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ABSTRACT

Classical controller design emphasizes simple low-order controllers. These clas-

sical controllers include Proportional-Integral (PI), Proportional-Integral-Derivative

(PID), and First Order. In modern control theory, it is customary to design high-

order controllers based on models, even for simple plants. However, it was shown

that such controllers are invariably fragile, and this led to a renewal of interest in

classical design methods. In the present research, a modern approach to the design

of classical controllers (by introducing a complete stabilizing set in the space of the

design parameters) is described. When classical specifications such as gain margin,

phase margin, bandwidth, and time-delay tolerance are imposed, the achievable per-

formance can be easily determined graphically. The objective of this research is to

determine the controller gains, contained in the stabilizing set, which satisfy desired

performance specifications such as crossover frequency and closed-loop stability mar-

gins. The design procedure starts with the calculation of the stabilizing set using

recent methods. Then, a simple parametrization produces ellipses and straight lines

(for PI controller design) and cylinders and planes (for PID controller design) in

the space of controller gains. Each set of ellipses/cylinders and straight lines/planes

represents constant magnitude and constant phase loci for the controller. The main

result is that the crossing points, which are the intersection of ellipses/cylinders and

straight lines/planes, are selected such that they are contained in the stabilizing set

of controllers. They provide the controller gains that we need to satisfy our desired

robust performance, seen as desired gain margin, phase margin, gain crossover fre-

quency, and time-delay tolerance in our system. Then, using these crossing points

contained in the stabilizing set, a new plot with information about the achievable
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performance in terms of gain margin, phase margin, and gain crossover frequency

is constructed. Each point of this achievable performance can be used to retrieve

the controller’s gains, which are contained in the stabilizing set. This result pro-

vides the possibility to analyze the system’s achievable performance by exploring the

stabilizing set and considering different desired configurations in the performance ca-

pabilities for the system using a PI or PID controller. This expands our possibilities

when designing controllers by considering different classical controller’s configura-

tions. This research considers the discrete-time and continuous-time linear time

invariant systems and cases including First Order with time-delay in the system,

and the extension to the controller design for multivariable systems. Finally, the

design procedure is illustrated with different examples and real applications for all

such cases.
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1. INTRODUCTION

In control theory, there are two main approaches: Modern and Classical. Mod-

ern control theory deals with state space representation and with the possibility of

multi-input and multi-output (MIMO) systems. It can handle more sophisticated

design problems. However, it is customary to develop high-order controllers based

on models, even for simple plants. In [7], it shows that such controllers are invariably

fragile, and this led to a renewal of interest in classical controllers and conventional

design methods. In classical control theory, the design emphasizes simple, low-order

controllers. It plays an important role in real-world applications. Specifically, in

industrial applications, new advances in technology make possible the adaptation of

automatic production processes. Therefore, controller design has a great impact on

the efficiency of production processes. For this reason, it is crucial to develop new

controller design approaches for classical controllers.

1.1 Review of PI/PID Controller Design Approaches

The Proportional-Integral-Derivative (PID) and Proportional-Integral (PI) con-

troller are the most widely used traditional controllers in the control industry and

are universally accessible in motion control, process control, power electronics, hy-

draulics, pneumatics, and manufacturing (see references [8–11]). In fact, in process

control, more than 95% of the control loops are of PID type, most loops are PI

control, see [1]. Their popularity is because of their simple structure, easy imple-

mentation, and straightforward maintenance. Also, they provide a satisfactory per-

formance with a cost/benefits ratio that’s hard for other types of controllers to match.
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1.1.1 PID Controller Actions

The PID controller is the name given to a controller which scheme consists of

the addition of three control actions (see Fig 1.1). These actions are an action

proportional to the control error, a control action proportional to the integral of the

error, and a control action proportional to the first derivative of the control error

(see [12]).

KP

KI

∫
KD

d
dt

∑e(t) u(t)

Figure 1.1: PID Controller Block Diagram

• Proportional controller. The proportional action deals with the present

values of the error signal; it is proportional to the size of the process error

signal increasing the control variable when the error signal increases. When

using only a P control, we notice that increasing the proportional gain KP will

speed up the time response. However, it is possible that steady state error will

occur. This can be seen as

u = u0 +KP e (1.1)

where u is the control signal, u0 is the control signal when there is no control

error, KP is the proportional gain, and e is the control process error. Using

2



(1.1), the error signal is

e =
u− u0
KP

(1.2)

Given (1.2), the steady state error is zero if and only if KP is very large or the

control signal u = u0, see [13].

• Integral controller. The integral action is used to reduce the steady-state

error to zero. When using an integral gain, increasing the value of KI can give

a broad range of response types in addition to the elimination of the offset in

the reference response. The control signal is

u = KI

∫
edt (1.3)

The integral of the control error is proportional to the area under the control

error curve. The control signal u will continuously change depending on if the

error signal is positive or negative. If the control signal u is constant, then the

error signal must be identically zero, see [14].

• Derivative controller. The derivative action is used to improve the closed-

loop stability. It deals with the possible future values of the error signal based

on its current rate of change, anticipating the incorrect trend of the control

error, see [1, 15]. The control signal is

u = KD
d

dt
edt (1.4)

The derivative part is proportional to the predicted error. However, in practice,

the derivative is taken from the process variable, see [15].
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1.1.2 PID Controller Representations

Today’s PID controller structures are based on parallel and series types, see [15].

• Parallel type: this controller type has the following control law

u = Kc

(
e+

1

Ti

∫
edt+ Td

de

dt

)
(1.5)

where KP = Kc is the proportional gain, Ti is the integral time of the controller

with KI = Kc
Ti

, and Td is the derivative time of the controller with KD = KcTd.

This representation is known as ideal, see [15].

• Series type: this controller type has the following control law

e1 = e+ Td
de

dt
,

u = Kc

(
e1 +

1

Ti

∫
edt

)
(1.6)

In this case, the integral and derivative part are not independent.

1.1.3 Classical PID Controller Design Tuning

Due to the popularity of classical controllers in industry and their widespread

use, many approaches for their design and implementation exist. Over the years,

researchers have developed new PI/PID tuning methods for the design of these con-

troller configurations. The classical methods found in the literature can be classified

as follows (see [1, 12,16–18]):

• Trial and Error Method: this method is applied when there is no a system-

atic approach to follow when designing the controller. The method is based
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on experience about the effects of adjusting the individual KP , KI , KD gains

trying to get a better time response in terms of speed and closed-loop stability.

The effects of increasing each gain separately are represented in the following

table 1.1 (see [15])

Table 1.1: Effects of Adjusting Individual PID Gains on the System

Parameter Steady state error Speed Stability
KP reduces increases decreases
KI eliminates reduces increases
KD no effect increases increases

The advantage of this method is that it does not require any mathematical

model or mathematical derivation. However, it requires some experience to

adequately adjust the controller gains to satisfy a desired performance in terms

of speed and stability.

• The Ziegler-Nichols step response method: this PID tuning method was

developed between 1941 and 1942 at Taylor Instrument company, see [19].

Since that time, this method has been extensively used in his original form

and with some variations, see [1]. The method is based on the step response

of the open-loop stable system, see Fig. 1.2. The procedure is the following

(see [1, 15,19])

1. Calculate the step response of the open-loop system.

2. Draw a tangent line with the maximum slope possible from the step re-

sponse, see Fig 1.2.
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3. Calculate L, which is the distance from the intersection of the slope and

vertical axis to the starting point of the step response.

4. Calculate A, which is the distance from the intersection of the slope and

the vertical axis to the horizontal axis.

5. Compute the PID gains from the following formulas

KP =
1.2

A

KI =
0.6

AL

KD =
0.6L

A
(1.7)
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p
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u
d
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A
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Figure 1.2: Ziegler-Nichols Step Response Method

• The Ziegler-Nichols frequency response method: this PID tuning method

considers a proportional controller attached to the system in a closed-loop con-

figuration. The objective is to find the ultimate frequency where the phase of

the process is −180o. That is the ultimate gain where the system reaches the

stability boundary. The tuning procedure is the following (see [1, 15,19])
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1. Connect a proportional controller to the system in a closed-loop configu-

ration.

2. Slowly increase the proportional gain until the output starts oscillating.

This gain is called ultimate gain Ku.

3. Measure the period of the oscillation in the output. This period is called

ultimate period Tu.

4. Compute the PID gains from the following formulas

KP = 0.6Ku

KI =
1.2Ku

Tu

KD = 0.075KuTu (1.8)

This tuning method is capable of finding the PID controller gains for the sys-

tem. However, it requires some experience and skill because the system is taken

to its limits of instability and it becomes very close to getting it damaged.

• Relay PID Tuning Method: This PID tuning method was developed by

K. Åström and T. Hägglund as an alternative to the Ziegler-Nichols frequency

response PID tuning method. This method is very similar, but instead of

increasing a proportional gain until the system’s output oscillates, a relay is

used to generate an oscillation in the output, see Fig 1.3 and Fig 1.4. The

relay connected to the system generates a square signal with certain amplitude

and frequency. Then, a signal in the output approximated to a sinusoid, is

generated. The tuning procedure is the following (see [1, 15,19,20]):

1. The system should be working at the operating point.
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2. Set the amplitude of the square signal in the relay.

3. Calculate the ultimate period Tu, see Fig. 1.4

4. Calculate the controller parameters KP , KI , and KD using the Ziegler-

Nichols table using Ku = Ke, where Ke = Au/Ae. Where Au = 4A/π and

Ae = E with E being the amplitude of the oscillations in the control error

signal.

The advantage of this method is that it doesn’t require to force the system close

to instability. Therefore, it keeps the system safer not being close to instability

and the possibility of damage. Also, this relay method can be automated since

the output oscillation amplitude is proportional to the amplitude of the relay

signal.

C(s)

Relay

P (s)
r(t)+ y(t)

−

Figure 1.3: FOPTD Unity Feedback Block Diagram With a Relay

• The Cohen-Coon Method: This is an open-loop PID tuning method which

follows the same procedure as the Ziegler-Nichols step response method, see

[15]. In Fig. 1.5, it shows a step response of the open-loop system where the

parameters KP , L, and T can be determined. The gain KP is determined

by taking the ratio between the amplitude increment of the output and the

8
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Figure 1.4: Output Oscillating and Relay Signals

increase in the control signal. That is

KP =
∆y

∆u
(1.9)

The variables L and T are the time where the system’s output reacts after the

step is introduced as a control input and the time of the step response of the

intersection of the maximum slope and the set point. Then, considering the

PID controller parallel type, the Cohen-Coon method includes the following

formulas to calculate the PID gains

Kc =
1

KP

(
0.25 +

1.35T

L

)
Ti =

2.5 + 0.46L
T

1 + 0.61L
T

L

Td =
0.37

1 + 0.19L
T

L (1.10)
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Figure 1.5: Cohen-Coon Method

1.1.4 Modern PID Controller Design Tuning

After the appearance of the classical PID controller tuning techniques, the com-

plexity of the systems and performance demands from the controller designer made

necessary the development of new tuning design techniques. Over the years, many

good results were developed toward PID tuning methods for more performance spe-

cific requirements and to deal with complex systems. Some of the called modern

approaches are the following

• Internal Model Control design

This controller approach considers stable systems. Consider the closed-loop

system block diagram presented in Fig. 1.6. Where Ĝ(s) is an approximation

of the system G(s), GF (s) is a low pass filter, and Ĝ+(s) is the inverse of Ĝ(s).

Then, the controller design objective is to cancel the poles and zeros from the

original system G(s) by connecting in parallel with Ĝ(s), see [21] and [22].

This approach is called internal model control because the controller contains
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a model of the system internally, see [1]. The purpose of GF (s) is to make the

system less sensitive to modeling errors. The controller C(s) is given by

C(s) =
GF (s)Ĝ+(s)

1−GF (s)Ĝ+(s)Ĝ(s)
(1.11)

GF (s) Ĝ+(s) G(s)
u

Ĝ(s)

r y

+ŷ−

−

Internal Model Controller

Figure 1.6: Closed-Loop System Block Diagram with Internal Model Controller

There is a particular case where this approach considers PI and PID controllers,

see [1] and [23]. For the case of first order plus time delay systems, we have

that

P (s) =
K

1 + sT
e−sL (1.12)

Ĝ+(s) =
1 + sT

K
(1.13)

GF (s) =
1

1 + sTf
(1.14)

Then, by a first order Pad approximation for the time delay

e−sL ≈ 1− sL/2
1 + sL/2

(1.15)
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we have the controller of the PID form

C(s) =
(1 + sL/2)(1 + sT )

Ks(L+ Tf + sTfL/2)
≈ (1 + sL/2)(1 + sT )

Ks(L+ Tf )
=
Kds

2 +Kp +Ki

s

(1.16)

Where

Kd =
LT

2K(L+ Tf )
(1.17)

Kp =
(L+ 2T )

2K(L+ Tf )
(1.18)

Ki =
1

K(L+ Tf )
(1.19)

In [24–29] different methods are presented considering IMC approach.

• Pole Placement Design

Pole placement is a controller design method, based on knowledge of the sys-

tem’s transfer function, where the objective is to determine the closed-loop

poles locations on the complex plane by setting the controller gains. It is

known that the system’s closed-loop pole locations determine the behavior of

the system. Therefore, the designer can apply this method to place the loca-

tions of the poles for a desirable behavior of the closed-loop system.

PI and PID controllers can be used for pole placement design as long as the

transfer function system is of the first or second order. For higher order sys-

tems, one way to use PI or PID controller is to approximate the system’s

transfer function by a first or second order transfer function.
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For the first order case, the system can be described by

P (s) =
K

1 + Ts
(1.20)

where K is the system’s gain and T is the time constant. Using a PI controller

C(s) = Kc

(
1 +

1

Tis

)
(1.21)

where Kc is the controller gain and Ti the integral time. The closed-loop

transfer function is

G(s) =
C(s)P (s)

1 + C(s)P (s)
(1.22)

The characteristic equation becomes of second order

δ(s) = s2 +

(
1 +KKc

T

)
s+

(
KKc

TTi

)
(1.23)

A second order characteristic equation can be represented in terms of the rel-

ative damping ζ and the natural frequency ωn as

δ(s) = s2 + 2ζωns+ ω2
n (1.24)

where the parameters ζ and ωn determine the time response of the second order

system, see [30].
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Combining (1.23) and (1.24) we have that

Kc =
2ζωnT − 1

K
(1.25)

Ti =
2ζωnT − 1

ω2
nT

(1.26)

For the second order case, the system can be described by

P (s) =
K

(1 + T1s)(1 + T2s)
(1.27)

Using a PID controller

C(s) =
Kc

(
1 + Tis+ TiTds

2
)

Tis
(1.28)

The characteristic equation becomes of third order

δ(s) = s3 +

(
1

Ti
+

1

T2
+
KKcTd
T1T2

)
s2 +

(
1

T1T2
+
KKc

T1T2

)
s+

KKc

T1T2Ti
(1.29)

A third order characteristic equation can also be represented in terms of the

relative damping ζ and the natural frequency ωn as

δ(s) = (s+ αωn)(s2 + 2ζωns+ ω2
n) (1.30)
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Combining (1.29) and (1.30) we have that

Kc =
T1T2ω

2
n(1 + 2αζ)− 1

K
(1.31)

Ti =
T1T2ω

2
n(1 + 2αζ)− 1

T1T2αω3
n

(1.32)

Td =
T1T2ωn(α + 2ζ)− T1 − T2
T1T2ω2

n(1 + 2αζ)− 1
(1.33)

• Dominant Pole Placement Design

This controller design approach follows the same idea of the previous pole

placement design. However, this method is focused on higher order systems.

The objective is to select a pair of dominant poles, which have more influence

on the behavior of the system time response, see [31].

For PI and PID controllers design for dominant pole placement, there is an

approach developed by Cohen-Coon for first order plus time delay systems as

equation (1.12), see [1] and [23]. The main design is the rejection of load dis-

turbances with a position of the dominant poles that give a quarter amplitude

decay ratio. For PID controllers, two complex dominant poles and one real are

placed to satisfy the quarter amplitude decay ratio in the time response. The

following table presents some formulas to calculate the PI and PID controller

gains.

Table 1.2: Cohen-Coon Formulas for Dominant Pole Placement Controller Design

Controller Kc Ti Td

PI 0.9
a

(
1 + 0.92τ

1−τ

)
3.3−3.0τ
1+1.2τ

L

PID 1.35
a

(
1 + 0.18τ

1−τ

)
2.5−2.0τ
1−0.39τ L

0.37−0.37τ
1−0.81τ L
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where

a =
KL

T
(1.34)

τ =
L

(L+ T )
(1.35)

In [32–36], dominant pole placement controller designs are presented for PID

controllers.

• Time domain optimization methods

In the time domain optimization methods, the controller gains are calculated

based on numerical optimization methods where an objective function is spec-

ified, see [23]. For PID controllers, an objective function is defined by the

form

J(θ) =

∫ ∞
0

t|e(θ, t)|dt (1.36)

J(θ) =

∫ ∞
0

|e(θ, t)|dt (1.37)

J(θ) =

∫ ∞
0

e(θ, t)2dt (1.38)

where θ represents a vector with the PID gains and e(θ, t) is the error signal

of the control system. The objective function in (1.36) is called Integral Time-

Weighted Absolute Error (ITAE), this function integrates the absolute error

multiplied by time as a weight. The objective function (1.37) is called Inte-

gral Absolute Error (IAE), this function integrates the absolute error without

weights. The objective function (1.38) is called Integral Square Error (ISE),

which only integrates the square error.
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The parameters of the controller are obtained after minimizing a selected ob-

jective function to obtain a better performance of the closed-loop system.

• Gain and Phase Margin Design

Gain and phase margin determine how stable is the system. These margins are

calculated from the open-loop system to determine how robust is the closed-

loop system. The gain margin is the amount of additional gain necessary to

make the system unstable and the phase margin the amount of additional phase

necessary to make the system unstable. These margins are considered classical

control designs associated with the frequency response of the system, see [30].

The gain and phase margins can be obtained from the Nyquist plot, see Fig

1.7.

Figure 1.7: Gain and Phase Margins From Nyquist Plot

where m represents the gain margin, α is the phase margin, and ωg the gain

crossover frequency. Over the time, there has been a research interest develop-

17



ing new controller design approaches to achieve certain gain and phase margin

for the closed-loop system. However, the problem to achieve an exact gain

and phase margin becomes difficult because the non-linearity and solvability

of the problem, see [15]. There is a great number of research papers with

different approaches for PI and PID to achieve certain gain and phase mar-

gins. For example, in [24, 37–48] different approaches for PI/PID controller

design considering first order or second order plus time delay processes are

presented. There are also different controller design approaches for PI and

PID trying to achieve gain and phase margin. For example, in [29, 49, 50] sur-

veys of PID controller designs are shown. In [24–29] different methods are

presented considering IMC. In [28, 29, 42, 45, 47, 51] optimization approaches

are presented. In [38, 41, 48, 52, 53] unstable processes are considered for the

design of PI/PID controllers. In [17, 26, 54, 55] controller design methods ap-

plying system identification are presented. In [38, 43, 48, 56–58] the proposed

methods apply an arctangent approximation to achieve a controller design.

In [39,46,52,53,59–62] some graphical methods are applied to find a controller

gains. In [8, 46, 54, 59, 63, 64] different methods are presented to calculate the

controller gains.

• Adaptive Control Design

In the adaptive controller design, the controller gains are continuously adjusting

on the changes in the system or the presence of some perturbations. There are

two types of adaptive control based on direct and indirect methods, see [1],

[65–68]. In the direct approach, the information from the closed-loop system

is used directly to change the controller gains. In the indirect approach, a

recursive parameter estimation is used to update the process model, see Fig

18



1.8. These types of adaptive controller techniques are widely used for PID

controllers. For example in [69–74] different approaches are presented for PID

controller design considering adaptive control techniques.

