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ABSTRACT 
 

Dynamic Whole Blood Study of Silicone Modified with PEO-Silane Amphiphiles 
 

Mikayla Barry 
Department of Biomedical Engineering 

Texas A&M University 
 

Research Advisor: Dr. Melissa Grunlan 
Department of Biomedical Engineering 

 

Blood-contacting medical devices rapidly adsorb plasma proteins that initiate clot (i.e. thrombus) 

formation. Antithrombotic drugs may reduce clotting and associated device dysfunction and 

ischemia, but put the patient at risk for hemorrhaging. Silicone, a common blood-contacting 

device material is highly prone to protein adsorption and subsequent clotting due to its extreme 

hydrophobicity. Poly(ethylene oxide) (PEO), a hydrophilic polymer, is highly protein resistant 

but its function when incorporated into silicone depends critically on its presence at the silicone-

water interface. To enable rapid and substantial migration of PEO to the silicone surface, a PEO-

silane amphiphile [α-(EtO)3Si(CH2)2-ODMS13-block-PEO8-OCH3]	was prepared that bears the 

ability to substantially reduce fibrinogen adsorption on silicone, even at low concentrations. This 

work comprehensively evaluated the thromboresistance of a silicone modified with the PEO-

silane amphiphile via its exposure to whole blood under dynamic conditions using a Chandler 

Loop. Clotting was evaluated in terms of occlusion time and thrombus formation for silicones 

modified with varying levels of the PEO-silane amphiphile. Results demonstrated that 

concentrations as low as 10 µmol of amphiphile per gram of silicone were able to significantly 

reduce platelet adhesion and prevent occlusion during the course of the study. This indicates that 
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the amphiphiles are useful in preventing protein adhesion and obviating clot formation, 

increasing the safety and lifetime of implantable blood-contacting devices. 
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SECTION I 

INTRODUCTION 

 

Preventing thrombosis via PEO-additives 

Blood-contacting devices such as hemodialysis catheters must be thromboresistant, or capable of 

preventing clotting, in order to preserve patency. Silicone is commonly used to prepare catheters 

based on its favorable mechanical properties.1 Unfortunately, as a result of its hydrophobicity, 

silicone has a high affinity for protein adsorption making it very susceptible to thrombosis.2 

Consequently, patients utilizing silicone catheters or other medical devices composed of or 

coated with silicone must be placed on anti-thrombotic drugs to prevent clot formation. These 

drugs not only lead to an increased risk of bleeding complications, but also have demonstrated 

limited efficacy.2 A silicone material or coating that is inherently resistant to thrombosis could 

improve the safety of implantable devices and obviate the need for anti-thrombotics.  

 

Coatings made from poly(ethylene oxide) (PEO), a hydrophilic polymer, have shown the 

potential to resist protein adsorption by steric repulsion3 and blockage of adsorption sites.4 

Molecular simulations have also shown that PEO chains strongly associate with water via 

hydrogen bonding, creating a repulsive “hydration layer” that physically excludes 

macromolecules.4 While PEO’s protein resistance has been seen on materials with physically 

stable surfaces (e.g. silica or gold), grafted coatings on polymers have largely failed to prevent 

protein adsorption.5-7 This is likely due to PEO’s tendency to enter to the bulk of the polymer, 

particularly after exposure to air.8, 9 Therefore, in order to optimize PEO’s protein resistance, 

PEO must be able to spontaneously rise to the water-surface interface from the polymer matrix.  
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In previous studies, a (PEO)-silane amphiphile (Figure 1) was prepared10 to improve the 

thromboresistance of silicones by enhancing PEO migration to the surface. Unlike traditional 

non-amphiphilic PEO-silanes, this amphiphile includes a siloxane tether in order to enhance 

mobility of PEO within the silicone network and to the water-surface interface. When silicone 

was bulk-modified with this amphiphile and exposed to water, a remarkable increase in surface 

hydrophilicity and protein (fibrinogen) resistance was observed. This implies that the modified 

silicone has the potential to prevent clot formation. In this study, the thromboresistance of a 

silicone modified with the PEO-silane amphiphile was evaluated with a dynamic whole blood 

adhesion study using a Chandler Loop. 

