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NMR and Mdssbauer study of spin-glass behavior in FeAl
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We have used NMR and Mdéssbauer spectroscopy to investigate the magnetism and spin-glass behavior in
FeAl,. The results show that the observed behavior can be interpreted as local-moment magnetism residing on
the Fe sites. An increase {Fe Mdssbauer magnetic hyperfine field was observed at the 35-K spin-glass
freezing temperature, with a reduced low-temperature value consistent with unquenched fluctuations in the
spin-glass state. However, th&l NMR shifts and spin-lattice relaxation behavior are consistent with transfer
hyperfine interactions to Fe local moments, with a magnitude of approximatejyg?2 Bhis value is consistent
with the bulk magnetization, but surprising compared to other Fe aluminides, given the small Fe-Fe coordi-
nation number and associated weakening expected for the magnetic moment.
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[. INTRODUCTION the spin-glass freezing temperature was found to be identical.
The sample was characterized by powder x-ray diffraction
Fe _Al, alloys exhibit a variety of magnetic properties, (Bruker D8 Advancg using CuK, radiation. Structural re-

including ferromagnetism for low-Fe compositions, going finement was carried out using tlesas software suité>2*
over to reentrant spin-glass behavior for compositions near Mossbauer spectra were measured using a homebuilt
x=0.312 In low-Fe intermetallics, the moments become SPectrometer. The sample for Méssbauer studies was pow-
smaller, with ordered FeAl and dilute-Fe alloys having zerodered and sieved and the center shift was calibrated relative
moment-® Al-rich quasicrystalline phases such as !0 @-Fe at room temperature. Dilution studies showed satu-

Al,ClyeFers are also essentially nonmagnetit However ration effects on the Mdssbauer line shapes to be minimal.
FeAl, is an anomaly, exhibiting a large effective moment VMR experiments were performed at a fixed field using a

255 ug per Feb and a spin-glass freezing temperature O](9-T homebuilt pulse spectromef@rWe used 1-M aqueous

35 K. There is considerable fundamental interest in momen’?‘ICI3 as a NMR reference.

formation in the Fe aluminidé$°2and in questions of ll. RESULTS AND DISCUSSION
local versus itinerant magnetism in these systems3
Therefore, we have undertaken local-probe studies utilizin
27Al NMR and ®*Fe Mossbauer spectroscopy to investigate
the FeA, moments and the dynamics of the ordering pro-
cess.

The structure of FeAlis shown in Fig. 1, as solved by
Corby and Black? This structure is a distorted close-packed
configuration, with three mixed Al-Fe sites among the 18
per cell. Despite the high coordination, the preference for
Fe-Al bonding is apparent, with Fe-Al neighbors exhibiting
the smallest bond lengths. A recent set of measurements in-
dicated FeAJ to be semimetallié®> Strong covalent bonding
is characteristic of this and related materi§$’ and the re-
sulting pseudogap presumably helps to stabilize the struc-
ture. Generally, a reduction in transition metal-aluminum hy-
bridization leads to a larger local moméht® and this has
led to interesting magnetic behavior in a number of related
transition-metal aluminide$:19-22

X-ray diffraction results are shown in Fig. 2. The analysis
howed no evidence for a second phase. Atomic occupation

Il. EXPERIMENTAL METHODS

) ) ) FIG. 1. FeA} structure. Filled circles: Fé/cell); open circles:
The sample for this study was synthesized by arc meltingy (10/cel); dot-filled circles: mixed-occupancy sités/cel). (a)
the elemental constituents under argon, followed by furthe(o21) plane, with frame showing a:33 set of triclinic unit cells.
annealing in vacuum. The resulting polycrystalline ingot was(b) View along (101) showing Fe pairs/triads. This Fe-containing
used for all measurements. This was a different sample thayer alternates with an Al-only layefc) Rotated view of layer
that used in the previous study in this laboratotypwever  pictured in(b).

