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Abstract

Metal additive manufacturing (AM) typically suffers from high degree of variability in the properties/performance
of the fabricated parts, particularly due to the lack of understanding and control over the physical mechanisms that
govern microstructure formation during fabrication. This paper directly addresses an important problem in AM:
the determination of the thermal history of the deposited material. Any attempts to link process to microstruc-
ture in AM would need to consider the thermal history of the material. In-situ monitoring only provides partial
information and simulations may be necessary to have a comprehensive understanding of the thermo-physical
conditions to which the deposited material is subjected. We address this in the present work through linking
thermal models to experiments via a computationally efficient surrogate modeling approach based on multivariate
Gaussian processes (MVGPs). The MVGPs are then used to calibrate the free parameters of the multi-physics
models against experiments, sidestepping the use of prohibitively expensive Monte Carlo-based calibration. This
framework thus makes it possible to efficiently evaluate the impact of varying process parameter inputs on the
characteristics of the melt pool during AM. We demonstrate the framework on the calibration of a thermal model
for Laser-Powder Bed Fusion AM of Ti-6Al-4V against experiments carried out over a wide window in the process
parameter space. While this work deals with problems related to AM, its applicability is wider as the proposed
framework could potentially be used in many other ICME-based problems where it is essential to link expensive
computational materials science models to available experimental data.

Keywords: Metal Additive Manufacturing, Powder Bed Fusion, Ti-6-Al-4V, Finite Element Thermal Models,
Uncertainty Quantification

1. Introduction

Integrated Computational Materials Engineering
(ICME) prescribes a framework for the accelera-
tion in the development and deployment of materials
through the establishment and exploitation of process-
structure-property-performance (PSPP) relationships.
PSPPs in turn can be established through linking ma-
terials models at multiple length (and possibly time)
scales. The goal in ICME is to optimize the materials,
manufacturing process, and component designs prior
to part fabrication [1]. Inherently, ICME involves uti-
lization of physics-based simulation models that help
understand the behavior of complex systems. These
models use the system governing equations to com-
pute and predict specific quantities of interest (QoIs).
As a well-established fact, all of these simulation mod-
els are imperfect and thus their predictions will differ
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from the actual physical phenomena they are trying to
describe.

The disagreement between the real-world and the
model outputs can be attributed to one or more of
the following factors: (1) incomplete understanding of
the physical system, (2) incomplete information about
model parameters, (3) incorrect values for the model
inputs, (4) natural stochastic behavior of the system,
and (5) uncertainties associated with available numeri-
cal simulation algorithms [1–5]. Hence, identification,
characterization, and quantification of the uncertainties
associated with these models become necessary in or-
der to strengthen the robustness of model predictions,
which is in turn essential if one is to use the models
to guide the design/optimization of the systems (in this
case, materials).

As an independent field of study, Uncertainty Quan-
tification (UQ) seeks to address the challenges associ-
ated with the (unknown) uncertainties in models used
to describe the behavior of complex systems. UQ is
an established field that has been successfully applied
to many areas including climate models [6], compu-
tational fluid dynamics [7], forestry [8], nuclear engi-
neering [9], and econometrics [10]. Although UQ is a
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key need for computational materials models [11, 12],
there is a literature gap in this area [13]. Chernatynskiy
et al. [3] present a review of the few existing works
on UQ of multi-scale simulation models. More re-
cently, Tapia et al. [13] conduct UQ for a physics-based
precipitation model of nickel-titanium shape memory
alloys through combining experimental and computer
simulation data.

Additive Manufacturing (AM) is an area that can po-
tentially benefit substantially from the ICME frame-
work. First, AM processes such as Laser Powder-Bed
Fusion (L-PBF) are recognized for the high variability
in the performance, composition, and microstructure
of parts [14]. This variability is due to our incomplete
understanding of the many complex and coupled phe-
nomena that occur as energy interacts with raw ma-
terial to produce a solid part [15]. Currently, many
researchers work on developing simulation models at
different scales to help understand different aspects of
a specific AM process. For example for the L-PBF
process, different simulation models exist that focus on
different physical aspects, including characteristics of
the powder-bed, evolution of the melt pool, solidifica-
tion process, and generation of residual stresses, etc.
Inevitably, these models introduce various sources of
uncertainty [16]. Second, ICME provides the neces-
sary infrastructure to support and accelerate the quali-
fication and certification [17], a key technological bar-
rier of AM. Recently, Hu and Mahadevan [18, 19] dis-
cussed the opportunities and challenges of how state-
of-the-art UQ techniques can be used for predicting
materials properties in AM processes.

The purpose of this work is to conduct formal UQ
for a computational materials model used to predict
melt pool characteristics in L-PBF metal AM pro-
cesses. More specifically, we perform statistical cal-
ibration of an FEM based thermal model via surro-
gate (or reduced order) modeling and Bayesian infer-
ence. The statistical calibration problem (also known
as the inverse UQ problem) refers to making inference
on the posterior distributions of a set of calibration pa-
rameters such that model predictions are in agreement
with experimental observations [20]. To the best of
the authors’ knowledge, the current work is the first to
conduct such rigorous calibration using a multivariate
Gaussian Process-based (GP) surrogate model. While
the focus of the work is on specific physical phenom-
ena associated with L-PBF AM, the overall framework
can be readily adapted to address similar problems that
involve systematic calibration of complex multiple-
output computational materials models.

Prior to this work, UQ of ICME simulation mod-
els has been classically conducted using Monte Carlo
methods (see [21–25]). However, for many compu-
tationally expensive models, Monte Carlo methods are
impractical, and sometimes even unfeasible, as they re-
quire sufficiently large numbers of simulation runs in
order to acquire the statistics necessary to adequately

characterize model uncertainty. This is especially true
in the specific case of computational models for AM
that tend to be computationally demanding, which pre-
cludes the utilization of Monte Carlo methods. To ad-
dress this, we construct a surrogate model (also known
as an emulator or meta-model). This represents a sta-
tistical approximation that can be used in lieu of the
original computationally expensive simulation model
without sacrificing too much accuracy. Although sur-
rogate modeling has been studied in prior works, one
important distinguishing feature of the surrogate model
developed in the present study is its ability of approxi-
mating simulation models that have multiple outputs or
QoIs. This is an important feature since multi-output
simulation models are quite common in science and
engineering applications [26, 27]. Conventional UQ
approaches for multi-output models typically ignore
correlations that might exist among model outputs, and
thus usually conduct independent UQ analysis for each
output independently. Clearly, this de-coupling over-
looks inherent coupling or interdependence that may
exist among multiple outputs of a single model.

The remainder of this paper is organized as follows:
Section 2 has two subsections: Section 2.1 introduces
the FEM based simulation model used in this work.
Section 2.2 describes the statistical framework used for
building the surrogate and calibration models. Section
3 reports the results of implementing the proposed cal-
ibration procedure for the melt pool FEM based simu-
lation model using both simulations and experimental
characterization. Section 4 concludes the paper with a
summary of findings and directions for future research.

