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ABSTRACT 

             

Affect is the psychological display of emotion often described with three principal 

dimensions: 1) valence 2) arousal and 3) dominance. This thesis work explores the ability 

of computers to recognize human emotions using Electroencephalography (EEG) features. 

The development of computer systems to classify human emotions using physiological 

signals has recently gained pace in the research and technological community. This is 

because by using EEG to analyze the cognitive state one will be able to establish a direct 

communication channel between a computer and the human brain. Other applications of 

recognizing the affective states from EEG include identifying stress and cognitive 

workload on individuals and assist them in relaxation. 

 

This thesis is an extensive study on the design of paradigms that help computer systems 

recognize emotional states given a multichannel Electroencephalogram (EEG) segment. 

The process of first extracting features from the EEG signals using signal processing and 

then constructing a predictive model via machine learning is often referred to as 

paradigms. In this work, we will first present a brief review of the state-of-the-art 

paradigms that have contributed to the topic of emotional affect recognition. Then the 

proposed paradigms to recognize the principal dimensions of affect are detailed. Feature 

selection is also performed in order to select the relevant features. The evaluation of the 

models created to predict the affective states will be performed quantitatively by 

calculating the generalization accuracy and qualitatively by interpreting them.    
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CHAPTER I  

INTRODUCTION AND BACKGROUND 

 

A system which takes neural signals measured from a person to predict some 

abstract aspect of the person’s cognitive state is a Brain-Computer Interface (BCI). BCIs 

enable us to investigate brain activity as an independent variable. The aspects of the human 

brain state that can be predicted include motor functions, alertness, emotions, task 

involvement, etc. BCIs provide an additional channel that allow neuronal activity of the 

brain to interact with computer systems. Brain activity can be recorded intra-cortically 

with multielectrode arrays or single electrode or subdurally from the cortex or from the 

scalp. The type of recording employed classifies the BCI [30] into two types as described 

below: - 

(1) Invasive BCI:  In this approach, the brain activity within the cortex and activity 

from the surface of the cortex is measured using surgical implants. Examples 

include Electrocardiogram (ECoG) and microarrays and neural chips placed 

on the spinal cord. 

(2) Non-Invasive BCI: In this method, the activity of the brain is recorded using 

noninvasive techniques. Examples based on this approach include 

Electroencephalography (EEG), Magnetoencephalography (MEG) and 

functional Magnetic Resonance Imaging (fMRI). 
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Since the BCIs provide an additional communication channel between the brain and a 

computer system they have the potential to bridge the gap of Human-Computer 

Interactions. Figure 1 shows a BCI system setup. Many of the applications of BCIs can be 

divided into two varieties which are clinical applications and non-clinical applications.  

The clinical applications of BCI [30] include constructing systems with the help of BCI 

for motor control and other functions that are required for patients. Patients who have lost 

most of their voluntary muscular movement, suffer from motor neuron disease, spinal cord 

injury or traumatic brain injury which may lead to severe motor paralysis. Depending on 

the state of the patient one can construct a BCI that restores some of their motor functions. 

An example of a popular clinical BCI is the P300 Speller BCI based on the odd-ball 

paradigm. The P300 [30] wave of Electroencephalography signal is central to the idea of 

a Memory and Encoding Related Multifaceted Electroencephalographic Response 

(MERMER) developed by Dr. Lawrence Farwell. In the P300 [30] Speller BCI, a 6x6 

matrix of characters and commands are displayed to the user and the subject must focus 

his/her attention on a specific character as the rows and columns are flashed in a random 

order. The character is identified by the computer by recognizing the row and the column 

of the matrix the user is focusing on by analyzing the subject’s P300 [30] signal response.   

 

There are several non-clinical applications of BCI [30] as well. The video gaming industry 

involving biofeedback games is one such application. Neurorehabilitation which deals 

with cognitive workload monitoring is another example where BCIs are used to analyze 

the amount of stress an individual is experiencing. BCIs can also be used in the Forensics 
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department as lie detection monitors to evaluate trust. Many researchers use BCIs to gather 

information content that can help them answer some of the open problems about 

neuroscience that have not yet been solved. 

 

 

Figure 1: Brain-Computer Interface System Setup 

             

There are several challenges involved in data processing and recognition from BCI 

applications. There are lot of variabilities encountered when processing EEG signals 

acquired from BCIs. A portion of this variability is caused by the difference in sensor 

locations when collecting the signals across different sessions. The low Signal-to-Noise 

ratio of EEG signals recorded makes the relevant neural activity of the brain very small 
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compared to the interfering artifacts and noise. Also, building a robust and useful BCI 

model via machine learning when the brain dynamics are non-stationary at all time scales 

is a major challenge. This thesis work will help outline some promising directions to 

address these hardships. 

 

In this thesis, sophisticated signal processing and machine learning techniques are 

leveraged to address the challenges encountered on emotional affect recognition with EEG 

based BCIs. The process of first extracting features from the EEG signals using signal 

processing transforms and filters and then constructing a predictive model via machine 

learning is known as paradigms. The current chapter gives an introduction and a brief 

background on the topic. Chapter II discusses the signal processing techniques applied to 

extract features from EEG signals acquired from BCIs. Details about the calculations of 

Power Spectral Density, Discrete Wavelet Transforms and computations of spatial filters 

will be provided. Later in Chapter II, the Support Vector Machines (SVM) algorithm will 

be discussed. The SVMs are considered to be one of the state-of-the art Supervised 

Machine Learning algorithms. They are formed by combining the kernel trick with a 

modified loss function. Chapter III discusses generation of semi-simulated EEG signal 

data using modeled artifact signals and noise. In Chapter IV we will examine the processes 

of Feature Selection method employed to eliminate the redundant features and clearly 

identify the relevant features present in the SVM model. Chapter V gives a description of 

the experiments performed with the open source datasets and the results obtained from the 

designed paradigms. Inferences from these experiments and results will be discussed to 
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get a qualitative interpretation of the SVM model computed. Chapter VI gives a brief 

conclusion to the thesis work. 

 

The organization of the remaining of this chapter is described below. Section 1 discusses 

about the different techniques used for recording brain activity. Section 2 describes about 

the basics of Electroencephalography (EEG) recordings. In Section 3 an introduction to 

Affective Computing is provided.  

 

1.1 Recording Brain Activity 

 

The primary motivation for recording brain activity [30] is to study neural processes in the 

normal working brain. Over the past few years, functional brain imaging has developed 

into a multidisciplinary research field encompassing techniques that help better understand 

the processes that underlie normal and pathological brain function. In this section, we will 

be covering mostly on non-invasive techniques of recording brain activity. 

 

In Positron Emission Tomography (PET) [30] radioactive labeled organic molecules are 

used to capture the dynamic changes of the spatial distribution. The PET images have 

spatial resolution as high as 2mm, but the temporal resolution is limited by the dynamics 

of the process being studied which can last for several minutes.  In the past few years, it 

has been possible to use blood oxygen level dependent (BOLD) response as an input signal 

to a BCI using functional Magnetic Resonance Imaging (fMRI). fMRI [30] can be 
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performed using a standard 1.5 T clinical MRI magnet. However, many studies nowadays, 

use higher field machines around 3 – 4.5 T machines for improved Signal-to-Noise Ratio 

(SNR) and spatial resolution. fMRI studies can obtain spatial resolutions as high as 1 mm 

- 3 mm, but their temporal resolution is relatively low, in the order of 2 s- 4 s. It should be 

noted that the regions representing BOLD changes in fMRI images do not hold a one-to-

one relationship with the electrical neural activity regions of the brain.  The BOLD signal 

of fMRI is essentially a qualitative signal because its dependence with brain activity is a 

very complex dependence with changes of blood flow and oxygen mechanism. The EEG 

and Magnetoencephalography (MEG) [30] recoding techniques possess a superior 

temporal resolution of brain activity when compared to other non-invasive techniques of 

recording like PET and fMRI. The characteristic magnetic induction produced by the 

neural currents of the brain is weak, on the order of femtoTeslas, which necessitates 

sophisticated sensing technology and a very expensive setup to measure MEG signals. 

Acquiring signals through Electroencephalography (EEG) is comparatively easier and 

cheaper. The next section gives a detailed description of EEG.  

 

1.2 Basics of Electroencephalography 

 

Electroencephalography (EEG) is the measurement of a set of electric potential 

differences between pairs of electrodes attached to the scalp. The sensors may be either 

glued to the skin at selected locations using a water based gel or fitted in an elastic cap for 

a quick attachment and a uniform coverage of the entire scalp.  Researchers use 32 to 256 
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electrodes. The first recording of EEG signals of the brain was performed by a German 

physician Hans Berger in 1924. Today’s technological developments have made the EEG 

the most widely known non-invasive brain imaging modality. The benefits of using EEG 

as a form of recording brain activity include its portability, affordability and a 

straightforward setup.  EEG has been very successful in detecting epileptic seizures as the 

seizures are characterized by unusual electric activity in epileptogenic regions of the brain. 

 

EEG signals recorded can only detect large scale neural dynamics. In other words, EEG 

signals are actively recorded when around 50, 000 to millions of neurons are firing in near 

synchrony.  When the large number of neurons mentioned above fire in near synchrony 

the electromagnetic fields of the co-aligned neurons add up resulting in a detectable EEG 

signal. The events where the synchronized firing can occur are given below: 

a) An external event from the surroundings and the environment of the subject 

generates a cascade of neural processes. Examples of these types of event triggers 

include watching a video, listening to music, etc. 

b) An internal event due to the subjects thinking triggers a series of neural processes. 

Examples of these types of internal event triggers include recollection of previous 

incidents and memories.  

c) Several neural populations enter a synchronized steady state firing pattern. This 

phenomenon is also called idle oscillations. 
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Figure 2: 10-20 Electrode Placement System. Adapted from [29] 

Analyzing the collected EEG signals is very challenging because the root cause is not 

directly identifiable.  The electrical activity recorded by the EEG instrument is the neural 

current through the brain volume to the scalp and the sensor electrodes. Each sensor 

measures a weighted sum of several neurons activity. 
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Multichannel EEG Recordings are acquired by using the 10-20 electrode placement 

system. This approach was developed to enable standardized reproducibility and so that 

an individual’s EEG waves could be compared over time. Also, the EEG waves of 

different subjects can be compared to each other. The 10-20 international [24] placement 

of electrodes relies on percentages and not on absolute measurements which give it a 

distinct advantage over other positioning techniques because absolute measurements fail 

when it comes to comparing the heads of different sizes and reproducing results over time 

as the individual’s age (over the years). 

