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We report a joint experimental and theoretical investigation of superconductivity in Ga-substituted type-I
silicon clathrates. We prepared samples of the general formula BagSise_,Ga,, with different values of x. We
show that BagSisyGag is a bulk superconductor, with an onset at 7= 3.3 K. For x=10 and higher, no super-
conductivity was observed down to 7=1.8 K. This represents a strong suppression of superconductivity with
increasing Ga content, compared to BagSiyq with T-=8 K. Suppression of superconductivity can be attributed
primarily to a decrease in the density of states at the Fermi level, caused by a reduced integrity of the
sp3-hybridized networks as well as the lowering of carrier concentration. These results are corroborated by
first-principles calculations, which show that Ga substitution results in a large decrease of the electronic density
of states at the Fermi level, which explains the decreased superconducting critical temperature within the BCS
framework. To further characterize the superconducting state, we carried out magnetic measurements showing
BagSiygGag to be a type-1I superconductor. The critical magnetic fields were measured to be H-; =35 Oe and
Hc,=8.5 kOe. We deduce the London penetration depth A = 3700 A and the coherence length &.~200 A. Our
estimate of the electron-phonon coupling reveals that BagSisyGag is a moderate phonon-mediated BCS

superconductor.
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I. INTRODUCTION

Group-1V clathrate materials are extended Si, Ge, and Sn
cagelike solids with sp?-hybridized networks, which have
received increasing attention over the past few years. These
materials have a semiconducting framework into which
metal atoms can be substituted, providing a number of pos-
sibilities for electronic materials.!? Furthermore, within the
sp3-hybridized networks, K, Na, Rb, Cs, Sr, Ba, I, and Eu
atoms can be encapsulated in the cages.>* Clathrates exhibit
metallic, semiconducting, or insulating behavior depending
upon the occupation fraction, and on the substitution of at-
oms in the cage framework to replace the group-IV atoms.
The study of clathrates opens a field of new materials with
the metals arranged in such a nanoscale array, and with a
wide variety of properties ranging from insulators to metals.’
New thermoelectric applications have driven a great deal of
this increased current interest.>’ The materials can be ad-
justed from semiconducting to metallic, while at the same
time the cage structures can be filled with atoms that strongly
scatter phonons. These factors greatly influence the thermo-
electric efficiency. Recently, NMR and Mdssbauer measure-
ments have directly demonstrated atomic hopping within the
cages of SrgGeyGa,q (Ref. 8) and EugGe;,Gayq,’ respec-
tively. The variety of electronic behavior attained by chemi-
cal substitution and doping suggests that significant new fea-
tures may be produced in this system. In a search for better
phonon scattering efficiency, Ge clathrates filled with the
rare earth Eu have been synthesized, indicating that clath-
rates of this type containing local magnetic moments are
possible.!® Further studies have identified ferromagnetic be-
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havior in magnetically substituted BagMn,Ge,, (type-I clath-
rate) (Ref. 11) and BagFe;Ge,, (chiral-type clathrate).'> The
potential of such magnetic clathrates is quite significant,
since the clathrate structure can be adjusted for the tailoring
of magnetic properties by substitution and alloying. There-
fore clathrates also have potential application in magnetic
sensors and new magnetic semiconductors.'>!

Inspired by the discovery of superconductivity in alkali-
metal-doped Cg, fullerenes, efforts have been made to ex-
plore the superconductivity of group-IV clathrates with par-
ticular attention to the sp3-hybridized networks. In contrast
to carbon, silicon and germanium do not form sp?-like net-
works. Therefore, superconductivity of Si clathrate supercon-
ductors with the sp® network should be unique. In an initial
study, Caplin and co-workers investigated the conductivity
and magnetic susceptibility of silicon clathrates containing
Na atoms as guests,” but found no superconductivity in these
materials. However, Ba-encapsulated silicon clathrates were
found to exhibit superconductivity, with 7-~8 K for the
best samples with pure Ba encapsulation.'>!¢ This kind of
superconductor is unusual in that the structure is dominated
by strong covalent bonds between silicon atoms, rather than
the metallic bonding that is more typical of traditional super-
conductors. Isotope effect measurements revealed that super-
conductivity in BagSiye is of the classic BCS kind, arising
from the electron-phonon interaction.!” Study of the band
structure for BagSisg showed a strong hybridization between
the Siyq band and Ba orbitals, resulting in a very high density
of states at the Fermi level, N(Ey) ~40 states/eV per unit
cell.’8-20 Both the strong hybridization of Ba with the con-
duction band and the high N(Ey) are believed to play a key
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role in the superconductivity of these compounds, and fur-
ther studies of Si and Ge clathrates indicate the superconduc-
tivity to be an intrinsic property of the sp* network.2%-?!

