and C2:

Following the same procedure, one may obtain I9(L1, C2). Plots of the mag-

nitude and the phase of I9 as a function of L1 and C2 are shown in Figs. 6.8

and 6.9, respectively. Applying constraints (6.11) and (6.12) on I9, one may

calculate the region in the L1-C2 plane, shown in black color in Fig. 6.10, where

these constraints are valid.

Intersecting the regions in Figs. 6.7 and 6.10, one finds the region where the

constraints in (6.9)-(6.12) are satisfies simultaneously; this region is shown in Fig.

6.11.
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Figure 6.6: ∠I3(jω0) vs. L1 and C2

6.4 Concluding Remarks

In this chapter we extended the measurement based approach, developed in Chap-

ter 5 for DC circuits, to linear AC circuits. The main difference here is that the linear

equations describing the system contain complex quantities. All the results of Chap-

ter 5 carry over to the analysis and design of unknown linear AC circuits.
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Figure 6.7: Region (in black color) where (6.9) and (6.10) are satisfied.

Figure 6.8: |I9(jω0)| vs. L1 and C2
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Figure 6.9: ∠I9(jω0) vs. L1 and C2
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Figure 6.10: Region (in black color) where (6.11) and (6.12) are satisfied.
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Figure 6.11: Region (in black color) where (6.9)-(6.12) are satisfied.
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7. APPLICATION TO MECHANICAL SYSTEMS

This chapter deals with the application of the measurement based approach to

linear mechanical systems, truss structures and linear hydraulic networks (see [37]).

7.1 Mass-Spring Systems

In this section we consider design problems where in an unknown mass-spring

system the displacements of the masses are to be controlled by adjusting the spring

stiffness constants at arbitrary locations. Consider the unknown linear mass-spring

system shown in Fig. 7.1.

M1 M2 M3

F1 F2 F3

k1 k2 k3

x1 x2 x3

Mn

Fn

kn

xn

k4
...

Figure 7.1: An unknown general mass-spring system

Suppose that we want to control the displacement of the i-th mass, denoted

by xi, by adjusting the spring stiffness kj at an arbitrary location. Assume that the

spring kj is composed of piezoelectric materials (see [56]) such that its stiffness can be

controlled by applying an electrical field. The displacements can be measured using a

variety of sensors such as potentiometers or Linear Variable Differential Transformers
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(LVDTs) (see [57]). In this problem the system of governing linear equations can be

constructed in the form:



k1 + k2 − k2 0 · · · 0 0

−k2 k2 + k3 − k3 · · · 0 0

0 − k3 k3 + k4 · · · 0 0

...
...

...
...

...

0 0 0 · · · − kn−1 kn


︸ ︷︷ ︸

A(p)



x1

x2

x3

...

xn


︸ ︷︷ ︸

x

=



F1

F2

F3

...

Fn


︸ ︷︷ ︸

b(q)

, (7.1)

where p = [k1, k2, . . . , kn]T , x represents the vector of unknown displacements and

q = [F1, F2, . . . , Fn]T is the vector of external forces. Applying the Cramer’s rule to

(7.1) to calculate xi gives

xi(p,q) =
|Bi(p,q)|
|A(p)|

, i = 1, 2, . . . , n, (7.2)

where Bi(p,q) is obtained by replacing the ith column of A(p) by b(q). We have

the following theorem.

Theorem 7.1. In a linear mass-spring system, the functional dependency of any

mass displacement xi on any spring stiffness kj can be determined by 3 measurements

of the displacement xi obtained for 3 different values of kj.

Proof. Note that the matrices Bi(p,q) and A(p), in (7.2), are both of rank 1 with

respect to kj. Based on Lemma 4.1, xi(kj) can be expressed as

xi(kj) =
α̃0 + α̃1kj

β̃0 + β̃1kj
, (7.3)

where α̃0, α̃1, β̃0, β̃1 are constants. We rule out the case where β̃0 = β̃1 = 0, because
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if that is the case then xi → ∞, for any value of kj, which is physically impossible.

Assuming that β̃1 6= 0, one can simplify (7.3) to

xi(kj) =
α0 + α1kj
β0 + kj

, (7.4)

where α0, α1, β0 are constants. In order to determine α0, α1, β0 one conducts 3 ex-

periments by setting 3 different values to the spring stiffness kj, say kj1, kj2, kj3 and

measuring the corresponding displacements xi, say xi1, xi2, xi3. The following set of

measurement equations can then be formed:


1 kj1 − xi1

1 kj2 − xi2

1 kj3 − xi3


︸ ︷︷ ︸

M


α0

α1

β0


︸ ︷︷ ︸

u

=


xi1kj1

xi2kj2

xi3kj3


︸ ︷︷ ︸

m

. (7.5)

This set has a unique solution provided that |M| 6= 0. If |M| = 0, then the last

column of M can be expressed as a linear combination of the first two columns

because by assigning different values to the spring stiffness kj, the first two columns

of M become linearly independent. In this case, xi(kj) will be

xi(kj) = α0 + α1kj, (7.6)

where α0, α1 are constants that can be determined from any two of the experiments

conducted earlier. The functional dependency (7.6) corresponds to the case where

β̃1 = 0 in (7.3), and the numerator and denominator of (7.3) are divided by β̃0.

Remark 7.1. If the design parameters are the external forces then xi can be expressed
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as

xi(F1, F2, . . . , Fn) = β1F1 + β2F2 + · · ·+ βnFn, (7.7)

and the constants β1, β2, . . . , βn can be determined by applying n different sets of

linearly independent vectors (F1, F2, . . . , Fn) to the system and measuring the corre-

sponding displacements xi. This is the well-known Superposition Principle in me-

chanical systems. In addition, if the external forces vary in the intervals F−j ≤ Fj ≤

F+
j , j = 1, 2, . . . , n, then the displacement xi will vary in a convex hull whose vertices

can be computed using the vertices (F−j , F
+
j ), j = 1, 2, . . . , n.

7.2 Truss Structures

Here, we consider truss structures and want to control the displacements of some

set of truss joints using the stiffness of some set of design elements. Fig. 7.2 represents

an unknown general truss structure.

A

B

C

E

y

x

FBy

FBx

1

2

3

4

5

D

6

7

FDy

Figure 7.2: An unknown general truss structure

132



The element-wise stiffness matrix Kk, associated with the element k, can be

constructed as

Kk =
EkAk
Lk


cos2 θk

1
2 sin 2θk − cos2 θk − 1

2 sin 2θk

1
2 sin 2θk sin2 θk − 1

2 sin 2θk − sin2 θk

− cos2 θk − 1
2 sin 2θk cos2 θk

1
2 sin 2θk

− 1
2 sin 2θk − sin2 θk

1
2 sin 2θk sin2 θk

 , (7.8)

where Ek denotes the modulus of elasticity, Ak is the cross section area, Lk is the

length of the element and θk is the angle of the element. For the sake of simplicity

let us define Rk := EkAk/Lk. The global stiffness matrix A(p), in (7.9), can then

formed from element-wise stiffness matrices [58]. Let s and c denote sin(.) and cos(.)

functions, respectively. Then, the governing linear equations, for the truss structure

depicted in Fig. 7.2, can be written in the following matrix form:


A11(p) A12(p)

AT
12(p) A22(p)


︸ ︷︷ ︸

A(p)



δAx

δAy
...

δEx

δEy


︸ ︷︷ ︸

x

=



FAx

FAy
...