1098-0121/2005/12)/0244315)/$23.00 024431-1 ©2005 The American Physical Society



CHI et al. PHYSICAL REVIEW B 71, 024431(2005

FeAl, . . (1- )5
: . R ¢ T,=356K
x-ray diffraction 084 6k T -l oty (f)) 61T
— = i
061 % 4 ur.,
£ T N
FTTTE RS AP AR TP %\ 0.4 1 =2
4
20 (degrees) 02 0
0 100 T®) 200 300
0.0 T T T T
0.0 02 04 0.6 0.8 1.0
20 40 60 80 100 T,

20 (degrees)
) ] FIG. 4. Reduced hyperfine field vs reduced temperature, from
FIG. 2. Powder x-ray results for FeAlwith results of refine-  the Mosshauer fitting for FeAl The dashed curve is a fit according
ment and difference plot. The vertical marks are fitted reflections. ;4 (1-T/To)P, with 8=0.35,T,=35.6 K, andugHn(0)=6.1 T. The

inset shows the full temperature dependence.

par_ameters are in r_easonable agregment W!th _the atom,ﬁg of unresolved spectra for the different Fe sites. To fit
weights .reported ear_lléf‘,though the refl_nement indicated Al these we used a superposition of three multiplets, and found
occupation on Fe sites as We|! as mixed sitep t0 0.29 5 aqditional multiplets did not further improve the good-
relative Al occupation of Fe site’ Isite labeling convention  pess of fit. Theoretical curves followed a standérdrent?

of Ref. 14). No Fe occupation of Al sites was found, and the model for Mésshauer spectra. Quadrupole splittings were al-
mixed sites had Al occupation parameters in the range 0.36owed to vary with temperature, however their contributions

0.53. The fit yielded a=0.4868 nm, b=0.6454 nm, ¢ {9 |ine-shape changes are small. Line shapes obtained from
:0.8796 ﬂm,a=91.76°,,8=73.35°, and'y=96.900, fOf the thls procedure are Shown |n Flg 3

triclinic unit cell, with R values R,,=0.0599 andR, The mean isomer shift obtained was 0.20 mm/s at room
=0.0455. The Al/Fe ratio resulting from the refinement wasiemperature, increasing smoothly to 0.33 mm/s in the zero-
2.03. temperature limit, with no change observed atFitting to a

Using the occupation parameters thus obtained, we calCipebye vibrational model yielded a Debye temperature of
lated mean atomic coordination numbers, including partially;10 K. The large increase in linewidth between 45 and 31 K
occupied sites. This gave 2.5 Fe neighbors per Fe atom, angyld be accounted for by the development of a nonzero
3.5 Fe neighbors per Al atom. For.th|s calculation, neighborsyyperfine magnetic fiel@H,,) at T;. The temperature depen-
were assumed to be those at a distance less than 0.3 nm. gence ofH,, is shown in Fig. 4.

Figure 3 shows Mdssbauer spectra versus temperature. At The main plot of Fig. 4 shows the reduced hyperfine field,
room temperature, a broadened doublet is observed, consisfyq a power-law fit to the relation

Hin/Hni(0) = (1 = T/To), (1)

i'=43KV
e/ ineusha? yielding 8=0.35, T,=35.6 K, andu,Hn(0)=6.1 T. TheT,

matches the observed 35-K spin glaBs The value of
gaapyys MoHni(0) is relatively small; for example, in dilute body-
centered cubic Fe alloy8,u,H,s may be approximated by a

e local value of 8.6 T peug (21.9 T for a local moment of
2.55 ug), and a transfer hyperfine field of 1.2 T peg per
s Fe neighbor. Using the mean Fe-Fe coordination number 2.5

obtained above, and even for complete antialignment of
neighbors, the field ig,Hn=14.2 T. The observed value is
significantly smaller, but this is typical of spin glasses, due to
S unquenched low-temperature spin dynamics during the meta-
=K stable °>'Fe lifetime262” The exponent3=0.35 is a value
found in three-dimensional(3D) ferromagnet$82° but
o, 7=25K smaller than that obtained for short-range spin glasges,
~0.53 and dipolar superspin glasses=1.03132The sus-
ceptibility is also atypical below;, continuing to increase as
if some spins remain loosely coupléd.
Figure 5 shows’’Al NMR spectra recorded between 4
FIG. 3. >Fe Mossbauer spectra for FeAlith theoretical fits ~and 468 K, using a standare/ 2 -7— 7 spin-echo sequence.
described in the text plotted as solid curves. From the NMR pulse-length dependence, we find that the
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frequency (MHz) couplings should guarantee spin saturation in the large ap-
”7 ~ plied NMR field.
FIG. 5. “’Al NMR spectra for FeA). The data are offset verti- ~ The transfer hyperfine coupling can be obtained from
cally for clarity. Ko(T) [Eq. (2)] and the Fe moment calculated usipg