We are interested in the effect of Ga on the superconduc-
tivity of BagSiye, as well as the change of electronic structure
in the clathrates. The Bag(Si,Ga),s system exhibits a wide
variety of physical properties; with the Ga content increasing
from x=0, the clathrate behavior changes from supercon-
ducting BagSiss (T~ 8 K) (Ref. 17) to the heavily doped
semiconductor BagSiz,Ga¢.2? Investigation of Ga doping can
also increase our understanding of the electronic structure
and superconducting mechanism in clathrate materials.

In this paper, we report a joint experimental and theoret-
ical study of Ga substitution in BagSiss_,Ga, clathrates. We
show that BagSiyyGag is a bulk type-II superconductor; how-
ever, with increasing Ga content, the superconducting 7 de-
creases rapidly, and with x=10 or more, there is no evidence
of superconductivity for temperatures as low as 1.8 K. We
also used first-principles calculations to build a detailed pic-
ture of the atomic and electronic structure of Ga-substituted
clathrates. By comparing the electronic structures of different
Ga-substituted silicon clathrates, our theoretical results show
that Ga doping gives rise to a lower density of states at the
Fermi level [N(E)], which was explained as one of the rea-
sons for the destructive effect of Ga doping on superconduc-
tivity in Si clathrates. For dilute levels, we show that the
changes induced by substitution of Ga for Si are approxi-
mately rigid band in character, so that it is possible to change
the electron concentration by framework substitution while
leaving the superconducting character of the sp? network in-
tact.

II. EXPERIMENTAL RESULTS

Our synthesis of BagSise_,Ga, is based on the multistep
melting of Ba, Ga, and Si under argon atmosphere and sub-
sequent solid-state reaction.'”> The samples were character-
ized and analyzed by x-ray diffraction and transmission elec-
tron microscopy. The obtained samples were then analyzed
for magnetic properties by a superconducting quantum inter-
ference device (SQUID) magnetometer.

Analysis by powder x-ray diffraction showed characteris-
tic type-I clathrate reflections. Structural refinement of the
powder x-ray diffraction data was carried out using the GSAS
software package.”®?* As a result of the refinement, we find
that for dilute doping, Ga preferentially occupies the 6c¢
framework sites; however, for heavy substitution, Ga tends
to a random distribution of the other sites. This is similar to
the site occupancy identified for BagGa,sGes;,> and for
BagGa,4Siz),2° although the latter work also identified a
somewhat weaker preference for Ga on the 24k site as well.
As shown in the left inset of Fig. 1, the refined lattice pa-
rameters of BagSiye Ga, (x=6, 10, and 16) are 10.4261,
10.4896, and 10.5096 10\, respectively, which exhibit an in-
creasing trend with x due to the larger atomic size of Ga than
that of Si. This is consistent with the results previously
reported.”’

For dilute Ga doping, the sample of BagSi Ga, exhibited
no additional phases when analyzed by x-ray diffraction at
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FIG. 1. (Color online) X-ray refinement for BagSisyGag. Upper
curve: data and fit, with difference plot below. Ticks show peaks
indexed according to the type-I clathrate structure. Right inset: the
type-I clathrate structure, built from a regular arrangement of a
combination of Siyy (7,) and Siy, (Dg,) cages. Left inset: lattice
parameters of BagSiye_,Ga, (x=6, 10, and 16), showing an increas-
ing trend with x. The lattice parameter for Ga-free BagSiyg clathrate
was taken from Ref. 16.

room temperature, as shown in Fig. 1. BagSi,,Gag crystal-
lizes into the type-I clathrate structure [cubic space group
Pm3n (No. 223)] with dimension a=10.4261 A. The experi-
mental pattern is in agreement with the simulated one for the
entire 26 region. R values for the fit are R,,=0.12, R,
=0.09. The measured structural parameters were selected as
the input data for the model simulations. The samples with
x=10 and 16 similarly exhibited single-phase x-ray patterns.