 

The name 10-20 is derived from the concept that the adjacent electrodes are placed apart 

by a distance that equals 10% or 20% of the distance from two anatomical points. The two 

anatomical points are the nasion (the point where the bridge of the nose meets the 

forehead) and the inion (the lowest point on the occiput). The Nomenclature of the 10-20 

System [24] is composed such that the letter represents the lobe of the brain the electrode 

lies on and the number denotes the hemisphere the electrode is placed.  Figure 2 [31] 

shows 21 primary electrodes positioned according to the 10-20 international system. The 

common letters used in the 10-20 system are F for Frontal, P for Parietal, C for Central, 

Fp for Frontopolar and O for Occipital. The letter A is used to denote electrodes placed on 

the Earlobe. It should be noted that there is no central lobe and the letter C is used only to 

help in identifying the location of the electrodes. The letters of the electrodes positioned 

in the 10-20 system can be recognized by looking into the five transverse planes. The 

numbers accompany the letter based on the hemisphere the electrode is located. The odd 
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numbers (1,3,5,7) represent the left hemisphere, and the even numbers (2,4,8) represent 

the right hemisphere. The letter z (zero) denotes the midline longitude of the brain. The 

numberings of the electrodes can be identified by examining the electrode placement 

through the sagittal planes. 

 

When needed for a high-resolution recording of brain activity with EEG, a more detailed 

recording with a larger number of electrodes is carried out. The number of electrodes 

utilized is increased to 81 and 345 by following the 10-10 system and the 10-5 systems 

respectively. The electrode locations in the new modified systems are obtained by placing 

them midway intermediate to the adjacent electrodes of the 10-20 international system. 

The new letter codes for the electrode names are obtained by combining the letters of the 

adjacent electrodes. For example, the FC4 electrode denotes the electrode placed between 

the F4 and the C4 electrodes. 

 

When dealing with multichannel EEG signals one comes across non-brain artifacts [24] a 

large number of times. An artifact is a waveform of the EEG signal which is not of cerebral 

origin.  Mistaking an artifact for an EEG wave is not an uncommon error for EEG 

waveform readers. In Chapter IV we will discuss in detail the various types of non-cerebral 

artifacts and noise signals present in a multichannel EEG segment.   
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1.3 Affective Computing 

 

Affective Computing [10] is the study of the systems that acquire, process, interpret and 

recognize aspects related to human emotion. The origins of this branch of research can be 

traced back to Rosalind Picard's 1995 paper [28] on affective computing.  The primary 

motivation for studying affective computing is to provide the computers with the ability 

to simulate empathy. Human emotions can be measured either as discrete states where the 

emotional states are distinct entities such as happy, sad, anger, etc. or as continuous scales 

in three dimensions [4] which are valence, arousal, and dominance. Valence is the 

dimension of affect that captures the amount of pleasantness expressed in an emotion. 

Positive valence represents happiness while negative emotion denotes sadness. Arousal is 

associated with the amount of activeness one expresses with his/her emotion. Positive 

arousal corresponds to excitement whereas negative arousal corresponds to boredom.  

Dominance is the dimension of affect that represents the quantity of control the person has 

over the emotions being expressed. Positive dominance denotes confidence while negative 

dominance shows fear in the emotion displayed. In this thesis, we will be viewing affect 

in terms of valence, arousal and dominance levels.  Figure 3 shows a mapping between 

the discrete emotional states vs. valence and arousal across a 2D plane. 
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Figure 3: Mapping between Valence and Arousal vs. Discrete Emotional States 
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CHAPTER II  

SIGNAL PROCESSING AND MACHINE LEARNING IN BRAIN-COMPUTER 

INTERFACES 

 

           The collective process of first pre-processing the acquired multichannel EEG 

signals and extracting the relevant features representing the signals belonging to the 

particular classes using filters and signal processing techniques and learning a classifier to 

predict new test multichannel EEG signal via machine learning is called Brain-Computer 

Interface Paradigms. The workflow involved in BCI paradigms is shown in Figure 4. This 

chapter primarily emphasis on the part of feature extraction from EEG signals using signal 

processing transformations and constructing a machine learning model from the extracted 

features. We will discuss briefly some of the common approaches to feature 

representations of multichannel EEG signals that have been used and later describe in 

detail the following approaches to feature representations of EEG signals 

1) Power Spectral Density Features 

2) Spatial Projection Features 

3) Discrete Wavelet Transforms 

Before we dive into the feature extraction using the above three techniques we will first 

briefly discuss prior work on EEG BCI paradigms for emotion recognition.  
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Figure 4:  Workflow in Brain-Computer Interface Paradigms 

 

2.1 Prior Work on Affective Electroencephalography based Brain-Computer 

Interface Paradigms 

 

The most traditional method is to extract the power spectrum features [1], [2] from the 

channels and average them over the commonly studied oscillatory frequency bands. In [1], 

the difference between the spectral power of all the symmetrical pairs of electrodes on the 
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right and left hemispheres are also computed and added to the existing features. The 

commonly studied oscillatory bands are given below 

a) theta (4 - 8 Hz) 

b) slow- alpha (8 - 10 Hz) 

c) alpha (8 - 13 Hz) 

d) beta (13 - 30 Hz) 

e) gamma (30 - 44 Hz) 

The authors of [1] have used Naïve Bayes classifier with the above features to perform 

single trial classification.  

 

In [5], the features corresponding to the fractal dimensions were extracted by applying the 

Higuchi algorithm to the dataset they collected. The authors in [5] assume thee EEG 

signals to be nonlinear and chaotic and hence employ the Higuchi algorithm from the time 

series data to collect the features representing the EEG data.  Let Xm
k denote the time series 

of a single channel EEG data as shown below 

𝑋𝑚
𝑘 : 𝑋(𝑚), 𝑋(𝑚 + 𝑘), … , 𝑋 (𝑚 +  [

𝑁−𝑚

𝑘
] . 𝑘)                                                                        (2.1) 

where m is the initial time and k is the interval time.   

k sets of Lm(k) are calculated as follows 

𝐿𝑚(𝑘) =  

{(∑ |𝑋(𝑚+𝑖𝑘)−𝑋(𝑚+(𝑖−1)𝑘)|
[
𝑁−𝑚

𝑘
]

𝑖=1
)

𝑁−1

[
𝑁−𝑚

𝑘
].𝑘

}

𝑘
                                                                (2.2) 

and let <L(k)> denote the average of Lm(k). The fractal dimension D is related to the 

average of Lm(k) as depicted in equation (2.3).  
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< 𝐿(𝑘) > ∝ 𝑘−𝐷                                                                                                                (2.3) 

The fractal dimensions were given as inputs to a Support Vector Machine classifier. The 

results reported after test classification showed significantly high recognition scores. 

 

Murugappan et. al [7] used the Discrete Wavelet Transform (DWT) to extract information 

from the EEG signal data. The emotions were classified into discrete emotional states, 

namely disgust, happy, surprise, fear and neutral. The wavelet features were represented 

in the form of conventional and modified energy based features.  Linear Discriminant 

Analysis (LDA) and k-Nearest Neighbors (kNN) pattern classification was employed to 

perform pattern classification on the extracted feature representations. Signal statistics 

features were explored by the authors of [8]. These features primarily included the mean 

of the channel signal, standard deviation, signal difference, Hjorth Features, and 

Histogram of Crossings (HOC).  Feature selection was also applied. The authors in [8] 

selected a Quadratic Discriminant Analysis (QDA) with diagonal covariance estimate as 

their classifier. 

 

In [14], the authors employed an unconventional approach by using subject information 

as privileged information along with the power spectrum features from the five frequency 

bands in [1]. In [14] more emphasis was put into constructing the classifier using Bayesian 

Networks to recognize emotions. One three node Bayesian Network applied was triangle 

structured, while the other was V structured.  The models for each of the techniques were 

computed using Maximum Likelihood Estimate from the training set. During testing, 
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given a new data, the EEG features were calculated and the class label y was assigned 

based on the values of posterior probability. In [17], the authors apply a similar strategy 

for implicit hybrid video tagging using Brain Computer Interfaces.  

 

In [9], the authors implemented Filter Bank Common Spatial Patterns algorithm which is 

very computationally extensive algorithm. The multichannel EEG segment was first 

spectrally filtered using five filter banks and later spatially filtered with eight spatial filters. 

The variance of the filtered signals was extracted as features and a Generalized Linear 

model with a Logistic link function was used as a classifier. The performance using this 

paradigm on their collected dataset was remarkable.  

 

The preprocessing of the multichannel EEG segment was performed by applying a High 

Pass Infinite Impulse Response (IIR) Filter with 0.1 – 1Hz transition band. This was 

employed to insure the DC noise was removed from the acquired signals. We will now 

discuss the features experimented with EEG signals in this thesis work using Power 

Spectral Density, Discrete Wavelet Transforms and Common Spatial Patterns in Sections 

2, 3, and 4 respectively. The details of computing a Support Vector Machines model is 

detailed in Section 5.  
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2.2 Power Spectral Density Features 

 

In this thesis work two types of features involving Power Spectral Density (PSD) was 

explored. The Welch’s algorithm [11] was used to compute the Power Spectral Density 

from multichannel EEG signals. The Welch’s algorithm is based on the Parseval's theorem 

depicted by equations (2.4) and (2.5).  

𝐹{𝑥(𝑡) ∗ 𝑥(𝑡)} = 𝑋(𝑓). 𝑋∗(𝑓)                                                                                                  (2.4) 

𝐹{𝑥(𝑡) ∗ 𝑥(𝑡)} = |𝑋(𝑓)|2                                                                                                 (2.5) 

where, x(t) is the discrete time signal and X(f) is the DFT of x(t).  

 

The steps involved in the Welch’s algorithm [11] are given as follows: 

a)   The discrete time signal is split into several segments with 50% overlap between 

each of the segment. 

b) The segments are then windowed using a window function. 

c) The spectrogram is calculated by computing the Discrete Fourier Transform (DFT) 

and then the squared magnitude of the DFT signal is taken. 

After employing the Welch’s algorithm an array of power measurements vs. frequency 

bin is obtained. There were two types of feature vectors composed using the PSD 

computations. The logarithmic PSD for all the channels were summed up with respect to 

the same frequency bins to obtain the feature vector for a trial. It should be noted that the 

feature vector formed in this fashion contains information of PSD only as a function of 

frequency [6].  In order to see the impact of any spatial information on the recognition of 
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affect another type of feature vector was constructed using procedure described as follows.  

After computing the PSD for each channel as a function of frequency. The logarithmic 

average of the PSD for each channel is calculated for each of the frequency bands given 

below: 

1) theta (4 - 8 Hz) 

2) slow- alpha (8 - 10 Hz) 

3) alpha (8 - 13 Hz) 

4) beta (13 - 30 Hz) 

5) gamma (30 - 44 Hz) 

6) (44 – 54 Hz) 

7) (54 – 64 Hz) 

The additional high frequency bands of (44 – 54 Hz) and (54 – 64 Hz) were chosen so that 

the role of high frequency activities can be examined in emotion recognition from EEG 

activity.  The feature vectors from this kind of formation have the form [# channels x # 

frequency bands] compared to the previous approach which take the form [# frequency 

range] for each sample trial. 