FEx

FEy


︸ ︷︷ ︸

b(q)

, (7.9)

where A(p) is the global stiffness matrix, with
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A
1
1
(p

)
=

           R
1
c2
θ 1

+
R

2
c2
θ 2

R
1
sθ

1
+
R

2
sθ

2
−
R

1
c2
θ 1

−
R

1
sθ

1
−
R

2
c2
θ 2

R
1
s2
θ 1

+
R

2
s2
θ 2

−
R

1
sθ

1
−
R

1
s2
θ 1

−
R

2
sθ

2

R
1
c2
θ 1

+
R

3
c2
θ 3

+
R

4
c2
θ 4

R
1
sθ

1
+
R

3
sθ

3
+
R

4
sθ

4
−

2R
3
c2
θ 3

R
1
s2
θ 1

+
R

3
s2
θ 3

+
R

4
s2
θ 4

−
2R

3
sθ

3

R
2
c2
θ 2

+
R

3
c2
θ 3

+
R

5
c2
θ 5

+
R

6
c2
θ 6

           ,

A
1
2
(p

)
=

           

−
R

2
sθ

2
0

0
0

0

−
R

2
s2
θ 2

0
0

0
0

−
2R

3
sθ

3
−
R

4
c2
θ 4
−
R

4
sθ

4
0

0

−
2R

3
s2
θ 3

−
R

4
sθ

4
−
R

4
s2
θ 4

0
0

R
2
sθ

2
+
R

3
sθ

3
+
R

5
sθ

5
+
R

6
sθ

6
−
R

5
c2
θ 5
−
R

5
sθ

5
−
R

6
c2
θ 6
−
R

6
sθ

6

           ,

A
2
2
(p

)
=

           R
2
s2
θ 2

+
R

3
s2
θ 3

+
R

5
s2
θ 5

+
R

6
s2
θ 6

−
R

5
sθ

5
−
R

5
s2
θ 5

−
R

6
sθ

6
−
R

6
s2
θ 6

R
4
c2
θ 4

+
R

5
c2
θ 5

+
R

7
c2
θ 7

R
4
sθ

4
+
R

5
sθ

5
+
R

7
sθ

7
−
R

7
c2
θ 7

−
R

7
sθ

7

R
4
s2
θ 4

+
R

5
s2
θ 5

+
R

7
s2
θ 7

−
R

7
sθ

7
−
R

7
s2
θ 7

R
6
c2
θ 6

+
R

7
c2
θ 7

R
6
sθ

6
+
R

7
sθ

7

R
6
s2
θ 6

+
R

7
s2
θ 7

           ,
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and p denotes the vector of elements parameters, x is the vector of unknown joints

displacements (in x and y directions) and q represents the vector of external forces

applied to the truss structure. Similar to the previous section, if one applies the

Cramer’s rule to (7.9) to calculate the ith component of x, denoted by xi, then

xi(p,q) =
|Bi(p,q)|
|A(p)|

, i = 1, 2, . . . , n, (7.10)

where Bi(p,q) is the matrix A(p) with the ith column replaced by b(q).

Assuming that the design elements are composed of piezoelectric materials, one

can control their cross section areas, and thus their stiffness constants, by applying

an electrical field. Suppose that in this problem, the design parameters are the cross

section areas of some set of design elements.

Theorem 7.2. In a linear truss structure, the functional dependency of a given joint

displacement δi, at a given direction, on Aj can be determined by 3 measurements of

the joint displacement δi, in the respective direction, obtained for 3 different values

of Aj.

Proof. The proof is similar to the results in Section 7.1. Based the procedure of

assembling element-wise stiffness matrices into the global stiffness matrix A(p), it

can be concluded that the matrices Bi(p,q) and A(p), in (7.10), are both of rank 1

with respect to Aj. Based on Lemma 4.1, δi(Aj) can be written as

δi(Aj) =
α0 + α1Aj
β0 + Aj

, (7.11)

where α0, α1, β0 are constants that can be determined by conducting 3 experiments.
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7.3 Hydraulic Networks

In this section we consider linear hydraulic networks. Suppose that, in a hydraulic

network, all the flows are in the laminar state resulting in the governing steady state

equations to be linear. The objective is to control the flow rates passing through

some set of pipes.

In a laminar flow, the pressure drop occurring in a pipe can be obtained from,

∆P =
8µLQ

πr4
, (7.12)

where µ is the dynamic viscosity of the fluid, L is the length of the pipe, Q is the

volume flow rate and r is the inner radius of the pipe. Let us rewrite (7.12) as

∆P = RQ, (7.13)

where

R =
8µL

πr4
, (7.14)

is called the pipe resistance constant which is a function of the mechanical properties

(length L and radius r) of the pipe.

To illustrate the approach, let us consider an unknown general hydraulic network

as depicted in Fig. 7.3.

Similar to linear circuits, applying Kirchhoff’s laws to a linear hydraulic network

(Fig. 7.3) yields the set of governing linear equations as shown below:
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Pump 1

Valve

(Open)

Valve

(Open)

Valve

(Closed)
Pump 2

Valve

(Closed)

Q1 Q2 Q4

Q3 Q5

Q7

Q1

Q6
Q8

Figure 7.3: An unknown general hydraulic network



1 −1 −1 0 0 0 0 0

0 1 0 −1 −1 0 0 0

0 0 0 1 1 1 −1 0

0 0 1 0 0 0 1 −1

R1 0 R3 0 0 0 0 R8

0 −R2 R3 0 −R5 R6 0 R8

0 0 0 −R4 R5 0 0 0

0 −R2 R3 −R4 0 0 −R7 0


︸ ︷︷ ︸

A(p)



Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8


︸ ︷︷ ︸

x

=



0

0

0

0

P1

P2

0

0


︸ ︷︷ ︸

b(q)

, (7.15)

where p = [R1, R2, . . . , R8] is the vector of the pipe resistances (Ri, i = 1, 2, . . . , 8

is the resistance of the set of pipes through which Qi, i = 1, 2, . . . , 8 flows), x is
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the vector of unknown flow rates and q represents the vector of input parameters

including the pump pressures. The flow rate Qi can be calculated from (7.15) using

the Cramer’s rule,

Qi = xi(p,q) =
|Bi(p,q)|
|A(p)|

, i = 1, 2, . . . , n, (7.16)

where Bi(p,q) is the matrix A(p) with the ith column replaced by b(q).

Observation 7.1. Upon an application of Kirchhoff’s laws, each pipe resistance Rj

appears in only one column of the characteristic matrix A(p).

In the following subsections we consider different sets of design parameters.

7.3.1 Flow Rate Control using a Single Pipe Resistance

Assume that the design element is the resistance of one pipe, denoted by Rj, at

an arbitrary location of the network. Therefore, we want to control the flow rate at

some location of the network, denoted by Qi, by adjusting the pipe resistance Rj.

Theorem 7.3. In a linear hydraulic network, the functional dependency of any flow

rate Qi on the pipe resistance Rj can be determined by at most 3 measurements of

the flow rate Qi obtained for 3 different values of Rj.

Proof. Consider two cases: 1) i 6= j and 2) i = j.

Case 1: i 6= j

Based on the Observation 7.1, Bi(p,q) and A(p), in (7.16), are both of rank

1 with respect to Rj. Therefore, based on Lemma 4.1, the function Qi(Rj) can be
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written as

Qi(Rj) =
α̃0 + α̃1Rj

β̃0 + β̃1Rj

, (7.17)

where α̃0, α̃1, β̃0, β̃1 are constants. Assuming that β̃1 6= 0, one can divide the numer-

ator and denominator of (7.17) by β̃1 which gives

Qi(Rj) =
α0 + α1Rj

β0 +Rj

, (7.18)

where α0, α1, β0 are constants that can be determined by conducting 3 experiments.

The measurement equations can be written as


1 Rj1 −Qi1

1 Rj2 −Qi2

1 Rj3 −Qi3


︸ ︷︷ ︸

M


α0

α1

β0


︸ ︷︷ ︸

u

=


Qi1Rj1

Qi2Rj2

Qi3Rj3


︸ ︷︷ ︸

m

, (7.19)

which can be uniquely solved provided that |M| 6= 0. For the situations where |M| =

0, which corresponds to the case β̃1 = 0 in (7.17), one may use a similar strategy

presented in Section 5.1.1 to derive the corresponding functional dependency. Hence,

Qi(Rj) = α0 + α1Rj. (7.20)

Case 2: i = j

Recalling (7.16) and based on the Observation 7.1, the matrix Bi(p,q) is of rank

0 with respect to Ri; however, the matrix A(p) is of rank 1 with respect to Rj.
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According to Lemma 4.1, Qi(Ri) will be

Qi(Ri) =
α̃0

β̃0 + β̃1Ri

, (7.21)

where α̃0, β̃0, β̃1 are constants. Assuming that β̃1 6= 0, and dividing the numerator

and denominator of (7.21) by β̃1 results in

Qi(Ri) =
α0

β0 +Ri

, (7.22)

where α0, β0 are constants that can be determined by conducting 2 experiments. The

following set of measurement equations can then be formed

 1 −Qi1

1 −Qi2


︸ ︷︷ ︸

M

 α0

β0


︸ ︷︷ ︸

u

=

 Qi1Ri1

Qi2Ri2


︸ ︷︷ ︸

m

, (7.23)

and uniquely solved if and only if |M| 6= 0. If |M| = 0 in (7.23), it can be concluded

that Qi is a constant,

Qi(Ri) = α0. (7.24)

This case corresponds to β̃1 = 0 in (7.21).