Transmission electron microscopy (TEM) measurements
were carried out in a JEOL 2010 electron microscope at a
voltage of 200 kV, with an Oxford Instruments INCA
energy-dispersive spectroscopy (EDS) system for chemical
compositional analysis. In order to obtain accurate quantifi-
cation, the k factor (ratio to Si, kg;=1) of Ga and Ba were
corrected during the quantification process using the INCA
program.”® TEM observations confirmed that the majority

phase has the clathrate structure, with space group Pm3n.
Figure 2 displays three electron diffraction patterns taken
from the clathrate structure along the [111], [112], and [113]
zone axes. The reflection intensities are consistent with dy-
namic electron diffraction simulations according to the clath-
rate structure.”® Chemical compositional analyses of three
samples with nominal compositions of BagSiy Gag,
BagSizcGa;, and BagSizyGa,q were performed on particles
selected by the electron diffraction to confirm the clathrate
structure. A comparison of EDS results is given in Table I. It
is seen that the quantification results are very consistent with
the sample nominal compositions.

Figure 3 shows the temperature dependence of the ac sus-
ceptibility of the BagSiyyGay sample, measured in zero static
field at a frequency of 125 Hz. The susceptibility shows
hardly any temperature dependence for 300>7>4 K. At
about 3.3 K, the sample starts to show superconducting char-
acteristics; the in-phase susceptibility (x’) suddenly drops
and the out-of-phase susceptibility (y”) peaks. These large
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FIG. 2. (Color online) Upper figure: Electron diffraction pat-
terns from the clathrate structure along the [111] (a), [112] (b), and
[113] (c) axis. Lower figure: Comparison of EDS spectra from
samples BagSisgGag (solid curve), BagSizsGa;, (long-dashed
curve), and BagSi3oGa¢ (short-dashed curve). The intensities are

normalized to the lowest-energy Ba peak to reveal the variation of
the Si-Ga ratio.

changes in the susceptibility are accompanied by a distinct
drop in electrical resistivity of the BagSiygGas sample; four-
probe transport measurements using a Lake Shore Physical
Property Measurement System confirm that BagSi,yGag en-
ters into a superconducting state at 3.3 K. The resistance
sharply drops from its high temperature value of R=7 m{} to
zero resistance, as shown in Fig. 4. A change in the tempera-
ture slope from metallic to semiconducting type at about
50 K is also observed above the superconducting transition
temperature. A measurement at a high field of 70 kOe also
demonstrates the metal-semiconductor slope change, as
shown in the inset to Fig. 4, however with a smaller overall
resistance in high field. No sign of superconductivity was
observed in high field; 70 kOe exceeds the critical field as
discussed below. Within the standard BCS approach to su-
perconductivity, as has been applied for other superconduct-
ing Si clathrates,'” we deduce the value of the superconduct-
ing gap at 0 K from the critical temperature (7-=3.3 K)
using the well-known relation?® 2A;._( x=3.52kgT. In this
way we find that the superconducting gap is about 0.5 meV
for BagSiynGag.

The inset of Fig. 3 presents the dc susceptibility of
BagSi, Gag as a function of temperature, under conditions of
zero-field cooling (ZFC) and field cooling (FC) at 3 Oe. The
ZFC magnetization data were taken on heating after sample
cooling in zero applied field, and the FC magnetization was
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FIG. 3. ac and dc magnetic susceptibility of BagSi,yGag vs tem-
perature. Main plot: temperature dependence of the in-phase (x')
and out-of-phase (y”) ac susceptibility, measured in zero dc field.
Inset: dc susceptibility for conditions of zero-field cooling (ZFC)
and field cooling (FC) in the measurement field of 3 Oe. The onset
superconducting transition is observed at 3.3 K as shown.

measured as a function of decreasing temperature in the ap-
plied field. The enhancement of the diamagnetism below
T-(H) originates from the screening supercurrents (ZFC re-
gime) and the Meissner effect of magnetic flux expulsion
(FC regime). The inset figure demonstrates that there is a
difference between x, in ZFC and FC conditions. As can be
seen from the plot, for both ZFC and FC, Xe exhibits a su-
perconducting drop for T<T,.. The T, (=3.3 K) found for
BagSiyoGag is lower than that of pure BagSisg (Te=4-8 K
depending on sample preparation).'>!'¢ However, for this
case, where the Ga substitution for Si is 13 at. %, T is not
very strongly suppressed, a result that is quite different from
Cu doping in BagSisg.2° For example, in BagSi,,Cu, the on-
set T is reduced to 2.9 K while for BagSi;nCug no supercon-
ductivity was observed down to 1.8 K. It is clear that the
similarity of Ga and Si in electronic structure helps to main-
tain the superconducting sp? network. Our theoretical simu-
lations discussed below also demonstrate this result. Also, as
shown in Fig. 3, the existence of the hysteresis between the
two magnetization curves for the zero-field-cooling and the
field-cooling modes indicates that the compound is a type-II
superconductor.