 

2.3 Discrete Wavelet Transforms 

 

The Wavelet transform is a technique to decompose an input signal into a set of elementary 

waveforms called “wavelets” and provides a way to analyze the signals by examining the 

coefficients\ weights of these wavelets. The Fourier transforms have a major disadvantage 
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of containing only the frequency information of the signal with no information on the time 

resolution. In other words, by applying the Fourier transforms we will be able to determine 

all the frequencies present in the signal but not know when they are present. This difficulty 

is resolved by employing the Discrete Wavelet Transforms (DWT) as they represent joint 

time - frequency representations. The key advantage of Discrete Wavelet Transform [21] 

is the inherent multi-resolution nature. The DWT [21] partitions the frequency axis 

smoothly and recursively so that the transformation can analyze each segment (i.e. 

frequency band) of the signal with a resolution matched to its scale. The process of 

obtaining the coefficients of the DWT is by performing convolution through a cascade of 

filters. 

 

The input signal is first split into low and high frequency bands by convolution and 

subsampling operations with a pair of filters consisting of a “lowpass” filter {hk} and a 

“highpass” filter {gk} on the discrete time domain. While obtaining the coefficients of 

DWT, this decomposition process is iterated only on the low frequency bands and each 

time the high frequency coefficients are retained. Each high frequency sub-band is 

spanned by a set of translated versions of a single elementary waveform commonly 

referred to as the “mother wavelet” with a specific scaling parameter. Each low frequency 

sub-band is spanned by a set of translated versions of another single elementary waveform 

known by the term “scaling function”. Figure 5 shows the shapes of the mother wavelets 

for Daubechies, Haar, Symlet and Mexican hat wavelet families. 
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Time and frequency usually are viewed as two different domains when representing 

signals as functions, but they are inextricably linked. If one attempts to gather precise 

information of the signal with respect to time, they must accept some uncertainty in 

frequency, and vice versa. This is the Heisenberg’s Uncertainty principle in signal 

processing. The multichannel EEG signal is decomposed using two-dimensional wavelet 

transform. A two-dimensional scaling function φ(x,y), and three two-dimensional 

wavelets, ψH(x,y),  ψV(x,y), ψD(x,y) are required to perform a two-dimensional wavelet 

decomposition.   

 

 

 

Figure 5: Mother Wavelets of Daubechies, Haar, Mexican Hat and Symlets Wavelet 

Families  
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The scaling functions and the “directionally sensitive” wavelets chosen for obtaining the 

coefficients of DWT [21] are separable as indicated by the equations (2.6) – (2.9). These 

wavelets measure functional variance along different directions: ψH measures variations 

along horizontal edges, ψV responds to variations along the vertical edges and ψD indicates 

variations along the diagonals. The block diagram representing the two-dimensional 

Wavelet Transform is shown in Figure 2.2.  

𝜑(𝑥, 𝑦) =  𝜑(𝑥)𝜑(𝑦)                                                                                                            (2.6) 

𝜓𝐻(𝑥, 𝑦) =  𝜓(𝑥)𝜑(𝑦)                                                                                                    (2.7) 

𝜓𝑉(𝑥, 𝑦) =  𝜑(𝑥)𝜓(𝑦)                                                                                                   (2.8) 

𝜓𝐷(𝑥, 𝑦) =  𝜓(𝑥)𝜓(𝑦)                                                                                                    (2.9) 

In order to define the equations used to obtain the two-dimensional wavelets, we must first 

define the scaled and translated basis functions displayed in equations (2.10) and (2.11). 

Figure 6 shows the flow diagram of computing the 2-dimensional DWT coefficients for a 

particular level of decomposition.  

𝜑𝑗,𝑚,𝑛(𝑥, 𝑦) = 2
𝑗

2 𝜑(2𝑗𝑥 − 𝑚, 2𝑗𝑦 − 𝑛)                                                                         (2.10) 

𝜓𝑗,𝑚,𝑛
𝑖 (𝑥, 𝑦) = 2

𝑗

2𝜓𝑖(2𝑗𝑥 − 𝑚, 2𝑗𝑦 − 𝑛),   𝑖 = {𝐻, 𝑉, 𝐷}                                                (2.11) 

Please note that the index i refer to the directions of the wavelet coefficients.  

 

 The Discrete Wavelet Transform of a multichannel EEG segment represented by f(x,y) 

of size MxN where, x denotes the channel , y denotes the time point is given by equations 

(2.12) and (2.13). 
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𝑊𝜑(𝑗0, 𝑚, 𝑛) =  
1

√𝑀𝑁
 ∑ ∑ 𝑓(𝑥, 𝑦)𝜑𝑗0,𝑚,𝑛(𝑥, 𝑦) 𝑁−1

𝑦=0
𝑀−1
𝑥=0                                                       (2.12) 

𝑊𝜓
𝑖 (𝑗, 𝑚, 𝑛) =  

1

√𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦) 𝜓𝑗,𝑚,𝑛

𝑖 (𝑥, 𝑦),      𝑖 = {𝐻, 𝑉, 𝐷} 𝑁−1
𝑦=0

𝑀−1
𝑥=0                            (2.13) 

  

 

 

Figure 6: The Two-Dimensional Discrete Wavelet Transform 

 

In this work, 5 levels of decomposition using Daubechies wavelet family of order 5 was 

employed. The DWT transform first decomposes the multichannel EEG signal into 

approximation coefficients and detailed coefficients. The approximation coefficients are 



 

24 

 

subsequently split into new approximation and detailed coefficients. This process is 

repeated five times to obtain five levels of decomposition. As the coefficients of DWT 

represent frequency characteristics of the multichannel EEG segment. The variance of 

these coefficients along the time axis was taken from each level of decomposition to 

extract multi-resolution time-frequency representation. The features were converted into 

logarithmic scale.     

 

2.4 Common Spatial Patterns 

 

Due to volume conduction, inferring the brain activity from multichannel EEG recordings 

is similar to identifying components from a highly-blurred image. Common Spatial 

Patterns (CSP) [12] refers to the technique of learning spatial filters from various acquired 

EEG signal recordings. This technique was introduced by the Berlin BCI project [19] to 

perform the task of Motor Imagery using EEG based BCIs. It is considered as one of the 

state of the art techniques for Motor Imagery BCIs. We apply this technique for Emotion 

Recognition and compare the results from the other proposed methods. This method is 

related to the Principal Component Analysis in machine learning. A brief outline on the 

construction of spatial filters is provided for the remainder of this section. 

 

The method used to design the spatial filters is based on the simultaneous diagonalization 

of the two covariance matrices.  CSP [12] is a supervised decomposition of a signal 

parametrized by the matrix 𝑊 ∈ 𝑅𝐶∗𝑚  (C represents the number of channels and m the 
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number of spatial filters). The matrix W projects 𝑥(𝑡) ∈ 𝑅𝐶 in the original sensor space to 

a substitute sensor space 𝑥𝐶𝑆𝑃(𝑡) ∈ 𝑅𝑚 as shown by equation (2.14). 

𝑥𝐶𝑆𝑃(𝑡) = 𝑊 𝑥(𝑡)                                                                                                                (2.14)  

 

The multichannel EEG signal is first band-passed filtered in the frequency range of [0.3Hz 

-  54 Hz]. The signal is then normalized to zero mean and unit variance. Pooled covariance 

matrices Σ (+) and Σ (-) are computed using the above preprocessed EEG signal as per 

equation (2.15). 

𝛴(𝑐) =  
1

|𝐼𝑐|
∑ 𝑋𝑖𝑋𝑖𝑇

𝑖∈𝐼𝑐
     𝑐 ∈ {+, −}                                                                                   (2.15) 

Ic is the set of indices that belong to class c and |Ic| denotes the number of examples in 

class c. The spatial filter W is then obtained by the simultaneous diagonalization of the 

above two covariance matrices. This process is detailed by the equations below 

𝑊𝑇 𝛴(+) 𝑊 =  𝛬(+)                                                                                                              (2.16) 

𝑊𝑇 𝛴(−) 𝑊 =  𝛬(−)                                                                                                            (2.17) 

such that Λ (+) + Λ (-) = I. The W matrix is obtained by solving the generalized eigenvalue 

problem as shown below 

𝛴(+)𝑤 =  𝜆 𝛴(−)𝑤                                                                                                             (2.18) 

where w denotes the columns of W and represent the generalized eigen vectors and λi
c’s 

are the generalized eigenvalues which are the diagonal elements of Λc. Once the matrix 

W is obtained the multichannel EEG segment is spatially filtered using equation (2.14).  
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Let Sd and Sc represent discriminative and common activity of the EEG signals between 

the two classes. The mathematical formulation of Sd and Sc are shown in equations (2.19) 

and (2.20). 

𝑆𝑑 =  𝛴(+) −  𝛴(−)                                                                                                                  (2.19) 

𝑆𝑐  =  𝛴(+)   +   𝛴(−)                                                                                                           (2.20) 

 

The process of obtaining the spatial filters w can be described as solving the 

optimization problem defined below. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑤     
𝑤𝑇𝑆𝑑 𝑤

𝑤𝑇𝑆𝑐 𝑤
                                                                                                   (2.21) 

 

2.5 Support Vector Machines 

 

Now, given a set of features from multichannel EEG signals and class labels 

corresponding to the affect levels of the subject our primary goal is to learn a parametric 

model M, that encodes the mapping between the extracted features and the affect labels. 

This parametric model M is learnt using a Support Vector Machine classifier. The 

parametric model learnt is used to predict affect labels on future trials of the subject. This 

process is illustrated in Figure 7. 
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Figure 7: Illustration of Supervised Machine Learning  

 

In this section, we will discuss the Support Vector Machine (SVM) learning algorithm 

[18], [22]. This section primarily deals with the training and testing involved when 

employing an SVM algorithm [18], [22] to the features extracted using the procedures 

described in the previous sections. In the later part of this section details on selecting 

certain parameters of the SVM is also provided. SVMs are believed to be the state of the 

art “off-the-shelf” supervised learning algorithms.  

 

In an SVM the predictions on the test feature set depend only on a subset of the training 

data. This subset of the training data is commonly referred to as the support vectors. The 

SVMs also make use of kernel functions which are denoted by κ(x, x’). This combination 

of the kernel trick and a modified loss function due to subset of the training samples is 

what makes the SVMs very powerful. The SVM models encode sparsity in the loss 
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function by considering the support vectors. SVMs are very unnatural from a probabilistic 

point of view, but they become more appropriate when we talk about margins and the idea 

of separating the data with a large “gap”.  

 

First, we will formulate SVM [18], [22] as an optimal margin classifier. The solution to a 

classification problem can be visualized as the process of obtaining a decision boundary 

that separates the two classes of data. While training an SVM classifier we try to find a 

decision boundary that maximizes the margin between the two classes of data, since this 

would predict a confident set of predictions on the training set and a good “fit” to the 

training data. This results in a classifier that separates the positive and negative training 

samples with a large margin. Figure 8 illustrates the large margin principle introduced 

above. 

 

   

Figure 8: Illustration of a Large Margin Classifier and a Small Margin Classifier 
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Let the training dataset be represented as {(xi, yi)} where i = 1,2,3 …, N, where there are 

N examples, xi represents the features and yi denotes class labels. Picking the best 

separating hyper-plane as the one that maximizes the margin is illustrated by equation 

(2.22). 