7.3.2 Flow Rate Control using Two Pipe Resistances

Suppose that the design parameters are any two pipe resistances, denoted by Rj

and Rk, at arbitrary locations of the network, and the flow rate Qi, at some location

of the network, is to be controlled by adjusting these two pipe resistances.
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Theorem 7.4. In a linear hydraulic network, the functional dependency of any flow

rate Qi on the pipe resistances Rj and Rk can be determined by at most 7 measure-

ments of the flow rate Qi obtained for 7 different sets of values of (Rj, Rk).

Proof. Again, let us consider two cases: 1) i 6= j, k and 2) i = j or i = k.

Case 1: i 6= j, k

In this case, based on the Observation 7.1, Bi(p,q) and A(p), in (7.16), are both

of rank 1 with respect to Rj and Rk. According to Lemma 4.2, Qi(Rj, Rk) will be

Qi(Rj, Rk) =
α̃0 + α̃1Rj + α̃2Rk + α̃3RjRk

β̃0 + β̃1Rj + β̃2Rk + β̃3RjRk

, (7.25)

where α̃0, α̃1, α̃2, α̃3, β̃0, β̃1, β̃2, β̃3 are constants. Assuming that β̃3 6= 0, dividing

the numerator and denominator of (7.25) by β̃3 yields

Qi(Rj, Rk) =
α0 + α1Rj + α2Rk + α3RjRk

β0 + β1Rj + β2Rk +RjRk

, (7.26)

where α0, α1, α2, α3, β0, β1, β2 are constants. In order to determine these constants,

one conducts 7 experiments by setting 7 different sets of values to the pipe resis-

tances (Rj, Rk), and measuring the corresponding flow rates Qi. The following set
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of measurement equations can then be obtained



1 Rj1 Rk1 Rj1Rk1 −Qi1 −Qi1Rj1 −Qi1Rk1

1 Rj2 Rk2 Rj2Rk2 −Qi2 −Qi2Rj2 −Qi2Rk2

1 Rj3 Rk3 Rj3Rk3 −Qi3 −Qi3Rj3 −Qi3Rk3

1 Rj4 Rk4 Rj4Rk4 −Qi4 −Qi4Rj4 −Qi4Rk4

1 Rj5 Rk5 Rj5Rk5 −Qi5 −Qi5Rj5 −Qi5Rk5

1 Rj6 Rk6 Rj6Rk6 −Qi6 −Qi6Rj6 −Qi6Rk6

1 Rj7 Rk7 Rj7Rk7 −Qi7 −Qi7Rj7 −Qi7Rk7


︸ ︷︷ ︸

M



α0

α1

α2

α3

β0

β1

β2


︸ ︷︷ ︸

u

=



Qi1Rj1Rk1

Qi2Rj2Rk2

Qi3Rj3Rk3

Qi4Rj4Rk4

Qi5Rj5Rk5

Qi6Rj6Rk6

Qi7Rj7Rk7


︸ ︷︷ ︸

m

.

(7.27)

This set of equations can be uniquely solved provided |M| 6= 0. If |M| = 0, one can

follow a similar procedure presented in Section 5.1.2 to develop the corresponding

function Qi(Rj, Rk).

Case 2: i = j or i = k

Suppose that i = j and recall (7.16). Based on the Observation 7.1, in this case,

A(p) is of rank 1 with respect to Ri and Rk; however, Bi(p,q) is of rank 0 with

respect to Ri and is of rank 1 with respect to Rk. According to Lemma 4.2 and these

rank conditions, Qi(Ri, Rk) becomes

Qi(Ri, Rk) =
α̃0 + α̃1Rk

β̃0 + β̃1Ri + β̃2Rk + β̃3RiRk

, (7.28)

where α̃0, α̃1, β̃0, β̃1, β̃2, β̃3 are constants. Assuming that β̃3 6= 0, one can divide the
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numerator and denominator of (7.28) by β̃3 and obtain

Qi(Ri, Rk) =
α0 + α1Rk

β0 + β1Ri + β2Rk +RiRk

, (7.29)

where α0, α1, β0, β1, β2 are constants that can be determined by conducting 5 ex-

periments, by assigning 5 different sets of values to the pipe resistances (Ri, Rk),

measuring the corresponding flow rates Qi, and solving the obtained set of measure-

ment equations.

7.4 Illustrative Examples

Example 7.1. Mass-Spring Systems. Consider a three-story building frame as

shown in Fig. 7.4 (A similar two-story building frame example can be found in

[59], pg. 362, exercise 5.24). Suppose that the mechanical properties of the building

components are unknown and the building is modeled as a mass-spring system shown

is Fig. 7.5 with unknown parameters.

Suppose that we want to control the displacement of the second floor (mass M2),

denoted by x2, by adjusting the stiffness constants of the links connecting the first

and the second floors (spring constant k2), to be within the range

−0.05 ≤ x2 ≤ −0.03 (m). (7.30)

Hence, we need to find an interval of k2 values for which (7.30) is satisfied. Based

on Theorem 7.1 the function x2(k2) can be written as

x2 =
α0 + α1k2

β0 + k2

, (7.31)
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x1

Figure 7.4: An unknown 3-story building example

M1 M2 M3

F1 F2 F3

k1 k2 k3

x1 x2 x3

Figure 7.5: A mass-spring model of the 3-story building

where α0, α1, β0 are constants that can be determined by conducting 3 experiments,

by setting 3 different values to the spring constant k2, say k21, k22, k23, measuring

the corresponding displacements x2, say x21, x22, x23, and then solving the following
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system of measurement equations


1 k21 − x21

1 k22 − x22

1 k23 − x23



α0

α1

β0

 =


k21x21

k22x22

k23x23

 . (7.32)

Let Table 7.1 show the numerical values for the experiments performed for this

example.

Table 7.1: Measurements for the mass-spring example

Exp. No. k2 (N/m) x2 (m)
1 2× 105 −0.035
2 3× 105 −0.030
3 5× 105 −0.026

Substituting these numerical values into (7.32) and solving for the constants yields

x2 =
−3000− 0.02k2

k2

, (7.33)

which is plotted in Fig. 7.6. Applying the design constraint given in (7.30) yields

the following range of k2 values:

105 ≤ k2 ≤ 3× 105 (N/m).
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Figure 7.6: x2 vs. k2 for the mass-spring example

Example 7.2. A Network of Springs. For this example we constructed a net-

work of springs as depicted in Fig. 7.7. Our objective was to find the functional

dependency of the displacement of point “P”, xp, in terms of the spring stiffness

constant k2.

k1 k2 k3

xp

P
F

Figure 7.7: An unknown network of springs example

For this example, we performed 3 experiments and obtained the numerical values

summarized in Table 7.2.
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Table 7.2: Measurements for the network of springs example

Exp. No. k2 (N/m) xp (mm)
1 135.41 28.99
2 180.02 25.14
3 318.47 19.50

These numerical values resulted in the following function for xp(k2):

xp(k2) =
3479.86 + 10.53k2

33.83 + k2

. (7.34)

We set k2 to some other values and measured the corresponding displacement xp

as shown in Table 7.3. The evaluation of function (7.34) for these values of k2 is also

provided in Table 7.3.

Table 7.3: Additional measurements for the network of springs example

k2 (N/m) xp (mm) (practice) xp (mm) (evaluating (7.34))
176.99 25.62 25.35
285.31 20.96 20.32
310.08 19.56 19.62

As we expected, there is a very good agreement between the practical measure-

ments and the evaluation of the obtained functional dependency.