2. Proposed Framework

This section will start by presenting the physics-
based FEM based thermal model, followed by the mul-
tivariate statistical framework used to calibrate that
model. Readers who are not focused on understanding
the details of mathematical and statistical model de-
velopments can skip Section 2.2 and proceed directly
to the results and discussion in Section 3.

2.1. Melt pool Modeling through FEM based thermal
modeling

L-PBF processes offer attractive advantages and ca-
pabilities over conventional manufacturing techniques.
These include, for example, higher geometric freedom,
flexibility to customize parts, and recently the potential
capability of tailoring the microstructures (and hence
the properties) of fabricated parts. However, they are
in the meantime very complex processes that involve
several physical mechanisms most of which are not
yet fully understood. Therefore, it is crucial to de-
velop better understanding of these mechanisms that
drive the thermal history within the part during fabrica-
tion. Ideally, in-situ thermal monitoring can be used to

2



Figure 1: Sample output of the melt pool model for Ti-6Al-4V pow-
der on a Ti-6Al-4V substrate, showing the melt pool temperature
profiles in three-dimensions

capture information about thermal histories during fab-
rication. However, experimental measurement of the
thermal field in L-PBF is extremely difficult due to a
number of challenges such as very high thermal gradi-
ents and cooling rates, micro-scale melt pool size, and
emissivity variations, among many other challenges.
Consequently, numerical methods are needed to com-
plement experiments in understanding the thermal his-
tory during the fabrication of L-PBF parts.

Formally, we define the melt pool as the region in
the laser-powder interface at which metal powder parti-
cles fuse to form a pool of molten metal that eventually
solidifies after the laser beam moves to another loca-
tion. In this paper, we developed a three-dimensional
FEM based thermal model implemented in COMSOL
Multiphysics software to study melt pool characteris-
tics, including geometry and thermal profiles, during
the fabrication of single tracks printed in a thin layer
of powder on top of a solid substrate. The powder
layer was assumed as a 30 µm continuum medium over
a 1 mm thick substrate. Ti-6Al-4V alloy was selected
as the material for both the powder layer and the sub-
strate. To ensure accurate analysis, a fine mesh ele-
ment was used for the laser-powder interaction zones,
while a coarser element was employed for the rest
of the simulation domain. Second-order quadrilateral
Lagrange elements were used for the entire domain,
while the 30 µm fine elements were found suitable for
the powder-bed based on the mesh convergence analy-
sis. Single track simulations were run for a 3 mm-long
track. Figure 1 shows a sample output of the model
with melt pool temperature profiles.

An appreciable number of FEM based thermal mod-
els have been developed to predict the thermal history
and melt pool geometry during L-PBF. In these works,
the effects of process parameters (e.g., laser power,
scanning velocity, hatch spacing), material properties,
and powder properties (e.g., particle size distribution,
layer thickness) have been investigated. For these melt
pool models, an appropriate powder-bed model should
be employed. Modeling of the powder-bed has been
done in two different ways: powder-scale (refer to [28–

35]) and continuum-scale (refer to [36–43]). Although
the first approach enables simulating the size varia-
tions and the local changes in the melt pool such as
incomplete melting or formation of pores [28, 29], it
is computationally expensive such that it is almost im-
possible to use it for full-part simulation. The latter ap-
proach, on the other hand, has been widely employed
due to its relatively low computational cost and ease of
implementation. While some studies have taken fluid
dynamics effects in the melt pool into account (e.g.,
Marangoni convection in [33, 44, 45]), a significant
number of works in the literature have neglected those
effects to simplify the model (see for example [38–
40, 43]). The change in volume during melting of the
powder [42, 46, 47] and layer built-up were modeled
in some studies [37, 41, 48, 49]. We refer the inter-
ested readers to review papers on numerical modeling
and simulation of AM for more information [50–52].

The model used in this work accounts for sev-
eral heat transfer mechanisms that take place dur-
ing metal L-PBF. In particular, conduction, convec-
tion, radiation, phase transitions (namely, solid-to-
liquid and liquid-to-gas transitions), latent heat of
melting/evaporation, temperature dependent material
properties, and the effective thermo-physical proper-
ties for the powder layer were considered. Further-
more, heat loss due to evaporation was incorporated
by employing a simple approach based on the imple-
mentation of a heat sink on the powder surface. The
laser beam was defined as a two-dimensional Gaussian
distributed moving heat source. The initial tempera-
ture of the build was set to the ambient temperature
(298 K). Natural convection, radiation and evaporation
were employed as boundary conditions on the powder
surface, while a symmetry boundary condition was ap-
plied along the scanning path to reduce the computa-
tional cost. All other boundaries were maintained at
the ambient temperature.

Since the thermal model takes different physical
mechanisms into account, there are multiple materials
parameters that influence the model results, and thus,
the predictive capabilities of the model. After prelim-
inary simulation experiments, the following parame-
ters were identified as most significant on variability in
model outputs: (1) laser absorptivity, (2) powder-bed
porosity, and (3) thermal conductivity of the liquid. It
is known that the laser absorptivity is a function of tem-
perature and has different values for powder, solid and
liquid materials. There are several factors (e.g., beam
intensity, wavelength, temperature, oxidation, powder
size and distribution) affecting the absorptivity of the
material. Therefore, it is difficult to experimentally
measure it. Note that while low values of absorptiv-
ity result in insufficient energy input and incomplete
melting of the powder particles, very high values lead
to overheating of the particles, hence, over estimation
of the melt pool size.

Moreover, to account for the effect of Marangoni
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convection on the melt pool size and geometry, the
thermal conductivity of liquid was increased accord-
ing to [39, 53, 54]. However, there is no consensus
in the community on the level of this increase. Pow-
der porosity is used as an input to predict the effec-
tive thermo-physical properties (thermal conductivity,
density, heat capacity) of the powder layer. Therefore,
it has a significant influence on the predicted thermal
distribution. Considering the aforementioned aspects,
a need for the calibration of these three parameters was
realized.

2.2. Multivariate statistical calibration
After describing the melt pool FEM based simu-

lation model in Section 2.1, we now describe in de-
tails the multivariate statistical framework that will
be employed to calibrate that model. This approach
is referred to as calibration of computer models by
Kennedy and O’Hagan [55]. We emphasize that al-
though AM is our focus application platform, the
framework developed in this section can be readily
generalized to other problems.

Before we introduce the mathematical formulations,
we establish notation and some definitions. Since the
word model will be employed to refer to different types
of models that constitute the building blocks of the
framework, we clearly define specific cases to avoid
misinterpretation and ambiguity. We use computer
model to denote a computational model implemented
via a computer code that simulates and recreates any
process (physical, social, mathematical, etc.) by a set
of calculations derived from proper study of the pro-
cess. One example of a computer model is the thermal
model explained in Section 2.1. The term statistical
model will refer to the calibration methodology pre-
sented in this section, and is sub-divided in two key
components: the surrogate model and the calibration
model, which will be defined in the following para-
graphs.