𝑚𝑎𝑥𝑤,𝑤0 𝑚𝑖𝑛𝑖=1
𝑁  

𝑦𝑖(𝑤𝑇𝑥𝑖+𝑤0)

||𝑤||
                                                                                              (2.22)  

 

Note that w, w0 represent the parameters of the hyperplane and that rescaling the 

parameters w to kw and w0 to kw0 does not change the distance of any point to the 

boundary since the k factor cancels out when we divide by ||w||.  Let fi = wTxi + w0, and 

let us assume a scaling factor of yifi =1 for the point that is closest to the decision boundary. 

Then, yifi ≥ 1 for all i. Finally, we should note that, maximizing (1/||w||) is equivalent to 

minimizing ||w||2. With the above changes in mind, the new objective of the SVM 

formulation is given by the equation below. 

𝑚𝑖𝑛𝑤,𝑤0  
1

2
||𝑤||2   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0)  ≥ 1, 𝑖 = 1,2, … , 𝑁                               (2.23) 

 

The above equation is a constrained optimization problem with a convex quadratic 

objective function with linear constraints. This kind of constrained optimization problem 

can be solved using Lagrange duality. Equation (2.23) is often referred to as the primal 

problem of an SVM. Using equation (2.23), the Lagrangian is formulated and the Karush-

Kuhn-Tucker (KKT) conditions are applied to obtain the dual form of the SVM as 

described by the equations below. Let αi’s and βi’s denote the Lagrange multipliers, and 
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let L (w, α, β) represent the Lagrangian function. The KKT conditions for the primal SVM 

problem are summarized below. 

𝜕

𝜕𝑤𝑖
𝐿(𝑤∗, 𝛼∗, 𝛽∗) = 0, 𝑖 = 1,2, … , 𝑑                                                                                (2.24) 

𝜕

𝜕𝛽𝑖
𝐿(𝑤∗, 𝛼∗, 𝛽∗) =  0, 𝑖 = 1,2, … , 𝑙                                                                                  (2.25) 

𝛼𝑖
∗𝑔𝑖(𝑤∗) = 0,       𝑖 = 1,2, … , 𝑘                                                                                     (2.26) 

𝑔𝑖(𝑤∗)    ≤ 0,    𝑖 = 1,2, … , 𝑘                                                                                         (2.27) 

𝛼∗   ≥ 0 ,     𝑖 = 1,2, … , 𝑘                                                                                                 (2.28) 

w*, α*, β* which satisfy the above KKT conditions are the solution to the primal and dual 

problem of SVM. One should also note that equation (2.26) implies that for the points 

where αi* > 0, the gi(w*) = 0 (i.e., equation (2.27) holds with the equality constraint) which 

are the key for obtaining the “support vectors”. The Lagrangian for our SVM problem is 

shown below. 

𝐿(𝑤, 𝑤0, 𝛼) =  
1

2
||𝑤||2 −  ∑ 𝛼𝑖[𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) − 1]  𝑁

𝑖=1                                                  (2.29) 

 

After employing the KKT conditions to the Lagrangian function defined above, we obtain 

the dual formulation of the SVM described by the equation below. 

𝑚𝑎𝑥𝛼  𝑊(𝛼) =  ∑ 𝛼𝑖
𝑁
𝑖=1  −  

1

2
∑ 𝑦𝑖𝑦𝑗  𝛼𝑖𝛼𝑗

𝑁
𝑖,𝑗=1 〈𝑥𝑖, 𝑥𝑗〉                                                

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛼𝑖  ≥ 0,     𝑖 =  1,2, … , 𝑁 𝑎𝑛𝑑 ∑ 𝛼𝑖 𝑦𝑖
𝑁
𝑖=1   = 0                                         (2.30) 

 

As mentioned before, the points where αi > 0 help determine the support vectors and        

<xi, xj> denotes a dot product which represents a linear kernel. If one wants to apply a 
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different kernel then < xi, xj > must be replaced with the desired kernel function κ (xi, xj). 

The different kernels commonly used with SVM are listed in Table 1. 

 

Kernel Type Description Mathematical Representation 

Linear kernel Most commonly used kernel κ (u, v) = u’v  

Polynomial kernel Polynomial kernel of order p κ (u, v) = (1+ u’v) p 

Gaussian kernel  Also, known as Radial Basis 

Function (RBF) kernel 

κ (u, v) = exp (γ || u - v ||2) 

Table 1:  Descriptions of Kernel Functions Commonly Used in SVMs 

 

The primal and dual problems were formulated under the assumption that the feature 

dataset was linearly separable. If the feature dataset was not linearly separable, then there 

will be no feasible solution to the primal and dual problems of SVM [18]. Hence, we 

introduce slack variables ξi > 0 so that the SVM algorithm works for non-linear feature 

datasets and will not be sensitive to outliers. The points are assigned a slack value 

depending on the portion of the decision boundary and the side of the margin they occupy 

in the feature space. If the point is on the correct side of the margin boundary, then ξi = 0. 

If 0 < ξi ≤ 1, the point lies inside the margin but on the correct side of the decision 

boundary.  The point lies on the wrong side of the separating hyperplane if ξi > 1. The 

assignment of the slack variables ξi is illustrated in Figure 9. This formulation of the SVM 

objective function with slack variables is known as SVM with soft margin constraints. The 
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primal and dual SVM objective functions with soft margin constraints are respectively 

given below. 

𝑚𝑖𝑛𝑤,𝑤0,𝜉  
1

2
||𝑤||2 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1      𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡, 𝜉𝑖  ≥ 0,   𝑦𝑖(𝑥𝑖

𝑇𝑤 + 𝑤0) ≥ 1 −  𝜉𝑖      (2.31)  

𝑚𝑎𝑥𝛼 𝑊(𝛼) =  ∑ 𝛼𝑖   −  
1

2
∑ 𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗〈𝑥𝑖 , 𝑥𝑗〉𝑁

𝑖,𝑗=1
𝑁
𝑖=1          

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   0 ≤ 𝛼𝑖  ≤ 𝐶, ∑ 𝛼𝑖𝑦𝑖    = 0  𝑁
𝑖=1                                                                 (2.32) 

 

The parameter C acts as a regularization parameter that controls the number of errors we 

are willing to tolerate on the training feature set. The Sequential Minimal Optimization 

(SMO) algorithm developed by John Platt [27] gives an efficient technique to solve the 

dual formulation of SVM.    

 

The training of an SVM model [18] by employing the features extracted from the 

multichannel EEG signals and the affect labels requires the specification of the kernel 

function and the C parameter value. The value of C is chosen by cross-validation on each 

subject.  The C parameter interacts strongly with the kernel function of the SVM. For 

example, suppose we are using a Gaussian kernel with γ = 5 which corresponds to a narrow 

kernel, then the value of C which will give us an optimum classifier is small as we need 

heavy regularization.  The optimum C was obtained using cross-validation over a one-

dimensional grid with C ∈ {10-2, 10-1, 1, 10, 100} similar to the procedure adopted by 

[18]. The optimum C and γ when using a Gaussian kernel are obtained by performing 

cross-validation over a two-dimensional grid with C ∈ {10-2, 10-1, 1, 10, 100} and  𝛾  ∈ 

{10-2, 10-1, 1, 10, 100} as in [18]. 
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Please also note that the feature set was standardized (zero mean and unit variance) before 

given as inputs to the SVM classifier. 

 

 

 

Figure: 9: Illustration of the Principle of Soft Margin SVM 

 

The trained SVM models were evaluated using k-Fold Cross Validation. The feature 

dataset is split into K folds. For each fold k ∈ {1, 2, …, K} we train an SVM model on    

k-1 folds and test the model on the kth fold in a round robin fashion This process is 
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illustrated in Figure 10. Commonly used value of K is K=5, also known as 5-fold cross 

validation. When K = N, where N denotes the number of data samples present the 

technique is called as Leave-one Out Cross Validation (LOOCV) since in fold j, we train 

on all the samples except for the jth sample and then test on the jth sample. The classifier 

model was computed for each subject as emotions are personal and greatly vary depending 

on the person. 

 

  

Figure 10: k-Fold Cross Validation with k =5 
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CHAPTER III 

GENERATING SEMI-SIMULATED ELECTROENCEPHALOGRAPHY SIGNAL 

DATA 

 

  In many BCI experiments the amount of trials conducted for each subject is small 

in number. The amount of EEG signal data present for each subject is less compared to 

the quantity of data encountered in a common machine learning problem.  As gathering 

more data is said to be more advantageous than designing a cleverer algorithm, in this 

chapter we will discuss the process of acquiring more EEG signal data by generating semi-

simulated EEG data. The semi-simulated EEG data is computed by adding modeled 

artifact signals to the assumed artifact free multichannel EEG signals.  In this chapter, we 

will first consider Electroencephalographic artifacts, examine how they are modeled and 

later on describe how the semi-simulated data was computed from these modeled artifacts. 

   

3.1 Modeling Electroencephalographic Artifacts 

 

Portions of waveforms in EEG that are not of cerebral origin are known as EEG artifacts. 

Artifact waveforms [24] are very common in EEG signals that it is, in fact, a common 

error for inexperienced EEG waveform readers to mistake an artifact for an EEG wave. 

Some EEG artifacts are easy to recognize like the muscle artifacts in the frontal and the 

temporal channels because of their distinctive appearance, but a few EEG artifacts are 

difficult to identify like the eye-blink artifacts, AC sinusoidal noise interference, etc. 
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Certain artifacts in multichannel EEG signals such as eye-blink artifacts, temporal muscle 

artifacts and electrode pops have characteristic shape and appearance which can be 

obtained using a combination of techniques of wave pattern generation and waveform 

topography. In this thesis, we will be modeling the following artifacts for computing the 

semi-simulated EEG signal data: - 

(a) Eye-Blink Artifacts 

(b) Temporal Muscle Artifacts 

(c) AC Sinusoidal Noise 

(d) Unfiltered White Gaussian Noise 

 

3.1.1 Eye-Blink Artifact 

 

When an individual close their eyes, the globes of the eyes deviate upwards. This upward 

movement of the globes is hidden from view by the closed eyelids. The eye-blink EEG 

artifact [24] caused by the upward movement of the globes during eye-blinking or eye 

closure cannot be understood without knowing that the globe of the eye contains a dipole 

distribution of charge. The globe of the eye contains charge distribution such that the 

cornea of the eye carries a net positive charge relative to the posterior of the eye which 

carries a net negative charge.  When the eyes blink, the net positive charge of the cornea 

get shifted upward. This upward shift of the positive charge is reflected in the frontal 

channels of EEG [24], primarily Fp1, AF3, F3, Fp2, AF4, F4. It should be noted that as 

F3 and F4 are more distant from the cornea, they pick up less amount of positivity shift.  
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An extension of the same concept involving the motion of positive charge on the anterior 

aspect of the globe can be used to comprehend the lateral eye movement artifact.  The 

anterior temporal electrodes F7 and F8 capture the lateral movement of charge. The above-

mentioned characteristics of eye-artifacts are captured by passing random noise through a 

band pass Finite Impulse Response (FIR) Filter with a pass band of 1 Hz to 3 Hz [23]. The 

FIR filter was designed using the Parks McClellan Algorithm [26].  The modeled eye 

artifacts were added only to the frontal channels of EEG segments, primarily Fp1, AF3, 

F3, Fp2, AF4, F4, F7 and F8. The amplitude of the artifacts was considered to be in the 

range between -5 dB to -20 dB. The addition of the artifact to the artifact free EEG dataset 

was performed using Signal-to-Noise Ratio (SNR) statistics. Similar procedure for 

generating semi-simulated data was adopted by [23].  Figure 11 shows a sample modeled 

eye-blink artifacts and the semi-simulated data using the eye-blink artifact on the Fp1 

channel of the EEG segment. 