Example 7.3. Truss Structures. Consider the truss structure shown in Fig. 7.8

(see [58], pg. 196, example 4.6.1) with unknown parameters.

Assuming that the deign element is the cross section area of link “AC”, denoted by
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Figure 7.8: An unknown truss structure example

AAC , and it is of interest to control the deflection of the joint “C” in the x-direction,

denoted by δCx, to be within the range

0 ≤ δCx ≤ 0.02 (m). (7.35)

Based on the statement of Theorem 7.2, δCx(AAC) can be written as

δCx =
α0 + α1AAC
β0 + AAC

, (7.36)

where α0, α1, β0 are constants that can be determined by conducting 3 experiments

and solving the following system of equations


1 AAC1 − δCx1

1 AAC2 − δCx2

1 AAC3 − δCx3



α0

α1

β0

 =


AAC1δCx1

AAC2δCx2

AAC3δCx3

 . (7.37)
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Let Table 7.4 summarize the numerical values for the measurements taken for

this example. Substituting these numerical values into (7.37) and solving for the

unknown constants yields

δCx =
1.1× 10−6 + 6.67× 10−3AAC

AAC
, (7.38)

which is plotted in Fig. 7.9.

Table 7.4: Measurements for the truss structure example

Exp. No. AAC (m2) δCx (m)
1 100× 10−6 0.018
2 150× 10−6 0.014
3 200× 10−6 0.012

0 1 2 3

x 10
−4

0.01

0.02

0.03

0.04

0.05

0.06

A
AC

 (m2)

Plot of δ
Cx

 vs A
AC

δ C
x (

m
)

Figure 7.9: δCx vs. AAC for the truss structure example
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Applying the design constraint, given in (7.35), on δCx yields

AAC ≥ 0.83× 10−4 (m2).

Example 7.4. Hydraulic Networks. Consider the unknown hydraulic network

shown in Fig. 7.10 and suppose that the flow is laminar, which results in the gov-

erning steady state equations to be linear.

Pump 1

Valve 1

Valve 3

Valve 2

Valve 4

Valve 5

Q8

Pump 2

Q12

Pipe 2

Pipe 9

Figure 7.10: An unknown hydraulic network example

Assume that the design objective is to control the flow rates Q8 and Q12 (as
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Table 7.5: Measurements for the hydraulic network example

Exp. No. r2 (m)
R2

(Pa.s/m3)
r9 (m)

R9

(Pa.s/m3)
Q8 (m3/s)

1 0.05 408 0.05 408 0.038
2 0.07 107 0.08 62 0.043
3 0.09 39 0.11 17 0.049
4 0.1 26 0.13 9 0.051
5 0.12 12 0.15 5 0.054
6 0.14 6 0.17 3 0.055
7 0.17 3 0.2 1.6 0.056

shown in Fig. 7.10) to stay within the following ranges:

0.045 ≤Q8 ≤ 0.055 (m3/s), (7.39)

0.01 ≤Q12 ≤ 0.03 (m3/s), (7.40)

by adjusting the radii of the pipes numbered 2 and 9, denoted by r2 and r9, respec-

tively. Therefore, the design objective is to find regions in the r2-r9 plane for which

the desired flow rates in (7.39) and (7.40) are met.

Based on the results in Section 7.3.2, one can determine the functional depen-

dency of any flow rate on any two pipe resistances by at most 7 measurements. Let

Table 7.5 show the numerical values of the measurements taken to find Q8(r2, r9).

Substituting these values into (7.27) and solving for the unknown constants yields

(also recall (7.14))

Q8(r2, r9) =
8.7× 107 + 1600

r42
+ 3500

r49
+ 0.034

r42r
4
9

1.5× 109 + 48000
r42

+ 75000
r49

+ 1
r42r

4
9

, (7.41)

which is plotted in Fig. 7.11. Applying the constraint (7.39) to (7.41) gives the
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region shown (in black) in Fig. 7.12 in the r2-r9 plane.

Figure 7.11: Q8 vs. r2 and r9

Similarly one can find Q12(r2, r9), as plotted in Fig. 7.13. Fig. 7.14 shows the

region (in black) in the r2-r9 plane where the constraint (7.40) is satisfied.

Intersecting the regions in Figs. 7.12 and 7.14, one finds the region where both

the constraints (7.39) and (7.40) are met simultaneously (see Fig. 7.15).

7.5 Concluding Remarks

In this chapter we extended our measurement based approach to the domain

of linear mechanical systems, such as mass-spring networks, truss structures and

hydraulic systems. We showed that measurements processed appropriately can be

directly used to solve analysis and design problem in linear mechanical systems.
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Figure 7.12: Region where (7.39) is satisfied.

Figure 7.13: Q12 vs. r2 and r9
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8. APPLICATION TO CONTROL SYSTEMS

The problem of designing controllers satisfying stability and performance require-

ments has many practical important applications. Most of the classical control design

techniques require a mathematical model of the plant, such as a transfer function

representation or state space equations, a priori. In practice one usually deals with

very complex systems where modeling is not an easy task. In general, if a model is to

be proposed for a complex system, it will be of higher order, which makes the design

process difficult. This observation motivates the search for a new approach which

can determine the controller parameters directly from measurements and without

requiring a mathematical model of the system.

This chapter presents a new measurement based approach to the problem of con-

troller design for Linear Time-Invariant (LTI) control systems. The objective is to

guarantee stability and a prescribed desired closed loop frequency response, meeting

the design specifications in the frequency domain.

8.1 Block Diagrams

Let us begin by considering a general block diagram as shown in Fig. 8.1.
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+

-
+

+
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Figure 8.1: Block diagram of an unknown multivariable system

Writing the system equations in the matrix form gives



1 0 0 0 0 0 0 0 1 0

G1 −1 0 0 0 0 0 0 0 0

0 −1 1 0 0 0 0 1 0 0

0 0 G2 −1 0 0 0 0 0 0

G3 0 0 0 0 − 1 0 0 0 0

0 0 0 C1 − 1 0 0 0 0 0

0 0 0 0 1 1 1 0 0 −1

0 G4 0 0 0 0 − 1 0 0 0

0 0 0 0 0 0 0 0 − 1 C2

0 0 0 0 0 0 0 − 1 0 C3


︸ ︷︷ ︸

A(p)



u1

u2

u3

u4

u5

u6

u7

u8

u9

y


︸ ︷︷ ︸

x

=



r

0

0

0

0

0

0

0

0

0


︸ ︷︷ ︸
b(q)

,

(8.1)

where A(p) is called the system characteristic matrix, x is the vector of unknown

signals and q = q1 = r is the input to the system. It can be easily observed that in

(8.1), the characteristic matrix A(p) is of rank 1 with respect to each of the elements,

Gi, i = 1, 2, 3, 4 and Cj, j = 1, 2, 3 of the block diagram. Therefore, considering any
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of these elements as the design parameter, the transfer function between any two

points of the control system shown in Fig. 8.1 can be expressed as a linear rational

function of the design parameter. For instance, suppose that the design parameter is

C1, which appears in A(p) with rank 1 dependency. Then, the closed loop transfer

function between r and y, denoted by H(s), can be represented as

H(s) =
α0(s) + α1(s)C1(s)

β0(s) + C1(s)
, (8.2)

where α0(s), α1(s) and β0(s) are unknown rational functions and are to be deter-

mined by performing experiments, as explained in the following section.