Previous approaches for the calibration of computer
models using rigorous statistics rely on Monte Carlo
(MC) methods. While MC methods are extremely
valuable and well-studied, the fact that they necessi-
tate generating sufficiently large numbers of simula-
tions (sometimes in the order of 15,000 - 20,000 sim-
ulations) makes them impractical for calibrating com-
putationally expensive models. One possible approach
to overcome this challenge is using a two-stage ap-
proach based on surrogate modeling (also called meta-
modeling or emulation) and suggested in a series of
works [55–58]. The surrogate model is thus the com-
putationally efficient statistical approximation of the
original computer model.

In the calibration problem, whether or not a surro-
gate model is used, we distinguish between two differ-
ent types of inputs to the computer model [13]:

• Control inputs (denoted by x) are inputs to the
computer model that are directly set to known

pre-determined values by the user. Examples of
control inputs in some computer models include
temperature, pressure, or velocity.

• Calibration parameters (denoted by θ) are inputs
or parameters to the computer model that are un-
known with certainty, or not measurable, at the
time of simulation, but do influence the results
of the computations. Examples include material
properties or unknown physical constants.

The goal of the calibration model is thus to esti-
mate the calibration parameters such that the com-
puter model simulations agree with experimental ob-
servations of the real process being simulated [13].
In mathematical notation, the statistical model follows
the equation:

yE (x) = yS
(
x, θ?

)
+ δ (x) + ε (x) (1)

where the experimental observation yE of the real pro-
cess run at some values of control inputs x is equal to
the summation of the response of the computer model
yS , a discrepancy (or inadequacy) function δ, and some
measurement error ε, and the objective is to estimate
the values of the calibration parameters θ?. Detailed
definitions for each term in Equation (1) will be pro-
vided as we describe the two stages of the statistical
model in the following subsections.

2.2.1. Multivariate Surrogate Model
In this section, we build a multivariate surrogate

model that replaces the computer model yS (x, θ) in
Equation (1). For detailed derivations, the interested
reader is encouraged to study the work by Conti and
O’Hagan [59]. Note that, we define the computer
model as a function yS = f (·) that takes as input
the control inputs x and the calibration parameters θ,
and returns a q-dimensional response vector yS ∈ Rq.
The inputs x and parameters θ lie in some multidi-
mensional spaces X ⊆ Rp and T ⊆ Rt, respectively.
Thus, the computer model f is essentially a mapping
f : X × T 7→ Rq. Although f is a deterministic func-
tion (that is, if run multiple times at same input values,
it will return the same value for responses), in order to
approximate it with a surrogate model, we can regard f
as an stochastic process [59].

As mentioned in Section 1, we employ GP models
that are known for their attractive mathematical and
computational properties [60]. In the simple univariate
case, a GP model is a non-parametric statistical model
in which a stochastic process f (·) is assumed to have
all of its finite-dimensional distributions as multivari-
ate normal [61]. Therefore, the joint probability distri-
bution of the outputs from the stochastic process at any
finite set of inputs {x1, . . . , xn} (assuming f only takes
x as inputs for now) is modeled as an n-dimensional
multivariate normal distribution

p ( f (x1) , . . . , f (xn)|Φ) ∼ MVNn (m,C)
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where the mean vector m is defined by a mean func-
tion m (·), and covariance matrix C is defined by a co-
variance function c (·, ·), with E

[
f (x)|Φ

]
= m (x) and

cov
[
f (xi) , f

(
x j

)∣∣∣∣Φ]
= c

(
xi, x j

)
. The whole distribu-

tion is fully defined by some set of hyperparametersΦ.
Hence, we denote a univariate GP by

f (·) | Φ ∼ GP (m (·) , c (·, ·))

Now, generalizing the univariate formulation to a
multivariate case, the joint probability distribution fol-
lows a matrix-variate normal distribution

p ( f (x1) , . . . , f (xn)|Φ) ∼ MVNn,q (m,C) (2)

with mean matrix m and cross-covariance matrix C,
and fully defined by some set of hyperparameters Φ.
The multivariate q-dimensional GP is denoted as

f (·) | Φ ∼ GPq (m (·) , c (·, ·)Σ) (3)

where c (·, ·) is a positive definite correlation func-
tion accounting for correlation in the input space with
c (x, x) = 1, and Σ ∈ Rq,q

+ is a positive definite
matrix accounting for correlations between outputs.
After this brief digression to set notation, we trans-
late all these definitions into our original context,
yS = f (x, θ). We build a multivariate GP-based
on Equation (3), with the i-th input tuple denoted as
(x, θ)i =

[
xi,1, . . . , xi,p, θi,1, . . . , θi,t

]>
. Mean and corre-

lation functions are defined as follows:

m (x, θ) = B>h (x, θ) (4)

c
(
(x, θ)i , (x, θ) j

)
= exp

[
−

(
(x, θ)i − (x, θ) j

)>
R

(
(x, θ)i − (x, θ) j

)]
(5)

where h : X × T → Rm is a function (defined
by the modeler) that maps the input space to m ba-
sis functions, B =

[
β1, . . . ,βq

]
∈ Rm,q is a matrix

of regression coefficients, and R = diag (r) is a di-
agonal matrix of positive roughness parameters with
r =

[
r1, . . . , rp, rp+1, . . . , rp+t

]
∈ Rp+t

+ . The roughness
parameter vector r explains how rough (or smooth) the
function is, i.e. how quickly its values change across
the input domain.

With the choices of linear regression mean function
in Equation (4), stationary squared exponential corre-
lation function in Equation (5), and separable covari-
ance structure (with Σ ∈ Rq,q

+ accounting for correla-
tions between outputs), the model is fully defined by

Φsim = {B,Σ, r} (6)

Under these settings, we run the computer model for
several simulations to gather a set of data that will be
used to train and build the surrogate model. There are
different approaches to optimally select the points at
which these simulations will be run to generate the

training data set (given the computational burden of
the computer model). However, we choose to employ
the Latin Hypercube Sampling (LHS) method given its
ability to explore the input space uniformly and homo-
geneously. The training data set consists of N points
and is denoted by

XS =


(x, θ)1
...

