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ABSTRACT 

 

 The single scattering properties of ice cloud particles are inferred from spaceborne 

multi-angle satellite sensors with two newly developed noise-resilient retrieval 

techniques. The first presented method parameterizes the phase function and phase 

matrix elements by a few parameters to implement the maximum likelihood estimation 

in the retrieval system. The second method retrieves the renormalized phase function as 

a difference from a known phase function. The effect of noise is more predictable for 

both methods than the conventional “best-fit” method, which selects the best-fitting 

shape and surface roughness from a predetermined particle set. 

 The first method is applied to the data from the Polarization and Directionality of 

the Earth’s Reflectance (POLDER) sensor. The retrieval results indicate that long 

column shape (ratio of basal face diameter to prism height greater than 9) with surface 

roughness parameter between 0.1 and 0.5 represents the extratropical observations well. 

Weak temperature dependence of the surface roughness is found in the extratropical data 

stratified by the cloud top temperature. The tropical retrieval was not successful, and the 

second method is applied to the Multi-angle Imaging Spectroradiometer (MISR) data. 

Short hexagonal column particles or their aggregates are found to match with estimated 

renormalized phase function. In addition to these results, the surface roughness 

simulation is summarized and the derivation of the δ-fit truncation technique for 

polarimetric radiative transfer is included. 
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1 INTRODUCTION 

 

1.1 Brief history of ice particle models 

Spaceborne cloud measurements have been providing new perspectives to 

atmospheric scientists for nearly six decades. In this chapter, I go over a brief history of 

ice particle models since the launch of the first meteorological satellite in 1960, 

summarize the concepts used in the later chapters of the thesis, and define the scope of 

the thesis. 

1.1.1 Early years 

The first meteorological satellite, the Television Infrared Observation Satellite 

(TIROS), was launched in 1960 (Stroud 1960), and the images acquired by the TIROS 

revealed the unforeseen cloud structures of extratropical cyclones that stretch over 

thousands of kilometers (Fritz and Wexler, 1960). While TIROS images were initially 

used for qualitative analysis, it didn’t take long before the quantitative analysis of 

measured satellite data emerged. Houghton and Smith (1970) summarized the theory and 

literature related to the estimation of vertical temperature profiles by then.  

At approximately the same time, computation of the light scattering properties 

for cloud particles became feasible with the evolution of theory and improvements in 

computers. Deirmendjian (1964) computed the light scattering properties of water cloud 

and haze particles, and Houghton and Hunt (1971) pointed out that the spectral 

differences of scattering properties can be used to retrieve cloud microphysical 
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properties.  These two studies assumed that cloud particles are spherical, for which the 

exact Mie theory solution is available. 

While a spherical particle is a good assumption for water clouds, an ice cloud 

consists of highly nonspherical particles, and therefore significant research efforts were 

invested in calculating scattering properties of nonspherical particles. The first 

successful attempt was for an infinitely long circular cylinder (Wait 1955; Liou, 

1972a,b). With Liou’s results, Stephens (1980a,b) showed that the scattering properties 

of spherical particles and cylindrical particles are significantly different in terms of 

radiance. In addition, Asano and Yamamoto (1975) computed the scattering properties 

of spheroidal particles. The scattering calculations for cylinders and spheroids are 

numerically exact, and the theories are applicable at an arbitrary wavelength and particle 

size. 

The calculations of single scattering properties (hereafter, light scattering 

calculations) are computationally expensive, and the downstream applications usually 

incorporate the results as look-up tables, or as a “database”, a collection of look-up 

tables. Two primary downstream applications are radiative transfer calculations for 

general circulation models (GCM) and estimation of physical parameters from 

radiometers. Various ice particle models have been employed since the late 1980s when 

the particle size distribution in ice clouds became gradually known by intensive in-situ 

airborne measurements. 
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1.1.2 Ice particle models for GCM applications 

Cloud models for a GCM application were initiated with a so-called cloud “bulk” 

radiative parameterization. Early GCMs, for example, Manabe and Wetherald (1967), 

used constant values of cloud reflectivity, transmissivity, and absorptivity. Later, Liou 

and Wittman (1979) computed these bulk radiative properties with rigorous light 

scattering and radiative transfer simulations. They assumed spherical and cylindrical 

particles and represented cloud bulk properties as polynomials of liquid/ice water path 

(integral of the mass of hydrometeors in the atmospheric column). Bulk radiative 

parameterization is no longer in use in contemporary GCMs after gradually being 

replaced by a new type of parameterization in the 1980s. 

Most contemporary GCMs represent cloud radiative properties by three single 

scattering parameters, namely, mass extinction cross section (!!"#), single scattering 

albedo (!, a variant of Greek letter !), and asymmetry parameter (!). All three 

parameters are functions of wavelength, hydrometeor type, and particle size. This kind 

of parameterization became popular after the adaptation of two-stream approximations 

in GCM radiative transfer calculations. The introduction of two-stream approximations 

allowed the calculation of multiple scattering to be embedded into GCMs. Wavelength 

dependence is handled by splitting the spectrum of solar and terrestrial radiations into 

dozens of subsections, called “bands”, and the program executes the radiative transfer 

calculations for each band. Therefore, the total number of parameters is 3!!, where !! 

is the number of bands. 
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The first “modern” parameterization was designed for water clouds by Slingo 

and Schrecker (1982), and Slingo (1989). Ebert and Curry (1992) introduced the same 

method to ice cloud parameterization, although their parameterization was not based on 

the effective radius (!!) that is nowadays in use. 