8.2 SISO Control Systems

8.2.1 Functional Dependency on a Single Controller

Consider the unknown Single-Input Single-Output (SISO) control system shown

in Fig. 8.2 and assume that the controller to be designed is denoted by C(s). Let us

write the governing equations as

A(p)x = b(q). (8.3)

Recalling the rank dependency observation presented in the previous section, the

closed loop transfer function can be expressed as

H(s) =
α0(s) + α1(s)C(s)

β0(s) + C(s)
, (8.4)

where α0(s), α1(s) and β0(s) are unknown and H(s) is the transfer function connect-

157



Unknown Linear 

System

Controller

C(s)

ue
yc

ym
uc

Figure 8.2: Unknown linear system with controller

ing ue to yc. Let us rewrite (8.4) in the frequency domain as

H(jω) =
α0(jω) + α1(jω)C(jω)

β0(jω) + C(jω)
, (8.5)

where the unknown complex coefficients can be determined by embedding 3 stabi-

lizing controllers, C1, C2 and C3, into the closed loop system and measuring the cor-

responding closed loop frequency responses, H1(jω), H2(jω) and H3(jω), at a finite

set of frequencies ωk, k = 1, 2, . . . , N . The following system of linear measurement

equations can be formed at each frequency ωk, k = 1, 2, . . . , N :


1 C1(jωk) −H1(jωk)

1 C2(jωk) −H2(jωk)

1 C3(jωk) −H3(jωk)


︸ ︷︷ ︸

M


α0(jωk)

α1(jωk)

β0(jωk)


︸ ︷︷ ︸

u

=


H1(jωk)C1(jωk)

H2(jωk)C2(jωk)

H3(jωk)C3(jωk)


︸ ︷︷ ︸

m

, (8.6)

which can be solved for the unknown complex quantities α0(jωk), α1(jωk) and β0(jωk).
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8.2.2 Determining a Desired Response

Suppose that in a control design problem, the design specifications are given

in the frequency domain. For example, the specifications may include a desired

gain margin, phase margin and bandwidth. Based on these specifications, one may

consider a desired closed loop frequency response, denoted by H∗(jω). Equation

(8.5) can then be solved for the controller C∗(jω) as

C∗(jω) =
H∗(jω)β0(jω)− α0(jω)

α1(jω)−H∗(jω)
, (8.7)

which guarantees that the desired closed loop frequency response, H∗(jω), is at-

tained. Next subsection summarizes the design steps to find frequency response

C∗(jω) and finally solve a controller design problem.

8.2.3 Steps to Controller Design

In this subsection, we summarize the design steps toward solving a general control

design problem directly from frequency domain data and based on the approach

provided in this chapter. Suppose that the frequency response data of plant P ,

denoted by P (jω), is available, and the design objective is to find a controller which

guarantees the stability and a set of frequency domain specifications for the closed

loop system, such as gain margin, phase margin and bandwidth. One may take the

following steps to design such controller.

1. Connect 3 stabilizing controllers, C1, C2 and C3, to the control system and

measure the corresponding closed loop frequency responses, H1(jω), H2(jω)

and H3(jω).
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2. Solve (8.6), at a finite set of frequencies, for the unknown complex quantities,

α0(jω), α1(jω) and β0(jω).

3. Define a desired closed loop frequency response, H∗(jω), based on the desired

frequency domain design specifications.

4. Calculate the corresponding frequency response C∗(jω) using (8.7).

5. Realize C∗(jω) using system identification methods. An alternative approach

is to consider a fixed structure controller, such as a PID controller, and solve

a least-square minimization problem to determine the controller gains in the

stabilizing set. Denote the realized controller by Cr(s).

6. Check Cr(s) for stability. If P (jω) and Cr(jω) satisfy certain conditions at

specific frequencies, then the closed loop stability is guaranteed (see [33]).

7. If Cr(s) is not a stabilizing controller go to step 3, define a new H∗(jω), and

repeat steps 4 through 6 until the realized controller is a stabilizing one.

8.3 Illustrative Example

Example 8.1. Problem. Suppose that the frequency response data of an unknown

linear plant is depicted in Fig. 8.3, and the controller to be designed has a PID

structure,

C(s) =
kds

2 + kps+ ki
s

. (8.8)

Also, suppose that the required closed loop frequency domain specifications are:
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Figure 8.3: Frequency response of an unknown linear plant

1. Bandwidth ≈ 10 rad/sec,

2. PM > 100 deg.

The complete set of stabilizing PID controllers for the plant with the frequency

response as shown in Fig. 8.3 can be constructed as shown in Fig. 8.4 (see [7]).

Approach. The design objective is to find the “best” PID controller inside the sta-

bilizing set (Fig. 8.4) which guarantees the specifications. One can follow the steps

given in the previous section.
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Figure 8.4: The complete set of stabilizing PID controllers for this example

1. Select 3 arbitrary controllers from the stabilizing set (Fig. 8.4), for example,

C1(s) =
s2 + 2s+ 0.5

s
,

C2(s) =
2s2 + 2s+ 1

s
,

C3(s) =
3s2 + 2s+ 2

s
, (8.9)

and place them in the closed loop system. For each case, measure the closed

loop frequency response, H(jω), as shown in Fig. 8.5 (solid lines).

2. Solve (8.6) for α0(jω), α1(jω) and β(jω), at a finite set of frequencies ωk,

k = 1, 2, . . . , N .

3. Based on the given specifications, we defined a desired closed loop frequency
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Figure 8.5: Frequency response of the closed loop system H1(jω), H2(jω) and H3(jω)
(solid lines) after embedding the controllers in (8.9) and the desired response H∗(jω)
(dashed line)

response, H∗(jω), as plotted with the dashed line in Fig. 8.5.

4. Calculate C∗(jω) using (8.7), which is depicted in Fig. 8.6.

5. The frequency response C∗(jω) is realized by a PID controller transfer function

as

Cr(s) =
5s2 + 39.8s+ 13.3

s
. (8.10)

Fig. 8.7 shows the frequency response of C∗(jω) (solid line) and Cr(s) (dashed

line).

6. Referring to the complete stabilizing set (Fig. 8.4), it can be easily verified
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Figure 8.6: Frequency response C∗(jω)

that Cr(s) is a stabilizing controller; hence, it is a solution to our control

design problem.

The PID controller obtained in (8.10) is connected to the system and the closed

loop frequency response is measured as shown (with solid line) in Fig. 8.8 (the

dashed line represents H∗(jω)). The closed loop system obtained by connecting

Cr(s) in (8.10) has the following bandwidth and phase margin (see Fig. 8.8):

1. Bandwidth = 10.4 rad/sec,

2. PM = 104 deg.

Therefore, the controller Cr(s) in (8.10), designed through this new measurement

based approach, guarantees the stability and the required design specifications of the

closed loop system.
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Figure 8.7: Realization of C∗(jω) (solid line) by Cr(s) (dashed line)

8.4 Concluding Remarks

We have shown here that a few strategic measurements can solve the controller

design problem for general unknown linear systems even without the knowledge of the

mathematical model of the system. The resulting controllers guarantee the stability

and performance of the closed loop system. These results can apply broadly to any

system described by linear equations.
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Figure 8.8: The desired frequency response H∗(jω) (dashed line) and the closed loop
response after connecting Cr(s) (solid line)
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9. AN EXTREMAL RESULT FOR UNKNOWN INTERVAL LINEAR

SYSTEMS

This chapter explores some important characteristics of a system of linear equa-

tions containing parameters. As studied in the earlier chapters, such a system of

equations arises in many branches of engineering. A parametrized solution of a set

of linear equations can be obtained by applying Cramer’s rule. In many practi-

cally important cases the parameters appear with rank one dependency, resulting

in parametrized solutions to be of a rational multilinear form, which will be mono-

tonic in each parameter. This monotonic characteristic has practical importance in

the analysis and design of linear systems with parameters having interval uncertain-

ties. In particular, extremal values of system variables occur at the vertices of the

parameter boxes [47].

This chapter is organized as follows. Section 9.1 presents our extremal result

for unknown linear systems with parameters appearing with rank one dependency.

Some illustrative examples of current, power level and flow rate control problems are

given in Section 9.2. Finally, we summarize with our concluding remarks in Section

9.3.

9.1 Main Results

Suppose that a physical system can be described by the following set of linear

equations

A(p)x = b(q), (9.1)
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where A(p) is referred to as the system characteristic matrix, p and q are vectors of

system parameters and inputs, respectively, and x is the vector of unknown system

variables. Assuming that |A(p)| 6= 0, there exists a unique solution x and, by

Cramer’s rule, the ith element xi of x is given by

xi(p,q) =
|B(p,q)|
|A(p)|

, i = 1, 2, . . . , n. (9.2)

We make the following crucial assumption regarding the set of equations (9.1).

Assumption 9.1. There exists no p such that A(p) is a singular matrix.