 

 

Figure 1: PEO-silane amphiphile. 

 

Measuring coagulation 

Model framework 

Current methods of evaluating thromboresistance include measuring the partial thromboplastin 

time,11-13 platelet adhesion,12, 14-17 thrombin generation,13, 15, 18 protein (e.g. fibrinogen) 

adsorption,16, 19 and split products resulting from the coagulation cascade.20 However, each poses 

serious limitations. While its results are discriminative among similar materials, fibrinogen 

adsorption is incomplete in comparison to thrombin generation, as it only measures one of the 

clotting proteins found in blood13 and does not take the effect of protein conformation into 

account.21 It has also been found that partial thromboplastin time is not a reliable test method, 

particularly when comparing materials of similar hemocompatibility.13, 22 When evaluating 
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thromboresistance, researchers will often utilize two or more methods, where at least one is 

quantitative. A thrombin generation-based or platelet adhesion-based test that is consistent as 

well as discriminatory can act as the primary quantitative method in whole blood studies. Platelet 

adhesion is more commonly tested as it can be measured on the surface of the material as well as 

in solution. Static blood tests have been used for measuring platelet adhesion, but cannot 

accurately simulate thrombosis in vivo, which occurs with blood flow.23, 24 Dynamic tests better 

mimic the circulatory system environment, making them desirable for predicting efficacy in 

vivo.24  

 

Mechanical simulation 

Constructs for dynamic blood tests include parallel plate25, 26 as well as bioreactor flows.27 A 

relatively new construct is the Chandler Loop (Figure 2), wherein a tube shaped into a loop is 

partially filled with blood that flows continuously while the loop is rotated. Once the blood is 

removed, the entirety of the tube’s inner surface can be analyzed. This system, as a dynamic 

environment, better imitates the circulatory system relative to static conditions. With this setup, 

flow can be carefully tuned to match physiological shear rates and avoid turbulent flow.28-31 

Already in use for detecting thrombosis in stents,32, 33 the Chandler Loop has also recently been 

demonstrated as effective for evaluating silicone systems.34 It can thus be expected to provide 

results that are more representative of in vivo performance than static blood tests and be a viable 

construct for quantitative platelet adhesion tests. 
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Figure 2: Chandler Loop 

 

Data collection 

The adherence of platelets or proteins on materials can be compared qualitatively via imaging 

with SEM12, 35, 36 or confocal microscopy.14, 37 For quantitative analysis, flow cytometry28, 38, 39 as 

well as ELISA28 and a large variety of colorimetric and fluorescence assays (e.g. for Factor X27 

or LDH19) may be used. Flow cytometry, in which platelets are counted as they pass between a 

laser and an electrical detector, reports platelet concentration with high precision but requires the 

platelets to be in solution.40 A more direct approach could measure adhered platelets by 

measuring the concentration of proteins released into solution after membrane lysis. Lactate 

dehydrogenase (LDH) is expressed in nearly all living cells, as it catalyzes the conversion of 

lactate to pyruvate. A colorimetric LDH assay could be used as a simple and reliable method to 

quantify adhered platelets on a material surface.19, 27  
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SECTION II 

METHODS 

 

Materials 

Vinyltriethoxysilane (VTEOS) and α,ω-bis-(SiH)oligodimethylsiloxane [ODMS13; Mn = 1000–

1100 g/mol per manufacturer's specifications; Mn = 1096 g/mol per 1H NMR end group analysis; 

1H NMR (δ, ppm): 0.05–0.10 (m, 78H, SiCH3), 0.19 (d, J = 2.7 Hz, 12H, OSi[CH3]2H) and 4.67–

4.73 (m, 2H, SiH)], and Pt-divinyltetramethyldisiloxane complex (Karstedt’s catalyst) in xylene 

were purchased from Gelest. Allyl methyl PEO [Polyglykol AM 450, Mn = 292-644 g/mol per 

manufacturer’s specifications; Mn = 424 g/mol per 1H NMR end group analysis; 1H NMR (δ, 

ppm): 3.35 (s, 3H, OCH3), 3.51–3.66 (m, 32H, OCH2CH2), 4.00 (d, J = 5.4 Hz, 2H, 

CH2=CHCH2O), 5.13–5.28 (m, 2H, CH2=CHCH2O) and 5.82–5.96 (m, 1H, CH2=CHCH2O)] 

from Clariant was utilized. RTV medical-grade silicone (MED-1137) was purchased from NuSil 