Controller
ysp

Plant y

Parameter
estimation

Controller
design

u

Specifications
Parameter estimates

Controller
parameter

Self-tuning regulator

Figure 1.8: Block Diagram of an Indirect Adaptive Controller From [1]

1.2 Dissertation Objective

The main objective of this dissertation is to present alternative approaches for

controller design of low-order classical controllers (PI, PID, and First Order con-

trollers) based on simultaneous achievement of the design specifications most often

required in applications. These are a) gain margin, b) phase margin, c) gain crossover

frequency, and d) time-delay tolerance.

Particular Objectives

• Present a Discrete-Time PI and PID controller design approach to satisfy a

desired gain margin, phase margin, gain crossover frequency, and time-delay
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tolerance simultaneously from a constructed gain and phase margin achievable

performance set. Also, provide a computational tool to analyze the stabiliz-

ing set looking for capabilities and achievable performances for a given but

arbitrary single-input and single-output systems.

• Describe a Continuous-Time First Order, PI, and PID controller design ap-

proach for delay and delay-free systems to satisfy a desired gain margin, phase

margin, gain crossover frequency, and time-delay tolerance simultaneously from

a constructed gain and phase achievable performance set. Also, provide a

computational tool to analyze the stabilizing set looking for capabilities and

achievable performances for a given but arbitrary single-input and single-output

systems.

• Introduce a new approach for the design of continuous-time controllers for Mul-

tivariable systems to satisfy a desired gain margin, phase margin, gain crossover

frequency, and time-delay tolerance.

1.3 Organization of the Dissertation

The dissertation content is as follows:

• In Section 2, a review of the computation of the stabilizing set for discrete and

continuous First-Order, PI, and PID controller cases is presented.

• In Section 3, constant magnitude and constant phase loci representation for

First Order, PI, and PID controllers for delay and delay-free discrete and con-

tinuous time systems are presented.

• In Section 4, the achievable robust performance for the controller design of
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discrete-time PI/PID, continuous-time PI/PID, and First-Order controllers are

presented for delay-free and first order plus time-delay systems is presented.

• In Section 5 the results are extended for controller design based on achievable

performance for Multivariable systems.

• In Section 6, the final conclusions, discussions, and future research are given.

1.4 References

For more information and details about the classical PID controller design tuning

approached presented in this section see [1,12,16–18]. For the modern PID controller

design tuning approaches, the reader can find more information in [1, 1, 8, 17, 21–24,

24–26,26–47,47–53,53–74].
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2. COMPUTATION OF THE STABILIZING SET

In this section, the procedure to compute the stabilizing sets for First Order, PI,

and PID controllers for a LTI system is reviewed. The derivations for the stabilizing

sets are presented in [14]. Finding the stabilizing sets for the different controller

configurations is the first step in the controller design procedure presented in the

following sections; these stabilizing sets are used to analyze and explore them to

select the controller gains that will satisfy the desired conditions, leading to a robust

performance in our system in terms of prescribed gain and phase margins.

2.1 Introduction

In control theory, the first consideration, when designing a controller for a given

system, is that the controller guarantees the stability property. For this reason, we

can find many approaches in the literature dealing with this important property of

stability. For example, in [75], an approach to compute all stabilizing PID controllers

for an arbitrary plant is presented. The result is an extension of the YJBK char-

acterization restricted to PID. In [76], a new approach for the designing of digital

PID controllers for a given LTI plant is presented. In this result, the Chebyshev

polynomials are used to represent the discrete-time transfer function and the PID

gains are obtained by solving sets of linear inequalities. In [77], a computation of the

PID controllers that stabilize a digital control systems is presented. In this result, a

bilinear transformation is used to determine the PID gains.

In [78] is shown that the PID and First Order controllers stabilizing regions can

be computed for a finite dimensional LTI plant considering the frequency response
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(Nyquist/Bode) data P (jω) for ω ∈ [0,∞) without the need of an mathematical

model. In [79] is considered the problem of stabilizing a discrete-time LTI system by

a First Order discrete-time controller. The stabilizing set of controllers is determined

using the Chebyshev representation of the characteristic equation on the unit circle.

In the following sections, a summary of the computation of the stabilizing set for

PI, and PID controllers for discrete-time and First Order, PI, and PID controllers

for continuous-time will be presented. It is assumed that there exist a controller that

stabilizes the plant for all cases.

2.2 Discrete-Time Controllers

For the case of Discrete-Time controllers, the Chebyshev polynomials of the first

and second kind will be used (see [80]). The objective is to parametrize the controller

such that the stabilizing set can be calculated by solving a set of linear inequalities.

2.2.1 PI Controllers

Consider the control system in Fig 2.1 with a LTI system with a rational and

proper plant

P (z) :=
N(z)

D(z)
(2.1)

with D(z) = n and N(z) ≤ n degrees. The PI controller is

C(z) =
K0 +K1z

z − 1
(2.2)

The procedure to compute the PI stabilizing set is the following:
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C(z) P (z)
ur e y

−

Figure 2.1: Unity Feedback Discrete-Time Control System

1. Represent the polynomials N(z) and D(z) from (2.1) as

D(ejθ) : = TD(ν) + j
√

1− ν2UD(ν) (2.3)

N(ejθ) : = TN(ν) + j
√

1− ν2UN(ν) (2.4)

where

N(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 (2.5)

D(z) = bnz
n + bn−1z

n−1 + · · ·+ b1z + b0 (2.6)

with a0, a1, · · · , an and b0, b1, · · · , bn real, evaluated on the unit circle.

TN(ν) = antn(ν) + an−1tn−1(ν) + · · ·+ a1t1(ν) + a0

UN(ν) = anun(ν) + an−1un−1(ν) + · · ·+ a1u1(ν)

TD(ν) = bntn(ν) + bn−1tn−1(ν) + · · ·+ b1t1(ν) + b0

UD(ν) = bnun(ν) + bn−1un−1(ν) + · · ·+ b1u1(ν) (2.7)

and

tk(ν) = cos kθ and uk(ν) =
sin kθ

sin θ
, k = 1, 2, 3, ..., n (2.8)
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are the Chebyshev polynomials of the first and second kind. With

ν := − cos θ and z = ejθ = −ν + j
√

1− ν2 (2.9)

The generalized Chebyshev polynomials are presented in Table 2.1. Where

uk(ν) and tk(ν) are obtained recursively as

uk(ν) = −1

k

d[tk(ν)]

dν
(2.10)

tk+1(ν) = −νtk(ν)− (1− ν2)uk(ν) (2.11)

Table 2.1: Chebyshev Polynomials of the First and Second Kind

k tk(ν) uk(ν)
1 −ν 1
2 (2ν2 − 1) −2ν
3 (−4ν3 + 3ν) (4ν2 − 1)
4 (8ν4 − 8ν2 + 1) (−8ν3 + 4ν)
5 (−16ν5 + 20ν3 − 5ν) (16ν4 − 12ν2 + 1)
...

...
...

2. Calculate the characteristic polynomial from the closed-loop system in Fig. 2.1

δ(z) = (z − 1)D(z) + (K0 +K1z)N(z). (2.12)

3. Obtain

δ(z)N(z−1) = (z − 1)D(z)N(z−1) + (K0 +K1z)N(z)N(z−1) (2.13)
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4. Use the Chebyshev representations to calculate

δ(z)N(z−1)|z=ejθ,ν=− cos θ =
(
−ν − 1 + j

√
1− ν2

)(
P1(ν) + j

√
1− ν2P2(ν)

)
+ jK1

√
1− ν2P3(ν)−K1νP3(ν) +K0P3(ν)

(2.14)

where

P1(ν) = TD(ν)TN(ν) + (1− ν2)UD(ν)UN(ν)

P2(ν) = TN(ν)UD(ν)− UN(ν)TD(ν)

P3(ν) = T 2
N(ν) + (1− ν2)U2

N(ν) (2.15)

and TN(ν), TD(ν), UN(ν), and UD(ν) are calculated as (2.7). Letting Nr(z)

denote the reverse polynomial of N(z),

δ(z)N(z−1)|z=ejθ,ν=− cos θ =
δ(z)Nr(z)

zl

∣∣∣
z=ejθ,ν=− cos θ

= T (ν,K0, K1) +
√

1− ν2U(ν,K1) (2.16)

where

T (ν,K0, K1) = −(ν + 1)P1(ν)− (1− ν2)P2(ν)− (K1ν −K0)P3(ν)

U(ν,K1) = P1(ν)− (ν + 1)P2(ν) +K1P3(ν). (2.17)

5. Fixing a specific value of K1, we can calculate the zeros of ti of U(ν,K1) which
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are real distinct of odd multiplicity for ν ∈ (−1,+1):

−1 < t1 < t2 < · · · < tk < +1. (2.18)

6. For fixed K1, calculate the set of strings, using the roots tj obtained in the

previous step, for the real part T (ν,K0, K1), for stability, using

iδ + iNr − l =
1

2
Sgn

[
U (p)(−1)

] (
Sgn[T (−1, K0, K1)]

+2
k∑
j=1

(−1)jSgn[T (tj, K0, K1)] + (−1)k+1Sgn[T (+1, K0, K1)]
)
. (2.19)

where iδ, iNr , are the number of zeros inside the unit circle for δ(z) and Nr(z),

respectively (The sum of iδ + iNr − l is the number required for stability). For

fixed K1, this leads to linear inequalities in K0.

7. Sweep over the K1 range for which a right number of real roots tk exist in

(−1, 1) for U(ν,K1) = 0.

2.2.2 PID Controllers

Consider the control system in Fig 2.1 with a LTI system with a rational and

proper plant

P (z) :=
N(z)

D(z)
(2.20)

with D(z) = n and N(z) ≤ n degrees. The PID controller is

C(z) =
K0 +K1z +K2z

2

z(z − 1)
(2.21)
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The procedure to compute the PID stabilizing set is the following:

1. Calculate the characteristic polynomial from the closed-loop system in Fig. 2.1

δ(z) = z(z − 1)D(z) + (K0 +K1z +K2z
2)N(z). (2.22)

2. Obtain

z−1δ(z)N(z−1) = (z − 1)D(z)N(z−1) + (K0z
−1 +K1 +K2z)N(z)N(z−1)

(2.23)

3. Use the Chebyshev representations to calculate

z−1δ(z)N(z−1) = −(ν + 1)P1(ν)− (1− ν2)P2(ν)− [(K0 +K2]ν −K1]P3(ν)

+ j
√

1− ν2[−(ν + 1)P2(ν) + P1(ν) + (K2 −K0)P3(ν)]

(2.24)

where

P1(ν) = TD(ν)TN(ν) + (1− ν2)UD(ν)UN(ν)

P2(ν) = TN(ν)UD(ν)− UN(ν)TD(ν)

P3(ν) = T 2
N(ν) + (1− ν2)U2

N(ν) (2.25)

and TN(ν), TD(ν), UN(ν), and UD(ν) are calculated as (2.7). Now, let K3 :=
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K2 −K0. Rewriting, we have

z−1δ(z)N(z−1) = −(ν + 1)P1(ν)− (1− ν2)P2 − [(2K2 −K3)ν)−K1]P3(ν)

+ j
√

1− ν2[−(ν + 1)P2(ν) + P1(ν) +K3P3(ν)]

= T (ν,K1, K2, K3) + j
√

1− ν2U(ν,K3). (2.26)

4. Fixing a specific value of K3, we can calculate the zeros of ti of U(ν,K3) which

are real distinct of odd multiplicity for ν ∈ (−1,+1):

−1 < t1 < t2 < · · · < tk < +1. (2.27)

5. For fixed K3, calculate the set of strings, using the roots tj obtained in the

previous step, of sign patterns for the real part T (ν,K1, K2, K3), corresponding

to stability, using

iδ + iNr − (l + 1) =
1

2
Sgn

[
U (p)(−1)

] (
Sgn[T (−1, K1, K2, K3)]

+2
k∑
j=1

(−1)jSgn[T (tj, K1, K2, K3)] + (−1)k+1Sgn[T (+1, K1, K2, K3)]
)
.

(2.28)

where iδ, iNr , are the number of zeros inside the unit circle for δ(z) and Nr(z),

respectively (The sum of iδ + iNr − l + 1 is the number required for stability).

For fixed K3, this leads to linear inequalities in (K1, K2).

6. Sweep over the K3 range for which a right number of real roots tk exist in

(−1, 1) for U(ν,K3) = 0.
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2.3 Continuous-Time Controllers

For the case of Continuous-Time controllers, an even-odd decomposition will be

used. The objective is to parametrize the controller such we can compute the stabi-

lizing set by solving a set of linear inequalities.

2.3.1 First Order Controllers

Consider the system configuration in Fig 2.2 with a linear time invariant system

P (s) :=
N(s)

D(s)
(2.29)

and a First Order controller

C(s) :=
x1s+ x2
s+ x3

(2.30)

The procedure to compute the stabilizing set is the following:

C(s) P (s)
ur e y

−

Figure 2.2: Unity Feedback Continuous-Time Control System

1. Represent the polynomials N(s) and D(s) from (2.29) in a even-odd decompo-
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sition as

N(s) : = NE(s2) + sNO(s2) (2.31)

D(s) : = DE(s2) + sDO(s2) (2.32)

where NE,DE represent the even part of N(s) and D(s) respectively. Likewise

NO,DO represent the odd part of N(s) and D(s) respectively.

2. Calculate the characteristic polynomial derived from Fig. 2.2

δ(s) =
[
s2DO(s2) + x3DE(s2) + x2NE(s2) + x1s

2NO(s2)
]

+ s
[
DE(s2) + x3DO(s2) + x2NO(s2) + x1NE(s2)

]
(2.33)

3. substitute s = jω in the characteristic equation (2.33)

δ(jω) =
[
−ω2NO(−ω2)x1 +NE(−ω2)x2 +DE(−ω2)x3 − ω2DO(−ω2)

]
+ jω

[
NE(−ω2)x1 +NO(−ω2)x2 +DO(−ω2)x3 +DE(−ω2)

]
(2.34)

4. Find the stability boundary for complex roots. This boundary is given by

setting

δ(jω) = 0, ω ∈ (0,+∞) (2.35)

and

δ(0) = 0, δn+1 = 0 (2.36)
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respectively. δn+1 denotes the leading coefficient of δ(s). At ω = 0 (2.34)

becomes

NE(0)x2 +DE(0)x3 = 0 (2.37)

and the condition δn+1 = 0 becomes

dn + x1nn = 0 (2.38)

where dn, nn are the coefficients of sn in D(s) and N(s) respectively. For a

fixed value of x3 and ω > 0 to ∞, we have the curve in the (x1, x2) plane that

represents the stability boundary for the complex roots. The curves are given

by

x1(ω) =
1

|A(ω)|
(
[
NO(−ω2)DE(−ω2)−NE(−ω2)DO(−ω2)

]
x3

− ω2NO(−ω2)DO(−ω2)−NE(−ω2)DE(−ω2)) (2.39)

x2(ω) =
1

|A(ω)|
(
[
−NE(−ω2)DE(−ω2)− ω2NO(−ω2)DO(−ω2)

]
x3

+ ω2NE(−ω2)DO(−ω2)− ω2NO(−ω2)DE(−ω2)) (2.40)

where

|A(ω)| = ω2N2
O(−ω2) +N2

E(−ω2) (2.41)

The equations (2.37), (2.38), (2.39), and (2.40) forms different regions for fixed

x3, as ω runs from 0 to +∞. Each region corresponds to a set of characteristic
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polynomials with a fixed number of RHP roots.

5. For a fixed x3, pick a point inside every region and calculate the roots of the

characteristic equation. Select the regions with no RHP roots. By Sweeping

over x3, it is possible to see the stability region in three dimensions for a given

plant, if one exists.

2.3.2 PI Controllers

Lets consider the system configuration in Fig 2.2 with a linear time invariant

system

P (s) :=
N(s)

D(s)
(2.42)

and a PI controller of the form

C(s) =
KP s+KI

s
(2.43)

The procedure to compute the stabilizing set is the following:

1. Calculate the characteristic equation derived from Fig 2.2

δ(s) = sD(s) + (KP s+KI)N(s) (2.44)

2. form the new polynomial

v(s) := δ(s)N(−s) (2.45)
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3. Represent the polynomials v(s) from (2.45) in a even-odd decomposition as

v(s) = veven(s2, KI) + svodd(s
2, KP ) (2.46)

4. Fix KP = K∗P and let 0 < ω1 < ω2 < · · · < ωl−1 be finite frequencies that are

real and positive which also are roots of

vodd(−ω2, KP ) = 0 (2.47)

of odd multiplicities. Lets consider ω0 := 0 and ωl :=∞.

5. Let

j = sgn[vodd(0
+, KP )] (2.48)

Let deg[D(s)] = n, deg[N(s)] = m ≤ n, and let z+ and z− be the number of

zeros in the right half plane and left half plane of the plant, respectively. That

is, zeros of N(s). Let i0, i1, · · · equal to ±1 denote integers such that:

if n+m is even, the signature is:

j(i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1 + (−1)lil) = n−m+ 1 + 2z+ (2.49)

if n+m is odd, the signature is:

j(i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1) = n−m+ 1 + 2z+ (2.50)

6. Let I1, I2, I3, · · · be the distinct strings of i0, i1, · · · that satisfy the signature

condition (even or odd part expression). The stabilizing sets in the space of
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(KP , KI) , for a fixed KP = K∗P can be computed by solving the set of linear

inequalities

veven(−ω2
t , KI)it > 0 (2.51)

where it range over for each of I1, I2, · · ·

7. For every string Ij, it creates a stability region that is convex Sj(K
∗
P ) and, for

a specific value of K∗P , the total stabilizing region is the union of these convex

sets

S(K∗P ) = ∪jSj(K∗P ) (2.52)

8. All the stabilizing regions, in the space of controller gains (KP , KI), can be

computed by sweeping KP over the real axis and following the steps above.

2.3.3 PID Controllers

Lets consider the system configuration in Fig 2.2 with a linear time invariant

system

P (s) :=
N(s)

D(s)
(2.53)

and a PID controller

C(s) =
KDs

2 +KP s+KI

s
(2.54)

The procedure to compute the stabilizing set is the following:

35



1. Calculate the characteristic equation derived from Fig 2.2

δ(s) = sD(s) + (KDs
2 +KP s+KI)N(s) (2.55)

2. form the new polynomial

v(s) := δ(s)N(−s) (2.56)

3. Represent the polynomials v(s) from (2.45) in a even-odd decomposition as

v(s) = veven(s2, KI , KD) + svodd(s
2, KP ) (2.57)

4. Fix KP = K∗P and let 0 < ω1 < ω2 < · · · < ωl−1 be finite frequencies that are

real and positive which also are roots of

vodd(−ω2, KP ) = 0 (2.58)

of odd multiplicities. Lets consider ω0 := 0 and ωl :=∞.

5. Write

j = sgn[vodd(0
+, KP )] (2.59)

Let deg[D(s)] = n, deg[N(s)] = m ≤ n, and let z+ and z− be the number of

zeros in the right half plane and left half plane of the plant, respectively. that

is, zeros of N(s). Let i0, i1, · · · equal to ±1 denote integers such that:
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if n+m is even, the signature is:

j(i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1 + (−1)lil) = n−m+ 1 + 2z+ (2.60)

if n+m is odd, the signature is:

j(i0 − 2i1 + 2i2 + · · ·+ (−1)l−12il−1) = n−m+ 1 + 2z+ (2.61)

6. Let I1, I2, I3, · · · be different strings of i0, i1, · · · that satisfy the signature

condition (even or odd part expression). Then the stabilizing region in the

controller gains space (KP , KI , KD), for a specific value of KP = K∗P can be

computed by solving the set of linear inequalities

veven(−ω2
t , KI , KD)it > 0 (2.62)

where it range over for each of I1, I2, · · ·

7. For every string Ij, it creates a stability region that is convex Sj(K
∗
P ) and, for

a specific value of K∗P , the total stabilizing region is the union of these convex

sets

S(K∗P ) = ∪jSj(K∗P ) (2.63)

8. All stabilizing regions, in the space of controller gains (KP , KI , KD), can be

computed by sweeping KP over the real axis and following the steps above.
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2.4 Time-Delay Case

In this section, the computation of the stabilizing set for Time-Delay systems is

presented. The description of the procedures includes continuous-time PI and PID

controllers for stable and unstable First Order Systems Plus Time-Delay (FOPTD).