(x, θ)N

 ∈ RN,p+t

and

YS =


yS (x, θ)1

...
yS (x, θ)N

 ∈ RN,q

where XS is an N×(p + t) input matrix and YS is an N×
q output matrix. It can then be shown, as presented in
Conti and O’Hagan [59], that the conditional posterior
distribution of f given r, after integrating out B and
Σ, is a multivariate q-dimensional T Process, such that
the probability distribution it yields is a matrix-variate
T distribution:

f (·) | XS ,YS , r ∼ TPq

(
m? (·) , c? (·, ·) Σ̂,N − m

)
(7)

with N −m degrees of freedom (denoted as dof hence-
forth), and

m? (x, θ) = B̂>h (x, θ)

+
(
YS − HB̂

)>
A−1 t (x, θ) (8)

c?
(
(x, θ)i , (x, θ) j

)
= c

(
(x, θ)i , (x, θ) j

)
− t> (x, θ)i A−1 t (x, θ) j

+
[
h (x, θ)i − H>A−1 t (x, θ)i

]>
×

(
H>A−1H

)−1

×
[
h (x, θ) j − H>A−1 t (x, θ) j

]
(9)

where

H> =
[
h (x, θ)1 , . . . , h (x, θ)N

]
∈ Rm,N

A =
[
c
(
(x, θ)i , (x, θ) j

)]
i, j=1:N

∈ RN,N
+

t> (x, θ)i =
[
c ((x, θ)i , (x, θ)1) , . . . ,

c ((x, θ)i , (x, θ)N)
]
∈ RN

B̂ =
(
H>A−1H

)−1
H>A−1YS

Σ̂ = (N − m)−1
(
YS − HB̂

)>
A−1

(
YS − HB̂

)
To summarize, the T process defined in Equa-

tions (7)-(9) can be used as a fast surrogate model for
the simulation model. Its mean function m? interpo-
lates the training data

(
XS ,YS

)
exactly and provides

an approximation to f (·). For the surrogate model to
be only dependent on the data, we need to integrate
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out the roughness parameters r. This step is achieved
through a Bayesian approach, for which the posterior
distribution of the roughness parameters (again after
proper integration of B and Σ, see [59]) is given by:

π
(
r
∣∣∣XS ,YS

)
∝ π (r) |A|−

q
2
∣∣∣H>A−1H

∣∣∣− q
2
∣∣∣YS >GYS

∣∣∣− N−m
2 ,

(10)
with

G = A−1 − A−1H
(
H>A−1H

)−1
H>A−1.

Subsequently, we set the prior distribution for r to
follow a joint log-logistic distribution as below:

π (r) =

p+t∏
i=1

(
1 + r2

i

)−1
. (11)

We estimate posterior distributions of these rough-
ness parameters using the Metropolis Hastings algo-
rithm and select their mode as the values to be used
in the surrogate model defined in Equations (7), (8)
and (9). Once the roughness parameters r have been
estimated, the surrogate model in Equation (7) is fully
defined. At this point, we assess its performance
through k-fold cross validation (CV). CV is a common
technique to evaluate the adequacy of predictive mod-
els, including surrogate models, through computing a
metric that captures the deviation of the predictions ob-
tained using the predictive model (the surrogate model
in our case) and the true quantity being predicted (com-
puter model predictions in our case). Put simply, our
target to ensure that predictions obtained using the sur-
rogate model are close to those obtained using the orig-
inal computer model. In a CV procedure, we partition
the training dataset

(
XS ,YS

)
into k disjoint partitions.

k − 1 of these partitions are used to train the surro-
gate model, and then predictions are made on the left-
out partition using Equation (8). These predictions are
then compared with the computer model predictions.
This process is iterated k times, such that at every it-
eration, a different partition is left out, and after all
k iterations all partitions have been left out once and
only once. Finally, the performance metric is com-
puted. Many metrics have been reported in the litera-
ture on predictive modeling and machine learning. We
utilize the well-known mean absolute percentage error
(MAPE) defined as

MAPE j =
1
N

N∑
i=1

∣∣∣yS
i, j − ŷS

i, j

∣∣∣ ∀ j ∈ {1, . . . , q} ,

where yS
i, j is j-th element of the computer model out-

put at input (x, θ)i, and ŷS
i, j is the j-th element of the

surrogate model prediction evaluated at the same input
(x, θ)i using the estimated values for r.

If CV results are satisfactory (i.e. MAPE is low),
then we can move to the next step of the calibration
procedure in Section 2.2.2. Otherwise, we seek to
improve the predictive power of the surrogate model.

More specifically, we run an additional number of
computer model simulations, such that we have a
larger training data set that results in a better surro-
gate model. We achieve this through an adaptive sam-
pling (AS) technique to select new data points to sam-
ple based on present results. The algorithm devised for
this purpose is similar to a grid search, where we sub-
divide each dimension from the (p + t)-dimensional in-
put spatial domain into grids (perhaps with different
number of divisions per dimension) yielding NAS num-
ber of different data points within the grid,

Xgrid =


(x, θ)grid

1
...

(x, θ)grid
NAS

 ∈ RNAS,p+t

and calculate the predictive variance for each point
based on the probability distribution from Equa-
tion (7):

AS =

1
q

q∑
j=1

c?
(
(x, θ)grid

i , (x, θ)grid
i

)
Σ̂ j, j


i=1:NAS

∈ RNAS
+

where Σ̂ j, j is the j-th element in the diagonal of matrix
Σ̂.

Elements of the vector AS represent the average pre-
dictive variance among all outputs at a specific input
point. The vector is then sorted in descending order,
and the corresponding points for the first 20 elements
(with largest average predictive variance) are selected
to be evaluated using the expensive computer model.
The underlying hypothesis is that adding these points
that showed high predictive variance to the training
data set XS will improve the predictive power of the
surrogate model. We denote the set with these new ap-
pended data points by XAS.

In implementing the adaptive sampling procedure as
outlined above, we include two filters that ensure bet-
ter sampling of new points. The first filter flags points
that are very close to one other. This filter essentially
avoids sampling more than one point from within a
small sub-set of the input space, since this is not likely
to provide more information. The filter takes the first
20 elements of the vector AS with largest predictive
variance, and selects those that are at least some dis-
tance threshold τAS apart from one another. When a
point is flagged and excluded, the next point from vec-
tor AS becomes a candidate to be added to XAS if it
satisfies the filter criterion.

The second filter for the AS algorithm addresses the
issue of extrapolation. It is well-known that GP pre-
dictive models have less predictive power at regions
outside the domain of the training set XS . Hence, this
filter excludes points within vector AS that are located
outside of that domain. It is important to point out that
if the initial selection of design points in the data set XS

uniformly covers the input space (as is the case with
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Latin Hypercube Design), then this second filter will
not be employed too often.

The AS algorithm can be iteratively conducted until
a satisfactory value of the cross validation predictive
error, MAPE, set by the user is achieved.

2.2.2. Multivariate Calibration Model
Once the surrogate model has been adequately con-

structed, it can now be used in lieu of the the origi-
nal computer model in Equation (1) to generate suffi-
ciently large number of simulations needed to conduct
calibration of the parameters θ. Some of the steps in
developing the following calibration procedure follow
the work of Bhat et al. [62].

We start by elucidating the two remaining terms of
the statistical model given in Equation (1). The term
δ (x) is a discrepancy or model inadequacy function.
This function accounts for factors that result in de-
viation between the computer model predictions and
the real process being simulated, including missing
physics, simplifying assumptions, and numerical er-
rors. The term ε (x) models the measurement error
associated with experimental observations. Note that
both of these terms depend only on control inputs x,
since the calibration parameters are not changed or
controlled in experiments.