=2.55 and#=-38 K. This is shown in Fig. 7, where the
observed spectra correspond to 1/2 to —1/2 transitions fomoment per Al was obtained fronK,(T) using uoHps
the 1=5/2 *’Al nucleus, implying that the other transitions =190 T as the Als-spin hyperfine field® From the least-
are suppressed due to quadrupole broadening. Figure &uares slope we obtain a net Al hyperfine field of 1.2 T per
shows the relative shift obtained from the center of mass of,; on Fe. Dividing by 3.5, the mean Al-Fe coordination

these peaks. The shifts can be expressed by number, yieldsu,H=0.35 T perug per Fe neighbor. A
similar value of 0.24 T was found in AV,?2 while for dilute
K =Ky + Ky(T). (2)  Alin Fe, the*’Al shift3 corresponds t,Hi;;=0.31 T.(The

latter is obtained from the quoted shfftby dividing by
2.2 ug and the coordination number, 8 for BCC F&hus
the FeA} couplings are not particularly large despite the
anomalous Fe moment.

The negativeK;=-0.155% implies an Al spin polariza-
tion opposing that of the Fd orbitals, and in aluminides
such behavior is observed in systems with odeshells: in
nonmagnetic FeA[Ref. 35 and for a magnetic decagonal
Al-Pd-Mn quasicrystaf® values between —0.3% and —-0.6%

coupling. Note that th&’Al shift does not increase relative to E:ﬁ l?te ?r?] ;ﬁgg;edl:; aSuIIri]Cseug::IZ pttfl:r)mt;/s ganrgpgr%truergoL?ﬁr?:;n-

the Curie-Weiss curve belowf as WOUI.d be expected in the .Fe d contribution to the Fermi surface. This contrasts the
case of cluster-glass behavior, for which local ferromagnetic

A Curie-Weiss-type fit forK, (T) is shown by the dashed
curve in Fig. 6, yieldingk;=-0.155%, with the Weiss tem-
perature fixed a®¥=-38 K according to the susceptibiliy.
The 4-K point was excluded from this fit since it is beldw
(Allowing 6 to vary yielded an optimized valué=-33 K,
with a large error bar of 15 K indicating insensitivity to that
parametej.The results correspond Al directly coupled to
neighboring Fe moments, with a negative transfer hyperfin

0
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FIG. 6. 2’Al center-of-mass NMR shifts vs temperature. Dashed  FIG. 8. 2Al NMR FWHM linewidths for FeAb. The dashed
curve: Curie-Weiss fit withh=-38 K. curve is a Curie-Weiss fit witl#=-38 K.
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05 Feal, dynamics. Weak itinerant ferromagngts can exhib_it _s_imilar
” behavior’® however for t_he n.early anuferromggnetlc itiner-

0.4 AINMR ant case, more appropriate in the present situafiéf, re-
P . laxation behavior is expected. Much different behavior is
2" £ MR S also observed in Al-Fe-Cu quasicrystals, where the mo-
< o2 /1 local morment ments are widely separated and found on a small fraction of
- ! behavior the sites. Concentrated local moments produce a rate given

0.1 :<_ spin glass byAO

CT
0.0 50 100 150 280 300 1T, = 2m)Y2AAR)?(Bwg) 1SS+ 1)Z, (3)