Technology (Carpinteria, CA), composed of α,ω-bis-(Si-OH)polydimethylsiloxane, silica (11-

21%), methyltriacetoxysilane (<5%), ethyltriacetoxysilane (<5%), and trace amounts of acetic 

acid. Phosphate-buffered saline (PBS, without calcium and magnesium, pH = 7.4) and a PierceTM 

LDH Cytotoxicity Assay Kit were purchased from Fisher.	RhCl(Ph3P)3 (Wilkinson’s catalyst) 

was obtained from Sigma-Aldrich. Organic solvents used were purchased from Sigma-Aldrich 

and were dried over 4 Å molecular sieves prior to use. 

 

Chandler Loop design and construction 

First, a stepper motor (Nema 17 – 12 V, 37 oz-in) paired with a driver (GE StepStick DRV8825) 

was combined with a voltage supply controller, consisting of an LCD Shield (SainSmart 1602) 
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user input interface linked to a microcontroller board (Arduino UNO R3). The controller was 

programmed to allow shaft rotation from 0 to 35 rpm in 5-rpm increments. A loop cradle was 

designed in SolidWorks and 3D printed to fit around the shaft of the stepper motor and extend 

radially outward. The entire apparatus (Figure 3) was secured by attaching the step motor to an 

L-shaped base that could then be bolted to a table. 

	

 

Figure 3: Finalized Chandler Loop construct. 

 

Test material preparation 

PEO-silane amphiphile synthesis 

The PEO-silane amphiphile was synthesized according to the procedure described by Murthy, et 

al.41 A triethoxysilane crosslinking group was first attached to one end of an 

oligodimethylsiloxane tether by performing a regioselective hydrosilylation reaction with 

VTEOS and ODMS13 for 16 hours using the Wilkinson’s catalyst. A Pt-catalyzed (Karstedt’s) 
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hydrosilylation reaction was then performed for 8 hours between the product and allyl PEO 

monomethyl ether of length n = 8, yielding the final amphiphile (Figure 4). 

 

 

Figure 4: Synthesis of PEO-silane amphiphiles. 

 

Modification of elastomer and application to tubing 

The PEO-silane amphiphile was added to Nusil MED-1137 RTV silicone at 5, 10, and 50 µmol 

per gram silicone. The mixtures were each diluted to 25 wt% in ethyl acetate. Poly(ethylene 

vinyl acetate) (EVA) tubing (1/8 in inner diameter, 40 cm length, McMaster-Carr) was exposed 

to oxygen plasma (time = 180 sec; Harrick Plasma PDC-001) to provide surface hydroxyl groups 

for improved adhesion of the modified silicone coating (i.e. those containing the PEO-silane 

amphiphile) and the unmodified silicone coating. For a given solvent-based mixture, 2.5 mL was 

poured into the EVA tubing and rotated at 5 rpm on the Chandler Loop for 30 minutes. Excess 

mixture was drained and the coated tubing was allowed to cure overnight. This coating process 

“Rh” (Wilkinson’s) 
   80 °C 
   16 h 

“Pt” (Karstedt’s) 

 80 °C 

 8 h 
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was repeated a second time. Finally, the tubing was rinsed once with 10 mL DI H2O to remove 

trace amounts of ethyl acetate. 
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Data collection 

Long-term occlusion study 

Citrated bovine blood was obtained from the Texas A&M Vet Med Park and used within 30 

minutes.42 Recalcified blood (1.6 mL, blood:0.1 M CaCl2 = 10:1, v/v) was poured into each 

coated tube and the blood-filled tubing was allowed to rotate in the Chandler Loop at 15 rpm. 

These conditions were determined to correspond to a strain rate of 272.5 s-1.31 Rotation was 

continued for a maximum of 24 hours or until clotting arrested blood flow. 