Similar to what was done with the surrogate model
in Section 2.2.1, we model δ (·) as a multivariate q-
dimensional GP,

δ (·) | rδ,σδ ∼ GPq (0, cδ (·, ·)Σδ) (12)

with mean function that is equal to 0 for all elements,
and a stationary squared exponential correlation func-
tion

cδ
(
xi, x j

)
= exp

[
−

(
xi − x j

)>
Rδ

(
xi − x j

)]
where Rδ = diag (rδ) is a diagonal matrix of positive
roughness parameters with rδ =

[
r(δ)

1 , . . . , r(δ)
p

]
∈ Rp

+,
and the covariance matrix of the model outputs Σδ =

diag (σδ) is a diagonal matrix with positive variances
σδ =

[
σ1, . . . , σq

]
∈ Rq

+.
The measurement error term ε (·) is also modeled as

a multivariate q-dimensional GP,

ε (·) | ψ ∼ GPq (0, cε (·, ·)Σε) (13)

with mean function equal to 0 for all elements, and cor-
relation function given by the Kronecker delta function

cε
(
xi, x j

)
=

1 if xi = x j

0 if xi , x j

and noise matrix Σε = diag (ψ) with positive noise
variances ψ =

[
ψ1, . . . , ψq

]
∈ Rq

+.
Notice that the model introduced in Equation (1) in-

volves a summation of three random processes defined
in Equations (7), (12) and (13). Here, we approximate
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Figure 2: Approximation of T distributions to a normal distribution.

the multivariate T process (the surrogate model) with
a Gaussian Process, so that the summation in the RHS
of Equation (1) becomes another Gaussian Process due
to the property of addition of statistically independent
Gaussian random variables [63]. This approximation
can be justified using an analogous case in a univariate
setting. Figure 2 shows several univariate T distribu-
tions with different dof, in addition to a standard Nor-
mal distribution. It can be seen that as the value of dof
increases (values larger than 10), the T distributions
approximate perfectly to the standard Normal distribu-
tion. Therefore, if a T distribution is defined with dof
equal to N−m with N > m for some N ∈ N and m ∈ N,
then a T distribution with relative large N − m dof can
be approximated with a Normal distribution. This is
the case specially in our setting where the size of the
training dataset for surrogate model N is relative larger
than the dimension m from the mean function linear
regression.

With this approximation, the calibration model
resulting from Equation (1) is a multivariate q-
dimensional GP given by

yE (·) | Φcal ∼ GPq

(
m? (·, θ) ,

c? (·, ·) Σ̂ + cδ (·, ·)Σδ + cε (·, ·)Σε
)

(14)

where Φcal = {θ, rδ,σδ,ψ} is the set of hyperparam-
eters that will be estimated (including the calibration
parameters θ).

In order to build the calibration model, we need an-
other data set which is constructed from experimental
observations. The procedure to obtain the experimen-
tal data is explained in Section 3.2. We denote this data
set as

XE =


xE

1
...

xE
n

 ∈ Rn,p and YE =


yE

(
xE

1

)
...

yE
(
xE

n

)
 ∈ Rn,q

where XE is an n × p controllable input matrix and
yE (x) is the result of the experiment observed at x,
thus YE is a n×q matrix. It is worth to mention that the
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size n of this dataset may be different from simulation
dataset size N, and that only control inputs x are used
in the context of physical experiments (as opposed to
(x, θ) tuples for both the computer and surrogate mod-
els).

For implementation purposes, we rearrange the dis-
tribution resulting from Equation (14), by stacking
each vector yE

(
xE

i

)
and forming a single column vec-

tor with length n ·q, resulting in the following distribu-
tion,

p
(
YE | Φcal, XE , XS ,YS

)
∼ MVNn·q

(
m?,Σcal

)
(15)

with

YE =
[
YE

1,1, . . . ,Y
E
1,q, . . . ,Y

E
n,1, . . . ,Y

E
n,q

]>
∈ Rn·q

m? =
[
m?

(
xE

1 , θ
)
, . . . ,m?

(
xE

n , θ
)]>
∈ Rn·q

Σcal = Ccal
sur ⊗ Σ̂ + Ccal

δ ⊗ Σδ + Ccal
ε ⊗ Σε ∈ Rn·q,n·q

Ccal
sur =

[
c?

((
xE

i , θ
)
,
(
xE

j , θ
))]

i, j=1:n
∈ Rn,n

Ccal
δ =

[
cδ

(
xE

i , x
E
j

)]
i, j=1:n

∈ Rn,n

Ccal
ε =

[
cε

(
xE

i , x
E
j

)]
i, j=1:n

= In,n ∈ Rn,n

where ⊗ denotes the Kronecker matrix product em-
ployed to calculate cross-covariance matrix Σcal that
accounts for the spatial dependence between inputs
and outputs altogether.

The next step is to estimate the posterior distribu-
tions for the calibration parameters and hyperparame-
ters. We conduct a Bayesian methodology to achieve
this, where the posterior distributions of the hyperpa-
rameters Φcal is given by

θ, rδ,σδ,ψ | XE ,YE , XS ,YS ∝ p
(
YE | Φcal, XE , XS ,YS

)
π (θ, rδ,σδ,ψ)

The distributions are computed using the Metropolis
Hastings algorithm after adequate selection of the prior
distributions π (θ, rδ,σδ,ψ).

After determining these posterior distributions, the
last remaining step is to construct a predictor that can
be used to compute model predictions at input set-
tings that have not been previously simulated or exper-
imentally measured, and we rely on the Kriging tech-
nique, also known as the Best Linear Unbiased Esti-
mator (BLUP) [64].

Let Xpred denote a set of s control inputs xpred
i , that

have not been previously simulated or experimentally
measured

Xpred =


xpred

1
...

xpred
s

 ∈ Rs,p

Then the predictive distribution of model outputs,
p
(
YE

pred

∣∣∣∣Xpred, XE ,YE , XS ,YS ,Φcal,Φsim

)
, is an s-

dimensional multivariate normal distribution with the
following parameters:

• Expected value is given by:

E
[
YE

pred

∣∣∣∣Xpred, XE ,YE , XS ,YS ,Φcal,Φsim

]
= m?

pred + Σ0Σ
−1
cal

(
YE − m?

)
(16)

where

m?
pred =

[
m?

(
xpred

1 , θ
)
, . . . ,m?

(
xpred

s , θ
)]>
∈ Rs·q

Σ0 = Cpred,cal
sur ⊗ Σ̂ + Cpred,cal

δ ⊗ Σδ ∈ Rs·q,n·q

Cpred,cal
sur =

[
c?

((
xpred

i , θ
)
,
(
xE

j , θ
))]

i=1:s, j=1:n
∈ Rs,n

Cpred,cal
δ =

[
cδ

(
xpred

i , xE
j

)]
i=1:s, j=1:n

∈ Rs,n

• Variance is given by

Var
[
YE

pred

∣∣∣∣Xpred, XE ,YE , XS ,YS ,Φcal,Φsim

]
= Σpred − Σ0Σ

−1
calΣ

>
0 ,
(17)

where

Σpred = Cpred
sur ⊗ Σ̂ + Cpred

δ ⊗ Σδ

+ Cpred
ε ⊗ Σε ∈ Rs·q,s·q

Cpred
sur =

[
c?