The results presented in this section are summarized from [14], [81], and [82].

In real world applications, many processes can be modeled or approximated as

FOPTD. Typically, time-delay systems have the characteristic equation

δ(s) = d(s) + e−L1sn1(s) + e−L2sn2(s) + · · ·+ e−Lmsnm(s) (2.64)

These type of polynomials are called quasipolynomials. In the computation of the

stabilizing set for time-delay systems, it will be considered the following characteristic

equation

δ∗(s) = eLsδ(s, L) = eLmsd(s) + eLm−L1sn1(s) + eLm−L2sn2(s) + · · ·+ nm(s) (2.65)

For stability, two conditions must be satisfied. Given δ∗(s), we can write

δ∗(jω) = δr(ω) + jδi(ω) (2.66)

where δr(ω) and δi(ω) represent the real and imaginary part of δ∗(jω) respectively.

δ∗(jω) is stable if and only if

• δr(ω) and δi(ω) have only roots that are simple, real and that interlace.

• δ
′
i(ω0)δr(ω0)− δi(ω0)δ

′
r(ω0) > 0, for some ω0 ∈ (−∞,+∞)

where δ
′
r and δ

′
i denote the first derivative of δr(ω) and δi(ω) respectively.
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2.4.1 PI Controllers

Lets consider the system configuration in Fig 2.2 with a linear time invariant

system

P (s) :=
k

1 + Ts
e−Ls (2.67)

and a PI controller

C(s) =
KP s+KI

s
(2.68)

where k is the steady-state gain, L is the time-delay, and T is the time constant.

2.4.1.1 Stable First Order Systems

For stable First Order systems, the considerations are T > 0, k > 0, and L > 0.

The procedure to compute the stabilizing set is the following:

1. For L = 0, calculate the characteristic equation

δ(s) = Ts2 + (kKP + 1)s+ kKI (2.69)

For stability, it is required

KP > −
1

k
, KI > 0 (2.70)

2. For L > 0, calculate the characteristic equation

δ(s) = (kKI + kKP )e−Ls + (1 + Ts)s (2.71)
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Considering δ∗(s) = eLsδ(s) we have

δ∗(s) = (kKI + kKP s) + (1 + Ts)seLs (2.72)

3. Calculate

δ∗(jω) = δr(ω) + jδi(jω) (2.73)

where

δr(ω) = kKI − ω sin(Lω)− Tω2 cos(Lω) (2.74)

δi(ω) = ω
[
kKP + cos(Lω)− Tω sin(Lω)

]
(2.75)

4. Make a change in variable z = Lω and calculate the new real and imaginary

parts of δ∗(jω)

δr(z) = k
[
KI − a(z)

]
(2.76)

δi(z) =
z

L

[
kKP + cos(z)− T

L
z sin(z)

]
(2.77)

where

a(z) =
z

kL

[
sin(z) +

T

L
z cos(z)

]
(2.78)

5. Pick a value for KP and set j = 1 in the range

−1

k
< KP <

T

kL

√
α2
1 +

L2

T 2
(2.79)
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where α1 is the solution of

tan(α) = −T
L
α (2.80)

in the interval (π
2
, π).

6. Find the root zj from

[
kKP + cos(z)− T

L
z sin(z)

]
= 0 (2.81)

that is part of δi(z). The roots can be found graphically for the following cases:

• − 1
k
< KP < 1

k
: in this case, take the intersection of the functions

kKP+cos(z)
sin(z)

and T
L
z.

• KP = 1
k
: in this case, take the intersection of the functions kKP + cos(z)

and T
L
z sin(z).

• 1
k
< KP <

T
kL

√
α2
1 + L2

T 2 , in this case take the intersection of the functions

kKP+cos(z)
sin(z)

and T
L
z.

7. Compute the parameters aj(zj) using (2.78).

8. If cos(zj) > 0 go to the next step. If not, j = j + 2 and go to step 6.

9. Determine the lower and upper bounds for KI as

0 < KI < min
l=1,3,5,...j

{al} (2.82)

10. Go to step 5.
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2.4.1.2 Unstable First Order Systems

For unstable First Order systems, the considerations are T < 0, k > 0, and L > 0.

The procedure to compute the stabilizing set is the following:

1. For L = 0, calculate the characteristic equation

δ(s) = Ts2 + (kKP + 1)s+ kKI (2.83)

For stability, it is required

KP < −
1

k
, KI < 0 (2.84)

2. For L > 0, calculate the characteristic equation

δ(s) = (kKI + kKP )e−Ls + (1 + Ts)s (2.85)

Considering δ∗(s) = eLsδ(s) we have

δ∗(s) = (kKI + kKP s) + (1 + Ts)seLs (2.86)

3. Calculate

δ∗(jω) = δr(ω) + jδi(jω) (2.87)

42



where

δr(ω) = kKI − ω sin(Lω)− Tω2 cos(Lω) (2.88)

δi(ω) = ω
[
kKP + cos(Lω)− Tω sin(Lω)

]
(2.89)

4. Make a change in variable z = Lω and calculate the new real and imaginary

parts of δ∗(jω)

δr(z) = k
[
KI − a(z)

]
(2.90)

δi(z) =
z

L

[
kKP + cos(z)− T

L
z sin(z)

]
(2.91)

where

a(z) =
z

kL

[
sin(z) +

T

L
z cos(z)

]
(2.92)

5. Pick a value for KP and set j = 1 in the range

T

kL

√
α2
1 +

L2

T 2
< KP < −

1

k
(2.93)

where α1 is the solution of

tan(α) = −T
L
α (2.94)

in the interval (0, π
2
).
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6. Find the root zj from

[
kKP + cos(z)− T

L
z sin(z)

]
= 0 (2.95)

that is part of δi(z). The roots can be found graphically for the following cases:

• 1
k
< KP < − 1

k
: in this case, take the intersection of the functions

kKP+cos(z)
sin(z)

and T
L
z.

• KP = 1
k
: in this case, take the intersection of the functions kKP + cos(z)

and T
L
z sin(z).

• T
kL

√
α2
1 + L2

T 2 < KP <
1
k
, in this case take the intersection of the functions

kKP+cos(z)
sin(z)

and T
L
z.

7. Compute the parameters aj(zj) using (2.92).

8. If cos(zj) > 0 go to the next step. If not, j = j + 2 and go to step 6.

9. Determine the lower and upper bounds for KI as

max
l=1,3,5,...j

{al} < KI < 0 (2.96)

10. Go to step 5.

2.4.2 PID Controllers

Lets consider the system configuration in Fig 2.2 with a linear time invariant

system

P (s) :=
k

1 + Ts
e−Ls (2.97)
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and a PID controller of the form

C(s) =
KDs

2 +KP s+KI

s
(2.98)

where k is the steady-state gain, L is the time-delay, and T is the time constant.

2.4.2.1 Stable First Order Systems

For stable First Order systems, the considerations are T > 0, k > 0, and L > 0.

The procedure to compute the stabilizing set is the following:

1. For L = 0, calculate the characteristic equation

δ(s) = (T + kKD)s2 + (kKP + 1)s+ kKI (2.99)

For stability, it is required

KP > −
1

k
, KI > 0 , andKD > −T

k
(2.100)

2. For L > 0, calculate the characteristic equation

δ(s) = (kKI + kKP s+ kKDs
2)e−Ls + (1 + Ts)s (2.101)

Considering δ∗(s) = eLsδ(s) we have

δ∗(s) = (kKI + kKP s+ kKDs
2) + (1 + Ts)seLs (2.102)
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3. Calculate

δ∗(jω) = δr(ω) + jδi(jω) (2.103)

where

δr(ω) = kKI − kKDω
2 − ω sin(Lω)− Tω2 cos(Lω) (2.104)

δi(ω) = ω
[
kKP + cos(Lω)− Tω sin(Lω)

]
(2.105)

4. Make a change in variable z = Lω and calculate the new real and imaginary

parts of δ∗(jω)

δr(z) = kKI −
kKD

L2
z2 − 1

L
z sin(z)− T

L2
z2cos(z) (2.106)

δi(z) =
z

L

[
kKP + cos(z)− T

L
z sin(z)

]
(2.107)

5. Pick a value for KP in the range

−1

k
< KP <

1

k

[
T

L
α1 sin(α1)− cos(α1)

]
(2.108)

where α1 is solved from

tan(α) = − T

T + L
α (2.109)

in the interval (0, π).
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6. Find the roots z1 and z2 from

[
kKP + cos(z)− T

L
z sin(z)

]
= 0 (2.110)

that is part of δi(z). The roots can be found graphically for the following cases:

• − 1
k
< KP < 1

k
: in this case, take the intersection of the functions

kKP+cos(z)
sin(z)

and T
L
z.

• KP = 1
k
: in this case, take the intersection of the functions kKP + cos(z)

and T
L
z sin(z).

• 1
k
< KP <

T
kL

[
T
L
α1 sin(α1)− cos(α1)

]
, in this case take the intersection of

the functions kKP+cos(z)
sin(z)

and T
L
z.

7. Compute the parameters mj(zj) and bj(zj) for j = 1, 2 where

m(z) =
L2

z2
(2.111)

b(z) = − L

kz

[
sin(z) +

T

L
z cos(z)

]
(2.112)

8. Calculate the (KI , KD) stabilizing set using Fig. 2.3

9. Go to step 5.

2.4.2.2 Unstable First Order Systems

For unstable First Order systems, the considerations are T < 0, k > 0, and L > 0.

The procedure to compute the stabilizing set is the following:
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]

1. For L = 0, calculate the characteristic equation

δ(s) = (T + kKD)s2 + (kKP + 1)s+ kKI (2.113)

For stability, it is required

KP < −
1

k
, KI < 0 , andKD < −T

k
(2.114)

2. For L > 0, calculate the characteristic equation

δ(s) = (kKI + kKP s+ kKDs
2)e−Ls + (1 + Ts)s (2.115)

48



Considering δ∗(s) = eLsδ(s) we have

δ∗(s) = (kKI + kKP s+ kKDs
2) + (1 + Ts)seLs (2.116)

3. Calculate

δ∗(jω) = δr(ω) + jδi(jω) (2.117)

where

δr(ω) = kKI − kKDω
2 − ω sin(Lω)− Tω2 cos(Lω) (2.118)

δi(ω) = ω
[
kKP + cos(Lω)− Tω sin(Lω)

]
(2.119)

4. Make a change in variable z = Lω and calculate the new real and imaginary

parts of δ∗(jω)

δr(z) = kKI −
kKD

L2
z2 − 1

L
z sin(z)− T

L2
z2cos(z) (2.120)

δi(z) =
z

L

[
kKP + cos(z)− T

L
z sin(z)

]
(2.121)

5. For
∣∣T
L

∣∣ > 0.5, pick a value for KP in the range

1

k

[
T

L
α1 sin(α1)− cos(α1)

]
< KP < −

1

k
(2.122)

where α1 is solved from

tan(α) = − T

T + L
α (2.123)
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in the (0, π) interval. For the case
∣∣T
L

∣∣ = 1, α1 = π
2
.

6. Find the roots z1 and z2 from

[
kKP + cos(z)− T

L
z sin(z)

]
= 0 (2.124)

that is part of δi(z). The roots can be found graphically for the following cases:

• 1
k
< KP < − 1

k
: in this case, take the intersection of the functions

kKP+cos(z)
sin(z)

and T
L
z.

• KP = 1
k
: in this case, take the intersection of the functions kKP + cos(z)

and T
L
z sin(z).

• T
kL

[
T
L
α1 sin(α1)− cos(α1)

]
< KP <

1
k
, in this case take the intersection of

the functions kKP+cos(z)
sin(z)

and T
L
z.

7. Compute the parameters mj(zj) and bj(zj) for j = 1, 2 where

m(z) =
L2

z2
(2.125)

b(z) = − L

kz

[
sin(z) +

T

L
z cos(z)

]
(2.126)

8. Calculate the (KI , KD) stabilizing set using Fig. 2.4

9. Go to step 5.

2.5 References

The procedures presented in this section are summarized from [14]. Also, more

information about these results is available in [78, 79] for the First Order controller
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case, in [76] for the discrete-time PI/PID controller case, in [78] for continuous-time

PI/PID controller case, and in [81,82] for the time-delay case.
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3. FIRST ORDER, PI, AND PID CONTROLLERS CONSTANT GAIN AND

CONSTANT PHASE LOCI∗

3.1 Introduction

In this section, a parametrization for the First Order, PI, and PID controllers for

discrete and continuous-time systems is presented. This parametrization produces

ellipses and straight lines (for First Order and PI cases) and cylinder and plane

(for PID case) that will be used to find the intersection points, given a prescribed

crossover frequency, gain, and phase margins, that are contained in the stabilizing

set and that will satisfy our desired robust performance in terms of a specific gain

and phase margin.

∗Part of this section is reprinted with permission from: ©2015 IEEE I. D. Dı́az-Rodŕıguez
and S. P. Bhattacharyya, ”Modern design of classical controllers: Digital PI controllers,” 2015
IEEE International Conference on Industrial Technology (ICIT), Seville, 2015, pp. 2112-2119. doi:
10.1109/ICIT.2015.7125408.
∗Part of this section is reprinted with permission from: ©2015 IEEE I. D. Dı́az-Rodŕıguez, V. A.

Oliveira and S. P. Bhattacharyya, ”Modern design of classical controllers: Digital PID controllers,”
2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Buzios, 2015, pp. 1010-
1015. doi: 10.1109/ISIE.2015.7281610.
∗Part of this section is reprinted with permission from: ©2015 IEEE I. D. Dı́az-Rodŕıguez,

”Modern design of classical controllers: Continuous-time first order controllers,” IECON 2015 -
41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, 2015, pp. 000070-
000075. doi: 10.1109/IECON.2015.7392967.
∗Part of this section is reprinted with permission from: ©2016 IEEE I. D. Dı́az-Rodŕıguez

and S. P. Bhattacharyya, ”PI controller design in the achievable gain-phase margin plane,” 2016
IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, 2016, pp. 4919-4924. doi:
10.1109/CDC.2016.7799021.
∗Part of this section is reprinted with permission from: ©2017 Elsevier I. D. Dıaz-Rodrıguez, S. 

Han, L. H. Keel, and S. P. Bhattacharyya, ”Advanced Tuning for Ziegler-Nichols Plants,” The 20th 
World Congress of the International Federation of Automatic Control (IFAC), 9-14 July, Toulouse, 
France, 2017. (Accepted for publication)
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3.2 Constant Gain and Constant Phase Loci for Discrete-Time Controllers

For discrete-time controllers, it is possible to parametrize the controller parame-

ters in a geometric form. For the cases of PI, and PID digital controllers, the constant

gain and constant phase loci result in ellipses and straight lines.

3.2.1 PI Controllers

Let P (z) and C(z) denote the plant and controller transfer functions. The fre-

quency response of the plant and controller are P (ejωT ), C(ejωT ) respectively where

T is the sampling period and ω ∈
[
0, 2π

T

]
. For a PI controller

C(z) =
K0 +K1z

z − 1
(3.1)

where K0, K1 are design parameters. Then

C(ejωT ) =
K0 +K1e

jωT

ejωT − 1
(3.2)

Letting ωT =: θ

C(ejθ) =
K0 +K1e

jθ

ejθ − 1
(3.3)

Note that,

C(ejθ) =
K0e

−j θ
2 +K1e

j θ
2

ej
θ
2 − e−j θ2

=
(K1 +K0) cos θ

2
+ j(K1 −K0) sin θ

2

2j sin θ
2

(3.4)
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Let

L0 := K1 +K0 (3.5)

L1 := K1 −K0 (3.6)

From (3.4), (3.5), and (3.6) we have

|C(ejθ)|2 =
L2
0

4 tan2 θ
2

+
L2
1

4
=: M2 (3.7)

6 C(ejθ) = arctan

(
−L0

L1 tan θ
2

)
=: Φ (3.8)

Equations (3.7) and (3.8) can be written as

L2
0

a2
+
L2
1

b2
= 1 (3.9)

L1 = cL0 (3.10)

where

a2 = 4M2 tan2 θ

2
(3.11)

b2 = 4M2 (3.12)

c = − 1

tan Φ tan θ
2

(3.13)

Thus constant M loci are ellipses and constant phase loci are straight lines in L0,

L1 space. The major and minor axes of the ellipse are given by (3.11), (3.12) and c

represents the slope of the line. The mapping from K0, K1 to L0, L1 and viceversa
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is given by

K0 =
L0 − L1

2
(3.14)

K1 =
L0 + L1

2
(3.15)

Suppose ωg is the prescribed closed-loop gain crossover frequency. Then Mg :=

1
|P (ejθg )| and if φ∗g is the desired phase margin in radians, Φg := π+φ∗g− 6 P (ejθg). From

(3.9) and (3.10) we obtain the ellipse and straight lines corresponding to M = Mg

and Φ = Φg, giving the design point (K∗P , K∗I ). If these intersection points lie in the

stabilizing set S, the design is feasible, otherwise the specifications have to be altered.

3.2.2 PID Controllers

Let P (z) and C(z) denote the plant and controller transfer functions. The fre-

quency response of the plant and controller are P (ejωT ), C(ejωT ) respectively where

T is the sampling period and ω ∈
[
0, 2π

T

]
. For a PID controller

C(z) =
K0 +K1z +K2z

2

z(z − 1)
(3.16)

where K0, K1, and K2 are design parameters. Then, letting ωT =: θ

C(ejθ) =
K0e

−jθ +K1 +K2e
jθ

ejθ − 1
(3.17)

Note that,

C(ejθ) =
(K2 +K0) cos θ +K1 + j(K2 −K0) sin θ

(cos θ − 1 + j sin θ)
(3.18)
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Let

L0 := K2 +K0, L1 := K2 −K0 (3.19)

From (3.18) and (3.19) we have

|C(ejθ)|2 =
cos2 θ

(
L0 + K1

cos θ

)2
+ sin2 θL2

1

(cos θ − 1)2 + (sin θ)2
=

(
L0 + K1

cos θ

)2
( √

µ

cos θ

)2 +
L2
1( √
µ

sin θ

)2 =: M2 (3.20)

where µ = (cos θ − 1)2 + (sin θ)2 and

6 C(ejθ) = tan−1
(

L1 sin θ

K1 + L0 cos θ

)
− tan−1

(
sin θ

cos θ − 1

)
(3.21)

Using the relationships among the inverse trigonometric functions

tan−1 u− tan−1 v = tan−1
(
u− v
1 + uv

)
(3.22)

we have

6 C(ejθ) = tan−1

(
sin θ

(
L1(cos θ − 1)− (L0 cos θ +K1)

)
(L0 cos θ +K1)(cos θ − 1) + L1 sin2 θ

)
=: Φ. (3.23)

Equations (3.20) and (3.23) can be written as

(L0 + a)2

b2
+
L2
1

c2
= 1, L1 = dL0 + e (3.24)
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where

a =
K1

cos θ
, b2 =

µM2

cos2 θ
, c2 =

µM2

sin2 θ
(3.25)

d =
sin θ cos θ + cos θ tan Φ(cos θ − 1)

sin θ(cos θ − 1)− sin2 θ tan Φ
(3.26)

e =
K1(cos θ − 1) tan Φ + sin θ

sin θ(cos θ − 1)− sin2 θ tan Φ
(3.27)

for fixed K1. Thus constant M loci are ellipses and constant phase loci are straight

lines in L0, L1 space. The major and minor axes of the ellipse are given by the

square root of b and c. The slope of the line is represented by d and e determines

the point at which the line crosses the L1 axis. The mapping from K0, K2 to L0, L1

and viceversa is given by

K0 =
L0 − L1

2
, K2 =

L0 + L1

2
(3.28)

Suppose ωg is the prescribed closed-loop gain crossover frequency. Then Mg :=

1
|P (ejθg )| and if φ∗g is the desired phase margin in radians, Φg := π + φ∗g − 6 P (ejθg).