 

   

Figure 11: Modeled Eye-Blink Artifact and Semi-Simulated Data Illustrating the Eye-

Blink Artifact 
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 3.1.2 Muscle Artifact 

 

Muscle artifact is the most commonly encountered artifact in multichannel EEG segments. 

Muscle artifacts [24] are captured by the electrodes that overlie the muscles of the scalp. 

These muscles include frontalis, temporalis, and occipitalis muscles.  The appearance of 

muscle artifacts resembles a mixture of fast waves with spike-like potentials having 

variable heights and shape. These artifacts arise due to contamination from the EMG 

(Electromyogram) signals which occur from muscle movement from the jaws and the 

neck.  

 

The temporal muscle artifacts were modeled by first generating random noise and filtering 

it via a Band-pass FIR filter with a pass band in the range of 20 Hz to 40 Hz [23]. The FIR 

Band-pass Filter was designed using the Parks-McClellan Algorithm [26].  The modeled 

artifacts were added to the artifact free EEG signals based on the muscle scalp map. The 

artifact was added with a high gain at the temporal and occipital electrode positions 

(around -6 dB to -10 dB) and smaller gains at the other electrode positions. Figure 12 

illustrates the temporal muscle artifact generation and summation into the artifact free 

multi-channel EEG segment. 

 

 

 

 



 

39 

 

 

Figure 12: Illustration of Generating Modeled Temporal Muscle Artifact and Adding it to 

Compute the Semi-Simulated EEG Segment 

 

3.1.3 Alternating Current Sinusoidal Noise 

 

Small amounts of Alternating Currents (AC) from the power mains that surround the 

patient can flow through the patient’s body accounting for this type of artifact. In a proper 

EEG setting, the AC current artifact is present in similar amounts on all the channels which 

gets subtracted out by the common mode rejection amplifiers used later. However, when 

one or some of the electrodes have been poorly applied the AC sinusoidal artifact will not 

be subtracted out in equal proportions. This causes the sinusoidal AC noise artifact to 

appear in the EEG segment [24]. The AC frequency current is either 50 Hz (Europe) or 60 

Hz (United States) depending on the country where the EEG signals were recorded. The 

AC sinusoidal noise was modeled by generating the sinusoid waveform (50 Hz or 60 Hz) 
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and implementing the generated sinusoidal discontinuities at one randomly selected data 

channel [23]. This process is illustrated in Figure 13.  

 

 

Figure 13: Illustration of Generating an AC Sinusoidal Noise of around 50 Hz and 

Obtaining the Semi-Simulated EEG Segment from the Modeled AC Noise. 

 

3.1.4 Artifacts from Electrical Equipment and other types of motion 

 

Since the EEG system setup can give out a variety of electrical signals and the long 

duration of the experiments can cause some restless motions by the participants. These 

types of noise were modeled using Unfiltered White Gaussian Noise [23]. This modeled 

artifact was added to the artifact free EEG segment to a randomly selected channel.   The 
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Unfiltered White Gaussian Noise was added with an SNR around -6 dB to - 20 dB. This 

process of modeling artifact in the form of Unfiltered Gaussian Noise is illustrated in 

Figure 14. 

 

 

Figure 14: The Process of Obtaining Unfiltered White Gaussian Noise and Computing 

Semi-Simulated EEG Segment from it. 
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3.2 Semi-Simulated Electroencephalography Signal Data only with Random Noise 

 

Another set of Semi-Simulated EEG signal database was generated using only simulations 

of random noise. This set of semi-simulated EEG signals was generated by only modeling 

random noise and adding these noise artifacts without any biological information to the 

artifact free EEG signal data. The modeled random noise was added at random time points 

for a small duration similar to the procedure followed previously. The channels selected 

were the same as those chosen when computing the Semi-Simulated EEG signal data with 

biological artifacts for fair comparison.  The artifact was added with an SNR in the range 

of -6 dB to -20 dB. The details about the comparisons between the two sets of Semi-

Simulated EEG signal data is given in Chapter V.  
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CHAPTER IV 

FEATURE SELECTION 

 

In pattern recognition tasks, identifying the most relevant features from the 

observed data is critical for minimizing classification error. The process of achieving this 

objective is often referred to as Feature Selection. Previously, we extracted features from 

the multichannel EEG segments corresponding to different feature spaces, primarily the 

power spectrum and the wavelet coefficients. In this chapter, we will describe the process 

of selecting features from the combination of the two subspaces that can improve our 

recognition of emotional affect on an individual. In the first section, we will introduce 

feature selection and discuss the different types of feature selection. Next, we will describe 

the Maximum Relevancy and Minimum Redundancy Feature Selection algorithm that was 

employed to select the candidate features from the two subspaces previously mentioned. 

Also, a short description of the framework of Max- Relevancy and Min- Redundancy to 

the concatenated Power Spectrum and the Wavelet features will be provided.    

 

4.1 Introduction to Feature Selection 

 

As mentioned earlier, Feature Selection [20] deals with selecting a subset of features from 

the defined feature space in order to obtain a better generalization of the attributes 

characterizing the system. The many advantages of Feature Selection include: 

(a) Dimensionality reduction that reduces the computational cost 
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(b)  Obtaining features that are more interpretable and help target the categorical patterns 

present 

 

There are two types of feature selection techniques: (1) Filters [25] and (2) Wrappers [25]. 

Filter methods involve filtering out the unnecessary features and selecting only a subset 

of the candidate features prior to applying a classification task. The process of employing 

Feature Selection via a filtering technique is shown in Figure 15. Wrapper methods, on 

the other hand are feature selection techniques embedded around a learning method. 

Wrapper methods assess features based on the classifier it is “wrapped” around. These 

techniques have more computational cost and have more chances of overfitting the 

features with the given dataset. The schematic of a Wrapper technique is illustrated in 

Figure 16. 

 

   

Figure 15: Feature Selection Using the Filtering Method. 
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Figure 16: Schematic of Feature Selection Using Wrapper Methods. 

 

4.2 Maximum-Relevancy and Minimum-Redundancy Feature Selection Algorithm 

 

We will now discuss the framework of the feature selection algorithm known as Maximum 

Relevancy and Minimum Redundancy (mRMR) [15]. This algorithm first ranks the 

feature variables based on the Mutual Information criteria and later applies the constraint 

of Max-Relevancy and Min-Redundancy to obtain the candidate features. This approach 

of feature selection is a Filtering technique. Since mRMR [15] is based on mutual 

information, we will first define Mutual Information between two random variables x and 

y by equation (4.1), where p(x,y), p(x) and p(y) are the probability density functions.    

𝐼 (𝑥, 𝑦) =  ∫ ∫ 𝑝(𝑥, 𝑦) log (
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
) 𝑑𝑥 𝑑𝑦                                                                        (4.1) 
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Let xi represent individual features from the feature set X = {xi, i = 1, 2, …, d} where d is 

the dimensionality of the feature space feature space considered. Also, let there be m 

samples from the observed data from which the features were extracted and the class labels 

be represented by c. In a Max-Relevance setup, the selected features xi have the largest 

mutual information I (xi, c) with the target class individually. In a sequential feature 

selection algorithm, the N candidate features are selected in the descending order of I(xi,c). 

But while performing sequential feature selection, one notices that the combination of 

individually good features does not guarantee a good classification accuracy. In other 

words, the N best features selected from sequential feature selection are not the best N 

features for pattern recognition.  

 

Let’s first look into the notion of Max-Dependency and then consider mRMR [15].  

Dependency of a feature set is defined as the joint mutual information of a group of feature 

variables on the identified class label. Max-Dependency feature selection is the process of 

selecting the feature set S that maximizes the dependency. Max- Dependency can be 

represented by the equation (4.2) given below. 

max 𝐷(𝑆, 𝑐),   𝐷 = 𝐼({𝑥𝑖, 𝑖 =  1,2, … , 𝑁}; 𝑐)                                                                      (4.2)  

It should be noted that when N = 1, the solution is the feature variable xj that maximizes                       

I (xj, c) where 1 ≤ j ≤ d. When N > 1, the approach is to increment the candidate feature 

set S by one feature variable after an iteration is performed to add whichever feature 

contributes to the largest increase in the value of I (S; c). Computation of I (Sk; c) takes 

the form given by equations (4.3) and (4.4).  
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𝐼(𝑆𝑘 ; 𝑐) =  ∬ 𝑝(𝑆𝑘 , 𝑐) log
𝑝(𝑆𝑘,𝑐)

𝑝(𝑆𝑘)𝑝(𝑐)
 𝑑𝑆𝑘𝑑𝑐                                                                     (4.3) 

𝐼(𝑆𝑘 ;  𝑐) =  ∬ 𝑝(𝑆𝑘−1, 𝑥𝑘, 𝑐) log
𝑝(𝑆𝑘−1,𝑥𝑘,𝑐)

𝑝(𝑆𝑘−1)𝑝(𝑥𝑘)𝑝(𝑐)
  𝑑𝑆𝑘−1𝑑𝑥𝑘𝑑𝑐                                     (4.4) 

 

It is difficult to obtain an accurate estimation of the multivariate probability density 

functions p (x1, x2, …, xd) and p (x1, x2, …, xd, c). This is because the number of training 

samples is insufficient for an accurate estimation of the probability density functions and 

the estimation also involves computing the inverse of a high dimensional covariance 

matrix which is an ill-posed problem. Since the Max-Dependency criteria is hard to 

compute, we approximate it with a Max-Relevance criterion. For estimating the Max-

Relevance criterion, we approximate D (S; c) as the mean of the mutual information 

between the individual feature variables being considered xi and c.  The mathematical 

formulation of Max-Relevance is shown by the equation below. 

max 𝐷(𝑆; 𝑐), 𝑤ℎ𝑒𝑟𝑒 𝐷 =  
1

𝑁
 ∑ 𝐼(𝑥𝑖; 𝑐)              𝑥𝑖∈ 𝑆                                                            (4.5)   

It is assumed that N is the dimensionality of S. It is reasonable to assume that many of the 

features selected with the Max-Relevance criterion can be redundant as the feature 

variables selected could be correlated with each other. It could be advantageous to remove 

these features which are redundant. This task can be achieved by adding a Min-

Redundancy condition described by the equation below. 

min 𝑅(𝑆), 𝑤ℎ𝑒𝑟𝑒 𝑅 =  
1

𝑁2  ∑ 𝐼(𝑥𝑖, 𝑥𝑗)            𝑥𝑖,𝑥𝑗∈𝑆                                                              (4.6)  

The criteria for Max-Relevance and Min-Redundancy form the mRMR [15] Feature 

Selection approach. The two criteria can be combined in two forms. The first combination 
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is in the form of a difference as shown by equation (4.7) and is referred to as mRMR with 

MID. The second combination is in the form of a quotient as shown by equation (4.8) and 

is known as mRMR with MIQ. 

max 𝛷 (𝐷, 𝑅), 𝑤ℎ𝑒𝑟𝑒 𝛷 = 𝐷 − 𝑅                                                                                         (4.7) 

max 𝜓 (𝐷, 𝑅), 𝑤ℎ𝑒𝑟𝑒 𝜓 =
𝐷

𝑅
                                                                                         (4.8) 

 

In the mRMR algorithm the first candidate feature is selected according to the Max-

Relevance criteria of equation (4.5).  The remaining candidate features are added in an 

incremental fashion.  Let us assume that k candidate features have already been selected 

by the mRMR algorithm for the set S and we want to select additional features from the 

set Ωs = Ω - S (the feature space except for those that have been selected). The candidate 

feature set is incremented based on the scheme chosen and the optimization performed for 

that scheme. The optimization formula for Mutual Information Difference (MID) criterion 

and Mutual Information Quotient [16] criterion are shown by equations (4.9) and (4.10). 