This assumption is usually true for physical systems, because if there exists a

vector p0 so that A(p0) becomes a singular matrix, then the corresponding vector

of system variables, x in (9.1), will not have a unique value which is not the case for

physical systems.

Suppose that the parameter vector p appears affinely in A(p). Thus, we can

write

A(p) = A0 + p1A1 + p2A2 + · · ·+ plAl. (9.3)

Recalling Lemma 4.2, xi(p,q) in (9.2) can be expressed as

xi(p,q) =
|B(p,q)|
|A(p)|

:=
β(p,q)

α(p)
, i = 1, 2, . . . , n, (9.4)

where β(p,q) and α(p) are multivariate polynomials in (p,q) and p, respectively.
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We define the following sets:

P := {p,q} = {p1, p2, . . . , pl, q1, q2, . . . , qm}, (9.5)

X := {x1, x2, . . . , xn}. (9.6)

Let us consider the ith element of X , xi, whose value over a box in the parameter

space D, where D ⊂ P , is to be evaluated. In the following subsections we summarize

our results for 3 cases:

1. D = {p1},

2. D = {p1, p2},

3. D = P .

9.1.1 Case 1: D = {p1}

In this case there is only one parameter, p1. The matrix A(p) in (9.1) can be

decomposed as

A(p) = A0 + p1A1. (9.7)

Recalling Lemma 4.1, we state the following theorem.

Theorem 9.1. Supposing that rank[A1] = 1 in (9.7), the function xi(p1) in (9.4)

can be determined by setting p1 to 3 different values and measuring the corresponding

xi values.

Proof. Since rank[A1] = 1, and based on Lemma 4.1, then xi(p1) can be expressed
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as

xi(p1) =
β̃0 + β̃1p1

α̃0 + α̃1p1

. (9.8)

We note that for α̃0 = α̃1 = 0, xi →∞,∀p1, which is not physically possible. Hence,

we rule out this case. If α̃1 6= 0, then the numerator and denominator of (9.8) can

be divided by α̃1:

xi(p1) =
β0 + β1p1

α0 + p1

. (9.9)

The function xi(p1) in (9.9) can be determined by setting p1 to 3 different values,

measuring the corresponding xi values and solving the following set of measurement

equations:


1 p1

1 −x1
i

1 p2
1 −x2

i

1 p3
1 −x3

i


︸ ︷︷ ︸

M


β0

β1

α0


︸ ︷︷ ︸

u

=


x1
i p

1
1

x2
i p

2
1

x3
i p

3
1


︸ ︷︷ ︸

m

. (9.10)

The set of equations (9.10) has a unique solution for β0, β1 and α0 if and only if

|M| 6= 0. If |M| = 0, then as the first two columns of M are linearly independent,

xi will be

xi(p1) = β0 + β1p1, (9.11)

where β0 and β1 can be obtained from any 2 experiments conducted earlier. Equa-

tion (9.11) corresponds to the case where α̃1 = 0 in (9.8) and the numerator and

denominator of (9.8) are divided by α̃0.
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The linear fractional form in (9.9) has some important practical aspects which is

explained below.

Remark 9.1. Taking the derivative of (9.9) with respect to p1 yields

dxi
dp1

=
β1α0 − β0

(α0 + p1)2
. (9.12)

Therefore, we can state the followings:

1. The function in (9.9) is monotonic in p1. For example, if β1α0 − β0 > 0 (see

Fig. 9.1), then xi will monotonically increase as p1 increases. The upper and

lower bounds of xi for this case are:

β0

α0

≤ xi ≤ β1. (9.13)

The range in (9.13) is called the achievable range.

p1

xi

β0/α0

β1

Figure 9.1: xi(p1) for the case where β1α0 − β0 > 0

171



2. This monotonic characteristic is beneficial in solving design problems. For

instance, suppose that the system variable xi is to lie within the range x−i ≤

xi ≤ x+
i by adjusting p1. If [x−i , x

+
i ] is inside the achievable range, then there

exists a unique interval of values for p1, p−1 ≤ p1 ≤ p+
1 , such that the constraint

on xi is satisfied.

The parameter p1 can be viewed as an uncertain parameter varying in an interval

I = [p−1 , p
+
1 ]. We now state our first extremal result.

Theorem 9.2. Assuming that rank[A1] = 1 in (9.7), and p1 is varying in an interval,

I = [p−1 , p
+
1 ], then the extremal values of xi can be obtained from:

min
p1∈I

xi(p1) = min{xi(p−1 ), xi(p
+
1 )},

max
p1∈I

xi(p1) = max{xi(p−1 ), xi(p
+
1 )}.

Proof. The proof follows from Theorem 9.1 and Remark 9.1.

9.1.2 Case 2: D = {p1, p2}

Here there are two parameters, p1 and p2, and therefore the characteristic matrix

A(p) can written as

A(p) = A0 + p1A1 + p2A2. (9.14)

We state the following theorem.

Theorem 9.3. Supposing that rank[A1] = rank[A2] = 1 in (9.14), the function

xi(p1, p2) in (9.4) can be determined by assigning 7 different sets of values to (p1, p2)

and measuring the corresponding xi values.
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Proof. According to Lemma 4.2, since rank[A1] = rank[A2] = 1, by following the

same strategy described in the proof on Theorem 9.1, xi(p1, p2) will be

xi(p1, p2) =
β0 + β1p1 + β2p2 + β3p1p2

α0 + α1p1 + α2p2 + p1p2

. (9.15)

A corresponding function for xi(p1, p2) can be obtained if |M| = 0 in this case (see

proof of Theorem 9.1).

Remark 9.2. Taking the derivative of xi in (9.15) with respect to p1 and fixing

p2 = p∗2 yields

[
dxi
dp1

]
p2=p∗2

=
a+ bp∗2 + cp∗22

(α0 + α2p∗2 + (α1 + p∗2)p1)2
, (9.16)

where

a = α0β1 − α1β0, (9.17)

b = α0β3 + α2β1 − α1β2 − β0, (9.18)

c = α2β3 − β2, (9.19)

which is of the form in (9.12) and is monotonic in p1. A similar relationship for

[(dxi/dp2)]p1=p∗1
can be derived. Therefore, the function xi(p1, p2) in (9.15) is mono-

tonic in each parameter p1 and p2.

Theorem 9.2 can be generalized for this case as below.

Theorem 9.4. If rank[A1] = rank[A2] = 1 in (9.14), and p1 and p2 are varying in

a rectangle, R (see Fig. 9.2),

R = {(p1, p2) | p−1 ≤ p1 ≤ p+
1 , p

−
2 ≤ p2 ≤ p+

2 }, (9.20)
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with vertices:

A = (p−1 , p
−
2 ), B = (p−1 , p

+
2 ),

C = (p+
1 , p

+
2 ), D = (p+

1 , p
−
2 ),

then the extremal values of xi happen at the vertices of R:

min
p1,p2∈R

xi(p1, p2) = min{xi(A), xi(B), xi(C), xi(D)},

max
p1,p2∈R

xi(p1, p2) = max{xi(A), xi(B), xi(C), xi(D)}.

p1
-

p1
+

p2
-

p2
+

p1

p2

A

B C

D

Figure 9.2: Rectangle of (p1, p2)

Proof. The proof follows immediately from Remark 9.2.
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9.1.3 Case 3: D = P

The results developed in the previous subsections can be generalized to the case

where all system parameters (p,q) are considered. In this case A(p) can be decom-

posed as the form given in (9.3),

A(p) = A0 + p1A1 + p2A2 + · · ·+ plAl, (9.21)

and B(p,q) will be

B(p,q) = B0 + p1B1 + · · ·+ plBl

+ q1Bl+1 + · · ·+ qmBl+m. (9.22)

We now state the following general theorems. The proofs follow from the results

provided in the previous subsections and are thus omitted here.

Theorem 9.5. If rank[Ai] = 1, i = 1, 2, . . . , l, in (9.21), the function xi(p,q)

in (9.4) can be determined by assigning 2l(2m + 1) − 1 linearly independent sets of

values to (p,q), measuring the corresponding values of xi and solving a system of

measurement equations.