As shown in Fig. 3, the superconducting onset tempera-
ture is 3.3 K, while the bulk transition occurs at around T
=2.6 K. The superconducting volume fraction was estimated
to be 96% of the theoretical Meissner value according to the
ZFC susceptibility, and 36% of theoretical for the FC curve.
For these estimates, the theoretical density of 3.9 g/cm?® was
used, as estimated from the x-ray diffraction (XRD) data for
BagSi Gag. Furthermore, the sample was roughly a half

TABLE 1. EDS quantitative analysis results.

Nominal

composition Ba (at. %) Si (at. %) Ga (at. %) Measured chemical formula
Bagsi40Ga6 14.9+1.5 T4.7+2.1 10.4+1.0 Bag'oto_gsiém_:;t]'|G35_6t0_5
Ba88i36Ga10 149+1.1 66.1+2.5 19.0x14 Ba3_010'68i35_7,_, 1 '4Ga10'3é_,0_8
Ba88i30Ga16 159+1.2 57.7+5.0 26.4+4.0 Ba8,610'6Si31.2,_,2'7Ga14'3a_,2.2
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FIG. 4. Resistance of BagSiyyGag versus temperature at H=0
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and 70 kOe. Inset: magnified view of the low-temperature region,
for clarity. The onset superconducting transition is observed at
33 K.

disk, with measurements made parallel to the long axis, so
we estimated the demagnetization factor (N) for this direc-
tion to be about 2 in cgs units. In this case the value
—1/(47—N) corresponds to the bulk ideal Meissner effect,
and we find that ypc is 36% of this value, representing a
lower-bound estimate for the true superconducting volume
fraction. The corresponding value obtained from ZFC mea-
surements, 96% of theoretical, is an approximate upper
bound for 7=1.8 K. These results indicate that BagSi;(Gag is
a bulk superconductor. This is compatible with the finding of
nearly pure-phase clathrate based on electron microscopy
and XRD phase analysis. By contrast, we found no evidence
for a transition to a superconducting state in BagSiz;Ga;( and
BagSizpGa;q from measurements down to 1.8 K, so clearly
the substitution of Ga for Si by more than 20% heavily sup-
presses superconductivity in this system.

Temperature-dependent FC magnetization values under
different magnetic fields are shown in Fig. 5. Flux expulsion
(Meissner effect) decreases with increasing external field; the
magnetic field easily suppresses the magnitude of supercon-
ducting response. We observed that with increasing applied
field there occurs only a small suppression in 7 but a strong
reduction in superconducting volume, as shown in the inset
of Fig. 5. The Meissner superconducting volume V,, de-
creases with increasing field in a log-linear behavior,
logyo Vy,=a+b log,, H, with a=0.065 and b=-1.068.

To determine the superconducting critical fields H.; and
notably H,, the field dependence of the magnetization was
measured. Evidence for a type-II superconducting state can
be seen in Fig. 6(a) where we have plotted the M-H loop for
T=1.8 K. As shown in Fig. 6(b), at small fields, the shielding
is 100% and M versus H is approximately linear. At large
fields, flux penetrates in the form of vortices and |M| de-
creases. At 1.8 K, we estimate H.; as the field where flux
first penetrates into the sample, and the magnetization de-
parts from linearity. This occurs at an applied field of ap-
proximately 21 Oe, as shown by an arrow in Fig. 6(b). The
initial magnetization curve at 7=2 K is also shown in Fig.
6(b). We estimate an approximate value of H; ~ 35 Oe by
extrapolation to 7=0 K, including the demagnetization ef-
fect.
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FIG. 5. (Color online) FC susceptibility under different fields for
BagSiyGas. Inset: Meissner superconducting volume (V,,) de-
creasing with external field according to log-linear behavior, with

the fitted curve logo V,,=a+b logo H.