((
xpred

i , θ
)
,
(
xpred

j , θ
))]

i, j=1:s
∈ Rs,s

Cpred
δ =

[
cδ

(
xpred

i , xpred
j

)]
i, j=1:s

∈ Rs,s

Cpred
ε =

[
cε

(
xpred

i , xpred
j

)]
i, j=1:s

∈ Rs,s

To assess the performance of the calibrated model, a
cross validation (CV) procedure similar to the one de-
scribed for the surrogate model in Section 2.2.1 can
be used. The mean absolute percentage error (MAPE)
can be computed using Equations (16) and (17). The
key difference is the fact that in this case, simulations
from the calibrated surrogate model are compared with
experimental measurements, in contrast to comparing
surrogate model predictions with the computer model
predictions.

3. Results: Calibration of FEM based thermal
model using Ti-6Al-4V tracks

The statistical calibration procedure is conducted on
the FEM based thermal model described in Section
2.1. Following our definitions, the thermal model rep-
resents the computer model, and the two terms will be
used interchangeably in the remainder of the text. This
computer model predicts the three-dimensional ther-
mal profiles of the moving melt pool during L-PBF
AM. It is reported in the literature that the melt pool
temperature and geometry (depth and width) are im-
portant factors influencing the outcome of the L-PBF
process [65]. The inputs and outputs of the computer
model are described as follows:

• Two control inputs
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– x1: laser power (W)

– x2: laser scan speed (mm/s)

• Three calibration parameters

– θ1: powder-bed porosity (%)

– θ2: laser absorptivity(%)

– θ3: coefficient of thermal conductivity for
liquid ( W

m·K )

• Three model outputs (or quantities of interest,
QoIs)

– yS
1 , y

E
1 : melt pool depth into the solid sub-

strate (µm)

– yS
2 , y

E
2 : melt pool width (µm)

– yS
3 , y

E
3 : melt pool peak temperature (◦C).

The chosen control inputs (laser power and speed)
are known to have the most significant effect on the
melt pool characteristics, and are commonly studied
by AM researchers, see for example [64]. In terms of
the notation defined in Section 2.2, we have the length
of the control inputs vector p = 2, and lengths of the
calibration parameters vector and computer model out-
puts vector t = q = 3. We test the performance of the
proposed multivariate calibration procedure through
studying the melt pool conditions while fabricating
single track of Ti-6Al-4V. We derive the posterior dis-
tributions of the calibration parameters θ using a syn-
thesis of computer model simulations denoted by ma-
trices XS and YS , and experimental observations de-
noted by matrices XE and YE . We start by constructing
a GP-based surrogate model using a data set of com-
puter model simulations (Section 3.1). Next, we con-
duct manufacturing and characterization experiments
to collect the data required for calibrating the model
(Section 3.2). Finally, we conduct model calibration
and prediction (see Section 3.3).

3.1. Building the surrogate model

Since L-PBF processes involve complicated physi-
cal phenomena with different forms of heat and mass
transfer and material phase transitions, the run-times
for computer simulation models are typically long.
This necessitates the use of computationally efficient
surrogate models, both for the purpose of conduct-
ing calibration or for process planning and optimiza-
tion. In the present case, the execution time for the
FEM based thermal model developed was dependent
on the model inputs (control inputs and calibration pa-
rameters). From initial test simulation runs, execution
times ranged between 30 minutes to 5 hours. Hence,
performing a traditional Markov chain Monte Carlo
(MCMC) with 50,000 iterations would take approx-
imately 800 weeks. Furthermore, MCMC sampling
strategies preclude the use of embarrassingly parallel
modes of execution to improve computational time.

Instead, we use the two-stage surrogate-modeling ap-
proach explained in Section 2.2.1 to address this chal-
lenge.

To build the surrogate model, a training data set
from the original FEM based thermal model is first
needed. This data set consists of the two matrices XS

and YS introduced earlier, representing simulation in-
puts and outputs, respectively. We use the Latin Hy-
percube sampling (LHS) strategy to uniformly select
design points from the control input and calibration pa-
rameters space, X × T . The lower and upper bounds
for the control input space X was chosen as Xmin =

{30 W, 80 mm/s}, and Xmax = {500 W, 400 mm/s}.
These bounds were determined based on prior knowl-
edge of the commercial metal L-PBF system used
in this study and machine specifications. The lower
and upper bounds for the calibration parameter space
were chosen as Tmin = {20%, 40%, 1}, and Tmax =

{70%, 90%, 25}. These bounds were specified by the
AM researchers based on previous values reported in
the literature to construct an initial region within which
the true values of θ are believed to lie. A simulation
data set of size N = 130 was generated over the X×T
space. Hence, XS is an N × (p + t) matrix with 130 dif-
ferent and uniformly selected (x, θ) combinations, and
YS is an N × q with elements representing outputs of
the thermal model for input XS . Code parallelization
was conducted on a 843-node high-performance super-
computer.

Recall from Equation 7 that the conditional posterior
distribution of f (·) given the simulation training data
(XS ,YS ) and roughness parameters r is a q-variate T
Process. The Bayesian approach was then used to es-
timate the roughness parameters. To ensure their pos-
itivity, log-logistic prior distributions for the elements
of r with both scale and shape parameters equal to 1
were used (see Equation 11). Next, using the single-
component Metropolis-Hastings algorithm, the poste-
rior distributions of r were generated after 50,000 it-
erations with 25% burn-in period and thinning every
fifth sample. Figure 3 shows the histograms and ker-
nel density estimates of the posterior distributions for
the roughness parameters. The posteriors are very in-
formative, and hence the modes were used as the es-
timates for the roughness parameters r. At this stage,
the surrogate model is built and ready to use, since es-
sentially when the roughness parameters have been es-
timated, the output of the computer model at any given
combination of (x, θ) can be estimated using Equation
8. A confidence interval for this estimate can also be
determined using Equation 9.

It is necessary to validate and assess the perfor-
mance of the surrogate model once the hyperparam-
eters Φsim are estimated. A 10-fold cross validation
was performed for the surrogate model and the results
are displayed in Figures 4a, 4b, and 4c, corresponding
to the the three model outputs: melt pool depth, width,
and peak temperature, respectively. In the plots, the
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Figure 3: Histograms and kernel density estimates of the posterior
distributions for the roughness parameters r for the surrogate model

horizontal axes represent the outputs of the computer
simulation model, while the vertical axes show the pre-
dicted outputs using the surrogate model with the bars
representing confidence intervals for these predictions.
In other words, the red line represents the ideal case
with surrogate model predictions E[ f (x)|XS ,YS , θ] be-
ing in full agreement with computer model simulations
yS (x, θ).

It can be visually seen that the predictive perfor-
mance of the surrogate model is satisfactory. For a
quantitative assessment, the computed MAPE values
for the three outputs are reported in Table 1, also
indicating satisfactory performance. Note that since
the predictive accuracy, represented by MAPE, was
deemed acceptable, there was no need for further sam-
pling using the adaptive sampling technique described
in Section 2.2.1.