Theorem 9.6. If rank[Ai] = 1, i = 1, 2, . . . , l, in (9.21), and (p,q) are varying in

a box, B,

B = {(p,q) | p−i ≤ pi ≤ p+
i , i = 1, 2, . . . , l,

q−j ≤ qj ≤ q+
j , j = 1, 2, . . . ,m}, (9.23)

with v := 2l+m vertices, labeled V1, V2, . . . , Vv, then the extremal values of xi occur at
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the vertices of B:

min
p,q∈B

xi(p,q) = min{xi(V1), xi(V2), . . . , xi(Vv)},

max
p,q∈B

xi(p,q) = max{xi(V1), xi(V2), . . . , xi(Vv)}.

Before ending this section, we mention that the evaluation of extremal values of

xi can be accomplished by either of the following ways:

1. Directly assign values corresponding to the vertices of B, to the vector of pa-

rameters and measure xi, or

2. First, find the functional dependency for xi, as states in Theorem 9.5 by con-

ducting a small number of measurements, and then evaluate that function at

the vertices of B.

9.2 Illustrative Examples

In this section three illustrative examples are presented to explain the results

developed in Section 9.1.

Example 9.1. Consider the linear DC circuit shown in Fig. 9.3. This system can

be described mathematically by the following set of linear equations

A(p)x = b(q), (9.24)

where p = [R1, R2, . . . , R13, K1, K2]T , q = [V, J1, J2]T , and x is the vector of unknown

currents. In this example Ri, i = 1, 2, . . . , 13, i 6= 5 are resistors, R5 is a gyrator

resistance, V , J1, J2 are independent sources and V1, V2 are dependent sources with
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amplifier gains K1 and K2, respectively. We assume that the system is unknown,

implying that p and q are unknown.

R4

J2

R2

R5

R3R1

V V1

+

-

+ +

--J1

R6

R7

R8 R9 R11R10

R12 R13

+ -

V2

I2

Figure 9.3: An unknown DC circuit

Suppose that the objective is to find the extremal values of I2, if R1 is varying

in the interval I = [R−1 , R
+
1 ] = [10, 30] (Ω). Since the circuit is unknown, A(p) and

b(q) in (9.24) are unknown; but, in fact, one can write

A(R1) = A0 +R1A1, (9.25)

with rank[A1] = 1. This infers that R1 appears in A(p) with rank one dependency,

and accordingly the results of Section 9.1.1 can be applied. Based on Theorem 9.2,

the extremal values of I2 occur at R−1 = 10 (Ω) and R+
1 = 30 (Ω). Assigning these
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values to R1 and measuring I2 gives:

I2,min = 4.7 (A),

I2,max = 6.3 (A). (9.26)

An alternative approach to evaluate the extremal values of I2 is to firstly find the

function I2(R1). Based on Theorem 9.1, one can find the function I2(R1) by assigning

3 different values to R1, measuring the corresponding current I2, and solving the

measurement equations (9.10) for β0, β1 and α0. Table 9.1 shows the numerical

values of the measurements for this example. Solving (9.10) for β0, β1 and α0 and

substituting these constants into (9.9) yields

I2(R1) =
21.9 + 8R1

11.7 +R1

, (9.27)

which is plotted in Fig. 9.4. It can be verified from Fig. 9.4 that the extremal values

of I2 are as the ones obtained in (9.26).

Table 9.1: Measurements for example 9.1

Exp. No. R1 (Ω) I2 (A)
1 7 4.2
2 18 5.6
3 32 6.4

Example 9.2. In this example we consider the same circuit as in the Example 9.1.
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Figure 9.4: I2(R1) for example 9.1

Suppose that the uncertain parameters R1 and R6 are varying in the rectangle,

R = {(R1, R6) | 5 ≤ R1 ≤ 15, 2 ≤ R6 ≤ 5 (Ω)}, (9.28)

with vertices:

A = (5, 2), B = (5, 5),

C = (15, 5), D = (15, 2),

and one is interested to evaluate the extremal values of the power level P3, in the

resistor R3 = 10 (Ω), over the rectangle R in (9.28). The power level P3 can be

expressed in the terms of the uncertain parameters as

P3(R1, R6) = R3 I
2
3 (R1, R6), (9.29)
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but since, according to Remark 9.2, I3(R1, R6) is monotonic in R1 and R6, Theorem

9.4 is valid to evaluate the extremal values of P3 at the vertices. Setting (R1, R6) to

the values corresponding to vertices A,B,C,D, one gets:

P3,min = 49.4 (W ) at vertex B,

P3,max = 150 (W ) at vertex D. (9.30)

Also, one can plot the function P3(R1, R6) (see Fig. 9.5) following Theorem 9.3

and by conducting 7 experiments. The rectangle R, defined in (9.28), is also shown

in Fig. 9.5. It can be seen that the extremal values of P3 are the same as those

obtained in (9.30).

Figure 9.5: P3(R1, R6) for example 9.2
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Example 9.3. Consider the unknown hydraulic network shown in Fig. 9.6. Assuming

Pump 1

Valve 1

Valve 3

Valve 2

Valve 4

Valve 5

Q8

Pump 2Pipe 2

Pipe 9

Figure 9.6: An unknown hydraulic network

that the flows are in the laminar state, the system can be described, by applying

Kirchhoff’s laws, as a set of linear equations

A(p)x = b(q), (9.31)

where A(p) is the system characteristic matrix, p denotes the vector of pipe re-

sistances, q is the vector of inputs such as pump pressures, and x is the vector of

unknown flow rates. A pipe resistance is related to the properties of the fluid flowing
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through it and its geometric dimensions by

R =
8µL

πr4
, (9.32)

where µ is the dynamic viscosity of the fluid, and L and r represent the length and

radius of the pipe. It can be observed that each pipe resistance appears with a rank

one dependency in the characteristic matrix A(p) of the system. Suppose that the

radii of pipes numbered 2 and 9 are varying in intervals described by the following

rectangle,

R = {(r2, r9) | 0.08 ≤ r2 ≤ 0.14, 0.07 ≤ r9 ≤ 0.10 (m)}, (9.33)

where the vertices are labelled as

A = (0.08, 0.07), B = (0.08, 0.10),

C = (0.14, 0.10), D = (0.14, 0.07).

It is of interest to evaluate the extremal values of the flow rate Q8 over the

rectangle R in (9.33). Similar to the previous example, since the assumptions in

Theorem 9.4 hold, the extremal values of Q8 occur at the vertices of the rectangle

R:

Q8,min = 0.045 (m3/s) at vertex A,

Q8,max = 0.053 (m3/s) at vertex C. (9.34)

The function Q8(r2, r9) can be found by taking 7 measurements as explained in

Theorem 9.3, and is depicted in Fig. 9.7. The rectangle R, defined in (9.33), is also
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shown.

Figure 9.7: Q8(r2, r9) for example 9.3

9.3 Concluding Remarks

In this chapter we described some important characteristics of parametrized so-

lutions of a system of linear equations containing interval parameters. If the interval

parameters (uncertain parameters) appear in the characteristic matrix of the system

with rank one dependency, which is usually the case in practical applications, then

the parametrized solutions, which are system variables, will be monotonic in these

parameters. This fact is used to show that the extremal values of the parametrized
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solutions over a box in the parameter space occur at the vertices of the box. This

result is explained through illustrative examples.
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10. CONCLUSIONS

This dissertation presented several new methods in control theory and its ap-

plications. Chapter 2 employed computational algebraic geometry techniques, such

as Groebner bases and elimination theory in polynomial rings, to construct the set

of stabilizing controllers of fixed structure for Linear Time Invariant (LTI) control

systems. Chapter 3 proposed a new method to compute the set of all stabilizing PID

controllers for the class of continuous-time and discrete-time LTI control systems

guaranteeing transient response specifications. A desired transient response can be

defined as an envelope and the calculation of the desirable set of PID controllers, for

which the transient response of the system lies within that envelope, can be carried

out by solving a sequence of Semi-Definite Programs (SDPs) developed based on

Widder’s theorem, its discrete-time counterpart and Markov-Lukacs representation

of non-negative polynomials. Chapter 4 explored some important characteristics of

parametrized solutions of sets of linear equations containing parameters. A general

rational polynomial form, in terms of the system parameters, can be derived for the

parametrized solutions. This mathematical result is used to develop a new mea-

surement based approach to linear systems. Chapters 5 and 6 showed how this new

measurement based approach can be applied to the analysis and design of linear

DC and AC circuits, respectively. An application of this approach to the domain

of linear mechanical systems is studied in Chapter 7. Chapter 8 presented a new

method to synthesize stabilizing controllers for LTI control systems satisfying a set

of prescribed desired frequency domain specifications. This method makes use of

frequency response measurements directly to extract the design controller and does

not require a mathematical model of the system a priori. Finally, Chapter 9 pro-
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vided an extremal result on linear interval systems. If in a set of linear equations

with interval parameters, the parameters appear with rank one dependency in the

characteristic matrix, then the extremal values of the solution set over a box in the

parameter space occur at the vertices of that box.
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APPENDIX A

PROOFS

A.1 Current Control using Two Resistors

Recall the proof of Theorem 5.2. We considered two cases: 1) i 6= j, k and 2)

i = j or i = k.