We have determined the upper critical field Hp, from the
field variation of the dc magnetization at high field. H, was
estimated by the magnetic field at which the M-H reverse
legs merge at high field, as shown in Fig. 6(c). The criterion
of |[AM|<10* emu/g was used for the determination of
H,, which was determined to be 8.5 kOe.

From the estimates of H, and H,, we can determine the
penetration depth A and the coherence length ¢ using the
Ginzburg-Landau equations® woH=®y/27E and uoHcy
=(®y/4mN\*)[In(N/€)+C,] where k=\/£ is the Ginzburg-
Landau parameter, ®y=7fic/e is the flux quantum, and C,
=0.497.3" From H¢; =35 Oe and Hq,~8.5 kOe, we obtain
A=4000 A and £~200 A. Hence, we find k~20. These
values can be compared to those obtained for BagSis (A
~4000 A, ¢=~72 A, and k=~ 56).> We found that both ma-
terials have the same order of magnitude for \; however, &
for the Ga-substituted material is three times larger than that
of BagSisg. We can also remark that in the type-IX chiral-
structure clathrate Ba, Ge;qy, A=6500 A and £€=310A
(Ref. 33) are similar to the values for BagSi, Gag reported
here.

III. THEORETICAL RESULTS

In order to explain the effect of Ga doping on supercon-
ductivity, first-principles calculations for the periodic bound-
ary systems were carried out using the CASTEP code with the
generalized gradient approximation (GGA). CASTEP are first-
principles ab initio calculation packages, using plane-wave
basis sets and suited for periodic systems. The total energy is
minimized with respect to occupied orbitals using a
conjugate-gradient method. Either the local density approxi-
mation (LDA) or GGA may be used to calculate the ex-
change and correlation energy of the electrons. Pseudopoten-
tials are used to model the interaction of the valence
electrons with the core of each atom. The total energy
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FIG. 6. (Color online) (a) M-H hysteresis of BagSisGag at
1.8 K. (b) Initial magnetization curve at 7=1.8 and 2 K, respec-
tively. The lower critical field H is determined from the departure
from linearity at low field, which occurs at an applied field of ap-
proximately 21 Oe corresponding to 1.8 K. (c) M-H reverse legs
merge at high field. The upper critical field H-, was estimated to be
8.5 kOe at 1.8 K.

pseudopotential method we used was developed by Payne et
al.3* This method is based on density functional theory in
describing the electron-electron interaction and on a pseudo-
potential description of the electron-core interaction, and has
been publicized as CASTEP. It gives the total electronic en-
ergy of a large system, as well as its band structure. Trans-
ferability and robustness of the assumed pseudopotentials of
each element seem to be confirmed by the success in repro-
ducing the physical properties such as lattice parameters of
many compounds. Therefore, it can be expected to give the
relative stability of different crystal structures. We used the
CASTEP code in order to solve the pseudopotential
Schrodinger equation self-consistently. Besides the Ga-doped
Si clathrates mentioned above, Ga-doped germanium clath-
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rates were also calculated as a reference in order to check the
suitability of the model parameters.

Wave functions were expanded in plane-wave basis sets
with a kinetic energy cutoff of 300 eV for all systems stud-
ied. We adopted the ultrasoft pseudopotential. Calculated fi-
nal structural data and inequivalent atomic positions of each
model in the calculation are listed in Table II. The input
structural parameters were obtained from experimental pa-
rameters by the geometry optimization function. As dis-
cussed above, x-ray diffraction refinement has shown that for
dilute doping Ga is preferentially placed at the 6¢ site in
clathrates. In order to simplify the Ga-substitution model and
to give prominence to Ga substitution on 6¢ sites which
bridge the Si,, and Siy, cages, we assumed Ga to be located
on all the 6¢ sites for BagSiygGag, and to occupy 16i and 24k
sites with random distribution for BagSi;¢Ga;, and
BagSizoGa;4. Spin polarization was not considered.