𝑥𝑖 = arg max𝑖 ∈ Ω𝑆
[𝐼 (𝑥𝑖, 𝑐)  −  

1

𝑁
 ∑ 𝐼(𝑥𝑖, 𝑥𝑗)𝑗∈𝑆 ]                                                             (4.9) 

𝑥𝑖 = arg max𝑖 ∈ Ω𝑆

 𝐼 (𝑥𝑖,𝑐)

[ 
1

𝑁
 ∑ 𝐼(𝑥𝑖,𝑥𝑗)𝑗∈𝑆 ]

                                                                                    (4.10) 

 

The mRMR [15] algorithm with both the MID and MIQ criterions was applied to the 

features extracted from the multichannel EEG segments during the training phase of the 

SVM classifier. The Power Spectral Density features of each channel averaged over six 

frequency bands were concatenated with the Discrete Wavelet Transform coefficient 
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features with the assumption that these features contained complementary information 

which could help in improving the generalization accuracy. The mRMR [15] with MID 

criterion and MIQ criterion were employed to select the candidate features to be 

considered as inputs to the SVM.  
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CHAPTER V 

EXPERIMENTS AND INFERENCES 

 

5.1 Experimental Datasets 

 

Recent advances in EEG based BCIs have assisted in the creation of novel 

databases containing multichannel EEG segments along with labeled emotion classes. 

This section will give a brief description of the EEG databases used in this thesis work. 

Three EEG databases containing emotional affect labels and two sets of Semi-Simulated 

EEG datasets were used to test and evaluate the BCI paradigms developed. 

 

A Database for Emotional Analysis using Physiological Signals (DEAP) [1] is one of the 

most popular multimodal EEG dataset used for the analysis of emotional affect states. The 

dataset contains multichannel EEG recordings of 32 participants. Each individual watched 

a music video for a duration of 1 minute to elicit a desired emotional response. A 3 second 

baseline was established before and after each video trial. Each individual participated in 

40 video trials. The participants gave ratings of their valence, arousal and dominance 

levels using Self-Assessment Manikins (SAM) [1]. The EEG signals were recorded at a 

sampling rate of 128 Hz using 32 active AgCl electrodes placed per the international 10-

20 system. 
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Two sets of Semi-Simulated EEG signal Databases were generated using the DEAP 

dataset. For the first set of Semi-Simulated EEG signal dataset the non-brain artifacts were 

modeled making use of several biological information and added to the artifact free EEG 

dataset using the procedure outlined in Chapter III. 40 additional EEG signal data trials 

were generated for each individual and class labels were replicated accordingly as non-

cerebral artifacts and noise should not affect the emotional response of a person. For the 

second set of Semi-Simulated EEG signal dataset only random noise was modeled and 

summed with artifact free EEG signals. The time points to which the noise was added was 

chosen randomly and the channels to which the noise was added was the same as the 

former Semi-Simulated dataset for fair comparison.   

 

Another dataset considered in this work is the MAHNOB – HCI dataset [2]. The 

experimental setup for collecting the EEG signals is similar to the DEAP database. 

MAHNOB- HCI [2] database contains physiological signals and emotion class labels with 

the intent of creating explicit and implicit video emotion tagging systems. Each participant 

watched a movie clip lasting for around 90 seconds which was intended to elicit an 

emotional response. The MAHNOB- HCI database [2] contains EEG signals recorded 

from 32 channels for a total of 538 sessions. Around 27 participants contributed to this 

dataset, and each member was involved with around 20 recordings. The multichannel EEG 

segments were acquired using a Bio-Semi setup similar to the DEAP with 32 channels and 

a sampling frequency of 256 Hz. 
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The dataset organized by the University of California, San Diego (UCSD) Imagined 

Emotion Study Dataset [3] is a well-organized database. It also contains multichannel 

EEG recordings from 32 individuals. However, the experimental environment for 

recording the EEG signals is different when compared to the DEAP database [1] and the 

MAHNOB-HCI database [2]. The participant was first made to relax. The participant was 

later guided to imagine various emotional scenarios or recall some emotional experiences 

based on narrations.  Each subject was asked to imagine around 15 emotional events. The 

EEG recording was performed with 256 active AgCl electrodes placed per the 

international 10-20 system at a sampling frequency of 256 Hz.     

 

5.2 Experimental Results 

 

All the programs for BCI paradigms including the spectral and the spatial filters, feature 

extraction from EEG datasets, SVM, feature selection were composed and implemented 

in Matlab (The Mathworks Inc., United States). In this section, we will discuss the 

experimental results obtained by applying the proposed BCI paradigms with the DEAP 

dataset [1], the UCSD Imagined Emotions Dataset [3] and the MAHNOB-HCI Database 

[2]. The proposed BCI paradigms are also compared with the existing prior work on that 

database.  

 

Tables 2, 3 and 4 give the results of the proposed BCI paradigms on the DEAP dataset for 

recognizing valence, arousal and dominance respectively. The results have been compared 
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with existing methodologies used with DEAP dataset. The evaluation of the models was 

performed using Leave-One Out Cross-Validation (LOOCV). The average of LOOCV for 

each subject is reported on the table. Same evaluation metric was used by [1], [2]. [13] 

and [14]. 

 

In the Semi-Simulated EEG databases, the number of trials for each subject is higher (80) 

than the DEAP [1] database. A Semi-Simulated dataset contains an additional 40 trials for 

each subject which makes a total of 80 trials for a subject. Hence, the evaluation metric 

we have used was five-Fold Cross Validation (5-Fold CV). The performance of two Semi-

Simulated EEG databases have been compared. The Tables 5, 7 and 9 give the affect 

recognition scores on the dataset generated by modeling non-brain artifacts using 

biological information and statistics outlined in Chapter III. The Tables 6, 8 and 10 

summarize the affect recognition accuracies using the database obtained by summing up 

random noise with artifact free EEG signals.  It should be noted that the testing was 

performed only on the artifact free EEG signal portion of the dataset.  
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Reference 

Method 

Feature Extraction Technique Classifier Feature 

dimension 

Affect Recognized  

Valence (Average over 

32 subjects with 

LOOCV on each 

subject) 

    Average 

Accuracy 

# subjects 

> 65% 

accuracy 

 PSD averaged over seven bands and 

variance of DWT coefficients with 

mRMR MID feature 

selection(d=150) 

SVM with 

linear kernel 

150  71.33 % 27 

subjects  

 PSD averaged over seven bands for 

each channel and variance of DWT 

coefficients with mRMR MIQ 

feature selection (d = 130) 

SVM with 

linear kernel 

130  70.55 % 25 

subjects  

 PSD with respect to frequency bins 

in the range [0.4 Hz – 64 Hz] 

SVM with 

linear kernel 

65 66.87% 20 

subjects  

 PSD averaged over seven frequency 

bands for each channel  

SVM with 

linear kernel 

224 70.23% 26 

subjects  

 Common Spatial Patterns with 

spectral filter of [0.4 Hz- 54 Hz] and 

8 spatial filters 

SVM with 

Gaussian kernel 

8 65.70% 21 

subjects  

 Variance of DWT coefficients along 

time with 5 levels of decomposition 

(db 5)  

SVM with 

linear kernel 

64 69.60% 29 

subjects  

[1] PSD from five bands with 

asymmetrical channel differences 

Naïve Bayes 216 57.60 %  

[13] PSD from five bands with 

asymmetrical channel differences 

Hierarchical 

Bayesian 

Network 

216 58.00 %  

[14] PSD from five bands with 

asymmetrical differences and Group 

information of subjects as privileged 

information  

Triangle shaped 

Bayesian 

Network 

Around 

160 + 

subject 

info 

60.36%  

 Table 2: Results Tabulated for Recognizing Valence from DEAP Dataset  
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Table 3: Results Tabulated for Recognizing Arousal from DEAP Dataset 

 

Reference 

Method 

Feature Extraction Technique Classifier Feature 

dimension 

Affect Recognized  

Arousal (Average 

over 32 subjects with 

LOOCV on each 

subject) 

    Average 

Accuracy 

# 

subjects 

> 65% 

accuracy 

 PSD average over seven frequency 

bands and variance of DWT 

coefficients with mRMR MID 

feature selection (d= 150) 

SVM with 

linear kernel 

150 68.92 % 19 

subjects  

 PSD averaged over seven bands for 

each channel and variance of DWT 

coefficients with mRMR MIQ 

feature selection (d= 150) 

SVM with 

linear kernel 

150  67.73 % 18 

subjects  

 PSD with respect to frequency bins 

in the range [0.4 Hz – 64 Hz] 

SVM with 

linear kernel 

65 68.59% 22 

subjects 

 PSD averaged over seven frequency 

bands for each channel  

SVM with 

linear kernel 

224  69.37 % 21 

subjects  

  Common Spatial Patterns with 

spectral filter of [0.4 Hz- 54 Hz] and 

8 spatial filters 

SVM with 

Gaussian kernel 

65 66.94% 15 

subjects  

 Variance of DWT coefficients along 

time with 5 levels of decomposition 

(db 5)  

SVM with 

linear kernel 

64  67.96 % 19 

subjects  

[1] PSD from five bands with 

asymmetrical channel differences 

Naïve Bayes 216  62.00%  

[13] PSD from five bands with 

asymmetrical channel differences 

Hierarchical 

Bayesian 

Network 

216 58.40 %  

[14] PSD from five bands with 

asymmetrical differences and Group 

information of subjects as privileged 

information  

V shaped 

Bayesian 

Network 

Around 

160 + 

subject 

info 

65. 63%  
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Feature Extraction Technique Classifier Feature 

dimension 

Affect Recognized  

Dominance (Average 

over 32 subjects with 

LOOCV on each 

subject) 