The development of GCM ice cloud parameterizations in the contemporary 

framework made progress in parallel with the development of light scattering calculation 

techniques. The single scattering properties of ice cloud particles needed for the modern 

parameterization are difficult to compute because the size distribution of ice particle is 

broad, spanning from a few µm to 1000 µm. Numerically exact methods are 

computationally too expensive to cover this entire size range. 

The first contemporary parameterization is by Fu and Liou (1993). They 

combined the geometric optics method (GOM) for a hexagonal column particle (Takano 

and Liou, 1989) and a numerically exact method for a spheroidal particle. The 

combination was to overcome the limited accuracy of the GOM when particle size 

becomes comparable to the wavelengths, which is often the case for infrared 

wavelengths. At that time, covering the entire shortwave and longwave spectrum with a 

consistent particle shape was not practical. 

Another significant advance was the improved geometric optics method (IGOM, 

Yang and Liou, 1996). The method can compute scattering properties of smaller 

particles than the GOM without losing accuracy while maintaining efficiency. Fu (1996) 

developed a new parameterization by combining the GOM and IGOM at shortwave 
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wavelengths, but the counterpart for the infrared (Fu et al., 1998) was still computed 

with the Mie theory, anomalous diffraction theory (ADT), and IGOM. 

The diversity of particle shapes in parameterizations has increased since 2000. 

Yang et al. (2000) covered six particle shapes and Yang et al. (2005) parameterized 

based on Moderate Resolution Imaging Specrtroradiometer (MODIS) Collection 4 habit 

mixture model. Hong et al. (2009) revised the parameterization with the MODIS 

Collection 5 mixture model. The details of the mixture models are provided in Section 

1.2. 

At approximately the same time as the development of the GOM and IGOM, 

Mitchell et al. (1996) proposed to apply the modified anomalous diffraction theory 

(MADT) to the GCM parameterization. The method can compute two of three 

contemporary parameterization parameters, mass extinction coefficient and single 

scattering albedo. The asymmetry parameter is obtained from the GOM, assuming a 

surrogate shape for plate aggregates. The ice radiative parameterization in the latest 

version of the National Center for Atmospheric Resarch (NCAR) Community 

Atmospheric Model (CAM5) is the descendant of Mitchell’s model (Neale et al., 2012), 

but the mixing ratio of ice crystal shapes is different (7% hexagonal columns, 50% bullet 

rosettes, 43% irregular particles for maximum dimension !!"# > 60 µm and 50% 

quasi-spherical particles, 30% irregular particles, and 20% bullet rosette for !!"# < 60 

µm). 
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1.1.3 Ice particle models for satellite retrievals 

While the contemporary GCM parameterization requires only three parameters to 

represent the scattering properties of ice cloud particles, radiance calculations for 

satellite applications require detailed scattering properties. This difference is because 

satellite applications require a simulation of radiant intensity as a function of viewing 

directions while GCM applications use the directional average of radiant flux only. 

Two parameters are the same as in the GCM parameterization: mass extinction 

cross section (!!"#) and single scattering albedo (!). The other parameter, asymmetry 

parameter (!), is replaced with phase function (!(Ω!"# ,Ω!")). In general, a phase 

function is a function of two directions: the incident direction Ω!"!and scattered direction 

Ω!"#, and describes the directional distribution of scattered radiant intensity. The 

asymmetry parameter (!) used in the GCM parameterization is an integral of a phase 

function. These three properties, !!"#, !, and !(Ω!"# ,Ω!") are computed for every 

spectral channel of satellite sensors. At first, the single scattering properties were 

computed only at the center wavelength, but most contemporary operational data 

production scheme uses scattering properties averaged over the receiver’s spectral 

response (channel-average properties). 

Like the GCM parameterizations, ice particle models for satellite retrieval 

developed over time to become increasingly realistic and complex. The term, “satellite 

retrieval” hereafter means the estimation of physical properties from spaceborne 

radiometric instruments. For example, the Moderate Resolution Imaging 
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Spectroradiometer (MODIS) measures radiant intensity at 36 spectral channels, and 

retrieves various parameters for the atmosphere, land, and ocean. 

As previously mentioned, Houghton and Hunt (1971) modeled ice and water 

clouds as spherical particles and showed the feasibility of the retrieval of cloud particle 

size. In 1970s, several studies empirically derived the cloud top height and cloud phase 

(e.g. Shenk and Curran, 1973, Reynolds and Vonder Haar, 1977), but it was not common 

to use results from light scattering calculations. This is presumably because of the low 

resolution of satellite sensors and the extensive use of thermal infrared channels. At the 

time, research was primarily focused on the effective emissivity of clouds. However, 

some studies used shortwave channels. Platt (1983) used the cloud reflectivity computed 

by Liou (1973) with cylindrical ice particle.  

The simultaneous retrieval of cloud optical thickness and effective radius with 

near-infrared channels became popular starting with works by Curran and Wu (1982) 

and Nakajima and King (1990). In these papers, they focused on water clouds, and light 

scattering calculations were based on Mie theory, but later, the near-infrared bispectral 

method was incorporated into operational algorithms for both water and ice clouds. 

Along with the increasing popularity of the near-infrared bispectral method, results from 

light scattering calculation using the GOM and IGOM were adopted by the research 

community. This is why various particle models have continued to be developed and 

tested since 2000. 