The band structure and density of states for BagSiyyGag
and BagSiz)Ga, are shown in Fig. 7. For BagSiyyGag N(E)
exhibits metallic character; the fundamental gap, with width
about 0.7 eV, is located well below Ey. The Fermi level for
BagSiynGag is positioned just below the maximum of a large
N(E) peak. Our calculations show a nearly identical peak for
BagSiyg, with peak value of about 38 states/eV; however, Ef
is larger in BagSi,q due to the larger number of valence elec-
trons. This sharp peak is very close to what has previously
been calculated for BagSiy, with reported peak
~40 states/eV.?*3> The small reduction in N(Ey) due to the
lower valence count is consistent with the observed change
in T,, in the BCS model for superconductivity. Thus for di-
lute substitution of Ga, we find a nearly rigid-band displace-
ment of the Fermi level, leaving the sp3-connected electronic
structure of the framework relatively unchanged and still
conducive to superconductivity. However, for more heavily
substituted BagSi;yGaye, larger changes in electronic struc-
ture are observed. In the latter material the Fermi level is
located just below the fundamental gap, according to the
expected semiconducting behavior, since the temperature de-
pendence of electrical resistivity of BagSi3oGa,g is typical for
heavily doped semiconductors. The results are similar to
those obtained previously for this composition.3

A comparison of the band structures and N(E) of
BagSiygGag and BagSizyGa;q shows that there are significant
changes brought about by the additional substitution of Ga.
The valence and conduction bands are broadened, and the
fundamental gap correspondingly narrowed. The band broad-
ening may be understood as due to enhanced hybridization of
the framework orbitals due to the more extended size of the
Ga ion. This is similar to the effect of pressure on BagSiyg,
which also reduces T, as the lattice constant is reduced.’’
BagSi;Gayg is a Zintl compound, as there are nominally 184
valence electrons in BagSi;yGa;4, contributing an average of
four electrons for every framework atom, enough for a com-
pletely filled four-bonded network. Indeed, the simulation
shows a lower total energy for BagSi gGay than BagSiyg im-
plying that the Ga-substituted phase is more stable. An addi-
tional stabilization, besides the Zintl mechanism, may come
from the increased polarity of the Ga-Si bonds, as experi-
mentally we find that the Ga-substituted materials can be
formed more easily as single-phase materials, as compared to
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TABLE 1I. Calculated equilibrium structures and inequivalent atomic positions for clathrate phases
BagSiygGag, BagSiz¢Gay, and BagSiz;yGa;e. The notation for atomic positions follows that of the International

Tables for Crystallography.

B ag S i40G216

BaSSi36Ga10 BaSSi30Ga16

Symmetry Pm3n (No. 223)

Lattice constant a (A) 10.4261

6¢ (Ga) x=0.25, y=0, z=0.5

16i (Si, Ga) x,y,z=0.1823

24k (Si, Ga) x=0.3034, y=0.1235,
z=0

2a (Ba) x,y,z=0

6d (Ba) x=0.25, y=0.5, z=0

P1 (No. 1) P1 (No. 1)
10.4896 10.5096
x=0.25, y=0, z=0.5 x=0.25, y=0, z=0.5
x,y,z=0.1851 x,y,z=0.1877
x=0, y=0.3075, x=0, y=0.3103,
z=0.1194 z=0.1166
x,y,z2=0 x,y,z2=0

x=0.25, y=0.5, z=0 x=0.25, y=0.5, z=0

BagSiye which generally requires high-pressure techniques,
and this is true even with relatively dilute Ga substitution.
The fact that E falls just below the fundamental gap pre-
sumably reflects a slightly reduced negative charge on the Ba
ions, as compared to the value (-2) expected from the nomi-
nal valence.

The presence of regions with localized polar bonds of
tetravalent Si and trivalent Ga atoms is further supported by
analysis of the calculated electron charge density. The differ-

FIG. 7. (Color online) Band structures and density of states for
(a) BagSiynGag and (b) BagSizyGa;¢. Density of states is calculated
using 0.1 eV Gaussian broadening of the band structure. The Fermi
levels are denoted by broken horizontal lines.

ence between BagSi,gGag and BagSizGa, 4 clathrates in terms
of hybridization can be perceived from their different va-
lence electron density distributions. This is demonstrated in
Fig. 8, where the electronic charge distributions in real space
are shown as contour maps of the valence electron densities
for BagSiynGag and BagSiz,Gayg, plotted on the (100) plane
through Ba (2a) sites and the six- membered rings of Si(Ga)
(see Fig. 1). The two Ba sites of each figure correspond to
those at the centers of the Si,, cages.