3.2. Experimental measurements

As mentioned in Section 2.2, experimental data is
needed to calibrate the computer model. LHS design
was also used to uniformly explore the control input
space X. A total of n = 24 different configurations
of x were determined, which constitute XE . Next, the
fabrication and characterization were conducted to ob-
tain the corresponding outputs YE .

3.2.1. Melt pool depth and width
Single tracks of length 20 mm were fabricated on a

30 µm powder-bed using a ProX 100 DMP commer-
cial L-PBF system by 3D Systems. The system is
equipped with a Gaussian profile fiber laser beam with
wavelength λ = 1070 nm and beam spot size of ap-
proximately 70 µm-diameter. Argon was used as in-
ert protective atmosphere during fabrication. The raw
Ti-6Al-4V powder was produced by LPW Technol-
ogy. Single tracks were built on a Ti-6Al-4V substrate,
which was subsequently cut with a Buehler precision
saw and mounted for cross-section analysis. Metallo-
graphic grinding was performed with silicon carbide
papers (320 to 600 grit size) followed by manual pol-
ishing with 1 µm diamond suspension and final pre-
cision polishing with colloidal silica suspension. To
make melt pool boundary lines more visible, chemi-
cal etching was performed using a 3:1 volume mix-
ture of HCl and HNO3 solution. Melt pool depth and
width were measured using optical microscopy (Nikon
Optiphot - POL) and verified with scanning electron
microscopy (FEG-SEM/FIB TESCAN LYRA3). Rep-
resentative SEM images that were used for measuring
the melt pool depth and width are shown in Figure 5.
We visually ascertain from the figure that both higher
laser powers and lower scan speed increase the melt
pool size; however, the impact of laser speed on the
melt pool dimensions is higher, primarily due to the
low maximum power on the system (50 W).

3.2.2. Melt pool peak temperature
The L-PBF system was custom integrated with

a thermal imaging sensor to conduct in-situ moni-
toring of melt pool temperature during fabrication.
The sensor is a two-wavelength imaging pyrometer
(ThermaVIZ R© by Stratonics Inc.) that consists of two
high resolution CMOS imaging detectors. Both detec-
tors have a field of view (FOV) with 1300× 1000 pixel
resolution mapped to a 30 × 27 mm area, which yields
a resolution of 24 µm per pixel. Figure 6 shows the
pyrometer integrated inside the ProX100 DMP build
chamber. Experimental Calibration of the pyrometer
(which is to be distinguished from statistical calibra-
tion of the model) was performed in-situ after integra-
tion using a tungsten filament (halogen tungsten-lamp)
for a range of temperatures between 1500 − 2500 ◦C.
By fabricating the single tracks within the FOV of
the pyrometer, thermal images of the melt pools were
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Figure 4: Results of a 10-fold cross validation of the surrogate model for (a) melt pool depth, (b) melt pool width, and (c) melt pool peak
temperature

Table 1: Mean absolute predictive error (MAPE) of the surrogate model for the three outputs

Melt pool property Depth Width Peak Temperature

Observed range in simulation 51.3 µm 147.8 µm 1284 K
Mean absolute predictive error (MAPE) 2.01 µm 8.05 µm 56.5 K
MAPE as % of the simulation range 4% 5% 4%
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Figure 5: Representative SEM images used for measuring the melt
pool depth and width

Figure 6: The two-wavelength pyrometer used for temperature mea-
surement mounted inside the L-PBF machine

taken at approximately 250 Hz. These images were
used to compute the melt pool peak temperature.

A sample melt pool temperature map taken from a
representative thermal image is shown Figure 7 where
X and Y coordinates are pixels resolved by the pyrom-
eter and the color scale represents temperature. The
temperature map shows zero for temperature values
below 1500 ◦C that fall outside the calibration range
of the pyrometer.

3.3. Prediction using the calibrated model

With the surrogate model fully defined and the ex-
perimental measurements conducted, we are now able
to estimate the calibration parameters θ, as well as the
remaining hyperparameters Φcal required for the sta-
tistical model (rδ,σδ, and ψ, introduced in Equations
1, 12, and 13). As instructed in Section 2.2.2, we
use the Bayesian framework and Metropolis-Hastings
MCMC to estimate the set of hyperparameters Φcal =

{θ, rδ,σδ,ψ}. The following prior distributions are se-

Figure 7: Temperature map of a sample melt pool captured using the
pyrometer

lected for the hyperparameters:

θi ∼ Uniform(αθi , β
θ
i )

rδi ∼ Log-Logistic(α = 1, β = 1)
σi ∼ Inverse-Gamma(α = 2, β = 1)
ψi ∼ Inverse-Gamma(α = 2, β = 1)

Note that the priors for the calibration parameters
θi are all uniform and hence non-informative to avoid
bias in estimation, and since no information beyond
the suggested lower and upper bounds were available.
Examples of constructing informative prior distribu-
tions using additional prior knowledge can be found
in [66, 67]. The lower and upper bounds for these
prior distributions, (αθi , β

θ
i ), were set equal to the lower

and upper bounds of the parameters space Tmin =

{20%, 40%, 1}, and Tmax = {70%, 90%, 25}. For the
roughness parameters rδi , log-logistic priors were used
as recommended by [59]. For the variance parameters
σi and ψi, inverse gamma priors are selected because
they represent conjugate priors for the multivariate nor-
mal likelihood function in our model.

Similar to Section 3.1, single-component
Metropolis-Hastings procedure was used to compute
the posterior distributions for the hyperparameters.
Figure 8 shows the histograms and kernel density
estimates for these parameters after 100,000 MCMC
iterations with 25% burn-in period and thinning every
fifth sample. In the plots, we observe unimodal and
well-informative posteriors for all of the calibration
parameters with θ1 and θ3 showing symmetric density
functions and θ2 showing a density function skewed
to the right. Table 2 reports the posterior mean, mode,
and standard deviation for the posterior distributions
of the calibration parameters.

Porosity, θ1, is used to calculate the effective
thermo-physical properties of the powder-bed (i.e.,
thermal conductivity and density). It was observed
during simulations that by changing the porosity from
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Figure 8: Histograms and kernel density estimates of the posterior distributions for calibration parameters (a) θ1: laser absorptivity, (b) θ2:
powder-bed porosity, and (c) θ3: thermal conductivity of the liquid

Table 2: Posterior distribution parameters for the calibration parameters

Parameter Posterior mean Posterior mode Posterior std. dev.

Powder porosity, θ1 0.423 0.400 0.112
Laser absorptivity, θ2 0.782 0.782 0.066
Coefficient of thermal conductivity for liquid, θ3 6.727 6.709 0.922

0.3 to 0.5 the thermal conductivity of the powder
changes up to 2 W

m·K , which leads to an insignificant
change in the thermal history and only a few microns
change in the melt pool size. Thus, by considering
the variability in experimental measurements for melt
pool dimensions, this change becomes negligible, and
the wide nature of the posterior distribution for θ1 is
physically consistent. Furthermore, a posterior mean
of 0.423 is reasonable since it agrees with the reported
range of porosity for similar powder sizes and layer
thicknesses, see [54, 68].