From (3.24) we obtain the ellipse and straight lines corresponding to M = Mg and

Φ = Φg, giving the design point (K∗P , K∗I , K
∗
D). If these intersection points lie in the

stabilizing set S, the design is feasible, otherwise the specifications have to be altered.

3.3 Constant Gain and Constant Phase Loci for Continuous-Time Controllers

For continuous-time controllers, it is possible to parametrize the controller pa-

rameters in a geometric form. For the cases of First Order, PI, the constant gain

and phase loci result in ellipses and straight lines. For the case of PID controllers,

the constant gain and constant phase loci result in a cylinder and a plane.

57



3.3.1 First Order Controllers

Let P (s) and C(s) denote the plant and controller transfer functions. The fre-

quency response of the plant and controller are P (jω), C(jω) respectively. For the

First Order controller

C(s) =
x1s+ x2
s+ x3

(3.29)

where x1, x2, and x3 are design parameters. Then taking s = jω

C(jω) =

(
x1(jω) + x2
jω + x3

)(
x3 − jω
x3 − jω

)
=

(x1ω
2 + x2x3) + jω(x1x3 − x2)

x23 + ω2
(3.30)

Let

L0 := x1ω
2 + x2x3, L1 := x1x3 − x2 (3.31)

From (3.30) and (3.31) we have

|C(jω)|2 =
L2
0

(x23 + ω2)2
+

L2
1(

x23+ω
2

ω

)2 =: M2 (3.32)

and

6 C(jω) = arctan

(
ωL1

L0

)
=: Φ (3.33)
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Equations (3.32) and (3.33) can be written as

L2
0

a2
+
L2
1

b2
= 1, (3.34)

L1 = cL0 (3.35)

where

a2 = M2(x23 + ω2)2, (3.36)

b2 =
M2

ω
(x23 + ω2)2, (3.37)

c =
tan Φ

ω
(3.38)

Thus, for a fixed x3, constant M loci are ellipses and constant phase loci are straight

lines in L0, L1 space. The major and minor axes of the ellipse are given by the square

root of a and b. The slope of the line is represented by c. The mapping from x1, x2

to L0, L1 and vice versa is given by

x1 =
L0 + L1x3
x23 + ω2

, x2 =
L0x3 − ω2L1

x23 + ω2
(3.39)

Suppose ωg is the prescribed closed-loop gain crossover frequency. Then Mg :=

1
|P (jωg)| and if φ∗g is the desired phase margin in radians, Φg := π+φ∗g− 6 P (jωg). From

(3.34) and (3.35) we obtain the ellipse and straight lines corresponding to M = Mg

and Φ = Φg, giving the design point (x∗1, x
∗
2, x
∗
3). If these intersection points lie in the

stabilizing set S, the design is feasible, otherwise the specifications have to be altered.
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3.3.2 PI Controllers

Let P (s) and C(s) denote the plant and controller transfer functions. The fre-

quency response of the plant and controller are P (jω), C(jω) respectively where

ω ∈ [0,∞]. For a PI controller

C(s) =
KP s+KI

s
(3.40)

where KP KI are design parameters. Then taking s = jω

C(jω) =
KP (jω) +KI

jω
(3.41)

Then, we have

|C(jω)|2 = K2
P +

K2
I

ω2
=: M2 (3.42)

and

6 C(jω) = arctan

(
−KI

ωKP

)
:= Φ (3.43)

Equations (3.42) and (3.43) can be written as

(KP )2

a2
+

(KI)
2

b2
= 1 (3.44)

KI = cKP (3.45)
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where

a2 = M2 (3.46)

b2 = M2ω2 (3.47)

c = −ω tan Φ (3.48)

Thus constant M loci are ellipses and constant phase loci are straight lines in KP , KI

space. The major and minor axes of the ellipse are given by the square roots of (3.46)

and (3.47) (see Fig 3.1). The slope of the line is represented by c (see Fig 3.1). Sup-

pose ωg is the prescribed closed-loop gain crossover frequency. Then Mg := 1
|P (jωg)|

and if φ∗g is the desired phase margin in radians, Φg := π + φ∗g − 6 P (jωg). From

(3.42) and (3.43) we obtain the ellipse and straight lines corresponding to M = Mg

and Φ = Φg, giving the design point (K∗P , K∗I ). If these intersection points lie in the

stabilizing set S, the design is feasible, otherwise the specifications have to be altered.

K
I

K
P

Intersection contained 

in the stabilizing set

Stabilizing set

Figure 3.1: Ellipse and Straight Line Intersecting With a Stabilizing Set
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3.3.3 PID Controllers

Let P (s) and C(s) denote the plant and controller transfer functions. The fre-

quency response of the plant and controller are P (jω), C(jω) respectively where

ω ∈ [0,∞]. For a PID controller

C(s) =
KDs

2 +KP s+KI

s
, (3.49)

where KP , KI , and KD are design parameters. Then for s = jω

C(jω) =
KD(jω)2 +KP (jω) +KI

jω
(3.50)

From (3.50), we have

|C(jω)|2 = K2
P +

(
KDω −

KI

ω

)2

:= M2 (3.51)

and

6 C(jω) = arctan

(
KDω − KI

ω

KP

)
:= Φ (3.52)

from (3.51) and (3.52) we have that

K2
P = M2 −

(
KDω −

KI

ω

)2

=

(
KDω − KI

ω

)2
tan2 Φ

. (3.53)
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From (3.53) we can have the following expressions

KI = KDω
2 ± ω

√
M2 tan2 Φ

1 + tan2 Φ
(3.54)

KP = ±
√

M2

1 + tan2 Φ
(3.55)

Suppose ωg is the prescribed closed-loop gain crossover frequency. Then Mg =

1
|P (jωg)| . If φ∗g is the desired phase margin in radians, Φg = π + φ∗g − 6 P (jωg).

Thus, for equation (3.51) and (3.52), for different values of KP , KI , and KD we have

a cylinder and a plane (see Fig 3.2). For a fixed value of KP there is a straight line

in (KI , KD) plane represented in equation (3.55).

Figure 3.2: Cylinder and Plane Intersecting in the (KP , KI , KD) Space
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3.4 Constant Gain and Constant Phase Loci for Continuous-Time Systems With

Time-Delay

For continuous-time systems with time-delay, it is possible to parametrize the

controller parameters in a geometric form. For the cases of PI and PID controllers,

the constant gain and phase loci result in ellipses and straight lines.

3.4.1 PI Controllers

Let G(s) and C(s) denote the plant and controller transfer functions. In this case,

the plant includes a time-delay, tha is G(s) = e−LsP (s), where L > 0 is the time-

delay. The frequency response of the plant and controller are e−LjωP (jω), C(jω)

respectively where ω ∈ [0,∞]. For a PI controller

C(s) =
KP s+KI

s
(3.56)

where KP and KI are design parameters. Then taking s = jω

C(jω) =
KP (jω) +KI

jω
(3.57)

Then, we have

|C(jω)|2 = K2
P +

K2
I

ω2
=: M2 (3.58)

and

6 C(jω) = arctan

(
−KI

ωKP

)
:= Φ (3.59)

64



Equations (3.58) and (3.59) can be written as

(KP )2

a2
+

(KI)
2

b2
= 1 (3.60)

KI = cKP (3.61)

where

a2 = M2 (3.62)

b2 = M2ω2 (3.63)

c = −ω tan Φ (3.64)

Thus constant M loci are ellipses and constant phase loci are straight lines in KP ,

KI space. The major and minor axes of the ellipse are given by the square roots of

(3.62) and (3.63). The slope of the line is represented by c.

Suppose ωg is the prescribed closed-loop gain crossover frequency. Then

Mg :=
1

|G(ejωg)|
=

1

|e−Ljω||P (jω)|
(3.65)

and by the identity

|e−x| = | cosx− j sinx| and cos2 x+ sin2 x = 1 (3.66)

Then, (3.65) becomes

Mg :=
1

|P (jω)|
(3.67)
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and if φ∗g is the desired phase margin in radians,

Φg := π + φ∗g − 6 G(ejωg). (3.68)

In this case, we have that

6 G(ejωg) = 6
[
e−jLωP (ejωg)

]
= −Lω + 6 P (jω) (3.69)

Then (3.68) becomes

Φg := π + φ∗g + Lω − 6 P (jω) (3.70)

From (3.60) and (3.61) we obtain the ellipse and straight lines corresponding to

M = Mg and Φ = Φg, giving the design point (K∗P , K∗I ). If these intersection points

lie in the stabilizing set S, the design is feasible, otherwise the specifications have to

be altered.

3.4.2 PID Controllers

Let G(s) and C(s) denote the plant and controller transfer functions. In this case,

the plant includes a time-delay, tha is G(s) = e−LsP (s), where L > 0 is the time-

delay. The frequency response of the plant and controller are e−LjωP (jω), C(jω)

respectively where ω ∈ [0,∞]. For a PID controller

C(s) =
KDs

2 +KP s+KI

s
, (3.71)
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where KP , KI , and KD are design parameters. Then for s = jω

C(jω) =
KD(jω)2 +KP (jω) +KI

jω
(3.72)

From (3.72), we have

|C(jω)|2 = K2
P +

(
KDω −

KI

ω

)2

:= M2 (3.73)

and

6 C(jω) = arctan

(
KDω − KI

ω

KP

)
:= Φ (3.74)

from (3.73) and (3.74) we have that

K2
P = M2 −

(
KDω −

KI

ω

)2

=

(
KDω − KI

ω

)2
tan2 Φ

. (3.75)

From (3.75) we can have the following expressions

KI = KDω
2 ± ω

√
M2 tan2 Φ

1 + tan2 Φ
(3.76)

KP = ±
√

M2

1 + tan2 Φ
(3.77)

Suppose ωg is the prescribed closed-loop gain crossover frequency. Then

Mg :=
1

|G(ejωg)|
=

1

|e−Ljω||P (jω)|
(3.78)
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and by the identity (3.66), (3.78) becomes

Mg :=
1

|P (jω)|
(3.79)

If φ∗g is the desired phase margin in radians,

Φg = π + φ∗g − 6 G(jωg) (3.80)

and by (3.69), (3.80) becomes

Φg := π + φ∗g + Lω − 6 P (jω) (3.81)

Thus, for equation (3.76) is a straight line in (KI , KD) plane for a constant value of

KP represented in equation (3.77).

3.5 References

Part of the content of this section have been published in [2,3,5,6,83]. The results

presented in this section have been implemented in a MATLAB code to graphically

show the ellipses and straight lines for the case of First-Order and PI controllers

and to show cylinder and plane for PID controllers. These plots and the stabilizing

set will be used in the next sections to find a controller that will satisfy our design

conditions.
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4. ACHIEVABLE ROBUST PERFORMANCE FOR FIRST ORDER, PI, AND

PID CONTROLLER DESIGN∗

4.1 Introduction

In this section, the following is presented. First, the construction steps of the

gain-phase margin achievable performance for First-Order, PI, and PID controllers

in continuous and discrete-time systems is presented. Second, the procedure to select

a simultaneous gain margin, phase margin, and gain crossover frequency specification

is shown. Also, the controller design methodology to follow when designing a PI or

PID controller achieving a desired gain-phase margin specification. Finally, different

examples and a power electronics application are presented to illustrate the main

results.

4.2 Construction of the Gain-Phase Margin Design Curves

The gain-phase margin design curves represent the actual achievable performance,

regarding gain margin (GM), phase margin (PM), and gain crossover frequency (ωg)

∗Part of this section is reprinted with permission from: ©2016 IEEE I. D. Dı́az-Rodŕıguez
and S. P. Bhattacharyya, ”PI controller design in the achievable gain-phase margin plane,” 2016
IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, 2016, pp. 4919-4924. doi:
10.1109/CDC.2016.7799021.
∗Part of this section is reprinted with permission from: ©2017 Elsevier I. D. Dıaz-Rodrıguez, S. 

Han, L. H. Keel, and S. P. Bhattacharyya, ”Advanced Tuning for Ziegler-Nichols Plants,” The 20th 
World Congress of the International Federation of Automatic Control (IFAC), 9-14 July, Toulouse, 
France, 2017. (Accepted for publication)
∗Part of this section is reprinted with permission from: ©2015 IEEE I. D. Dı́az-Rodŕıguez,

”Modern design of classical controllers: Continuous-time first order controllers,” IECON 2015 -
41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, 2015, pp. 000070-
000075. doi: 10.1109/IECON.2015.7392967.
∗Part of this section is reprinted with permission from: ©2015 IEEE I. D. Dı́az-Rodŕıguez, V. A.

Oliveira and S. P. Bhattacharyya, ”Modern design of classical controllers: Digital PID controllers,”
2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Buzios, 2015, pp. 1010-
1015. doi: 10.1109/ISIE.2015.7281610.
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for our system to accomplish with a PI, or PID controller. The procedure to construct

these design curves is the following:

1. Set a range of PM φ∗g ∈ [φ−g , φ
+
g ] and gain crossover frequency ωg ∈ [ω−g , ω

+
g ].

2. For fixed values of φ∗g and ωg, plot an ellipse and a straight line following the

description in the methodology.

3. If the intersection point of the ellipse and straight line lies outside of the sta-

bilizing set, then this point is rejected and go to step (2).

4. If the intersection of the ellipse and straight line is contained in the stabilizing

set, it represents the design point with the PI, or PID controller gains (K∗P , K
∗
I )

or (K∗P , K
∗
I , K

∗
D) that satisfies the fixed φ∗g and ωg.

5. Given the selected PI or PID controller gains (K∗P , K
∗
I ) or (K∗P , K

∗
I , K

∗
D), the

upper and lower GM of the system are given by

GMupper =
Kub
P

K∗P
and GMlower =

K lb
P

K∗P
(4.1)

where Kub
P and K lb

P are the controller gains at the upper and lower boundary

respectively of the stabilizing set following the straight line intersecting the

ellipse.

6. Go to step 2 and repeat for all values of φ∗g and ωg in the ranges.

4.3 Construction of the Time-Delay Tolerance Design Curves

The time-delay tolerance design curves represent the actual achievable perfor-

mance, regarding the time-delay, phase margin and gain crossover frequency for our
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system to accomplish with a PI or PID controller. This set of design curves is an ex-

tension of the previous gain-phase design curves because we can use the information

calculated before to create this new time-delay tolerance design set. The time-delay

tolerance can be calculated as

τmax :=
PM

ωg
(4.2)

where PM is the phase margin and ωg is the gain crossover frequency in radians.

Then, taking all the points calculated from the gain-phase margin design set, we

can find the values of time-delay tolerance and express the new plot with the x-axis

as phase margin and y-axis as time-delay tolerance. Similarly to gain-phase margin

design curves, these time-delay tolerance curves are indexed by a fixed value of gain

crossover frequency.

4.4 Simultaneous Specifications and Retrieval of Controller Gains From the

Achievable Performance Set

The designer can select a desired point from the achievable performance Gain-

Phase margin set and retrieve the controller gains corresponding to that simultaneous

specification of desired GM, PM, and ωg. The controller gain retrieval process is the

following.

(1) Select desired GM, PM, and ωg from the achievable gain-margin set.

(2) For the specified point, construct the ellipse and straight line for a PI controller

and a cylinder and plane for PID controller by using the selected PM and ωg in

the constant gain and constant phase loci.

(3) Take the intersection of the ellipse and straight line or cylinder and plane con-
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tained in the stabilizing set. This will provide the gains (K∗P , K
∗
I ) or (K∗P , K

∗
I , K

∗
D).

(4) The controller that satisfies the prescribed margin specifications is CPI(s) =

K∗P s+K
∗
I

s
or CPID(s) =

K∗Ds
2+K∗P s+K

∗
I

s
.

For the case of retrieving the controller gains using the time-delay tolerance de-

sign curves, the procedure is the same. We can select a point from the time-delay

tolerance design curves and use the value of phase margin and gain crossover fre-

quency to compute the ellipse and straight line and find the intersection contained

in the stabilizing set.

4.5 Controller Design Methodology

The PI or PID Controller design approach to satisfy a simultaneous specification

of gain margin, phase margin, and gain crossover frequency for Linear Time-Invariant

Single-Input Single-Output systems can be summarized as follows.

A. Computation of the PI or PID Stabilizing set.

B. Parametrization of a constant gain and phase loci.

C. Construction of the gain-phase margin design curves.

D. Selection of simultaneous gain margin, phase margin, and gain crossover fre-

quency design specifications from the achievable performance set.

E. Retrieval of the PI or PID controller gains satisfying the design specifications.
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4.6 Example 1a. Continuous-Time First Order Controller Design

Consider the system configuration as in Fig 4.1 with an unstable, non-minimum

phase plant

C(s) P (s)
+

−

Figure 4.1: Unity Feedback Block Diagram

P (s) =
s− 2

s2 + 0.6s− 0.1
, C(s) =

x1s+ x2
s+ x3

(4.3)

4.6.1 Computation of the Stabilizing Set

For the computation of the stabilizing set, we can refer to section 2.3.1. Consid-

ering P (s) in (4.3), we get

NE(s2) = −2

NO(s2) = 1

DE(s2) = s2 − 0.1

DO(s2) = 0.6 (4.4)

For the two conditions to be satisfied described in (2.35) and (2.36). For ω = 0 we

have

−2x2 − 0.1x3 = 0 (4.5)
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Then, there exist a real root boundary at

x2 = −0.05x3 (4.6)

For ω > 0, using (2.39), (2.40), and (2.41) we have

x1(ω) =
(−ω2 − 0.1)x3 − 2.6ω2 − 0.2

ω2 + 4

x2(ω) =
(−2.6ω2 − 0.2)x3 + ω4 − 1.1ω2

ω2 + 4
(4.7)

The stability region for x3 = 1 and the curves and lines are shown in Fig 4.2. The

regions numbered represent invariant root regions. Then, we can pick any value

contained in the regions and check the roots. It was found that the region numbered

4 is the stabilizing zone. By sweeping x3 from −0.4 to 8, we obtain the following

x
1

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

x
2

-1

0

1

2

3

4

2

1

3

4

Figure 4.2: Root Invariant Regions for x3 = 1 in Example 1a [2]

three dimensional figure shown in Fig 4.3. Which represents the stabilizing set for

our plant P (s) in (4.3).
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Figure 4.3: Stability Region for −0.4 ≤ x3 ≤ 8 in Example 1a [2]

4.6.2 Construction of the Achievable Gain-Phase Margin Design Curves

For the construction of the achievable Gain-Phase margin set in this example,

the evaluated range of gain crossover frequencies ωg ∈ [0.1, 2] and the range of phase

margin PM ∈ [1o, 120o]. Using the ellipse and straight line intersection points, we

can construct the achievable Gain-Phase margin set presented in Fig. 4.4.