The earliest adaptation of the near-infrared bispectral method was developed by 

the science team for the Moderate Resolution Imaging Spectroradiometer (MODIS). The 
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MODIS science team has developed three ice particle models specifically oriented for 

their ice microphysics retrieval. The first model was used in MODIS Collection 1 

through 4. Two mixture bins were used: (1) 50% 4-element bullet rosettes, 25% 

hexagonal plates, and 25% hollow columns for !!"# < 70 µm; and (2) 30% aggregates, 

30% bullet rosettes, 20% hexagonal plates, and 20% hollow columns for !!"# > 70 µm 

(Baum et al., 2000; King et al., 2004). The size distributions were obtained from in-situ 

measurements. The second model was used for MODIS Collection 5. The model was 

more complex because of the increased number of mixture bins: (1) 100% droxtals for 

!!"# < 60 µm; (2) 50% solid columns, 35% hexagonal plates, and 15% 6-element 

bullet rosettes for 60 < !!"# < 1000 µm; (3) 45% solid columns, 45% hollow 

columns, 10% column aggregates for 1000 < !!"# < 2000 µm; and (4) 97% bullet 

rosette and 3% column aggregates for !!"# > 2000 µm (Baum et al., 2005). These 

mixing ratios were determined to best explain airborne in-situ measurements of particle 

size distribution, ice water content, and median mass diameter. The same model is used 

for the Atmospheric Infrared Sounder (AIRS) version 6 retrievals. The third model by 

the MODIS science team is rather simple; it consists only of hexagonal column particles, 

regardless of particle maximum dimension, and gamma particle size distributions are 

assumed. This model was used in the production of the current MODIS Collection 6. 

In the computation of MODIS particle models, the definition of maximum 

dimension (!!"#) depends on particle shapes. !!"# is defined as the crystal height for a 

hexagonal (solid and hollow) column, diameter of basal facets for a hexagonal plate, and 

the longest distance between two vertices for a column aggregate, bullet rosette, or 
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droxtal. The mixed scattering properties averaged over the particle size distribution are 

called “bulk” scattering properties. The precise definitions of bulk properties are well 

summarized by Baum et al. (2011). 

The Cloud and the Earth’s Radiant Energy System (CERES) science team has 

developed three different ice particle models. For CERES Edition 2 and Edition 3 

products, they used smooth hexagonal column particle models in eight discrete size bins 

to cover ten particle size distributions measured by airborne field campaigns (Minnis et 

al., 1998, 2011).  Edition 4 keeps the particle shape and particle size distribution the 

same, while applying surface roughness to the particle model (Minnis 2017, personal 

communication). The planned Edition 5 will use a two-habit model (Loeb et al., 2018).  

The two-habit model consists of a roughened hexagonal column and the ensemble 

average of 20 random aggregates of 20 distorted hexagonal columns. The mixing ratios 

between the single column and the aggregates are determined based on the in-situ 

airborne measurements. 

For retrievals from the Polarization and Directionality of the Earth’s Reflectance 

(POLDER) sensors, the inhomogeneous hexagonal particle model (IHM) is used (C.-

Labonnote 2001). The particle shape of this model is a hexagonal column with aspect 

ratio (ratio of basal face diameter to column height) !" = 0.2, but inclusion of air 

bubbles is considered. The model is used to produce operational products from three 

POLDER sensors: POLDER-1 aboard Advanced Earth Observation Satellite (ADEOS), 

POLDER-2 aboard ADEOS-2, and POLDER-3 aboard Polarization and Anisotropy of 
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Reflectances for Atmospheric Sciences coupled with Observations from a Lidar 

(PARASOL).  

In addition to these operational models, some other models have been proposed 

in the research community. Baran and C.-Labonnote (2007) produced an ice particle 

model that increases the morphological complexity with increasing sizes. Baum et al. 

(2011, 2014) advanced the approach used for the MODIS Collection 5 model and 

defined the general habit model (GHM).  

1.2 Effect of particle shape on scattering properties 

In Section 1.1 we summarized how ice particle models have evolved over time 

with a focus on two applications. For the GCM parameterization in the two-stream 

framework, the essential parameters are mass extinction cross section (!!"#), single 

scattering albedo (!), and asymmetry parameter (!). For satellite retrieval applications, 

the first two parameters are used, and the phase function (!(Ω!"# ,Ω!")) replaces the 

asymmetry parameter. In this section, I describe how these scattering properties changes 

with particle shapes and surface roughness. 

1.2.1 Mass extinction cross section 

The largest effect of a varying particle shape is on the mass extinction cross 

section. At the limit of geometric optics, the extinction efficiency (!!"#) is 2, and the 

extinction cross section of a single particle (!!"#) is proportional to the projection area of 

the particle averaged over all incident radiation directions (!) as follows: 

 !!"# = !!"#! → 2! (geometric optics) (1.1) 
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As the mass extinction cross section is determined as !!"# = !!"#/!!!"#, where ! is the 

volume of a single particle and !!"# = 917 kg/m3 is the mass of an ice particle, the mass 

extinction cross section can be written as: 

 !!"# →
2!
!!!"#

 (1.2) 

at the limit of geometric optics. As the typical size of an ice cloud particle (several 

dozens of micrometers) is larger than the central wavelength of common shortwave 

channels (e.g. 0.865 µm), Eq. (1.2) means that the ratio of projection area to the particle 

volume primarily determines the mass extinction cross section in shortwave channels. In 

the actual atmosphere, ice clouds consist of many particles with various sizes. Thus, 

total projection area and total volume are used: 

 !!"# →
2!
!!!"#

, (1.3) 

where 

 ! = !(!!"#)
!"

!!!"#
!!"#

!!"#
!!!!"# , (1.4) 

 ! = !(!!"#)
!"

!!!"#
!!"#

!!"#
!!!!"# , (1.5) 

and!!(!!"#) is the cumulative number concentration (i.e. !(∞) is the total number of 

particles per unit volume). Equation (1.3) implies that if two collections of particles have 

the same volume and number concentration, the collection containing bulky (less 

compact) particles with a larger total surface area has a larger mass extinction cross 
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section than compact particles, which means that interaction with the incident radiation 

is stronger. 