   Average 

Accuracy 

# 

subjects 

> 65% 

accuracy 

PSD averaged over seven frequency 

bands and variance of DWT 

coefficients with mRMR MID feature 

selection (d = 120) 

SVM with linear 

kernel 

120  69.17 % 20 

subjects  

PSD averaged over seven bands for 

each channel and variance of DWT 

coefficients with mRMR MIQ feature 

selection (d= 130) 

SVM with linear 

kernel 

130 

 

 67.60 % 18 

subjects  

PSD with respect to frequency bins in 

the range [0.4 Hz – 64 Hz] 

SVM with linear 

kernel 

65  67.97 % 15 

subjects  

PSD averaged over seven frequency 

bands for each channel  

SVM with linear 

kernel 

224  69.45 % 18 

subjects 

Common Spatial Patterns with spectral 

filter of [0.4 Hz- 54 Hz] and 8 spatial 

filters 

SVM with 

Gaussian kernel 

8  65.56% 16 

subjects  

Variance of DWT coefficients along 

time with 5 levels of decomposition   

(db 5) 

SVM with linear 

kernel 

64 69.76% 18 

subjects   

Table 4: Results Tabulated for Recognizing Dominance from DEAP Dataset 

 

The authors of [1], [13] and [14] do not perform classification on the dominance emotional 

affect class labels. 
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Feature Extraction Technique Classifier Feature 

dimension 

Affect Recognized  

Valence (Average 

Accuracy of 32 subjects 

with 5-Fold CV on each 

subject) 

   Average 

Accuracy 

# subjects 

> 65% 

accuracy 

PSD with respect to frequency bins 

in the range [0.4 Hz – 64 Hz] 

SVM with linear 

kernel 

65 87.50 % 30 

subjects  

PSD averaged over seven frequency 

bands for each channel  

SVM with linear 

kernel 

224  84.80 % 30 

subjects  

Common Spatial Patterns with 

spectral filter of [0.4 Hz- 54 Hz] and 

8 spatial filters 

SVM with Gaussian 

kernel 

8  75.42 % 24 

subjects  

Variance of DWT coefficients along 

time with 5 levels of decomposition 

(db 5)   

SVM with linear 

kernel 

64  76.76% 30 

subjects  

Table 5: Recognizing Valence from Biological Artifact Semi- Simulated EEG Dataset 

 

 

Feature Extraction Technique Classifier Feature 

dimension 

Affect Recognized 

Valence (Average 

Accuracy of 32 subjects 

with 5-Fold CV on each 

subject) 

   Average 

Accuracy 

# subjects 

> 65 % 

accuracy 

PSD with respect to frequency bins 

in the range [0.4 Hz – 64 Hz] 

SVM with linear 

kernel 

65 81.72 %  30 

subjects 

PSD averaged over seven frequency 

bands for each channel 

SVM with linear 

kernel 

224   76.52%  29 

subjects 

Variance of DWT coefficients along 

time with 5 levels of decomposition  

(db 5)  

SVM with Gaussian 

Kernel 

64   71.60% 25 

subjects 

Table 6: Recognizing Valence from Random Noise Artifact Semi- Simulated EEG Dataset 
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Feature Extraction Technique Classifier Feature 

dimension 

Affect Recognized  

Arousal (Average 

Accuracy of 32 subjects 

with 5-Fold CV on each 

subject) 

   Average 

Accuracy 

# subjects 

> 65% 

accuracy 

PSD with respect to frequency bins in 

the range [0.4 Hz – 64 Hz] 

SVM with linear 

kernel 

 65  88.90% 30 

subjects  

PSD averaged over seven frequency 

bands for each channel  

SVM with linear 

kernel 

 224  81.58 % 30 

subjects  

Common Spatial Patterns with 

spectral filter of [0.4 Hz- 54 Hz] and 

8 spatial filters 

SVM with Gaussian 

kernel 

 8  71.59 % 25 

subjects  

Variance of DWT coefficients along 

time with 5 levels of decomposition 

(db 5)   

SVM with linear 

kernel 

 64  74.49 % 27 

subjects  

Table 7: Recognizing Arousal from Biological Artifact Semi- Simulated EEG Dataset 

 

 

Feature Extraction Technique Classifier Feature 

dimension 

Affect Recognized  

Arousal (Average 

Accuracy of 32 subjects 

with 5-Fold CV on each 

subject) 

   Average 

Accuracy 

# subjects 

> 65 % 

accuracy 

PSD with respect to frequency bins 

in the range [0.4 Hz – 64 Hz] 

SVM with linear 

kernel 

 65 80.98 % 30 

subjects  

PSD averaged over seven 

frequency bands for each channel  

SVM with linear 

kernel 

 224 73.32 % 28 

subjects  

Variance of DWT coefficients 

along time with 5 levels of 

decomposition (db 5) 

SVM with linear 

kernel 

 64  71.13 % 24 

subjects  

Table 8: Recognizing Arousal from Random Noise Artifact Semi- Simulated EEG Dataset 
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Feature Extraction Technique Classifier Feature 

dimension 

Affect Recognized  

Dominance (Average 

Accuracy of 32 subjects 

with 5-Fold CV on each 

subject) 

   Average 

Accuracy 

# subjects 

> 65 % 

accuracy 

PSD with respect to frequency bins 

in the range [0.4 Hz – 64 Hz] 

SVM with linear 

kernel 

 65 88.55 % 29 

subjects 

PSD averaged over seven frequency 

bands for each channel  

SVM with linear 

kernel 

 224 80.34 % 29 

subjects  

Common Spatial Patterns with 

spectral filter of [0.4 Hz- 54 Hz] and 

8 spatial filters 

SVM with Gaussian 

kernel 

 8 72.71 % 23 

subjects  

Variance of DWT coefficients along 

time with 5 levels of decomposition 

(db 5)   

SVM with linear 

kernel 

 64 76.09% 30 

subjects   

Table 9: Recognizing Dominance from Biological Artifact Semi- Simulated EEG Dataset 

 

 

Feature Extraction Technique Classifier Feature 

dimension 

Affect Recognized  

Dominance (Average 

Accuracy of 32 

subjects with 5-Fold 

CV on each subject) 

   Average 

Accuracy 

# 

subjects 

> 65 % 

accuracy 

PSD with respect to frequency bins 

in the range [0.4 Hz – 64 Hz] 

SVM with linear 

kernel 

 65  81.75% 30 

subjects  

PSD averaged over seven frequency 

bands for each channel  

SVM with linear 

kernel 

 224  75.82% 28 

subjects  

Variance of DWT coefficients along 

time with 5 levels of decomposition 

(db 5)   

SVM with linear 

kernel 

 64 71.99% 23 

subjects  

Table 10: Recognizing Dominance from Random Noise Semi- Simulated EEG Dataset 
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Table 11 contains the classification accuracies computed while recognizing Valence tags 

from the UCSD Imagine Emotions Dataset [3]. The authors of [9] perform valence affect 

BCI recognition using Filter Bank Common Spatial Patterns on this database. However, 

they report the average five-fold cross-validation accuracy taken over only 12 subjects of 

the 32 participants in the dataset. We have reported the average five-fold cross-validation 

taken over all the 32 participants. In order to be able to compare the techniques properly, 

the average accuracy over all the subjects that performed better than 65% recognition rate 

have also been reported.  

 

Reference 

Method 

Feature Extraction 

Technique 

Classifier Feature 

dimension 

Evaluated using 5 -fold CV 

on each subject for Valence 

Label 

 PSD with respect to 

frequency for the range 

[0.3 Hz – 69 Hz] 

SVM with 

linear kernel 

70 Accuracy over 32 subjects 

= 62.12 % 

(14 subjects > 65%) 

Accuracy over the 14 

subjects = 75.96% 

 Variance of DWT 

coefficients for 5 levels 

of decomposition (db 5) 

SVM with 

linear kernel 

281 Accuracy over 32 subjects 

= 62.42 % 

(18 subjects > 65 %) 

Accuracy over the 18 

subjects = 74.11 % 

  Spectral filter of [0.4 Hz 

– 54 Hz] and 8 spatial 

filters 

SVM with 

Gaussian 

kernel 

8 Accuracy over 32 subjects 

= 59.96 % 

(12 subjects > 65 %) 

Accuracy over the 12 

subjects = 70.56 % 

[9] Spectral Filter bank of 5 

spectral filters and 8 

spatial filters 

Generalized 

Linear Model 

with a logistic 

link function 

40 Accuracy over 12 subjects 

= 71.3 % 

Table 11: Recognizing Valence from UCSD Imagined Emotions Database  
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Reference 

Method 

Feature Extraction 

Technique 

Classifier Feature 

dimension 

Affect Recognized  

Valence (Average 

over 27 subjects with 

LOOCV on each 

subject) 

    Average 

Accuracy 

 # 

subjects 

> 65 % 

accuracy 

 PSD with respect to 

frequency bins in the range 

[0.3 Hz – 63 Hz] 

SVM with 

linear kernel 

 64 67.06% 17 

subjects  

 PSD averaged over six 

frequency bands for each 

channel  

SVM with 

linear kernel 

 192  68.78% 17 

subjects  

  Common Spatial Patterns 

with spectral filter of [0.4 

Hz- 54 Hz] and 8 spatial 

filters 

SVM with 

Gaussian 

kernel 

 8  62.50 % 15 

subjects  

 Variance of DWT 

coefficients along time with 

5 levels of decomposition 

(db 5)   

SVM with 

linear kernel 

 64  66.94 % 16 

subjects  

[2] PSD from five bands with 

asymmetrical channel 

differences 

SVM with 

Gaussian 

kernel 

 216 57.00 %  

[13] PSD from five bands with 

asymmetrical channel 

differences 

Hierarchical 

Bayesian 

Network 

216 56.90 %  

[14] PSD from five bands with 

asymmetrical differences 

and Group information of 

subjects as privileged 

information  

V shaped 

Bayesian 

Network 

Around 

160 + 

subject 

info 

62.85%  

Table 12: Recognizing Valence from MAHNOB-HCI Database  

 

Tables 12, 13 and 14 summarize the results obtained with the MAHNOB-HCI datasets for 

recognizing valence, arousal and dominance. Comparisons with the existing methods have 

also been reported. 
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Table 13: Recognizing Arousal from MAHNOB-HCI Database  

 

 

 

Reference 

Method 

Feature Extraction 

Technique 

Classifier Feature 

dimension 

Affect Recognized  

Arousal (Average over 

27 subjects with 

LOOCV on each 

subject) 

    Average 

Accuracy 

# subjects 

> 65 % 

accuracy 

 PSD with respect to 

frequency bins in the range 

[0.3 Hz – 63 Hz] 