4.6.3 Simultaneous Specifications and Retrieval of Controller Gains

In Fig 4.4, we can see the achievable Gain-Phase margin set of curves indexed by

fixed ω∗g in different colors. Notice that the curves above the 100 GM represent the

upper GM and the curves below 100 GM represent the lower GM. We notice that

the maximum PM that we can get is 100o for a ωg = [0.3, 0.4, 0.5] rad/sec with a

value of upper GM = [2.68, 2.589, 2.446] and lower GM = [0.9974, 0.9929, 0.9059]

respectively. Another example of the values of GM and PM that we can get is the

point with a PM of 40o with an upper GM of 13.3 and a ωg = 0.2 rad/sec. However,
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Figure 4.4: Achievable Performance in Terms of GM, PM, and ωg for First Order
Controller Design in Example 1a

for this value, we get a lower GM of 0.5484. We notice that for a bigger GM from

the achievable Gain-Phase margin set, we get lower PM. At the end, the designer

has the liberty to choose values for GM, PM, and ωg that best suits his design needs.

Now, for illustration purposes, suppose that our desired phase margin specifi-

cation is PM = 60o, gain margin of GM = 3.691 with a gain crossover frequency

of ω∗g = 0.5 rad/s from Fig 4.4 a fixed x3 = 8. Then, taking these values for the

constant gain and constant phase loci presented in section 3.3.1, we can find the

intersection of an ellipse and straight line to get the controller gains, see Fig 4.5.

Using (3.34) and (3.35), we have

L2
0

(14.3667)2
+

L2
1

(14.3667)2
= 1 (4.8)
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and

L1 = 0.6603L0. (4.9)

Using (3.39) we can find the values x1 = −2.158 and x2 = −1.431 for the controller

gains.
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Figure 4.5: Intersection of the Ellipse and Straight Line Superimposed in the Stabi-
lizing Set Corresponding to the GM, PM, and ωg Specified in Example 1a.
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System: Example_1a

Gain Margin (dB): 11.3

At frequency (rad/s): 3.92

Closed loop stable? Yes

System: Example_1a

Phase Margin (deg): 60

Delay Margin (sec): 2.09

At frequency (rad/s): 0.5

Closed loop stable? Yes

Figure 4.6: Nyquist Plot for x1 = −2.158, x2 = −1.431, and x3 = 8 in the First
Order Controller Design in Example 1a.

Then, our desired controller C∗(s) to satisfy the specified phase margin, gain

margin, and gain crossover frequency is

C∗(s)
−2.158s− 1.431

s+ 8
. (4.10)

In Fig 4.6, we can see the Nyquist plot for the controller gains selected. Here, we

can see that those controller gains satisfy the desired performance specifications,

PM = 60o, GM = 3.691 (11.3 dB).

We can also compute the time-delay tolerance design curves. Following equation

(4.2) and taking the values from Fig 4.4, we get Fig 4.7.
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Figure 4.7: Time-Delay Tolerance Design Curves for Example 1a.

In Fig 4.7, we can see the achievable time-delay tolerance for the system using

the proposed controller. We can select any point from the curves and retrieve the

controller gains following the same procedure as taking a point from the gain-phase

margin design curves. In this case, we selected the same PM = 60o and ωg = 0.5

rad/s. The time-delay tolerance is

τmax = 2.094 sec (4.11)

For verification purposes, if we take this time-delay of τmax = 2.094 sec with the

plant and the controller (4.10), we can show the Nyquist plot in Fig 4.8.
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Figure 4.8: Nyquist Plot of the Controller and the Plant with τmax for Example 1a.

We can see in Fig 4.8 that the Nyquist plot touches the -1 point, so encirclement

cannot be done. The closed-loop system is unstable.

4.7 Example 2a. Continuous-Time PI Controller Design

Let us consider the continuous-time system represented in Fig 4.1 using the plant

P (s) =
s− 5

s2 + 1.6s+ 0.2
(4.12)

and the controller

C(s) =
KP s+KI

s
(4.13)
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4.7.1 Computation of the Stabilizing Set

The first step in the controller design is to obtain the stabilizing set of PI con-

trollers for the given plant. Then, the closed-loop characteristic polynomial is

δ(s,KP , KI) = s3 + (KP + 1.6)s2 + (KI − 5KP + 0.2)s− 5KI (4.14)

Here n = 2, m = 1, and N(−s) = −5− s. Therefore, we obtain

v(s) = δ(s,KP , KI)N(−s)

= −s4 − (6.6 +KP )s3 − (8.2 +KI)s
2 + (25KP − 1)s+ 25KI (4.15)

so that

v(jω,KP , KI) = (−ω4 + (KI + 8.2)ω2 + 25KI) + j[(KP + 6.6)ω3 + (25KP − 1)ω]

= p(ω) + jq(ω) (4.16)

We find that z+ = 1 so that the signature requirement on v(s) for stability is,

n−m+ 1 + 2z+ = 4 (4.17)

Since the degree of v(s) is even (see (2.49)), we see from the signature formulas that

q(ω) must have at least one positive real root of odd multiplicity. The range of KP

such that q(ω,KP ) has at least one real, positive, distinct, finite zero with odd multi-

plicity was determined to be KP ∈ (−1.6, 0.04) which is the allowable range for KP .

By sweeping over different KP values within the interval (−1.6, 0.04) and following

the procedure summarized in the design methodology section, we can generate the
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set of stabilizing (KP , KI) values. This set is shown in Fig 4.9.
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Ki: -0.01891

Kp: -0.155

Figure 4.9: PI Stabilizing Set for Example 2a and Intersection of Ellipse and Straight
Line for the Final Design Point [3]

4.7.2 Construction of the Achievable Gain-Phase Margin Design Curves

Following the description in the Design Methodology, for a range of phase margins

and gain crossover frequencies, we superimpose ellipses and straight lines on the

stabilizing set (see Fig. 4.10).
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Figure 4.10: Construction of the Gain-Phase Margin Design Curves for PI controller
Design in Example 2a by Intersection Points of Ellipses and Straight Lines [3]

We can see in Fig. 4.10 the intersection points of ellipses and straight lines for

different values of phase margin and gain crossover frequency. We notice how for

different values of phase margin, the gain crossover frequency limit is different. In

this way, we obtain the maximum achievable values for the gain crossover frequency.

For example, the maximum value of gain crossover frequency is 2.3 rad/s when con-

sidering a PM = 10o and a maximum gain crossover frequency of 0.8 rad/s when

considering PM = 60o. All the intersection points, contained in the stabilizing set,

determine the PI controller gains and are used to construct the Gain-Phase design

curves shown in Fig. 4.11. For this example, the evaluated range for phase margin

is from 1o to 90o and the range for the gain crossover frequency is from 0.1 to 3 rad/s.
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Figure 4.11: Achievable Gain-Phase Margin Design Curves in the Gain-Phase Plane
for PI Controller Design in Example 2a [3]

4.7.3 Simultaneous Specifications and Retrieval of Controller Gains

As shown in Fig 4.11, we can clearly see the achievable performance for example

1. In this case, the maximum gain margin that we can get is 41.44 dB. The phase

margin, corresponding to this maximum gain margin, is of 57o with a gain crossover

frequency of 0.1 rad/s. We can see how increasing the gain crossover frequency

leads to decrease in our values for gain and phase margins. For example, for a gain

crossover frequency of 0.4 rad/s, the corresponding maximum gain margin we can

get is 22.55 dB and the corresponding phase margin is 34o. In Fig 4.11, we have

chosen a candidate design (called design point). The controller corresponding to this

design specifications can be recovered by constructing the straight line and ellipse

corresponding to these specifications (see Fig 4.9). The PI controller gains for these
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specifications are

K∗P = −0.1556 (4.18)

K∗I = −0.0189 (4.19)

The step response for this controller is given in Fig 4.12. These controller gains

correspond to the point of ωg = 0.5, PM = 67o, and GM = 19.6 dB in the Gain-

Phase Margin design plane (see the design point in Fig 4.11).
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Figure 4.12: Step Response for the System in Example 2a Using the PI Controller
Design C(s)∗ =

K∗P s+K
∗
I

s
[3]

In Fig 4.13, we can see the Nyquist plot for the controller gains selected. Here,

we can see that those controller gains satisfy the desired performance specifications,

PM = 67o, GM = 19.6dB.

We can also compute the time-delay tolerance design curves. Following equation
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Figure 4.13: Nyquist Plot for KP = −0.1556, KI = −0.0189 in the PI Controller
Design in Example 2a

(4.2) and taking the values from Fig 4.11, we get Fig 4.14.
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Figure 4.14: Time-Delay Tolerance Design Curves for Example 2a
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In Fig 4.14, we can see the achievable time-delay tolerance for the system using

the proposed controller. We can select any point from the curves and retrieve the

controller gains following the same procedure as taking a point from the gain-phase

margin design curves. In this case, we selected the same PM = 67o and ωg = 0.5

rad/s. The time-delay tolerance is

τmax = 2.339 sec (4.20)

For verification purposes, if we take this time-delay of τmax = 2.339 sec with the

plant and the controller gains in (4.18) and (4.19), we can show the Nyquist plot in

Fig 4.15.
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Figure 4.15: Nyquist Plot of the Controller and the Plant with τmax for Example 2a

We can see in Fig 4.15 that the Nyquist plot touches the -1 point, so encirclement

cannot be done. The closed-loop system is unstable.
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4.8 Example 2b. Continuous-Time PI Controller Design

Let us consider the continuous-time LTI system represented in Fig 4.1 using the

plant

P (s) =
s3 − 4s2 + s+ 2

s5 + 8s4 + 32s3 + 46s2 + 46s+ 17
(4.21)

and the controller

C(s) =
KP s+KI

s
(4.22)

4.8.0.1 Computation of the Stabilizing Set

We follow the procedure summarized in the Design Methodology section to com-

pute the stabilizing set of PI controllers for the given plant. The closed-loop charac-

teristic polynomial is

δ(s,KP ,KI) = s6 + 8s5 + (KP + 32)s4 + (KI − 4KP + 46)s3

+ (KP − 4KI + 46)s2 + (KI + 2KP + 17)s+ 2KI (4.23)

Here n = 5, m = 3, and N(−s) = −s3 − 4s2 − s+ 2. Therefore, we obtain
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v(s) = δ(s,KP , KI)N(−s)

= −s9 − 12s8 + (−KP − 65)s7 + (−KI − 180)s6

+ (14KP − 246)s5 + (14KI − 183)s4 + (−17KP − 22)s3

+ (75− 17KI)s
2 + (4KP + 34)s+ 4KI (4.24)

so that

v(jω,KP , KI) = −12ω8 + (KI + 180)ω6 + (14KI − 183)ω4 + (17KI − 75)ω2

+ 4KI

+ j[−ω9 + (KP + 65)ω7 + (14KP − 246)ω5 + (17KP + 22)ω3

+ (4KP + 34)ω]

= p(ω) + jq(ω) (4.25)

We find that z+ = 2 so that the signature requirement on v(s) for stability is,

n−m+ 1 + 2z+ = 7 (4.26)

Since the degree of v(s) is odd, we see from the signature formulas (see (2.50)) that

q(ω) must have at least three positive real root of odd multiplicity. The range of KP

such that q(ω,KP ) has at least one real, positive, distinct, finite zero with odd mul-

tiplicity was determined to be KP ∈ (−8.5, 4.2) which is the allowable range for KP .

By sweeping over different KP values within the interval (−8.5, 4.2) and following

the procedure summarized in the design methodology section, we can generate the
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set of stabilizing (KP , KI) values. This set is shown in Fig 4.16.
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Figure 4.16: PI Stabilizing Set for Example 2b and Intersection of Ellipse and
Straight Line for the Final Design Point [3]

4.8.1 Construction of the Achievable Gain-Phase Margin Design Curves

As mentioned in Example 2a, for a range of phase margins and gain crossover

frequencies, we superimpose ellipses and straight lines on the stabilizing set. All

the intersection points, contained in the stabilizing set, determine the PI controller

gains to construct the Gain-Phase design curves shown in 4.17. For this example,

the evaluated range for phase margin is from 1o to 90o and the range for the gain

crossover frequency is from 0.1 to 1 rad/s.

4.8.2 Simultaneous Specifications and Retrieval of Controller Gains

As shown in Fig 4.17, we notice the achievable performance for example 2. In

this case, the maximum gain margin that we can get is 13.13 dB. The phase margin,
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Figure 4.17: Achievable Gain-Phase Margin Design Curves in the Gain-Phase Plane
for Example 2b [3]

corresponding to this maximum gain margin, is 79o with a gain crossover frequency

of 0.1 rad/s. We can see how when increasing the gain crossover frequency, our values

for gain and phase margins decrease. For example, for a gain crossover frequency of

0.4 rad/s, the maximum gain margin we can get is 2.522 dB and the corresponding

phase margin is 44o. In Fig 4.17, we have chosen a candidate design (called design

point). The controller corresponding to this design specification can be recovered by

constructing the straight line and ellipse corresponding to these specifications (see

Fig. 4.16). The PI controller gains for these specifications are

K∗P = −0.36283 (4.27)

K∗I = 1.6228 (4.28)

The step response for this controller is given in Fig 4.18. These controller gains

correspond to the point ωg = 0.2, PM = 62o, and GM = 6.96 dB in the Gain-Phase

Margin design plane (see the design point in Fig 4.17).
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Figure 4.18: Step Response for the System in Example 2b Using C(s)∗ =
K∗P s+K
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s
[3]

In Fig 4.19, we can see the Nyquist plot for the controller gains selected. Here,

we can see that those controller gains satisfy the desired performance specifications,

PM = 62o, GM = 6.96dB.
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Figure 4.19: Nyquist Plot for KP = −0.36283, KI = 1.6228 in the PI Controller
Design in Example 2b

We can also compute the time-delay tolerance design curves. Following equation

(4.2) and taking the values from Fig 4.17, we get Fig 4.20.
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Figure 4.20: Time-Delay Tolerance Design Curves for Example 2b
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In Fig 4.20, we can see the achievable time-delay tolerance for the system using

the proposed controller. We can select any point from the curves and retrieve the

controller gains following the same procedure as taking a point from the gain-phase

margin design curves. In this case, we selected the same PM = 62o and ωg = 0.2

rad/s. The time-delay tolerance is

τmax = 5.411 sec (4.29)

For verification purposes, if we take this time-delay of τmax = 5.411 sec with the

plant and the controller gains in (4.27) and (4.28), we can show the Nyquist plot in

Fig 4.21.
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Figure 4.21: Nyquist Plot of the Controller and the Plant with τmax for Example 2b.

We can see in Fig 4.21 that the Nyquist plot touches the -1 point, so encirclement

cannot be done. The closed-loop system is unstable.
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4.9 Example 2c. Discrete-Time PI Controller Design

Consider the discrete-time system represented in Fig. 4.22, with

P (z) =
z − 0.1

z3 + 0.1z − 0.25
and C(z) =

K0 +K1z

z − 1
(4.30)

C(z) P (z)
+

−

Figure 4.22: Unity Feedback Block Diagram

4.9.1 Computation of the Stabilizing Set

Using the Tchebyshev representation with ρ = 1, we have

TN(ν) = −ν − 0.1,

UN(ν) = 1,

TD(ν) = −4ν3 + 2.9ν − 0.25,

UD(ν) = 4ν2 − 0.9, (4.31)

P1(ν) = 0.4ν3 + 2ν2 − 0.04ν − 0.875,

P2(ν) = 0.34− 0.4ν2 − 2ν,

P3(ν) = 0.2ν + 1.01

Then, we have
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T (ν,K0, K1) = −0.8ν4 − 4.4ν3 − (1.22 + 0.2K1)ν
2 + (2.915− 1.01K1 + 0.2K0)ν

+ (0.535 + 1.01K0),

U(ν,K1) = 0.8ν3 + 4.4ν2 + (1.62 + 0.5K1)ν + (−1.215 + 1.01K1) (4.32)

Since P (z) is of order 3 and C(z), the PI controller, is of order 1, the number of

roots of δ(z) inside the unit circle is required to be 4 for stability. Then

i1 − i2 = (iδ + iNr)︸ ︷︷ ︸
i1

− l︸︷︷︸
i2

= 3 (4.33)

where iδ and iNr are the number of roots of δ(z) and the reverse polynomial of N(z),

respectively, and l is the order of N(z). Since the required iδ is 4, iNr = 0, and

l = 1, i1 − i2 is required to be 3. Therefore, we require two real roots from U(ν,K1)

to satisfy the stability condition. We can find the feasible range for K1, so we can

find these two required roots. For this example, the range taken in consideration is

K1 ∈ [−0.94, 1.415]. Following the stabilizing set procedure for the range of K1, we

obtain the stability region shown in Fig. 4.23 in (K0, K1) space. To illustrate the

example in detail, we fix K1 = 1.Then, the real roots of U(ν,K1) in (−1,+1) are

−0.5535 and 0.0919. Furthermore, Sgn[U(−1)] = +1, and i1 − i2 = 3 requires that

1

2
Sgn[U(−1)] (Sgn[T (−1)]− 2Sgn[T (−0.5535)] + 2Sgn[T (0.0919)]− Sgn[T (1)])

= 3 (4.34)
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Here, the only valid sequence satisfying the last equations is

Sgn[T (−1)] = +1, Sgn[T (−0.5535)] = −1

Sgn[T (0.0919)] = +1, Sgn[T (1)] = −1 (4.35)

Corresponding to this sequence, we have the following set of linear inequalities:

K0 > −1, K0 < 0.3151

K0 > −0.6754 K0 < 3.4545 (4.36)

This set of inequalities characterizes the stability region in K0 space for a fixed

K1 = 1. By repeating this procedure for the range of K1, we obtain the stability

region shown in Fig. 5.4 in (K0, K1) space.
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Discrete-Time PI Controller in Example 2c
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4.9.2 Construction of the Achievable Gain-Phase Margin Design Curves

In Fig 4.24 we can see an example of selecting a specific phase margin (PM = 60o)

for a range of gain crossover frequencies. In Fig 4.23, we can see the intersection

points of ellipses and straight lines superimposed in the stabilizing set. In this case,

the range of gain crossover frequency is from 0 to 12 rad/s and for phase margins of

PM from 1 to 60 degree.
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Figure 4.24: Stabilizing Set in Yellow and Intersection Points of Ellipses and Straight
Lines in (L0, L1) Plane for PM = 60o and ωg ∈ [0.1, 2.8] rad/s. for the Discrete-Time
PI Controller in Example 2c

4.9.3 Simultaneous Specifications and Retrieval of Controller Gains

In Fig 4.25, we can see the achievable performance for the example. In this case,

the maximum gain margin that we can get is 35 dB with a phase margin of 88o with

a gain crossover frequency of 0.1 rad/s. The Gain-Phase plane contains information
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about the capabilities of the system achieving gain margin, phase margins and gain

crossover frequency simultaneously. Also, it shows the limitations of the system as-

sociated with the use of a PI controller.