The magnitude of interaction with incident radiation is characterized by optical 

thickness (!). The optical thickness can be derived from the parameterized !!"# and ice 

water content !"# as follows: 

 ! = !!!"#!"# (1.6) 

where ! is the thickness of a cloud layer of interest. If a cloud stretches over multiple 

radiation calculation layers, the total cloud optical thickness is the sum of ! values in all 

individual layers. Since the cloud reflectivity in the shortwave increases monotonically 

with the increasing total cloud optical thickness, Eq. (1.6) means that the extinction cross 

section !!"# determines the cloud shortwave reflectivity for a given mass concentration. 

Because bulky particle has a higher mass extinction cross section, bulky particles 

produce higher shortwave reflectivity than compact particles for a given mass 

concentration. At infrared wavelengths, the increased optical thickness means more 

outgoing longwave radiation (OLR) originates in clouds. This increased contribution by 

clouds reduces the effective emission temperature to reduce the OLR. In summary, 

bulky particles have stronger cloud radiative effect than compact particles when the 

cloud contains the same mass and number of particles.  

1.2.2 Single scattering albedo 

The single scattering albedo (!) characterizes the contribution of scattering and 

absorption when the incident light interacts with particles. With the mass absorption 

cross section (!!"#), ! is defined as follows: 
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 ! = !!"# − !!!"
!!"#

. (1.7) 

At the geometric optics limit, the mass absorption cross section is more sensitive to 

particle volume than the mass extinction cross section because the energy of a ray inside 

a particle decreases exponentially with the travel distance. The implication is that the 

mass absorption cross section is smaller when particles are bulky, as opposed to mass 

extinction cross section. Therefore, a bulky particle has higher ! than a compact particle 

as a result of combined effects. 

Note that this discussion is valid when the number concentration is constant (i.e. 

total mass and number concentration are both fixed for a collection of particle). Since the 

ratio of projection area to the volume !/! is sensitive to particle size, the actual 

parameterization in the GCM has to take particle size into the account. In Section 1.3, 

we discuss how this particle size effect is implemented in GCM parameterizations. 

1.2.3 Phase function and asymmetry parameter 

The effect of particle shapes on the phase function is often visible in the sky as 

an optical phenomenon. For example, a rainbow requires spherical rain droplets to be 

visible, and a halo requires hexagonal ice particles. In addition to these noticeable 

features, the particle shape affects the asymmetry parameter (!). The asymmetry 

parameter is defined by a weighted integral of the phase function as follows: 

 ! = ! Ω!"# ,Ω!" !! Ω!"# ∙ Ω!"
!!

!!Ω!"#! , (1.8) 

where Ω!"# ∙ Ω!" is the cosine of the angle between directions of incident light and 

scattered light. The asymmetry parameter takes a value between -1 and 1, and becomes 0 
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when the scattering is isotropic. Complete forward scattering results in ! = 1, and 

complete backward scattering results in ! = −1. For typical ice particles at visible 

wavelengths, ! ranges from 0.7 to 0.9. 

For simple hexagonal column particles, the shortwave asymmetry parameter 

reaches a minimum when the aspect ratio (!": ratio of basal face diameter to column 

height) is close to 1, and increases when the particle becomes either a long column 

(!" < 1) or a thin plate (!" > 1). Surface roughness reduces the asymmetry parameter 

and smoothens the phase function (Macke et al. 1996; Yang et al. 2008; van 

Diedenhoven 2012). 

Since the asymmetry parameter describes the partitioning of scattered energy to 

forward and backward hemispheres, it plays a significant role in the GCM radiation 

calculations, particularly in the shortwave. For the same mass of ice, a cloud becomes 

more reflective when the asymmetry parameter is low. The asymmetry parameter also 

has an impact on the satellite retrievals. Loeb et al. (2018) showed that CERES-MODIS 

optical thickness is reduced after switching the particle model to one with a low 

asymmetry parameter, and Ding et al. (2017) pointed out that the retrieved optical 

thickness and asymmetry factor of the cloud model are correlated. 

1.3 Three kinds of ice cloud models 

Previous sections covered how ice cloud models have increased in complexity 

and how the assumptions of particle shape and surface roughness affects the radiative 

transfer calculations. This section identifies three types of cloud models used for the 
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GCM and remote sensing applications, and describe how variable shapes can be 

incorporated into these ice cloud models. 

 

 

Fig. 1.1. Relations of physical quantities in the thesis. Three red boxes indicate ice 
particle models used in three major groups of computer programs. In the figure, RTC 
refers to Radiative Transfer Calculations, and LSC refers to the Light Scattering 
Calculations.!! is asymmetry parameter, ! Ω!"# ,Ω!" !is phase function, !!"# is mass 
extinction cross section, !!"# is volumetric extinction cross section, ! is optical 
thickness,  !!"" is effective diameter, !"# is ice water content,  and ! is number 
concentration. 

Figure 1.1 shows three groups of computer programs that needs ice particle 

models: (1) Satellite retrievals/simulator, (2) GCM radiation scheme, and (3) GCM 

microphysics scheme. The ice particle models summarized in Section 1.1 was for (1) and 
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(2). While the three groups of programs are depicted in a format that resembles a flow 

chart, the figure illustrates general relations between physical quantities, and the groups 

do not necessarily need to be modules of any particular application. A satellite retrieval 

may provide physical parameters other than cloud optical thickness (!) and effective 

diameter (!!"") shown in Fig. 1.1, but to emphasize the link between GCM applications, 

only these two parameters are included. 

In following subsections, I describe how ice particle models (enclosed by red 

boxes in Fig. 1.1) are implemented and related to each other. 