T(K)

whereA is the transfer hyperfine energy ang=[8J%zSS
+1)/34%]*2 is the electron exchange frequency, withhe
interaction strengthS the local-moment spin, andthe Fe-
Fe coordination number, assuming that each Fe carries a lo-
cal moment. EquatiofB) differs from Ref. 40 in tha# is a
transfer hyperfine coupling, so we include the number of
local moments interacting with each nucleus. In our case
=3.5 andz=2.5, as described abowk.s the nuclear Zeeman
| energy corresponding to the hyperfine fiek@Hﬂf:O.SS T
obtained above, which i8=-2.6x 1072 J. Given the mag-

FIG. 9. 2’Al NMR spin-lattice relaxation rate v& in FeAl,. The
dashed horizontal line showsindependent local-moment behavior
at high temperatures. The solid curve is a guide to the eye.

semiconducting behavior calculated for FgAh simpler
geometrie$:'’

The full width at half maximum(FWHM) of the NMR
line is plotted in Fig. 8, along with a fitted curve proportiona
to 1/T-9), plu.s aT-mdepe.ndent backgrounpl term. To € hitude of Peiiy We assumed thaB=1. In the mean-field
whether statistical occupation of Fe and mixed sites aloneo\pproximatiorﬁl J is related to the Weiss temperature
could account for this, we performed a Monte Carlo-type — L o - 22 ;
calculation assuming Fe having identical paramagnetic mo;Té?;sg?-—iE 03g5z/§215($;2),Obgsugur?/gd#_ig 2 :::no;—l \(]da;:];

tr — : ‘ot : 1~V . 1~ Y
ments_,th—O.35_T for all neighbors, and_ statistical site oc- jine in Fig. 9, is in good agreement with this calculated
cupation according to the x-ray occupation parameters. Thgajye. Thus, tha;* behavior provides compelliing evidence
resulting Curie-Weiss contribution to the linewidth was that the magnetic fluctuations in this system can be attributed
smaller than observed by a factor of 1/3. Local variations ing stable local moments localized on Fe atoms.
transfer couplings and/or moments may account for this dif- The |Jocal moment in FeAlis surprising in light of the
ference, thus the observed widths appear reasonable.  expected Al-Fe covalency and corresponding weakening of

The spin-lattice relaxation ratéT;') was measured by the moment’-18 A standard picture for BCC Fe-Al alloys
inversion recovery, irradiating the central portion of il has been that a Fe-Fe coordination number 4 or greater is
line, and using the integral of the spin ecfig.was extracted required for Fe to assume its full momérthus the coordi-
by fitting to multiexponential curves for magnetic relaxation nation in FeA} would appear to oppose such behavior. The
of an1=5/2 ?'Al central transition. Figure 9 shows the re- Knight shifts do indicate an apparedtcontribution at the
sults. At low temperatures, several peaks are observed, whileermi level, nevertheless from the relaxation behavior we
at high temperatures the spin-relaxation rate is nearly corconclude that a stable local moment, rather than an itinerant

stant with a value of 0.3 m$ (dashed ling These data re- mechanism, best characterizes the observed magnetism.
sulted from two separate runs, showing consistent behavior.

The lowest-temperature pealejl appears at 35 K, due
to the slowing down of magnetic spins B, as observed in IV. CONCLUSIONS
other spin-glass syster@éThe maxima inT,* aboveT; do
not correspond to observed features in magnetizatiospe-
cific heat!® These features are reminiscent of the behavior o
AIPdMn quasicrystaf$-38 for which multiple T;* peaks are
also seen. For that case, there is a reduction of Mn moment
low T associated with the anomalotigbehavior. For FeAl
there is no large change in moment abdveas evidenced
by the susceptibilit§. However, it is possible that the align-
ment of adjacent spins, such as the Fe pairs or tiiads 1),
to form combined moments, may be responsible for thes
features. A gradual reduction in electron density, as shown by

NMR and Mdssbauer measurements show that fe#h

Pe characterized as a concentrated local-moment system. An
Increase in Mossbauer hyperfine field was observed to coin-

jde with the spin-glass freezing temperature, while%i#e

MR is dominated by transfer hyperfine interactions to Fe.
An analysis assuming independent local moments with mean
values equivalent to the value obtained from bulk suscepti-
bility gave good quantitative agreement with the observed
8hifts and relaxation times.
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