Case 1: i 6= j, k

Suppose that |M| = 0 in (5.22),

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Rj1 Rk1 Rj1Rk1 − Ii1 − Ii1Rj1 − Ii1Rk1

1 Rj2 Rk2 Rj2Rk2 −Ii2 −Ii2Rj2 −Ii2Rk2

1 Rj3 Rk3 Rj3Rk3 −Ii3 −Ii3Rj3 −Ii3Rk3

1 Rj4 Rk4 Rj4Rk4 −Ii4 −Ii4Rj4 −Ii4Rk4

1 Rj5 Rk5 Rj5Rk5 −Ii5 −Ii5Rj5 −Ii5Rk5

1 Rj6 Rk6 Rj6Rk6 −Ii6 −Ii6Rj6 −Ii6Rk6

1 Rj7 Rk7 Rj7Rk7 −Ii7 −Ii7Rj7 −Ii7Rk7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (A.1)

then it can be concluded that β̃3 = 0 in (5.20). In this case, β̃2 = 0 in (5.20), if

|M′| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Rj1 Rk1 Rj1Rk1 − Ii1 − Ii1Rj1

1 Rj2 Rk2 Rj2Rk2 −Ii2 −Ii2Rj2

1 Rj3 Rk3 Rj3Rk3 −Ii3 −Ii3Rj3

1 Rj4 Rk4 Rj4Rk4 −Ii4 −Ii4Rj4

1 Rj5 Rk5 Rj5Rk5 −Ii5 −Ii5Rj5

1 Rj6 Rk6 Rj6Rk6 −Ii6 −Ii6Rj6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (A.2)
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and β̃1 = 0 in (5.20), if

|M′′| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Rj1 Rk1 Rj1Rk1 − Ii1 − Ii1Rk1

1 Rj2 Rk2 Rj2Rk2 −Ii2 −Ii2Rk2

1 Rj3 Rk3 Rj3Rk3 −Ii3 −Ii3Rk3

1 Rj4 Rk4 Rj4Rk4 −Ii4 −Ii4Rk4

1 Rj5 Rk5 Rj5Rk5 −Ii5 −Ii5Rk5

1 Rj6 Rk6 Rj6Rk6 −Ii6 −Ii6Rk6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (A.3)

Therefore, the results for this case can be summarized as follows:

• if |M| = 0, |M′|, |M′′| 6= 0:

Ii(Rj, Rk) =
α0 + α1Rj + α2Rk + α3RjRk

β0 + β1Rj +Rk

. (A.4)

• if |M| = |M′| = 0, |M′′| 6= 0:

Ii(Rj, Rk) =
α0 + α1Rj + α2Rk + α3RjRk

β0 +Rj

. (A.5)

• if |M| = |M′′| = 0, |M′| 6= 0:

Ii(Rj, Rk) =
α0 + α1Rj + α2Rk + α3RjRk

β0 +Rk

. (A.6)

• if |M| = |M′| = |M′′| = 0:
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Ii(Rj, Rk) = α0 + α1Rj + α2Rk + α3RjRk. (A.7)

For each case above the constants can be determined using measurements.

Case 2: i = j or i = k

If |M| = 0 in (5.25),

|M| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Rk1 − Ii1 − Ii1Rj1 − Ii1Rk1

1 Rk2 −Ii2 −Ii2Rj2 −Ii2Rk2

1 Rk3 −Ii3 −Ii3Rj3 −Ii3Rk3

1 Rk4 −Ii4 −Ii4Rj4 −Ii4Rk4

1 Rk5 −Ii5 −Ii5Rj5 −Ii5Rk5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (A.8)

then β̃3 = 0 in (5.23). The following cases are possible: β̃2 = 0 in (5.23), which

happens if

|M′| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Rk1 − Ii1 − Ii1Rj1

1 Rk2 −Ii2 −Ii2Rj2

1 Rk3 −Ii3 −Ii3Rj3

1 Rk4 −Ii4 −Ii4Rj4

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (A.9)

and β̃1 = 0 in (5.23), if

|M′′| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Rk1 − Ii1 − Ii1Rk1

1 Rk2 −Ii2 −Ii2Rk2

1 Rk3 −Ii3 −Ii3Rk3

1 Rk4 −Ii4 −Ii4Rk4

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (A.10)
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For this case we can state the results as follows:

• if |M| = 0, |M′|, |M′′| 6= 0:

Ii(Rj, Rk) =
α0 + α1Rk

β0 + β1Rj +Rk

. (A.11)

• if |M| = |M′| = 0, |M′′| 6= 0:

Ii(Rj, Rk) =
α0 + α1Rk

β0 +Rj

. (A.12)

• if |M| = |M′′| = 0, |M′| 6= 0:

Ii(Rj, Rk) =
α0 + α1Rk

β0 +Rk

. (A.13)

• if |M| = |M′| = |M′′| = 0:

Ii(Rj, Rk) = α0 + α1Rk. (A.14)

A.2 Current Control using Gyrator Resistance

Recalling the proof of Theorem 5.4, we considered two cases: 1) The i-th branch

is not connected to either port of the gyrator, and 2) The i-th branch is connected

to one port of the gyrator.
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Case 1: The i-th branch is not connected to either port of the gyrator

Here, we consider the case where |M| = 0 in (5.32),

|M| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Rg1 R2
g1 − Ii1 − Ii1Rg1

1 Rg2 R2
g2 −Ii2 −Ii2Rg2

1 Rg3 R2
g3 −Ii3 −Ii3Rg3

1 Rg4 R2
g4 −Ii4 −Ii4Rg4

1 Rg5 R2
g5 −Ii5 −Ii5Rg5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (A.15)

This implies that β̃2 = 0 in (5.30). Also, β̃1 = 0 in (5.30), if

|M′| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Rg1 R2
g1 − Ii1

1 Rg2 R2
g2 −Ii2

1 Rg3 R2
g3 −Ii3

1 Rg4 R2
g4 −Ii4

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (A.16)

The results for this case can be summarized as:

• if |M| = 0, |M′| 6= 0:

Ii(Rg) =
α0 + α1Rg + α2R

2
g

β0 +Rg

. (A.17)

• if |M| = |M′| = 0:

Ii(Rg) = α0 + α1Rg + α2R
2
g. (A.18)
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Case 2: The i-th branch is connected to one port of the gyrator

Here, suppose that |M| = 0 in (5.35),

|M| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Rg1 − Ii1 − Ii1Rg1

1 Rg2 −Ii2 −Ii2Rg2

1 Rg3 −Ii3 −Ii3Rg3

1 Rg4 −Ii4 −Ii4Rg4

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (A.19)

Therefore β̃2 = 0 in (5.33). In this case, β̃1 = 0 in (5.33), if

|M′| =

∣∣∣∣∣∣∣∣∣∣
1 Rg1 − Ii1

1 Rg2 −Ii2

1 Rg3 −Ii3

∣∣∣∣∣∣∣∣∣∣
= 0. (A.20)

We summarize the results for this case as follows:

• if |M| = 0, |M′| 6= 0:

Ii(Rg) =
α0 + α1Rg

β0 +Rg

. (A.21)

• if |M| = |M′| = 0:

Ii(Rg) = α0 + α1Rg. (A.22)
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