SVM with linear 

kernel 

  64  73.11% 20 

subjects  

 PSD averaged over six 

frequency bands for each 

channel  

SVM with linear 

kernel 

 192 72.06 % 20 

subjects  

  Common Spatial Patterns 

with spectral filter of [0.4 

Hz- 54 Hz] and 8 spatial 

filters 

SVM with 

Gaussian kernel 

 8 63.91 % 12 

subjects   

 Variance of DWT 

coefficients along time with 

5 levels of decomposition  

(db 5)  

SVM with linear 

kernel 

 64 74.06 % 21 

subjects  

[2] PSD from five bands with 

asymmetrical channel 

differences 

SVM with 

Gaussian kernel 

 216 52.40 %  

[13] PSD from five bands with 

asymmetrical channel 

differences 

Hierarchical 

Bayesian 

Network 

216 63.00 %  

[14] PSD from five bands with 

asymmetrical differences 

and Group information of 

subjects as privileged 

information  

Triangle shaped 

Bayesian 

Network 

Around 

160 + 

subject 

info 

68.48 %  
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Feature Extraction Technique Classifier Feature 

dimension 

Affect Recognized  

Dominance (Average 

over 27 subjects with 

LOOCV on each 

subject) 

   Average 

Accuracy 

# subjects 

> 65 % 

accuracy 

PSD with respect to frequency bins 

in the range [0.3 Hz – 63 Hz] 

SVM with linear 

kernel 

 64  69.11 % 16 

subjects  

PSD averaged over six frequency 

bands for each channel  

SVM with linear 

kernel 

 192  72.00 % 19 

subjects 

Common Spatial Patterns with 

spectral filter of [0.4 Hz- 54 Hz] and 

8 spatial filters 

SVM with Gaussian 

kernel 

 8  69.98 % 16 

subjects  

Variance of DWT coefficients along 

time with 5 levels of decomposition 

(db 5)   

SVM with linear 

kernel 

 64  74.11 % 20 

subjects  

Table 14: Recognizing Dominance from MAHNOB-HCI Database  

 

The authors of [2], [13] and [14] do not perform recognition on the dominance affect class 

labels for the MAHNOB-HCI Dataset. 

 

 

 

 

 

 



 

64 

 

5.3 Experimental Discussions 

 

In this section, we will compare the performance of the Gaussian and linear kernel of SVM 

on the DEAP dataset and analyze them. Tables 15, 16 and 17 show the evaluation of the 

SVM models with average LOOCV accuracies of 32 subjects for valence, arousal and 

dominance respectively. The number of subjects with which we obtain greater than 65% 

recognition rate is also recorded. This number can give a good indication of how well the 

model captures the affect label on an individual chosen from a given group of participants. 

The dimensions of the feature vector used in each BCI paradigm is also noted. 

 

Feature Extraction 

Technique  

Feature 

dimension  

Linear Kernel SVM model 

evaluation 

Gaussian Kernel SVM 

model evaluation 

Valence Affect 

Label 

 Avg. Accuracy 

with LOOCV 

#subjects 

> 65% 

accuracy 

Avg. 

Accuracy 

with LOOCV 

#subjects 

> 65% 

accuracy 

PSD wrt frequency 

bins in the range  

[0.4 Hz – 64 Hz] 

65 66.873 % 20 63.218 % 17 

PSD averaged over 7 

frequency bands for 

each channel  

224 70.232 % 26 64.938% 19 

Variance of DWT 

coefficients along 

time with 5 levels of 

decomposition (db 5)   

64 69.602 % 29 64.609 % 17 

CSP with spectral 

filter of  

[0.4 Hz- 54 Hz] and 8 

spatial filters 

8 63.840 % 16 65.702 % 21 

Table 15:  Comparison of Recognition Scores with Linear and Gaussian Kernel SVM for 

Valence with DEAP Dataset 
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Feature Extraction 

Technique  

Feature 

dimension  

Linear Kernel SVM model 

evaluation 

Gaussian Kernel SVM 

model evaluation 

Arousal Affect 

Label 

 Avg. Accuracy 

with LOOCV 
#subjects 

> 65% 

accuracy 

Avg. Accuracy 

with LOOCV 

#subjects 

> 65% 

accuracy 

PSD wrt frequency 

bins in the range  

[0.4 Hz – 64 Hz] 

65 68.596 % 22 66.561% 16 

PSD averaged over 

7 frequency bands 

for each channel 

224 69.374 % 21 66.723% 17 

Variance of DWT 

coefficients along 

time with 5 levels 

of decomposition 

(db 5)  

64 67.962 % 19 66.953 % 17 

CSP with spectral 

filter of  

[0.4 Hz- 54 Hz] 

and 8 spatial filters 

8 63.315 % 14 66.942% 15 

Table 16:  Comparison of Recognition Scores with Linear and Gaussian Kernel SVM for 

Arousal with DEAP Dataset 
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Feature Extraction 

Technique  

Feature 

dimension  

Linear Kernel SVM model 

evaluation 

Gaussian Kernel SVM 

model evaluation 

Dominance 

Affect Label 

 Avg. Accuracy with 

LOOCV 
#subjects 

> 65% 

accuracy 

Avg. Accuracy 

with LOOCV 

#subjects 

> 65% 

accuracy 

PSD wrt frequency 

bins in the range  

[0.4 Hz – 64 Hz] 

65 67.972% 15 65.096 % 13 

PSD averaged over 

7 frequency bands 

for each channel 

224 69.454% 18 68.360% 16 

Variance of DWT 

coefficients along 

time with 5 levels 

of decomposition 

(db 5)   

64 69.765% 18 66.403% 13 

CSP with spectral 

filter of  

[0.4 Hz- 54 Hz] 

and 8 spatial filters 

8 63.062% 14 65.568% 16 

Table 17: Comparison of Recognition Scores with Linear and Gaussian Kernel SVM for 

Dominance with DEAP Dataset 

 

From Tables 15, 16 and 17 we notice that SVM models with linear kernel give better 

recognition rates than the Gaussian Kernel SVM when using Power Spectral Density and 

wavelet features. We also notice that SVM models with Gaussian kernel give better 

recognition accuracy than linear kernel SVMs when dealing with Common Spatial 

Patterns. Both the average LOOCV accuracies and the number of subjects for which 

greater than 65% recognition rate was obtained indicate this outcome.  
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One can observe that the linear kernel SVM is optimum when the dimensions of the feature 

vectors are large when compared to the number of instances present in the dataset. Since 

we have used the DEAP [1] database in this section, we have only 40 trials for each 

subject. The Gaussian kernel SVMs are prone to overfitting in this scenario when the 

feature dimension is larger than the number of trial examples in the data. In other words, 

it is simpler to draw a line that separates the two classes when dealing with very high 

dimensions and less examples. Hence, linear kernel SVMs obtain a better recognition 

score compared to the Gaussian kernel SVMs in the given scenario (feature dimension > 

number of instances). 

 

5.4 Inferences 

 

In this thesis, we have presented EEG based BCI-paradigms to recognize emotions from 

multichannel EEG segments. Principal aspects of emotional affect, namely, valence, 

arousal and dominance can be classified into positive and negative labels using a few 

seconds of EEG signals.  One of the key results is that the emotional affect labels can be 

recognized with better than chance levels (50%). It is important to note that these results 

hold up under the cross-validation evaluation techniques. Furthermore, one should also 

consider that the segments used during testing need not reflect the exact same emotional 

scenarios for which the model was trained. For example, love and happiness are distinct 

emotional experiences, but both have positive valence labels. From this one can infer that 

the features proposed in this work along with the combination of SVM models we are able 



 

68 

 

to capture the patterns in multichannel EEG segments present in different discrete 

emotional scenarios but having the same affect label.  

 

From the Tables in Section 5.2 we see that including high frequency bands and information 

as features for the SVM models improved the recognition rate of affect labels when 

compared to the existing techniques [1], [2], [13] and [14] which did not include the high 

frequency content of EEG signals. Previous works by [3] have also concluded that there 

is a link between high frequency band EEG activity and emotional valence.    

 

The PSD features averaged over seven frequency bands for each channel computed for all 

the channels performs better than the PSD features summed over all the channels with 

respect to frequency for the DEAP dataset and the MAHNOB-HCI dataset. This is mostly 

because the former represents frequency and spatial information of the EEG signals 

whereas the latter only represent the frequency content in the EEG signal.  

 

The Common Spatial Patterns (CSP) [12] is considered as the state of the art paradigm for 

recognition in motor imagery task. The CSP algorithm gives a good generalization 

accuracy on emotional affect recognition as well. Although, it does not perform as good 

as the PSD features and the discrete wavelet features, the CSP paradigm can be regarded 

as a good baseline performance for a given EEG database.  
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The performance of our proposed Paradigms increased with both types of Semi-Simulated 

EEG Datasets. This can be inferred due to the higher amount of EEG trial data present for 

each individual participant. As emotion is more of a personal feeling, it varies from person 

to person. Hence, classifying the emotional affective states for each person by collecting 

more data from that individual gives the highest advantage to the SVM classifier model. 

The increase in the recognition score using biological non-brain artifact Semi-Simulated 

EEG database was more compared to the random noise Semi-Simulated EEG signal data. 

 

The mRMR feature section algorithm helps to identify the redundant and relevant 

concatenated features in order to acquire a classifier model which fuses the relevant 

information from different feature spaces in an efficient manner. The recognition accuracy 

increased slightly using the mRMR feature selection. The proposed paradigms are simple 

and practically usable for EEG based BCI emotion recognition systems. The extracted 

features using power spectral information and the discrete wavelet transformation 

coefficients with the combination of SVM classifier models capture the key aspects 

required to recognize emotional affect. 
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CHAPTER VI 

CONCLUSIONS 

 

In conclusion, this work investigated recognizing the principal dimensions of 

affect – valence, arousal, and dominance from multichannel EEG segments using 

paradigms comprising of signal processing and machine learning techniques. The 

paradigms were designed by extracting distinctive features from the EEG signals that 

represent the Power Spectral Density, Discrete Wavelet Coefficients and Spatial 

Projections and constructing SVM Classifier models from these features. The paradigms 

when evaluated using three benchmark databases, namely, the DEAP [1] dataset, UCSD- 

Imagined Emotions Database [3] and the MAHNOB-HCI [2] Database using cross-

validation methods gave consistently good testing accuracy. These evaluations also 

outperformed the existing paradigms for affect recognition described in [1], [2], [9], [13] 

and [14]. By employing mRMR feature selection on the combination of Power Spectral 

Density features and DWT coefficients a subset of complimentary features was selected 

which slightly improved the generalized recognition score. 

 

The performance of the designed paradigms was also compared with two sets of Semi-

Simulated EEG signal data. It was observed that the performance of the SVM models on 

the set of Semi-Simulated EEG signal data modeled using non-brain bio-artifacts was 

better compared to the Semi-Simulated EEG signal data generated by applying random 

noise.   
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Incorporating features from different modalities like Galvanic Skin Resistance, eye gaze 

tracking, skin temperature, respiration rate, electrocardiogram and video recording of the 

participants is one of the challenging future works in this field. Another possible future 

contribution to this work can include recognizing and predicting the brain source signals 

relevant to the affect labels using Blind Source Separation techniques like Independent 

Component Analysis.  
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