1.3.1 Satellite retrieval / Satellite simulator 

The goal of a satellite retrieval is to estimate physical properties from spaceborne 

radiometric measurements. The radiance data acquired by spaceborne sensors are 

processed through an inversion program to produce !, !!"", and other desired 

parameters (purple arrow in Fig. 1.1). This is an inverse process of radiative transfer 

calculation (RTC, green arrow in Fig 1.1.), which requires a specified ice particle model. 

The ice particle model consists of predetermined shape, particle size distribution, and 

single scattering properties that may have been inferred from field campaigns, laboratory 

measurements, or light scattering calculations (LSC). 

The cloud models can also include horizontal and vertical variation of particle 

shape and size distribution, but this application to an operational algorithm is not 

common. Most satellite retrievals employ simplified models such as a 1-D radiative 

transfer model in a plane-parallel homogeneous atmosphere, even though the radiative 

transfer process that occurs in the Earth’s atmosphere is fundamentally three-
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dimensional (3-D) in nature. For example, the operational retrievals from satellite 

imaging sensors such as MODIS and CERES assume a 1-D plane-parallel homogeneous 

atmosphere with randomly oriented particles. 

To perform satellite retrievals for a large number of data values operationally, the 

results of light scattering calculations are usually stored as look-up tables. The look-up 

table includes volumetric extinction cross section (!!"# = !!"#/(!")), single scattering 

albedo (!), and phase function (! Ω!"# ∙ Ω!" ) for every channel of the satellite sensor. 

When particles are randomly oriented, the phase function can be simplified to be a 

function of scattering angle Θ = cos!!(Ω!"# ∙ Ω!"). When the effect of polarization is 

included, the phase function is replaced by a 4 × 4 phase matrix ! Θ . 

The single scattering properties are provided to the radiative transfer calculation 

programs (forward model), and an iterative process is often used to improve the retrieval 

parameters (e.g. ! and !!""). In addition to the look-up table for the single scattering 

properties, the results of radiative transfer calculations are often stored in the look-up 

table for fast iteration. When only the forward component is used, this program group 

can be considered as satellite simulator. Satellite simulators are used to design a satellite 

sensor and to assimilate observational data to GCMs and numerical weather prediction 

(NWP) models. 

1.3.2 GCM microphysics scheme 

Most radiative transfer calculations employ a two-stream method, which requires 

optical thickness (!), single scattering albedo (!), and the asymmetry parameter (!). 

However, these three parameters do not come out of the GCM microphysics calculation 
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directly, and a two-stage conversion is implemented in contemporary GCMs. The first 

stage is implemented in the GCM microphysics scheme (horizontal blue arrow in Fig. 

1.1), and the second is in the GCM radiation scheme (upward blue arrow in Fig. 1.1). In 

this subsection, the conversion implemented in the GCM microphysics scheme is 

described.  

The first stage of conversion is purely geometric, and does not involve the results 

from light scattering calculations. The goal of the first conversion is to compute the 

effective diameter !!"". The effective diameter is defined as follows: 

 !!"" =
3!
2!, (1.9) 

where ! is the total volume and ! is the total cross section as defined in Eqs. (1.4) and 

(1.5). From the similar discussion of the shape dependence of mass extinction efficiency 

(!!"#), it can be derived that the effective diameter (!!"") of compact particles is larger 

than the effective diameter of bulky particles, when the !"# and ! are kept constant.  

Bulk two-moment microphysics schemes (e.g. Morrison et al. 2005) used in 

current GCMs estimates ice water content (!"#) and number concentration (!), so 

therefore, !!"" is derived from these two parameters. In Morrison et al. (2005)’s 

scheme, the conversion is formulated by assuming cloud ice particles are spherical with 

a gamma distribution (Deirmendjian, 1964) 

 
!"

!!!"#
= !(∞)
!Γ(!)

!!"#
!

!!!
!!

!!"#
! , (1.10) 
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where!!(!!"#) is the cumulative number concentration (i.e. !(∞) is the total number 

concentration), ! is the shape parameter, ! is the scale parameter, and!Γ(!) is the 

gamma function.  

In Morrison’s scheme, ! = 1, and effective density !!"" = 500 kg/m3. The 

rearranged equation of the conversion is as follows: 

 !!"" =
3
!!"#

!!""!
!

!"#
!

!
!
. (1.11) 

Therefore, the effect of nonsphericity can be incorporated by modifying !!"".  

 

Fig. 1.2. Effective diameter computed as a function of the mean mass of a particle. The 
black dotted line indicates the spherical shape assumption used in the Community 
Atmospheric Model 5.0 (CAM 5.0). Solid lines correspond to the calculations for non-
spherical particles when ! = 1. 
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Figure 1.2 shows that the effective diameter computed from Morrison’s scheme 

(Eq. 1.11, black dotted line) is between effective diameter for hexagonal column and 

aggregate of column shapes when a gamma distribution with ! = 1 is specified. The 

results in Fig. 1.2 imply that Morrison’s scheme implicitly assumes the particle shape as 

somewhat less compact particle than the hexagonal column particle, but not as bulky as 

aggregates. 

1.3.3 GCM radiation schemes 

The second stage of conversion involves the results of the light scattering 

calculation. Since it is computationally prohibitive to run the light scattering calculations 

every time for every grid box of the GCM, scattering properties of clouds are usually 

imbedded into the two-stream radiative transfer code (radiation scheme) as regression 

coefficients. The form of the regression function varies from investigator to investigator, 

but all of them express the following three parameters as functions of effective diameter 

(!!""): mass extinction cross section (!!"#), single scattering albedo (!), and 

asymmetry parameter (!), or, equivalently, !!"#, !, and mass absorption cross section 

(!!"#). 