As shown in Fig. 8, Ga substitution significantly reduces
the integrity of the charge distribution spread uniformly
across the Si cagelike network. Such changes to the sp? net-
work may further suppress the superconductivity of the Gal6
material.>’ Comparing BagSi,,Gag as shown in Fig. 8(a) with
Ga-free BagSiss,2" no distinct differences are observed in va-
lence electron densities on the Ba and Si sites, and the pres-
ence of Ga at the 6c¢ sites leads to reduced charge transfer,
less charge density localized around the Ga sites, and fewer p
electrons on the Ga atoms. There is an enhanced electron
density between the 6¢ site and its Si neighbors, resulting in
a local maximum of the charge density [seen in Fig. 8(a)].
This shows that Ga orbitals hybridize strongly with the host
Si cage orbitals. In the case of heavy Ga substitution, besides
filled 6¢ sites, 6i and 24k sites are partially occupied by Ga
in BagSizpGag. In this case there is a significantly larger
charge density along the Si-Ga bond direction, showing that
Ga orbitals hybridize more strongly in this case.

To show the effect of Ga substitution on the charge dis-
tributions at the Fermi level, corresponding to states which
play a crucial role in superconductivity, contour maps of the
electron densities at the Fermi level are shown in Fig. 9. For
BagSi, Gag, the electrons are distributed relatively uniformly
on the Si framework sites and Ba sites. In contrast, the elec-
tron distribution spreads out much less effectively for the
band-edge states corresponding to the Fermi level in
BagSizoGay4, and the states appear to be poorly connected,
reminiscent of the impurity band model for the conductivity
that has been proposed for other type-I clathrates.’®

IV. DISCUSSION

Isotope effect measurements have revealed that supercon-
ductivity in BagSie is of the classic type, arising from the
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FIG. 8. (Color online) Contour maps of the valence electron
densities of (a) BagSisnGag and (b) BagSizoGa,¢ on the (100) plane.

electron-phonon interaction.!” In the conventional BCS
theory for phonon-mediated superconductivity,® T can be
estimated in terms of the Debye temperature @, the effec-
tive electron-phonon repulsive interaction u”, and the
electron-phonon coupling constant A,,:

— 1041 +A
TC= ( ep) )

Op
145 P ( Nep— i # (1+0.62),,)

Furthermore, \,, can be expressed as the product of N(Ep)
and the average electron pairing interaction V.

The Debye temperature ® =370 K has been evaluated by
specific heat measurement in BagSiyg.!” We make the reason-
able assumption that @, should have the same magnitude in
BagSi nGag. The estimation of \,, from T using the Mc-
Millan formula is not very sensitive to the value of Op.
Moreover, we set the effective electron-phonon repulsion "
to 0.24, which was estimated for BagSiye.!”?! From this we
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FIG. 9. (Color online) Contour maps of the electron densities at
the Fermi level of BagSiynGag (upper) and BagSizoGa;q (lower) on
the (100) plane.

find that )\ep=0.78, somewhat smaller than the value found
for BagSiss (N,,=1.05). This implies that Ga-doped
BagSiygGag has a relative weaker electron-phonon coupling.
Using N(Ep)=38 states/eV for BagSi,Gag, the average elec-
tron pairing interaction V,, is estimated as 20.5 meV. This
value is also smaller than that obtained for Ga-free BagSiyg,
24 meV. It thus appears that the T decrease with Ga doping
can be partially assigned to the weakening of electron-
phonon coupling as well as a decrease of the density of states
at the Fermi level; however, given the range of 7 observed
in various samples of BagSiy, it remains possible that the
observed reduction in BagSi,,Gag is due entirely to the small
drop in N(Ep).

In conclusion, we have presented a combined experimen-
tal and theoretical study of the effect of Ga substitution on
the superconductivity of the type-I clathrate BagSisg_Ga,. In
Ga-doped clathrates, the Ga state is found to be strongly
hybridized with the cage conduction band state. Ga substitu-
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tion results in a shift toward a lower energy, a decrease of
N(Ep), a lowering of the carrier concentration, and a break-
age of the integrity of the sp3-hybridized networks. These
play key roles in the suppression of superconductivity. For
BagSiynGag, the onset of the superconducting transition oc-
curs at 7-=3.3 K. The investigation of the magnetic super-
conducting state shows that BagSi,,Gag is a type-II supercon-
ductor. The critical magnetic fields H-, and H., were
measured to be H; =35 Oe and H, = 8.5 kOe. We deduce
the London penetration depth A =3700 A and the coherence
length £€~200 A. Our estimate of the electron-phonon cou-

PHYSICAL REVIEW B 75, 054513 (2007)

pling reveals that BagSiyyGag is a moderate phonon-mediated
BCS superconductor.
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