We can select a Design point from Fig 4.25. After selecting the point, this Design

point is found by the intersection of the ellipse and straight line contained in the

stabilizing set shown in Fig 4.24. In this case, we selected a Design point having

PM = 68o, GM = 13.56 dB, and ωg = 2.3 rad/s. The PI controller gains for these

specifications are

K∗0 = −0.06349, K∗1 = 0.2912 (4.37)

These controller gains correspond to the point of ωg = 2.3, PM = 68o, and GM =

13.56 dB in the Gain-Phase Margin design plane. The step response for these con-

troller gains is given in Fig 4.26.
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In Fig 4.27, we can see the Nyquist plot for the controller gains selected. Here,

we can see that those controller gains satisfy the desired performance specifications,

PM = 68o, GM = 13.56.
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Figure 4.27: Nyquist Plot for K0 = −0.06349, K1 = 0.2912 in the PI Controller
Design in Example 2c

4.10 Example 2d. Continuous-Time PI Controller Design Power Electronics

Application

In this section we apply the special case of the first order controller C(s) =

(x1s+ x2) /(s + x3) when x3 = 0 (PI controller) design approach to a single-phase

voltage source inverter application provided in Section 2 of the book [4]. Fig. 4.28

shows the half-bridge voltage source inverter. In this application, an ideal voltage

source VDC is considered. Also, the power switches plus diode couple are assumed

to behave like an ideal switch, i.e., one whose voltage is zero in the ”on” state and
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whose current is zero in the ”off” state. Moreover, it is assumed that the change

from the ”on” state to the ”off” state and vice versa takes place in zero time. The

load will be described as the series connection of a resistor RS, an inductor LS, and

a voltage source ES, which can be either dc or ac. The control problem considered in

Figure 4.28: Half-Bridge Source Inverter for Example 2d [4]

this application is the linear regulation of the output current IO of the voltage source

inverter. In Fig. 4.29 we have a block diagram of the system to be considered. In

this example the purpose of the voltage source inverter is to deliver a given amount

of output power PO the load and of the inverter inductor. This can be difficult in

typical ac motor drive applications, where a sinusoidal current of suitable amplitude

and given frequency, fO, must be generated on each motor phase. Consequently, it

has been taken into account the presence of a current transducer, whose gain, GTI , is

given. In the block diagram, the controller to be considered is a Proportional-Integral

control. The output of the regulator represents the modulating signal that drives

the pulse width modulator. In this PWM block, a time delay has been considered,

this has been replaced with a Pade approximation. Then we have the inverter and
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load models and a typical implementation of a transducer gain.

Figure 4.29: Control Block Diagram for Example 2d [4]

4.10.1 Stabilizing Set Based Design of PI Current Controller

First, the open loop transfer function to be considered is the following:

GOL(s) = C(s)P (s)

GOL(s) =

(
KP +

KI

s

)
2VDC
CPK

1− sTS
4

1 + sTS
4

GTI

RS

1

1 + sLS
RS

(4.38)

where VDC = 250 (V ), CPK = 4 (V ), Ts = 0.00002 (sec), GTI = 0.1 (V/A),

RS = 1 (Ω), LS = 1.5 (mH). We will consider the notation of the PI controller

in (4.38) to be x1 := KP , x2 := KI , and x3 = 0 for our special case of first order

controller. We have

GOL(s) =

(
x1s+ x2

s

)
−6.25× 10−5s+ 12.5

7.5× 10−9s2 + 0.0015s+ 1
(4.39)
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The closed-loop characteristic polynomial is

δ(s, x1, x2) =7.5× 10−9s3 + (0.0015− 6.25× 10−5x1)s
2

+ (12.5x1 − 6.25× 10−5x2 + 1)s+ 12.5x2 (4.40)

Here n = 2, m = 1, and N(−s) = 12.5 + 6.25× 10−5s. Therefore, we obtain

v(s) = δ(s, x1, x2)N(−s)

= 4.69× 10−13s4 + (1.87× 10−7 − 3.91× 10−9x1)s
3

+ (0.0188− 3.91× 10−9x2)s
2 + (156x1 + 12.5)s+ 156x2 (4.41)

so that

v(jω,x1, x2) = 4.69× 10−13ω4 + (3.91× 10−9x2 − 0.0188)ω2 + 156x2

+ j[(3.91× 10−9x1 − 1.87× 10−7)ω3 + (156x1 + 12.5)ω]

= p(ω) + jq(ω) (4.42)

We find that z+ = 1 so that the signature requirement on v(s) for stability is,

n−m+ 1 + 2z+ = 4 (4.43)

Since the degree of v(s) is even, we see from the signature formulas that q(ω) must

have at least one positive real root of odd multiplicity. The range of x1 such that

q(ω, x1) has at least one real, positive, distinct, finite zero with odd multiplicities was

determined to be x1 ∈ (−0.08,∞). However, the range for which we can get a region

is given by x1 ∈ (−0.08, 24) the allowable range for x1. By sweeping over different x1
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values within the interval (−0.08, 24), we can generate the set of stabilizing (x1, x2)

values. This set is shown in Fig 4.30.
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Figure 4.30: Stability Region for −0.08 ≤ x1 ≤ 24 in Example 2d

4.10.2 Construction of the Achievable Gain-Phase Margin Design Curves

For the construction of the achievable Gain-Phase margin set for the PI controller

design case, the evaluated range of ωg is [1000, 69000] and the range for PM is from 1o

to 120o. For the PI case, using the constant gain and constant phase loci equations,

(3.44) and (3.45) we now get an ellipse and a straight line in the (x1, x2) space,

respectively. The intersection (x1, x2) superimposed in the stabilizing set represents

the PI controller gains that satisfy the PM and ωg. Evaluating the range of PM and

ωg, we can construct the achievable Gain-Phase margin set represented in Fig. 4.31.

105



0 20 40 60 80 100 120 140

Phase margin (degree)

10
0

10
1

10
2

10
3

10
4

G
a

in
 m

a
rg

in

w
g
 = 1000

w
g
 = 3000

w
g
 = 5000

w
g
 = 7000

w
g
 = 9000

w
g
 = 11000

w
g
 = 13000

w
g
 = 15000

w
g
 = 17000

w
g
 = 19000

w
g
 = 21000

w
g
 = 23000

w
g
 = 25000

w
g
 = 27000

w
g
 = 29000

w
g
 = 31000

w
g
 = 33000

w
g
 = 35000

w
g
 = 37000

w
g
 = 39000

w
g
 = 41000

w
g
 = 43000

w
g
 = 45000

w
g
 = 47000

w
g
 = 49000

w
g
 = 51000

w
g
 = 53000

w
g
 = 55000

w
g
 = 57000

w
g
 = 59000

w
g
 = 61000

w
g
 = 63000

w
g
 = 65000

w
g
 = 67000

w
g
 = 69000

PM: 34

GM: 5327

PM: 120

GM: 167

PM: 9.003

GM: 267.3

PM: 14

GM: 746

PM: 100

GM: 65.28

PM: 94

GM: 39.77

PM: 60

GM: 3.768

Figure 4.31: Achievable Performance in Terms of GM, PM, and ωg for PI controller
Design in Example 2d

4.10.3 Simultaneous Specifications and Retrieval of the Controller Gains

In Fig. 4.31, we can see the achievable Gain-Phase margin set of curves indexed

by fixed ωg in different colors. Notice that we can get more GM and PM for lower

values of ωg. For example, for ωg = 1000 rad/sec, the maximum GM that we can get

is 5327 with a PM of 34o. For ωg = 3000 rad/sec, the maximum GM is 746 with a

PM = 14o. The designer has the liberty to choose values for GM, PM, and ωg that

best suits his design needs.

After the selection of simultaneous GM, PM, and ωg from the achievable gain-

phase margin set, the designer can retrieve the controller gains corresponding to

the point. For illustration purposes, let us say that the desired performance values

chosen for this example are a PM of 60o, GM of 3.768, and a ωg of 53000 rad/s (see

Fig 4.31). Then, taking these values and the constant gain and constant phase loci

for PI controllers presented in the methodology, we can find the intersection of the
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ellipse and the straight line in the (x1, x2) space shown in Fig 4.32. The controller

gains are

x∗1 = 6.34 (4.44)

x∗2 = 5812 (4.45)

In Fig 4.33 we can see the Nyquist plot for the controller gains selected. Here,

we can see that those controller gains satisfy the desired performance specifications,

PM = 60o, GM = 3.7681 (11.5 dB).
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Figure 4.32: Ellipse and Straight Line Superimposed in the PI Controller Stabilizing
Set in Example 2d
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Figure 4.33: Nyquist Plot for x∗1 = 6.34, x∗2 = 5812 in the PI Controller Design in
Example 2d

We can also compute the time-delay tolerance design curves. Following equation

(4.2) and taking the values from Fig 4.31, we get Fig 4.34.
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Figure 4.34: Achievable Performance in Terms of Time-Delay Tolerance, PM, and
ωg for PI Controller Design in Example 2d

In Fig 4.34, we can see the achievable time-delay tolerance for the system using

the proposed controller. We can select any point from the curves and retrieve the

controller gains following the same procedure as taking a point from the gain-phase

margin design curves. In this case, we selected the same PM = 60o and ωg = 53000

rad/s. The time-delay tolerance is

τmax = 1.976 x 10−5 sec (4.46)

For verification purposes, if we take this time-delay of τmax = 1.976 x 10−5 sec

with the plant and the controller gains in (4.44) and (4.45), we can show the Nyquist

plot in Fig 4.35.
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Figure 4.35: Nyquist Plot of the Controller and the Plant with τmax for Example 2d

We can see in Fig 4.35 that the Nyquist plot touches the -1 point, so encirclement

cannot be done. The closed-loop system is unstable.

4.11 Example 3a. Continuous-Time PID Controller Design

Let us consider the continuous-time LTI system represented in Fig 4.1 using the

plant

P (s) =
s− 3

s3 + 4s2 + 5s+ 2
(4.47)

and the controller

C(s) =
KDs

2 +KP s+KI

s
(4.48)
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4.11.1 Computation of the Stabilizing Set

We follow the procedure summarized in the Design Methodology section to com-

pute the stabilizing set of PID controllers for the given plant. The closed-loop char-

acteristic polynomial is

δ(s,KP ,KI) = s4 + (KD + 4)s3 + (KP − 3KD + 5)s2 + (KI − 3KP + 2)s− 3KI

(4.49)

Here n = 3, m = 1, and N(−s) = −s− 3. Therefore, we obtain

v(s) = δ(s,KP , KI)N(−s)

= −s5 + (−KD − 7)s4 + (−KP − 17)s3 + (9KD −KI − 17)s2 + (9KP − 6)s

+ 9KI (4.50)

so that

v(jω,KP , KI) = (−KD − 7)ω4 + (KI − 9KD + 17)ω2 + 9KI

+ j[ω5 + (KP + 17)ω3 + (9KP − 6)ω]

= p(ω) + jq(ω) (4.51)

We find that z+ = 1 so that the signature requirement on v(s) for stability is,

n−m+ 1 + 2z+ = 5 (4.52)
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Since the degree of v(s) is odd, we see from the signature formulas (see (2.50)) that

q(ω) must have at least two positive real root of odd multiplicity. The range of

KP such that q(ω,KP ) has at least two real, positive, distinct, finite zero with odd

multiplicity was determined to be KP ∈ (−4, 0.65) which is the allowable range for

KP . By sweeping over different KP values within the interval (−4, 0.65) and following

the procedure summarized in the design methodology section, we can generate the

set of stabilizing (KP , KI) values. This set is shown in Fig 4.36.

Figure 4.36: PID Stabilizing Set for Example 3a

4.11.2 Construction of the Achievable Gain-Phase Margin Design Curves

For the construction of the achievable Gain-Phase margin set for the PID con-

troller design case, the evaluated range of ωg is [0.1, 1.2] and the range for PM is

from 1o to 100o. For the PID case, using the constant gain and constant phase loci
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equations, (3.51) and (3.52) we now get a cylinder and a plane in the (KP , KI , KD)

3D space, respectively. The cylinder and the plane, superimposed in the stabilizing

set (see Fig. 4.50) will have two intersection line segments in the (KI , KD) plane.

The specific value where the intersection occurs can be obtained using (3.55). Equa-

tion (3.55) will give us two values for KP , but only one is contained in the stabilizing

set. The intersection line segment in the (KP , KI , KD) represents the PID controller

gains that satisfy the PM and ωg. Evaluating the range of PM and ωg, we can con-

struct the achievable Gain-Phase margin set represented in 3D in Fig. 4.37. If we

take a fixed value of ωg = 0.8 rad/sec, we can see the achievable performance in 2D

in Fig 4.38. Here we can see that the maximum GM we can get is 6.269 with a PM

of 9o and for a PM of 60o the GM is 3.548.
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Figure 4.37: Achievable Performance in Terms of GM, PM, and ωg for PID Controller
Design in Example 3a
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Figure 4.38: Achievable Gain-Phase Margin Set for ωg = 0.8 rad/sec for PID Con-
troller Design in Example 3a

4.11.3 Simultaneous Specifications and Retrieval of the Controller Gains

In Fig. 4.37, we can see the achievable Gain-Phase margin set of curves indexed

by fixed ωg in different colors. Notice that we can get more GM and PM for lower

values of ωg. For example, for ωg = 0.1 rad/sec, the maximum GM that we can get

is 38.44 with a PM of 76o. For ωg = 0.2 rad/sec, the maximum GM is 33.12 with

a PM = 66o. For a bigger value of ωg, we get lower values for GM and PM. For

example, for ωg = 1.2 rad/sec we get a maximum GM = 2.533 and PM = 1o. The

designer has the liberty to choose values for GM, PM, and ωg that best suits his

design needs.

After the selection of simultaneous GM, PM, and ωg from the achievable gain-

phase margin set, the designer can retrieve the controller gains corresponding to the

point. For illustration purposes, let us say that the desired performance values chosen
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for this example are a PM of 60o, GM of 3.548, and a ωg of 0.8 rad/s (see Fig 4.38.)

Then, taking these values and the constant gain and constant phase loci for PID

controllers presented in the methodology, we can find the intersection of the cylinder

and the plane in the (KP , KI , KD) 3D space shown in Fig 4.39. The controller gains

are K∗P = −1.1317, K∗I = −0.4783, and K∗D = −0.6. In Fig 4.40 we can see the

Nyquist plot for the controller gains selected. Here, we can see that those controller

gains satisfy the desired performance specifications, PM = 60o, GM = 3.5482 (11

dB).

Figure 4.39: Intersection of Cylinder and Plane in the PID Controller Design in
Example 3a
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Figure 4.40: Nyquist Plot for K∗P = −1.1317, K∗I = −0.4783, and K∗D = −0.6 in the
PID Controller Design in Example 3a

4.12 Example 3b. Discrete-Time PID Controller Design

Consider the unity feedback discrete time system with

P (z) =
1

z2 − 0.25
and C(z) =

K0 +K1z +K2z
2

z(z − 1)
(4.53)
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4.12.1 Computation of the Stabilizing Set

Then, using the Tchebyshev representation with ρ = 1, we have

TN(ν) = 1,

UN(ν) = 0,

TD(ν) = 2ν2 − 1.25,

UD(ν) = −2ν,

P1(ν) = 2ν2 − 1.25,

P2(ν) = −2ν

P3(ν) = 1 (4.54)

Then, by (2.26) we have

T (ν, L0, K1) = −4ν3 − 2ν2 + (3.25− L0)ν +K1 + 1.25,

U(ν, L1) = 4ν2 + 2ν + L1 − 1.25 (4.55)

Since P (z) is of order 2 and C(z), the PID controller, is of order 2, the number

of roots of δ(z) inside the unit circle is required to be 4 for stability. Then,

i1 − i2 = (iδ + iNr)︸ ︷︷ ︸
i1

− (l + 1)︸ ︷︷ ︸
i2

(4.56)

where iδ and iNr are the number of roots of δ(z) and the reverse polynomial of N(z),

respectively, and l is the order of N(z). Since the required iδ is 4, iNr = 0, and

l = 0, i1 − i2 is required to be 3. Therefore, we require two real roots from U(ν, L1)

to satisfy the stability condition. We can find the feasible range for L1, so we can
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find these two required roots. For this example, the range taken in consideration is

L1 ∈ [−1, 1.4]. To illustrate the example in detail, we fix L1 = 1.Then, the real roots

of U(ν, L1) in (−1,+1) are −0.6036 and 0.1036. Furthermore, Sgn[U(−1)] = +1,

and i1 − i2 = 3 requires that

1

2
Sgn[U(−1)](Sgn[T (−1)]− 2Sgn[T (−0.6036)]

+ 2Sgn[T (0.1036)]− Sgn[T (1)]) = 3 (4.57)

Here, the only valid sequence satisfying the last equations is

Sgn[T (−1)] = +1, Sgn[T (−0.6036)] = −1

Sgn[T (0.1036)] = +1, Sgn[T (1)] = −1 (4.58)

Corresponding to this sequence, we have the following set of linear inequalities:

− 0.5607 + 0.6036L0 +K1 < 0, L0 +K1 > 0

+ 1.5607 + 0.1036L0 +K1 > 0, −1.5− L0 +K1 < 0 (4.59)

This set of inequalities characterize the stability region in (L0, K1) space for a fixed

L1 = 1. By repeating this procedure for the considered range of L1, we obtain the

stability region shown in Fig. 5.8.

4.12.2 Construction of the Achievable Gain-Phase Margin Design Curves

Suppose our desired phase margin specification to be φ∗g = 60o with a gain

crossover frequency of ω∗g = 2.23 rad/s and a fixed value K1 = 0.1. Then, using
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(3.20) and (3.23) we have that

|C(ejθg)|2 =

(
L0 + K1

cos θg

)2
( √

µ

cos θg

)2 +
L2
1( √
µ

sin θg

)2 =
1

|P (ejθg)|2
(4.60)

which implies that

(L0 +K11.0254)2

(0.1784)2
+

L2
1

(0.7868)2
= 1 (4.61)

6 C(ejθg) = tan−1

(
sin θg

(
L1(cos θg − 1)− (L0 cos θg +K1)

)
(L0 cos θg +K1)(cos θg − 1) + L1 sin2 θg

)

= π + φ∗g − 6 P (ejθg) (4.62)

which implies that L1 = (0.7672)L0 + 0.0787.

We can consider a range of K1 and desired phase margins so we have a set of

ellipses and straight lines. For each ellipse there is a corresponding straight line with

the intersection points. For K1 ∈ [−1.4, 0.8] we can see in Fig 4.41 all the ellipses

and straight lines for the different values. We choose the intersection point with

K1 = 0.1. Thus

K0 = −0.0308, K1 = 0.1, K2 = 0.1041 (4.63)
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Figure 4.41: Gain and Phase Loci for Values of K1 ∈ [−1.4, 0.8] in Example 3b [5]

Then, our desired controller C∗(z) to satisfy the specified phase margin is

C∗(z) =
−0.0308 + 0.1z + 0.1041z2

z(z − 1)
(4.64)

In Fig. 4.42 we can see the step response of the system. In classical control it is

known empirically that good phase margin leads to reduced overshoot; we observe

that in this example. In Fig. 4.43 we can see that the controller is found to be

contained in the stabilizing set shown previously.
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Figure 4.42: Step Response of the Discrete-Time System with C∗(z) in Example
3b [5]
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4.13 Example 4a. Continuous-Time PI Controller Design for Stable FOPTD

Systems

Let us consider an stable continuous-time FOPTD system

P (s) =
1

2s+ 1
e−0.3s (4.65)

and the PI controller, CPI . We proceed to apply the procedure presented in the

methodology.

4.13.1 Computation of the Stabilizing Set.

The characteristic equation is given by

δ(s) = (2s+ 1)s+ (KP s+KI)e
−0.3s. (4.66)

By (2.72),

δ∗(s) = e0.3s(2s+ 1)s+ (KP s+KI). (4.67)
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For L = 0, we have

δ(s) = 2s2 + (KP + 1)s+KI . (4.68)

For stability, it is required KP > −1, KI > 0. For L > 0 and by (2.74) and (2.75),

δ∗(jω) = δr(ω) + jδi(jω) (4.69)

where

δr(ω) = KI − ω sin(0.3ω)− 2ω2 cos(0.5ω) (4.70)

δi(ω) = ω
[
5KP + cos(0.5ω) + 12ω sin(0.5ω)

]
. (4.71)

By (2.78), we can calculate the range fo KP for stability

−1 < KP < 6.6667
√
α2
1 + 0.0225 (4.72)

Following all the steps we get the stabilizing set in Fig. 4.44.