When the radiation scheme in GCM receives!!"# and !!"" from the 

microphysics scheme, it first computes the values of !!"#, !, and ! corresponding to the 

given !!"" by interpolation in the look-up tables. Then, using Eq. (1.6), the radiation 

scheme computes the optical thickness (!). Finally, the two-stream radiative transfer 

solver is executed with necessary parameters: !, !, and ! (green arrow in upper right 

hand of Fig. 1.1). 
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The effects of particle shape and size distribution are incorporated into the 

regression coefficients in the parameterization of !!"#, !, and !, obtained as a result of 

light scattering calculations. As !!"# asymptotically approaches 2!/(!!!"#) for any 

particle shape, the effect of the variable particle shape primarily appears in ! and !. 

Grenfell and Warren (1999) conclude that a spherical particle can mimic the flux 

calculation for a cylindrical particle as long as the effective diameter is conserved. Their 

results imply that (1) In GCM radiation schemes, the effect of particle shape is small, 

and (2) In GCM microphysics schemes, the effect of particle shape should be taken into 

consideration properly. 

These two implications can be derived from Eqs. (1.3), (1.6), (1.9) and (1.11). In 

the geometric optics limit, the two-stage conversion computes the optical thickness as 

follows: 

 ! → ! !"!!
!!""!

!
!

!
!
!. (1.12) 

Equation (1.12) does not contain any parameterized term, and therefore, the particle 

shape influences the flux calculation only through ! and !. As Grenfell and Warren’s 

results imply that ! !!""  and ! !!""  are not sensitive to particle shapes, the most 

important parameter for the two-stage conversion is actually !!"" in GCM microphysics 

scheme that eventually controls ! and !!"".  

1.3.4 Consistency of three kinds of ice cloud models 

Although the impact of assumed particle model is substantial for the satellite 

retrieval products (e.g. Ding et al., 2017) and flux calculation from GCM prognostics 
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(Eq. (1.12)), coordination of particle models used in these three groups of computer 

programs is still premature. A recent study by Loeb et al. (2018) performed flux 

estimations to show that the consistency of models used in CERES satellite retrieval and 

flux calculation (equivalent to GCM radiation scheme, but with higher accuracy) are 

needed for the precise flux retrieval. 

Maintaining consistency between three kinds of cloud ice particle models is 

important to produce useful satellite and reanalysis products that can be compared to 

each other. This doctoral project therefore characterizes the ice particle shapes and 

surface roughness at a global scale to further the knowledge of ice cloud particles. The 

scope of project is outlined in the following section. 

1.4 Scope of this research 

This doctoral project is aimed at the inference of particle shape and surface 

roughness from the spaceborne polarimetric imaging sensor. This project evaluates 

existing roughness model, reorganizes the theory of truncation for polarimetric radiative 

transfer, represents the particle shapes with a few parameters, and retrieves these shape 

parameters from the multi-directional satellite measurements. In addition, the effect of 

cloud inhomogeneity and the 3-D effect are discussed with the supplementary phase 

function retrieval algorithm.  

The scientific questions to be answered are as follows: 

• What kind of ice particle habit and particle roughness can explain the radiance 
and the polarization state of ice cloud reflection observed with a satellite 
polarimeter? 

• What atmospheric conditions control the distribution of inferred particle 
roughness? 
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• What are the impacts of cloud heterogeneity on inferred particle roughness? 

This thesis is structured as follows. Section 2 summarizes how surface roughness 

is simulated in the light scattering calculations and derives analytical expression of tilt 

angles using the distribution theory. Section 3 reorganizes the theory of truncation and 

introduces the application of the δ-fit method in the radiative transfer calculation with 

polarization, to compare the accuracy to the widely-used δ-M method. Section 4 

describes the two-stage approach that parameterizes complex particle shapes and 

roughness with a few parameters, enabling the application of the statistical inference in 

the retrieval. A semi-analytical retrieval of phase function is demonstrated in Section 5 

to supplement the tropical data that are missing in Section 4. A brief summary is given in 

Section 6. 
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2 SURFACE ROUGHNESS SIMULATIONS 

 

2.1 Introduction 

Particles in ice clouds have diverse highly nonspherical shapes (Heymsfield and 

Iaquinta, 2000; Heymsfield, et al., 2002; Heymsfield et al., 2013; Lawson et al., 2006). 

Laboratory experiments reveal that the distributions of particle shapes vary with the 

ambient temperature and degree of supersaturation in clouds (Nakaya, 1951, Kobayashi, 

1957; Bailey and Hallett, 2002, 2004). Bailey and Hallett (2009) compiled a habit 

diagram for natural clouds, combining recent results from aircraft measurements and 

laboratory experiments, whereas Kikuchi et al. (2013) proposed a comprehensive 

classification of ice particles and snowflakes based on surface field measurements. 

Light scattering calculations show that imperfections of cloud particles such as 

surface roughness, inclusion of air bubbles, and crystal distortion result in the similarly 

featureless phase function and reduced asymmetry parameter. Surface roughness is 

therefore a convenient tool to mimic the various imperfections of ice crystals in natural 

clouds with a small number of parameter. The surface texture of actual particles is 

measured quantitatively by Neshyba et al. (2013) and Butterfield et al. (2017). 

Surface roughness of an ice particle is simulated by two ways in light scattering 

calculations. The first approach, the explicit method, represents particle surfaces with 

triangular polygons and explicitly specifies the roughening. This approach is applicable 

to any light scattering calculation technique that can handle an arbitrary shape. While the 

implementation is simple, the computational burden is significant. The second approach 
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is to apply a random process on the interface of an undistorted particle. This approach is 

implemented as the surface tilt method and beam tilt method in ray-tracing calculations. 