The posterior distribution of absorptivity (θ2) shows
a more informative posterior distribution with mean
of 0.782. This value demonstrates reasonable agree-
ment with reported experimental results in the liter-
ature [69, 70]. However, considering the difficulties

associated with experimentally measuring absorptiv-
ity due to its dependence on multiple parameters (i.e.,
wavelength, temperature, oxidation, powder size, pow-
der distribution, powder porosity), these experimental
results might involve high uncertainty. Therefore, we
confidently agree that the estimated distribution for ab-
sorptivity is is consistent with the underlying physi-
cal phenomena controlling the interactions between the
laser and the powder bed.

The narrow range of the posterior distribution of θ3
can be attributed to its significant effect on the ther-
mal profile and the melt pool size. A unit increase in
the liquid thermal conductivity coefficient might lead
to a change on the order of 100 K in the thermal his-
tory and in a change between 5 to 10 µm in the melt
pool size. Additionally, if extremely high values are
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used for this parameter, the applied energy would be
rapidly transferred to the surroundings and the energy
input will reduce, thus the melt pool peak temperature
would decrease in an unrealistic manner. Therefore,
only a small region of this parameter results in phys-
ically meaningful simulations, explaining the narrow
posterior distribution.

Next, we use the predictive distributions from Equa-
tion 16 to assess the performance of the calibrated
model via a 6-fold cross validation. Figure 9 dis-
plays the results of the 6-fold cross validation for
each of the three outputs yi. In the plots, the hor-
izontal axes represent experimental measurements,
while the vertical axes are the predicted outputs us-
ing the calibrated model with the bars representing
the confidence intervals for the predictions. In other
words, each point on the plots compares the experi-
ment yE(x, θ) versus the calibrated model prediction
E[yP(x)|XE ,YE , XS ,YS , θ∗], and the red straight line
is a reference line representing ideal predictions.

Upon visual inspection, the plots qualitatively show
acceptable predictive performance for y1 (melt pool
depth) and y2 (melt pool width), but less accurate pre-
dictions for y3 (peak temperature), particularly in the
case with too low and too high values of y3. Quan-
titatively, the error metric MAPE for each output are
reported in Table 3. We notice that the MAPEs for
melt pool depth and width, y1 and y2, are relatively low
compared to the full range of simulations: 5% and 3%,
respectively. These results show that the calibration
model is effectively correcting the simulation model
output when we use the Kriging technique in Equa-
tion 16. However, the predictions for melt pool peak
temperature, y3, show a higher value of MAPE (12%
of the simulation range) compared to the predictions
for melt pool depth and width. We believe that this is
due to the inherent high uncertainty associated with ex-
perimental temperature measurements using contact-
less temperature measurement through pyrometry [71].
The uncertainty in the temperature data can be mea-
sured by computing its standard deviation. The aver-
age standard deviation of the experimental measure-
ments for y1, y2, and y3 are 3.03 µm, 8.14 µm, and
306.3 ◦C, respectively. We notice low standard devi-
ations for y1 and y2 (6% of the simulation ranges), in
contrast to a relatively high standard deviation for y3
(24% of the simulation range). This is the likely ex-
planation for the high MAPE associated with the pre-
dictions of y3 due to high measurement noise, which
signals the need for improving existing measurement
techniques or developing new sensors with lower mea-
surement noise.

To support our argument that uncertainty in experi-
mental temperature measurements explain the high re-
ported value of MAPE for y3, we re-implemented the
multivariate calibration procedure with only the melt
pool depth and width (y1 and y2, respectively) as model
outputs. In other words, we excluded the melt pool
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Figure 9: Results of the 6-fold cross validation for the predictions
using the calibrated model for (a) y1: melt pool depth, (b) y2: melt
pool width, and (c) y3: melt pool peak temperature
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Table 3: Mean absolute predictive error (MAPE) of the predictions using the calibrated model

Melt pool property Depth Width Peak Temperature

Mean absolute predictive error (MAPE) 2.42 µm 4.93 µm 159.5 K
MAPE as % of the experimental range 5% 3% 12%

temperature y3 as a model output. Figure 10 shows
the results of the 6-fold cross validation for this cali-
brated model. We observe that that the cross validation
plots show improvement in predictive performance, in-
dicated by more proximity of the blue data points to
the red line, narrower confidence intervals, and lower
MAPE error values of 2.42 µm and 4.96 µm for y1 and
y2, respectively. This both supports our claim regard-
ing measurement errors associated with temperature
measurements, and also demonstrates satisfactory per-
formance of the calibrated model.

4. Conclusions and future work directions

We developed an efficient procedure for conduct-
ing formal calibration (also known as inverse uncer-
tainty quantification (UQ) analysis) of computational
materials models. In addition to providing one of the
first efforts to systematically perform UQ analysis for
ICME models, we also present a versatile multivari-
ate statistical framework to perform such analysis in
the case of models with multiple quantities of inter-
est (QoIs), in contrast to many previous research ef-
forts that typically focus on a univariate scalar QoI.
The proposed framework involves a two-step proce-
dure that starts with constructing a computationally ef-
ficient multivariate Gaussian Process-based surrogate
model that can be used in lieu of the original expensive
computational model. The surrogate model can then be
used to generate sufficiently large numbers of simula-
tions needed to conduct calibration through a synthesis
with experimental measurements.

We implemented the proposed multivariate statis-
tical framework to calibrate a finite element method
(FEM) based thermal model for laser powder-bed fu-
sion metal additive manufacturing (L-PBF AM). The
model predicts the thermal history and melt pool ge-
ometry during fabrication, and can potentially become
one of the core elements of an ICME platform for the
L-PBF process. Our results indicate that the multi-
variate surrogate model is capable of adequately ap-
proximating the original FEM based thermal model to
a good degree of accuracy. Furthermore, predictions
made using the calibrated model showed good agree-
ment with experimental measurements conducted in
a case study on fabricating single tracks of Ti-6Al-
4V AM parts on a commercial L-PBF system instru-
mented with in-situ temperature monitoring capability.

The current work represents a foundation for numer-
ous future investigations. First, coupling the calibrated
melt pool model with other physics-based models in a

complete multi-model ICME platform for laser-based
AM would be of great value. Second, calibration of
ICME simulation models with high-dimensional out-
put (e.g. fully explicit microstructure simulations) will
be very useful but has not been conducted yet. Third,
more validation experiments with other measurement
instruments can be carried out to achieve better accu-
racy for predicting melt pool temperature.

Supplementary data

The complete dataset for building the surrogate
model and calibrating the parameters as well as the
MATLAB source codes have been shared and are
freely available on github.com [72]. It includes the
codes for loading the data, Monte Carlo simulation,
and visualization of the outputs. The community can
access and reproduce all of our results, in addition to
use our models for their own data. Instructions regard-
ing how to run the codes are given in the main scripts
as identified on the Github repository.
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