4.13.2 Construction of the Achievable Gain-Phase Margin Design Curves.

For the construction of the achievable Gain-Phase margin set in this example,

the evaluated range of ωg is [0.1, 2.8] and the range for PM is from 1o to 110o. The

calculation of the GM for each case is done by (4.1). Using the ellipse and straight

line intersection points, we can construct the achievable Gain-Phase margin set pre-

sented in Fig 4.45.
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Figure 4.44: Stabilizing Set in Yellow for PI Controller Design in Example 4a

4.13.3 Selection of Simultaneous Desired GM, PM, and ωg Specifications From the

Achievable Gain-Phase Margin Design Curves.

In Fig 4.45, we can see the achievable Gain-Phase margin set of curves indexed

by fixed ω∗g in different colors. We notice that the maximum PM that we can get is

103.8o for a ωg = 0.8 rad/sec with a value of GM of 5.872. Another example of the

values of GM and PM that we can get is the point with a PM of 79.72o with a GM

of 149 and a ωg = 0.1 rad/sec. The designer has the liberty to choose values for GM,

PM, and ωg that best suits his design needs.

4.13.4 Retrieval of the PI Controller Gains Corresponding to a Selected Desired

Point in the Achievable Performance Set.

After the selection of simultaneous GM, PM, and ωg from the achievable Gain-

Phase margin set, the designer can retrieve the controller gains corresponding to the

point. For illustration purposes, let us say that the desired performance values chosen
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Figure 4.45: Achievable Performance in Terms of GM, PM, and ωg for PI Controller
Design in Example 4a, Intersection of an Ellipse and a Straight Line (dot in black),
and the Controller Gains (Kub

P , K
ub
I ) at the Upper Boundary Points in the Stabilizing

Set.

for this example are a PM of 61.16o, GM = 44.6 (33 dB), and a ωg = 0.3 rad/s from

Fig 4.45. Then, taking these values for the constant gain and constant phase loci

presented in the methodology, we can find the intersection of an ellipse and a straight

line shown in Fig 4.45. The controller gains are K∗P = 0.1478 and K∗I = 0.347. In

Fig 4.46 we can see the Nyquist plot for the controller gains selected. Here, we

can see that those controller gains satisfy the desired performance specifications,

PM = 61.2o, GM = 44.6 (33 dB).
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Figure 4.46: Nyquist Plot for K∗P = 0.1478 and K∗I = 0.347 in the PI controller
Design in Example 4a

4.14 Example 4b. Continuous-Time PI Controller Design for Unstable FOPTD

Systems

Let us consider an unstable continuous-time FOPTD system

P (s) =
5

−12s+ 1
e−0.5s (4.73)

and the PI controller, CPI . We proceed to apply the procedure presented in the

methodology.

4.14.1 Computation of the Stabilizing Set.

The characteristic equation is given by

δ(s) = (−12s+ 1)s+ 5(KP s+KI)e
−0.5s. (4.74)
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By (2.86),

δ∗(s) = e0.5s(−12s+ 1)s+ (KP s+KI)5. (4.75)

For L = 0, we have

δ(s) = −12s2 + (5KP + 1)s+ 5KI . (4.76)

For stability, it is required KP < −1
5
, KI < 0. For L > 0 and by (2.88) and (2.89),

δ∗(jω) = δr(ω) + jδi(jω) (4.77)

where

δr(ω) = 5KI − ω sin(0.5ω) + 12ω2 cos(0.5ω) (4.78)

δi(ω) = ω
[
5KP + cos(0.5ω) + 12ω sin(0.5ω)

]
. (4.79)

By (2.93), we can calculate the range fo KP for stability

−4.8
√
α2
1 + 0.0017 < KP < −

1

5
(4.80)

Following all the steps we get the stabilizing set in Fig. 4.47

4.14.2 Construction of the Achievable Gain-Phase Margin Design Curves.

For the construction of the achievable Gain-Phase margin set in this example,

the evaluated range of ωg is [0.1, 3] and the range for PM is from 0o to 70o. The

calculation of the GM for each case is done by (4.1). Using the ellipse and straight

line intersection points, we can construct the achievable Gain-Phase margin set pre-
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I ) at the Lower and Upper Boundary Points in the Stabilizing
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sented in Fig 4.48.

4.14.2.1 Selection of Simultaneous Desired GM, PM, and ωg Specifications From

the Achievable Gain-Phase Margin Design Curves.

In Fig 4.48, we can see the achievable Gain-Phase margin set of curves indexed

by fixed ω∗g in different colors. Notice that the curves above the 100 GM represent

the upper GM and the curves below 100 GM represent the lower GM. We notice

that the maximum PM that we can get is 66o for a ωg = 0.4 rad/sec with a value
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of upper GM of 7.547 and lower GM of 0.2045. Another example of the values of

GM and PM that we can get is the point with a PM of 47o with an upper GM of

23.72 and a ωg = 0.1 rad/sec. However, for this value, we get a lower GM of 0.6404.

We notice that for a bigger GM from the achievable Gain-Phase margin set, we get

lower PM. The blue dots represent the specification points corresponding to a PM

of 30o. The designer has the liberty to choose values for GM, PM, and ωg that best

suits his design needs.
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Figure 4.48: Achievable Performance in Terms of GM, PM, and ωg for PI Controller
Design in Example 4b. The Blue Dots Represent the Intersections of Ellipses and
Straight Lines with a PM of 30o [6]

128



4.14.3 Retrieval of the PI Controller Gains Corresponding to a Selected Desired

Point in the Achievable Performance Set.

After the selection of simultaneous GM, PM, and ωg from the achievable Gain-

Phase margin set, the designer can retrieve the controller gains corresponding to the

point. For illustration purposes, let us say that the desired performance values chosen

for this example are a PM of 30o, GM = 2.05, and a ωg = 1.4 rad/s from Fig 4.48.

Then, taking these values for the constant gain and constant phase loci presented in

the methodology, we can find the intersection of an ellipse and a straight line shown

in Fig 4.47. The controller gains are K∗P = −3.2276 and K∗I = −1.3373. In Fig

4.49 we can see the Nyquist plot for the controller gains selected. Here, we can see

that those controller gains satisfy the desired performance specifications, PM = 30o,

GM = 2.05 (6.23 dB).

-1 -0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5

Nyquist Diagram

Real Axis

Im
a
g

in
a

ry
 A

x
is

System: Example_4b

Gain Margin (dB): 6.23

At frequency (rad/s): 2.79

Closed loop stable? Yes

System: Example_4b

Phase Margin (deg): 30

Delay Margin (sec): 0.374

At frequency (rad/s): 1.4

Closed loop stable? Yes

Figure 4.49: Nyquist Plot for K∗P = −3.2276 and K∗I = −1.3373 in the PI Controller
Design in Example 4b [6]
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4.15 Example 5a. Continuous-Time PID Controller Design for Stable FOPTD

Systems

Let us consider an stable continuous-time FOPTD system

P (s) =
1

2s+ 1
e−2s (4.81)

and the PID controller CPID(s). We proceed to apply the procedure presented in

the methodology.

4.15.1 Computation of the Stabilizing Set.

The characteristic equation (2.99) is given by

δPID(s) = (2s+ 1)s+ (KDs
2 +KP s+KI)e

−2s (4.82)

and by (2.102)

δ∗(s) = e2s(2s+ 1)s+ (KDs
2 +KP s+KI) (4.83)

For L = 0 we have

δ(s) = (KD + 2)s2 + (KP + 1)s+KI (4.84)

For stability, it is required

KP > −1, KI > 0, KD > −2 (4.85)
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For L > 0

δ∗(jω) = δr(ω) + jδi(jω) (4.86)

where

δr(ω) = KI −KDω
2 − ω sin(2ω)− 2ω2 cos(2ω) (4.87)

δi(ω) = ω
[
KP + cos(2ω)− 2ω sin(2ω)

]
(4.88)

By (2.108), we can calculate the range fo KP for stability

−1 < KP <
[
α1 sin(α1)− cos(α1)

]
(4.89)

Following all the steps, we get the stabilizing set in Fig. 4.29.

Figure 4.50: Intersection of a Cylinder and a Plane Superimposed in the PID Stabi-
lizing Set and a PID Design Point for Example 5a [6]
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4.15.2 Construction of the Achievable Gain-Phase Margin Design Curves.

For the construction of the achievable Gain-Phase margin set for the PID con-

troller design case, the evaluated range of ωg is [0.1, 1.3] and the range for PM is

from 1o to 120o. For the PID case, using the constant gain and constant phase loci

equations, (3.51) and (3.52) we now get a cylinder and a plane in the (KP , KI , KD)

3D space, respectively. The cylinder and the plane, superimposed in the stabilizing

set (see Fig. 4.50) will have two intersection line segments in the (KI , KD) plane.

The specific value where the intersection occurs can be obtained using (3.53). Equa-

tion (3.55) will give us two values for KP , but only one is contained in the stabilizing

set. The intersection line segment in the (KP , KI , KD) represents the PID controller

gains that satisfy the PM and ωg. Evaluating the range of PM and ωg, we can con-

struct the achievable Gain-Phase margin set represented in 3D in Fig. 4.51. If we

take a fixed value of ωg = 0.2 rad/sec, we can see the achievable performance in 2D

in Fig 4.52. Here we can see that the maximum GM we can get is 8.95 with a PM

of 57o.
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Figure 4.51: Achievable Performance in Terms of GM, PM, and ωg for PID Controller
Design in Example 5a [6]
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Figure 4.52: Achievable Gain-Phase Margin Set for ωg = 0.2 rad/sec for PID Con-
troller Design in Example 5a [6]
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4.15.3 Simultaneous Specifications and Retrieval of the Controller Gains

In Fig. 4.51, we can see the achievable Gain-Phase margin set of curves indexed

by fixed ωg in different colors. Notice that we can get more GM and PM for lower

values of ωg. For example, for ωg = 0.1 rad/sec, the maximum GM that we can

get is 20 with a PM of 72o. For ωg = 0.2 rad/sec, the maximum GM is 8.95 with

a PM = 57o. For a bigger value of ωg, we get lower values for GM and PM. For

example, for ωg = 1.3 rad/sec we get a maximum GM = 1.012 and PM = 19o. The

designer has the liberty to choose values for GM, PM, and ωg that best suits his

design needs.

After the selection of simultaneous GM, PM, and ωg from the achievable gain-

phase margin set, the designer can retrieve the controller gains corresponding to the

point. For illustration purposes, let us say that the desired performance values chosen

for this example are a PM of 57o, GM of 8.95, and a ωg of 0.2 rad/s (see Fig 4.51.)

Then, taking these values and the constant gain and constant phase loci for PID

controllers presented in the methodology, we can find the intersection of the cylinder

and the plane in the (KP , KI , KD) 3D space shown in Fig 4.50. The controller gains

are K∗P = 0.2188, K∗I = 0.2189, and K∗D = 0.2. In Fig 4.53 we can see the Nyquist

plot for the controller gains selected. Here, we can see that those controller gains

satisfy the desired performance specifications, PM = 57o, GM = 8.95 (19 dB).
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Figure 4.53: Nyquist Plot for K∗P = 0.2188, K∗I = 0.2189, and K∗D = 0.2 in the PID
Controller Design in Example 5a [6]

4.16 Example 5b. Continuous-Time PID Controller Design for Unstable FOPTD

Systems

Let us consider an unstable continuous-time FOPTD system

P (s) =
2

−3s+ 1
e−0.5s (4.90)

and the PID controller CPID(s). We proceed to apply the procedure presented in

the methodology.

4.16.1 Computation of the Stabilizing Set.

The characteristic equation, for L = 0 (2.113), is given by

δ(s) = (−3 + 2KD)s2 + (2KP + 1)s+ 2KI (4.91)
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For stability, it is required

KP < −
1

2
, KI < 0, KD <

3

2
(4.92)

For L > 0

δ∗(jω) = δr(ω) + jδi(jω) (4.93)

where

δr(ω) = 2KI − 2KDω
2 − ω sin(0.5ω) + 3ω2 cos(0.5ω) (4.94)

δi(ω) = ω
[
2KP + cos(0.5ω) + 3ω sin(0.5ω)

]
(4.95)

By (2.122), we can calculate the range fo KP for stability

1

2

[
−3

2
α1 sin(α1)− cos(α1)

]
< KP < −

1

2
(4.96)

Following all the steps, we get the stabilizing set in Fig. 4.54.

4.16.2 Construction of the Achievable Gain-Phase Margin Design Curves.

For the construction of the achievable Gain-Phase margin set for the PID con-

troller design case, the evaluated range of ωg is [0.3, 1.5] and the range for PM is

from 1o to 90o. For the PID case, using the constant gain and constant phase loci

equations, (3.51) and (3.52) we now get a cylinder and a plane in the (KP , KI , KD)

3D space, respectively. The cylinder and the plane, superimposed in the stabilizing

set (see Fig. 4.50) will have two intersection line segments in the (KI , KD) plane.
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Figure 4.54: PID Stabilizing Set for Example 5b

The specific value where the intersection occurs can be obtained using (3.55). Equa-

tion (3.55) will give us two values for KP , but only one is contained in the stabilizing

set. The intersection line segment in the (KP , KI , KD) represents the PID controller

gains that satisfy the PM and ωg. Evaluating the range of PM and ωg, we can con-

struct the achievable Gain-Phase margin set represented in 3D in Fig. 4.55. If we

take a fixed value of ωg = 0.7 rad/sec, we can see the achievable performance in 2D

in Fig 4.56.

4.16.3 Simultaneous Specifications and Retrieval of the Controller Gains

In Fig. 4.55, we can see the achievable Gain-Phase margin set of curves indexed

by fixed ωg in different colors. Notice that we can get more GM and PM for lower

values of ωg. For example, for ωg = 0.1 rad/sec, the maximum GM that we can

get is 20 with a PM of 72o. For ωg = 0.2 rad/sec, the maximum GM is 8.95 with

a PM = 57o. For a bigger value of ωg, we get lower values for GM and PM. For

example, for ωg = 1.3 rad/sec we get a maximum GM = 1.012 and PM = 19o. The
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Figure 4.55: Achievable Performance in Terms of GM, PM, and ωg for PID Controller
Design in Example 5b

designer has the liberty to choose values for GM, PM, and ωg that best suits his

design needs.

After the selection of simultaneous GM, PM, and ωg from the achievable gain-

phase margin set, the designer can retrieve the controller gains corresponding to the

point. For illustration purposes, let us say that the desired performance values chosen

for this example are a PM of 49o, GM of 4.5285, and a ωg of 0.7 rad/s (see Fig 4.51.)

Then, taking these values and the constant gain and constant phase loci for PID

controllers presented in the methodology, we can find the intersection of the cylinder

and the plane in the (KP , KI , KD) 3D space shown in Fig 4.57. The controller gains

are K∗P = −1.1594, K∗I = −0.01, and K∗D = −0.1512. In Fig 4.58 we can see the

Nyquist plot for the controller gains selected. Here, we can see that those controller

gains satisfy the desired performance specifications, PM = 49o, GM = 4.5285 (13.1
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Figure 4.56: Achievable Gain-Phase Margin Set for ωg = 0.7 rad/sec for PID Con-
troller Design in Example 5b

dB).

Figure 4.57: Intersection of Cylinder and Plane in the PID Controller Design in
Example 5b
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Figure 4.58: Nyquist Plot for K∗P = −1.1594, K∗I = −0.01, and K∗D = −0.1512 in
the PID Controller Design in Example 5b

4.17 References

Some examples presented in this section have been published in [5] and [83].
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5. MULTIVARIABLE CONTROLLER DESIGN AND GAIN-PHASE MARGIN

ACHIEVABLE PERFORMANCE

5.1 Introduction

The study of MIMO systems is more challenging compared to SISO systems.

The problem arises from the fact that, in MIMO systems, there is an interaction

between the manipulated and the controlled variables, which is not present in SISO

systems. Therefore, because there is an interaction in the control loop, it is not pos-

sible to control one loop independently without affecting the others. In recent years,

there has been an interest in studying MIMO systems. One of the most common

approaches is to transform the MIMO system into an equivalent representation, also

called equivalent transfer function parametrization or effective open-loop representa-

tion. For example, in [84], [85], [86], [87], an equivalent representation is presented to

design Multi-loop PI or PID controllers mainly using Internal Model Control meth-

ods. In [88], [89], and [90] a design of MIMO systems is presented as individual

channel design where SISO design is exploited for MIMO systems. In this section,

we present an advanced tuning approach to design a controller for MIMO systems by

taking advantage of the simplicity of SISO system’s design tools. First, a transfor-

mation of the MIMO system into a Multiple SISO system is performed. Then, novel

PI controller design methods are used to find the achievable performance regarding

gain margin, phase margin, and gain crossover frequency for the independent SISO

subsystems. After the PI controller is selected, based on a desired achievable per-

formance, a transformation to the original system is performed. Finally, the MIMO

controller with the original system in unity feedback configuration, will satisfy a gain

margin, phase margin, and gain crossover frequency that is minimum achieved by
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one of the Multiple SISO subsystems.

5.2 Problem Formulation

Consider a multivariable continuous-time Linear Time Invariant (LTI) plant with

an n×n transfer function matrix P (s). An n×n controller C(s) in a unity feedback

configuration with P (s) as shown in Fig 5.1. The design problem is to find C(s) such

that the control system achieves a predesigned gain and phase margins.

C(s) P (s)
+

−

Figure 5.1: MIMO Unity Feedback Block Diagram

5.3 Design Methodology

The general approach developed here to solve this problem can be summarized

as following steps.

(i) Transform the multivariable system P (s) into a diagonal transfer function ma-

trix and call each diagonal element Pi(s) a Smith-McMillan plant.

(ii) Introduce a diagonal controller transfer function matrix where each diagonal

element Ci(S) is the proposed controller for the Smith-McMillan plant Pi(s).

(iii) Design each diagonal controller to obtain predesigned gain margin, phase mar-

gin, and gain crossover frequency for Smith-McMillan plants.

(iv) Transform the diagonal controller matrix into the MIMO controller C(s) for

the original plant P (s).
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(v) Verify that the gain and phase margins of this multivariable system is the

minimum gain margin and the minimum phase margin of the Smith-McMillan

plants.

5.3.1 Transformation of the Multivariable Plant Into a Diagonal Transfer

Function Matrix

Multivariable system can be transformed into a diagonal transfer function ma-

trix by using the Smith-McMillan form. The transfer function matrix P (s) can be

expressed as

P (s) =
1

d(s)
N(s) (5.1)

where d(s) is the least common multiple of denominators of elements of P (s) and

N(s) is a polynomial matrix. The Smith form of N(s) is given by

S(s) = Y (s)N(s)U(s) (5.2)

where S(s) is a diagonal matrix and Y (s), U(s) are unimodular matrices. Let

Pd(s) =
S(s)

d(s)
. (5.3)

Then Pd(s) is the Smith-McMillan form of P (s) and Pi(s) is the Smith-McMillan

plant for i = 1, 2, ...n. Since Pd(s) is of diagonal form we can introduce a diago-

nal controller matrix Cd(s) where each controller Ci(s) is designed for each Pi(s).

Consider the multiple SISO loops as in Fig 5.2 below.
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Figure 5.2: Multiple SISO Unity Feedback Block Diagram

5.3.2 Design of the Controller to Obtain Predesigned Gain Margin, Phase Margin,

and Gain Crossover Frequency for the Smith-McMillan Plants.

The controller Ci(s) can be designed to achieve specific gain margin, phase mar-

gin, and gain crossover frequency for the Smith-McMillan plant Pi(s). It is important

to consider the relative degree of Pi(s) when designing Ci(s).

Lemma 1 Let rk be the relative degree of the controller Ck(s) for the Smith-McMillan

plant Pk(s). If rk for k = 1, 2, ..., n satisfies

min
k=1,2,...,n

{
rk − dUik − dYkj

}
≥ 0, ∀i, j = 1, 2, ..., n (5.4)

where dUik and dYkj are the degree of (i, k)th and (k, j)th polynomials of the unimodular

matrices U(s) and Y (s), respectively, then the MIMO controller C(s) will be proper.