Yang et al. (2008) confirmed that the surface tilt method is a good approximation of the 

explicit method in 2-D ray-tracing calculations. 

Few studies have compared various implementations of roughness. A recent 

study by Geogdzhayev and van Diedenhoven (2016) used Macke’s geometric optics 

computer program (Macke et al., 1996) to compare the effects of varying shape the 

parameter of a Weibull distribution on the phase function. There is confusion regarding 

the numerical implementation of surface roughness and the behavior of the asymmetry 

parameter when roughness is large. In the rest of this section, I characterize the existing 

distribution models of tilt angle and tilt methods. Section 2.2 describes the statistical 

representation of common tilt angle distributions, and Section 2.3 describes the 

difference between surface and beam tilt methods. In Section 2.4, results from light 

scattering calculations are provided with a focus on the asymmetry parameter. A brief 

summary is given in Section 2.5. 

2.2 Statistical representation of tilt angle 

Both surface tilt and beam tilt methods modify the interaction of a ray with 

particle interfaces at every reflection/refraction event in the ray-tracing calculation. The 

surface tilt method changes the direction of the surface normal vector, while the beam 

tilt method changes the beam direction. A random number generator is used to produce 

two random numbers that characterize the modulation: tilt angle ! and tilt direction !. 

Once ! and ! are determined, the new vector is determined by the following relation: 
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 ! =
sin! cos!
sin! sin!
cos!

, (2.1) 

where the z-axis is taken along the original vector, and the x-axis is taken in the plane 

containing the incident direction and surface normal vectors. As most methods take a 

uniform distribution for ! in current frameworks, a greater interest is in the distribution 

of !.  

Since the slope of the tilt is given by ! = tan!, the relation between the slope 

and tilt angle is as follows: 

 ! = 1
cos! ! − 1. (2.2) 

In general, a random variable ! can be characterized by the probability density function 

(PDF, !!(!)) and cumulative distribution function (CDF, !!(!)). The CDF !! !  is 

defined as the probability of obtaining a value less than or equal to ! as follows: 

 !! ! = ! ! ≤ ! , (2.3) 

and when the distribution is differentiable, the PDF is given by 

 !! ! = !
!" !! ! . (2.4) 

Applying these general relations (Eqs. (2.3) and (2.4)) to a random sampling of slope 

!!from random variable !, the CDF and PDF of the tilt angle can be written as follows: 

 !! ! = !!(tan!) ,!and (2.5) 

 !! ! = 1
cos! ! !! tan! . (2.6) 
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In the following parts of this section, I introduce four distributions models of tilt angles. 

To simplify the expression, distributions are defined for slope ! with CDF !! !  and 

PDF !!(!). Figure 2.1 shows the distribution of tilt angles for the four distributions 

described below. As a roughness parameter, !! = 0.5 is selected, and as a distortion 

parameter, ! = 0.5 is selected. 

 

Fig. 2.1. Probability density function of four tilt angle distributions. 

2.2.1 Yang-0 distribution 

Yang and Liou (1998) used the 2-D Gaussian distribution to represent the 

distribution of slope. The PDF of slope in ! and ! directions are given by the 2-D 

probability density function used by Cox and Munk (1954) to characterize the rough 

ocean surface as follows: 
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 !!!,!! !! , !! = ! 1!!! !
! !!!!!!!

!! . (2.7) 

where !! and !! are random variables, !! is the sampled slope in the ! direction, !! is 

the sampled slope in the ! direction, and !! is an arbitrary parameter called the 

“roughness parameter”. The implication of this distribution is that random variables !! 

and !! follow an identical normal distribution !(0,!!) independently.  

Using the Box-Muller transform (Box and Muller, 1958), two random variables 

!! and !! can be generated from two random variables !! and !! following a uniform 

distribution between 0 and 1: 

 !! = !! 2 −2 ln!! cos 2!!! , (2.8) 

 !! = !! 2 −2 ln!! sin 2!!! . (2.9) 

Since the local slope can be written as ! = !!! + !!!, the random variable from which 

the local slope can be sampled is as follows: 

 !!! = ! − ln!!. (2.10) 

The PDF of the slope distribution is derived step-by-step below. The probability of the 

event that the slope is less than an arbitrary number ! is written as 

 ! !!! ≤ ! = ! ! − ln!! ≤ ! . (2.11) 

By using the identity of inequalities, the probability is: 

 ! !!! ≤ ! = ! !! ≥ !!
!
!

!
= 1− ! !! ≤ !!

!
!

!
. (2.12) 

As !! is a random variable following a uniform distribution between 0 and 1,  
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 ! !! ≤ !!
!
!

!
= !!

!
!

!
, (2.13) 

and the CDF of !! is as follows: 

 !!!! ! = ! !!! ≤ ! = !!!
0, ! < 0

1− !!
!
!

!
, ! ≥ 0

, (2.14) 

The PDF of !!!!is the derivative of !!!! !  with respect to !. 

 !!!! ! = !!!!!
!" =

0, ! < 0
!!!2!!! !

! !
!

!
, ! ≥ 0 (2.15) 

Note that the distribution of local slope does not follow a normal distribution as a result 

of the convolution of two normal distributions. 

2.2.2 Yang-1 distribution 

The Improved Geometric Optics Method (IGOM) computer program has an 

alternative mode to specify a roughness. In this dissertation, I refer to this distribution as 

Yang-1 distribution. When this mode is selected, the IGOM code subsamples the 

roughness parameter between the specified roughness parameter and 0. The slope ! is a 

sample from the random variable !!! defined as follows: 

 !!! = ! −!! ln!! = !!!!, (2.16) 

where ! = !!. The PDF of !! is obtained by computing the integral: 

 !!!! ! = !!!! ! !!
!
!
1
!