 

Platelet adhesion testing 

Citrated bovine blood was obtained from Texas A&M Vet Med Park and used within 30 

minutes.42 Recalcified blood (1.6 mL, blood:0.1 M CaCl2 = 10:1, v/v) was poured into unused 

coated tubing and the blood-filled tube rotated in the Chandler Loop at 15 rpm for 15 minutes.31 

Excess blood was removed, and the tubing was gently rinsed with 10 mL PBS to remove 

unbound cells.  

 

LDH assay 

A LDH cytotoxicity assay was performed per standard protocols.17 Three 2-cm sections of tubing 

were obtained from those used for platelet adhesion testing. Cells in these sections were lysed 

with 75 µL 0.7-1.0% poly(oxy-1,2-ethanediyl) for 45 minutes at 37 °C. From each section of 

tubing, 50 µL was then placed into an individual well in a 96-well microplate and 50 µL of the 

kit’s reaction mixture was added for 30 minutes before adding the kit’s stop solution. The 

absorbance of reaction products was measured with a microplate reader (Tecan Infinite® M200 
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PRO). The kit’s LDH positive control assay was used with bovine serum albumin (BSA) to 

develop a standard curve to determine protein concentration in the solution. 
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SECTION III 

RESULTS 

 

The thromboresistance of silicones modified with varying levels of the PEO-silane amphiphile 

(5, 10, and 50 µmol per gram silicone) were compared to that of unmodified silicone using a 

Chandler Loop. First, the time for occlusion to occur was assessed (Figure 5).  

 

 

Figure 5: Loop occlusion times for variable PEO-silane amphiphile concentration in silicone. 

 

The unmodified silicone coating was the least efficient, with an occlusion time of only 24.0 

minutes. For the silicone modified with only 5 µmol (0.86 wt%) of the amphiphile, occlusion 

time was modestly increased to 68.5 minutes. Upon increasing the amphiphile concentration to 

10 µmol (1.7 wt%) and 50 µmol (8.5 wt%), occlusion did not occur after 24 hours. 

 

In order to understand the occlusion time results, protein adsorption resulting from platelet 

adhesion were performed for modified and unmodified silicones. Figure 6 depicts relative 
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platelet adsorption quantified by LDH assay following 15 minutes of exposure to whole blood in 

the Chandler Loop.  

 

 

Figure 6: Protein concentration from platelets adhered to modified silicones. 

 

Both the unmodified silicone and the silicone modified with 5 µmol PEO-silane amphiphile 

exhibited relatively high LDH concentration, indicating increased platelet adhesion. Notably, the 

unmodified silicone showed a significantly higher variance in protein concentration for different 

sections of the single loop. Protein concentration decreased substantially with increased 

concentration of amphiphile in the silicone. For silicones modified with 10 and 50 µmol 

amphiphile, protein concentration was 25 and <1% of that versus the unmodified silicone, 

respectively.  A substantial and concentration-dependent decrease in LDH concentration was 

observed, indicating a correlated decrease in platelet adhesion.19 Also, for the modified silicones, 
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protein adsorption was very consistent across the tubing. As predicted,19 these protein adsorption 

results correlate with the occlusion time observations (Figure 5).  
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SECTION IV 

CONCLUSION 

 

Preventing the premature failure of implantable medical devices resulting from thrombosis using 

a material modification approach presents a noteworthy alternative to the use of anticoagulants. 

A PEO-silane amphiphile developed by Grunlan and co-workers has shown promise in 

improving silicone resistance to the adsorption of fibrinogen. However, testing with whole blood 

was required to assess thrombogenicity of the modified silicones. To create a testing 

environment that simulates flow in vivo, a Chandler Loop was constructed and used for a whole 

blood dynamic in vitro test. Results indicate that the amphiphile significantly improves 

thromboresistance of the silicone at concentrations as low as 10 µmol per gram of silicone (1.7 

wt %). At a concentration of 50 µmol, platelet adhesion was nearly eliminated. 

 

Future directions can be taken to optimize the in vitro test before moving into in vivo studies. 

Recommended work includes modifying the Chandler Loop to match the in vivo body 

temperatures, identifying the minimum viable concentration of amphiphile, and assessing long-

term amphiphile efficacy in vitro. Additional testing should then be performed in an in vivo 

system. All of these will more comprehensively evaluate the functionality of the PEO-silane 

amphiphile in preventing protein adhesion. 
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