Proof. See [91].

Lemma 1 is necessary for the MIMO controller C(s) to be proper. In section

5.3.3, we describe the transformation from the diagonal controller Cd(s) into the

MIMO controller C(s).
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5.3.3 Transformation of the Diagonal Controller Matrix Into the Corresponding

MIMO Controller

After designing the controller Ci(s) for each Smith-McMillan plant Pi(s), we can

transform the diagonal controller matrix Cd(s) into the MIMO controller matrix C(s)

via

C(s) = U(s)Cd(s)Y (s) (5.5)

where U(s) and Y (s) are the unimodular matrices in (5.2). C(s) is the MIMO con-

troller that stabilizes the MIMO plant P (s).

5.3.4 Gain and Phase Margin Design for MIMO Plants

In order to design the controller Ci(s) for each Smith-McMillan plant Pi(s) one

can specify gain and phase margins for the corresponding SISO loop. Let gi and φi

be the gain margin and phase margin for the ith SISO loop for i = 1, 2, ..., n.

Define ∆ as

∆ :=


δ 0

. . .

0 δ

 . (5.6)

Consider G(s) = P (s)C(s) in Fig 5.3. The multivariable stability margins can

be defined as follows: For gain margins replace δ by K in (5.6) and find the smallest

K, called K∗, such that the loop in Fig. 5.3 becomes marginally unstable. A similar

definition applies to phase margin where δ is replace by e−jθ.
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∆ G(s)−

Figure 5.3: Unity Feedback MIMO System with a Perturbation Matrix ∆

We need a preliminary lemma to prove the main result.

Lemma 2 det(I + P (s)C(s)) = Πn
i=1

(
1 + Pi(s)Ci(s)

)
.

Proof.

det(I+P (s)C(s)) =

det
(
Y −1(s)Y (s) + Y −1(s)Pd(s)Cd(s)Y (s)

)
= det

(
Y −1(s)

)
det
(
I + Pd(s)Cd(s)

)
det
(
Y (s)

)
= det

(
I + Pd(s)Cd(s)

)
= Πn

i=1

(
1 + Pi(s)Ci(s)

)
.

Theorem 1 Suppose C(s) in (5.5) is a proper controller such that Ci(s) stabilizes

the corresponding Smith-McMillan plant Pi(s). Then C(s) stabilizes P (s) with a gain

margin G, phase margin Φ, and time-delay tolerance T where

G = min
i=1,2,...,n

{gi}, (5.7)

Φ = min
i=1,2,...,n

{φi}, (5.8)

T = min
i=1,2,...,n

{τi}, (5.9)
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and gi, φi, and τi are the gain margin, phase margin, and time-delay tolerance of the

SISO loops Ci(s)Pi(s) for i = 1, 2, ...n.

Proof. The proof of this theorem follows from the following observations. If

∆ :=


K 0

. . .

0 K

 . (5.10)

Then from Lemma 2,

det
(
I + ∆P (s)C(s))

)
= Πn

i=1

(
1 +KPi(s)Ci

)
. (5.11)

If

∆ :=


ejθ 0

. . .

0 ejθ

 , (5.12)

then

det
(
I + ∆P (s)C(s)

)
= Πn

i=1

(
1 + ejθPi(s)Ci

)
. (5.13)

If

∆ :=


e−sT 0

. . .

0 e−sT

 , (5.14)

then

det
(
I + ∆P (s)C(s)

)
= Πn

i=1

(
1 + e−sTPi(s)Ci

)
. (5.15)

Combining (5.11), (5.13), and (5.15) evaluated at s = jω we obtain (5.7), (5.8), and

(5.9).
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This theorem shows that the gain margin, phase margin, and time-delay tolerance

for the multivariable system are the minimum of the gain margins, the minimum of

the phase margins, and the minimum of the time-delay tolerance of the multiple

SISO loops.

5.4 PI Controller Design

For the step (iii) in the summary of the methodology the following sub-steps are

explained in greater detail.

(a) Compute the stabilizing set

(b) Parametrize constant gain and constant phase loci for PI controllers

(c) Construct the achievable Gain-Phase margin design curves

(d) Select achievable gain margin, phase margin, and gain crossover frequency and

retrieve the PI controller gains.

5.4.1 Computation of the Stabilizing Set

Consider a continuous-time LTI SISO system

P (s) =
N(s)

D(s)
(5.16)

and a PI controller

C(s) =
KP s+KI

s
. (5.17)
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The computation of the stabilizing set can be calculated following the steps described

in subsection 2.3.2.

5.4.2 Constant Gain and Constant Phase Loci for PI Controllers

Let P (s) and C(s) be the plant and controller transfer functions in LTI SISO

system. The frequency response of the plant and controller are Pi(jω), Ci(jω),

respectively, where ω ∈ [0,∞]. For the PI controller

C(jω) =
jKPω +KI

jω
. (5.18)

Then, we have

|C(jω)|2 = K2
P +

K2
I

ω2
=: m2 (5.19)

6 C(jω) = arctan

(
−KI

KPω

)
=: φ (5.20)

Equations (5.19) and (5.20) can be written as

(KP )2

a2
+

(KI)
2

b2
= 1 and KI = cKP (5.21)

where

a2 = m2, b2 = m2ω2, c = −ω tanφ (5.22)

Thus constant gain loci are ellipses and constant phase loci are straight lines in

KP , KI space. The major and minor axes of the ellipse are given by a and b. The

slope of the straight line (5.21) is c. Suppose ω∗g is the prescribed closed-loop gain
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crossover frequency. Then

|C(jω∗g)| =
1

|P (jω∗g)|
=: mg (5.23)

If φ∗g is the desired phase margin in radians,

6 C(jω∗g) = π + φ∗g − 6 P (jω∗g) =: φg (5.24)

Combining (5.21), (5.23), and (5.24) we obtain the ellipse and straight line cor-

responding to m = mg and φ = φg, giving the design point (K∗P , K∗I ). If these

intersection points lie in the stabilizing set S, the design is feasible, otherwise the

specifications have to be altered. The graphical procedure (intersection of ellipse

and straight line in the stabilizing set) makes it a convenient tool for computer-aided

design.

5.4.3 Computation of the Achievable Performance Gain-Phase Margin Design

Curves

The Gain-Phase margin design curves represent the actual performance in terms

of gain margin (GM), phase margin (PM), and gain crossover frequency (ωg) for a

plant P (s) achievable with a PI controller. The procedure to construct these design

curves is the following:

1. Set a test range of φ∗g ∈ [φmin
g , φmax

g ] and ωg ∈ [ωmin
g , ωmax

g ].

2. For fixed values of φ∗g and ωg, plot an ellipse and a straight line.

3. If an intersection point of the ellipse and the straight line lies outside of the

stabilizing set, then this point is rejected and go to step 2).
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4. If an intersection point of the ellipse and straight line is contained in the stabi-

lizing set, it represents the design point with the PI controller gains (K∗P , K
∗
I )

that satisfies the φ∗g and ωg.

5. Given the selected PI controller gains (K∗Pi , K
∗
Ii

), the upper and lower GM of

the system are given by

GMupper =
Kub
P

K∗P
and GMlower =

K lb
P

K∗P
(5.25)

where Kub
P and K lb

P are the KP values at the upper and lower boundary respec-

tively of the stabilizing set following the straight line intersecting the ellipse.

6. Go to step 2 and repeat for all values of φ∗g and ωg in the ranges.

5.4.4 Selecting an Achievable GM, PM, and ωg and Retrieving the PI Controller

Gains

The designer can select a desired point from the achievable performance Gain-

Phase margin set and retrieve the controller gains corresponding to that simultaneous

specification of desired GM, PM, and ωg. The controller gain retrieval process is the

following.

(1) Select desired GM, PM, and ωg from the achievable gain-margin set.

(2) For the specified point, construct the ellipse and straight line by using the selected

PM and ωg in the constant gain and constant phase loci.

(3) Take the intersection of the ellipse and straight line contained in the stabilizing

set. This will provide the gains (K∗P , K
∗
I ).

151



(4) The controller that satisfies the prescribed margin specifications is C(s) =
K∗P s+K

∗
I

s
.

5.5 Example 6a. Multivariable PI Controller Design

Let us consider a Two-Input Two-Output system as in Fig 5.1 with P (s) as

P (s) =

 4
(s+1)(s+2)

−1
s+1

2
s+1

− 6s+7
2(s2+3s+2)

 . (5.26)

The objective is to find the controller C(s) such that it satisfies the predesigned gain

margin, phase margin, and gain crossover frequency.

5.5.1 Transformation of the Multivariable System Into Multiple SISO Systems.

The least common multiple of the denominator of P (s) is

d(s) = (s+ 1)(s+ 2) (5.27)

Then, we can rewrite P (s) as

P (s) =
1

(s+ 1)(s+ 2)

 4 −1(s+ 2)

2(s+ 2) −(3s+ 3.5)


︸ ︷︷ ︸

N(s)

(5.28)
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The Smith form of N(s) is expressed as

S(s) = 1
4

0

−(s+ 2) 2


︸ ︷︷ ︸

Y (s)

 4 −1(s+ 2)

2(s+ 2) −(3s+ 3.5)


︸ ︷︷ ︸

N(s)

1 1
4
(s+ 2)

0 1


︸ ︷︷ ︸

U(s)

=

1 0

0 s2 − 2s− 3

 (5.29)

Dividing every element of S(s) by d(s) we get the Smith-McMillan form

Pd(s) =

 1
(s+1)(s+2)

0

0 − s−3
s+2

 (5.30)

Considering Fig 5.2 with a diagonal controller Cd(s), we have multiple SISO loops

where we can apply the SISO controller design method discussed in the previous

section. Let us consider Cd(s) as

Cd(s) =

KP1s+KI1s
0

0
KP2s+KI2
s(s+2)2

 (5.31)

Note that there are two additional poles included in C2(s). The relative degree must

be r2 = 2 for the controller C(s) to be proper. This addition of poles can be consid-

ered as another design variable since they will affect the achievable performance of

the system.

153



5.5.2 Computation of the PI Stabilizing Sets for the Multiple SISO Loops

Considering the SISO loops C1(s)P1(s) and C2(s)P2(s), we can find the stabi-

lizing set and the achievable performance in terms of GM, PM, and ωg for each

case. For C1(s)P1(s) the range of KP1 for stability was determined to be KP1 ∈

(−2,∞). For C2(s)P2(s) the range of KP2 for stability was determined to be KP2 ∈

(−9.2702, 2.6667). By sweeping KP1 and KP2 within the intervals we can generate

the set of stabilizing (KP1 , KI1) and (KP2 , KI2) sets. These sets are shown in Fig 5.4

and Fig 5.5, respectively.

5.5.3 Construction of the Gain-Phase Margin Design Curves for the Multiple

SISO Loops

For the construction of the achievable Gain-Phase margin set for each of the SISO

systems, we specified the following. For the system C1(s)P1(s), the evaluated range

of ωg is [0.1, 2.1] and the range for PM is from 0o to 90o. For the system C2(s)P2(s),

the evaluated range of ωg is [0.1, 2.1] and the range for PM is from 0o to 120o. The

calculation of the GM for each case is done by (5.25). Using the ellipse and straight

line intersection points, we can construct the achievable Gain-Phase margin set as

shown in Fig 5.6.

5.5.4 Selection of Simultaneous Design Specifications and Retrieval of the PI

Controller Gains

In Fig 5.6 and Fig 5.8, we can see the achievable Gain-Phase margin set of

curves indexed by fixed ω∗g in different colors for C1(s)P1(s) and C2(s)P2(s). For

C1(s)P1(s), we notice that all the curves are going up. This means that the GM is
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Figure 5.4: Stabilizing Set in Yellow for PI Controller Design in Example 6a for
C1(s)P1(s), Intersection of an Ellipse and a Straight Line, and the Controller Gain
(Kub

P1
) at the Upper Boundary Point in the Stabilizing Set.

going to infinity for the first SISO system. However, the maximum PM that we can

get is 83o for a ωg = 0.1 rad/sec. For C2(s)P2(s), we have limited GM compared

to C1(s)P1(s). In this case, the maximum GM that we can achieve is 17.69 with

a PM of 83o. In Fig 5.8, there are several points indicating the possible maximum

values of GM for specific ωg. The designer has the liberty to choose values for GM,

PM, and ωg that best suits his design needs. For this MIMO example, we want to

show that selecting GM and PM from the achievable performance from the SISO

loops we can get a MIMO controller C(s) that will achieve the margin which is
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) at the Upper Boundary Points in the Stabilizing Set.

equal to the minimum of the margins of the SISO loops. Therefore, for illustration

purposes, we are going to select a GM = ∞, PM = 60o, and ωg = 0.5 rad/sec for

C1(s)P1(s) and GM = 3.518, PM = 60o, and ωg = 0.5 rad/sec for C2(s)P2(s). These

values represent τ1 = 2.094 and τ2 = 2.094. After the selection of simultaneous GM,

PM, and ωg from the achievable Gain-Phase margin set, the designer can retrieve

the controller gains corresponding to the point. Then, taking these values for the

constant gain and constant phase loci presented in the methodology, we can find

the intersection of an ellipse and a straight line shown in Fig 5.4 and Fig 5.5. The
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Figure 5.6: Achievable Performance in Terms of GM, PM, and ωg for PI Controller
Design in Example 6a for C1(s)P1(s)

controller gains for both loops are K∗P1
= 0.424 and K∗I1 = 1.133 for C1(s)P1(s) and

K∗P2
= −1.059 and K∗I2 = −1.34 for C2(s)P2(s).

5.5.5 Transformation of the Diagonal Controller Cd(s) Into the MIMO Controller

C(s)

The final design step is to take the diagonal controller Cd(s) and transform it into

the MIMO controller C(s) in (5.5) by substituting the unimodular matrices Y (s) and

U(s) in (5.29). Then, using the assigned values of (K∗P1
, K∗I1) and (K∗P2

, K∗I2) we have

C(s) =

0.371s+0.618
s

−0.53s−0.67
s(s+2)

1.061s+1.34
s(s+2)

−2.12s−2.68
s(s+2)2

 (5.32)
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Figure 5.7: Achievable Performance in Terms of τmax, PM, and ωg for PI Controller
Design in Example 6a for C1(s)P1(s)

We can verify the results by computing the gain margin and phase margin of the

multivariable system using the controller C(s). In Fig 5.3, the characteristic equation

of the multivariable system is given by

det[I + ∆G(s)] (5.33)

where G(s) = P (s)C(s) and ∆ is defined as in (5.6). Let δ = k. Then
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det[I + ∆G(s)] = s7 + 9s6 + (32− 0.637k)s5

+ (56 + 2.33k)s4

+ (48− 0.4484k2 + 19.288k)s3

+ (16− 0.4216k2 + 32.708k)s2

+ (3.7833k2 + 17.096k)s+ 4.5506k2. (5.34)

We found that the minimum range of k for the closed-loop system in Fig 5.3 to be

stable is

0 < k < 3.518 (5.35)
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Figure 5.9: Achievable Performance in Terms of τmax, PM, and ωg for PI Controller
Design in Example 6a for C2(s)P2(s)

the roots of (5.34) with k = 3.518 are



0.00030784192− j1.5532363

0.00030784192 + j1.5532363

−0.38174169 + j1.2786136

−0.38174169− j1.2786136

−1.2283752

−2.2365012

−4.7722559

(5.36)

We can see that the real part of two of the roots just crossed the imaginary axis.

Thus the gain margin is k∗ = 3.518 for the MIMO system. This is the same value
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that we selected in the desired specifications for C2(s)P2(s).

Now, let δ = ejθ. (5.33) is

det[I + ∆G(s)] = s7 + 9s6 + (32− 0.637ejθ)s5

+ (2.33ejθ + 56.0)s4

+ (19.29ejθ − 0.4484ej2θ + 48.0)s3

+ (32.7ejθ − 0.4218ej2θ + 16.0)s2

+ (ejθ + 3.784ej2θ + 17.1)s+ 4.551ej2θ (5.37)

The range for θ to keep the multivariable system stable is

0 < θ < 60o. (5.38)

The roots of (5.37) for θ = 60o are



−3.5159631− j0.67153706

−2.0790212− j0.081079624

−1.2506782− j0.1211673

−1.2333837 + j1.2928996

−0.92099468 + j0.58077106

0.000015906289− j0.49969144

0.000025099732− j0.50019525

(5.39)

Likewise, the real part of two of the roots just crossed the imaginary axis. So, the

phase margin is θ∗ = 60o for the MIMO system. This is the same value that we

161



selected in the desired specifications for the SISO system C2(s)P2(s).

Now, let δ = e−sT . (5.33) is

det[I + ∆G(s)] = s7 + 9s6 + s5(0.423e−Ts + 32.0)

+ s4(4.45e−Ts + 56.0) + s3(18.23e−Ts + 48.0)

+ s2(30.59e−Ts + 0.3299e−2Ts + 16.0) + s(17.1e−Ts + 2.583e−2Ts)

+ 4.551e−2Ts (5.40)

The range for T to keep the multivariable system stable is

0 < T < 2.094 sec. (5.41)

The time-delay tolerance is T = 2.094 for the MIMO system. This is the same

value that we selected in the desired specifications for the SISO system C2(s)P2(s).

5.6 References

For more details about the Smith-McMillan transformation and the computa-

tion of the stabilizing set see [91] and [92] respectively. The transformation of a

multivariable system into a scalar equivalent system is presented in [93].
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6. CONCLUSIONS

6.1 Summary

In this dissertation, we have presented an advanced tuning approach for First

Order, PI and PID controllers for discrete-time, delay-free and First Order plus

time-delay continuous-time linear time-invariant Single-input single-output systems.

These results were possible to extend to the controller design of multivariable lin-

ear time-invariant continuous-time systems. It was shown how First Order, PI, and

PID controllers can be designed to satisfy simultaneously desired gain margin, phase

margin, gain crossover frequency, and time delay tolerance by selecting the specifica-

tions from a constructed achievable performance set in the Gain-Phase margin plane.

First, the stabilizing set was computed using recent results for discrete-time and

continuous-time systems. Then, we showed a graphical approach for the parametriza-

tion of constant gain and constant phase loci respectively by ellipses/cylinders and

straight lines/planes. We then constructed an achievable Gain-Phase margin set in-

dexed by gain crossover frequencies. After that, given a selected desired specification

from the achievable performance set, retrieval of the controller gains was presented

as the intersection of an ellipse/cylinder and a straight line/plane superimposed on

the stabilizing set. In the end, different examples were presented for different cases

to show the proposed approach.

The results presented in this dissertation provide us with a computational tool

for an advanced design of classical controllers for different types of systems. Also,

it provides a general perspective to the designer about how much design is possible

by constructing the achievable performance set for a specific type of controller (First
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Order, PI, or PID). This approach offers the freedom to the designer to select any

desired specification that can be achieved by the proposed controller. This result is

of great importance because many of these types of controller are currently being

used in many industrial applications and new technology developments like in au-

tonomous cars, renewable energies, and drones.

6.2 Future research

The results presented in this dissertation represent an important contribution

to the classical controller theory by introducing new computer-aided approaches to

satisfy different simultaneous design specifications. However, the results in this dis-

sertation are related to the design of classical controllers considering a frequency

response analysis. There are time response considerations such as overshoot, under-

shoot, rise time, and settling time that need to be addressed. Another consideration

for future research is to improve the computations involved in the controller design

process and construct a toolbox where the designer can manipulate better the in-

formation and have an organized representation of the results in one screen. Then,

use this computational tool more efficiently for controller design. Finally, a consid-

eration for future research is the application of this controller design approach to

real applications where PI or PID controllers are mostly used. For example, some

industrial applications in automatic processes, power electronics, autonomous cars,

renewable energies, and drones.
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