!

!!
!". (2.17) 
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To compute !!!!(!), the PDF of ! is obtained first in a similar manner to the derivation 

of !!!!. The probability of the event that ! is less than or equal to an arbitrary number ! 

is given by 

 ! ! ≤ ! = ! !! ≤ !! = !!, (2.18) 

and the CDF of ! is written as 

 !! ! = ! ! ≤ ! =
0, ! < 0
!!, 0 ≤ ! < 1
1, 1 ≤ !

. (2.19) 

The PDF !!(!) is the derivative of this function, i.e. 

 !! ! = !!!
!" = 2!, 0 ≤ ! < 1

0, otherwise. (2.20) 

Therefore, the PDF of the product is given by 

 !!!! ! = 2!
!! !

! !
!

! 2!
!
1
!

!

!
!". (2.21) 

Taking ! = ! ! !, the upper end of the integral remains the same while the lower end 

of the integral becomes ! ! !. By using the relation 

 !" = 2!
!! !", (2.22) 

the integral can be written as: 

 !!!! ! = 2!
!!

1
! !

!!
!

!
!". (2.23) 

The integral on the right hand side cannot be expressed with elementary functions, and is 

called a !! function. It is one kind of exponential integral: 
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 !!!! ! = 2!
!! !!

!!
!! . (2.24) 

As exponential integrals satisfy the relation !!" !! ! = −!!!!(!), the CDF can be 

computed by integrating Eq. (2.22) as follows: 

 !!!! ! = 1− !!
!!
!! . (2.25) 

2.2.3 Macke-0 distribution 

Macke et al. (1996) apply the roughness based on uniform sampling of tilt angles 

between 0 and 90! degrees, where ! is defined as a distortion parameter. I refer to this 

distribution as the Macke-0 distribution in this thesis. The random variable !!! from 

which the slope is sampled is defined as  

 !!! = tan!2 !!!,! (2.26) 

where !! is the random variable following a uniform distribution between 0 and 1, and 

the CDF can be written as follows: 

 !!!! ! = ! !!! < ! = ! tan!2 !"! ≤ ! . (2.27) 

Thus, the final CDF and PDF are: 

 !!!! ! =
2
!" tan ! 0 ≤ ! < tan!"2

0 ! < 0
! ,!and (2.28) 

 
!!!! ! =

2
!"

1
1+ !!! 0 ≤ ! < tan!"2
0 ! < 0

!. (2.29) 
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2.2.4 Macke-1 distribution 

The geometric optics computer program by Macke et al. (1996) is publicly 

available from the web site: http://tools.tropos.de/. In the downloaded computer 

program, the slope is computed in a different way from the description in Section 2.2.3. I 

refer to the resultant distribution as Macke-1 distribution. As the Macke-1 distribution 

depends on the incident direction of the beam to the interface, it is not possible to 

analytically derive the PDF and CDF for complex particle shapes. However, an 

approximate distribution can be obtained by assuming that the direction of the beam is 

fixed to the positive ! direction. Figure 2.2 shows the PDF of Macke-1 distributions 

assuming fixed (positive z) incident direction (solid line, analytical function) and 

completely random direction (histogram bars, Monte Carlo simulation). 

The analytical CDF for the Macke-1 distribution with the fixed incident direction 

(0,0,1) is as follows: 

 !!!! ! =

0 !! ≤ 0 and !! ≤ 0
!! ! 0 < !! ≤

1
2 and 0 < !! ≤

1
2

!! ! 0 < !! ≤
1
2 and 1

2 < !! ≤
1
2

!! ! 0 < !! ≤
1
2 and 1

2 < !!

!! !
1
2 < !! ≤

1
2 and 1

2 < !! ≤
1
2

!! !
1
2 < !! ≤

1
2 and 1

2 < !!

1 1
2 < !! and 1

2 < !! ,

 (2.30) 

where 
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 !! = !", (2.31) 

 !! = ! + 1 !, and (2.32) 

 ! = 1
2
1
! − 1 . (2.33) 

Functions !! ! …!!(!) are defined as follows. For the detailed derivation, readers are 

referred to Appendix A. 

 !! ! = !!! =
1
3 ! + 1 ! − !! !!! (2.34) 

 
!!(!) = −!3 !!

!! + 23 !!
! ! + 1 ! !! + 2 cos! !!

− 1
6! ln 2!! + 2!!

! cos! !! !
(2.35) 

 !! ! = ! + 1 − !3 !!!
! − 1!

1
3 2+

1
6 ln 2− 1 ! (2.36) 

 

!! ! = 2
3 !!

! ! + 1 ! !! + 2 cos! !!

− 23 !!
!! ! !! + 2 cos! !!

− 1
6! ln 2!! + 2!!! cos! !!

− ln 2!! + 2!!! cos! !!  

(2.37) 

 
!! ! = !13 ! + 1 − 23 !!

!! ! !! + 2 cos! !!

− 1
6! ln 2+ 1 − ln 2!! + 2!!! cos! !! , 

(2.38) 

and similarly, the PDF is as follows: 
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 !!!! ! =

0 !! ≤ 0 and !! ≤ 0
!! ! 0 < !! ≤

1
2 and 0 < !! ≤

1
2

!! ! 0 < !! ≤
1
2 and 1

2 < !! ≤
1
2

!! ! 0 < !! ≤
1
2 and 1

2 < !!

!! !
1
2 < !! ≤

1
2 and 1

2 < !! ≤
1
2

!! !
1
2 < !! ≤

1
2 and 1

2 < !!

0 1
2 < !! and 1

2 < !! ,

, (2.39) 

where 

 !! ! = 2
3 ! + 1 ! − !! !" (2.40) 

 

!! ! = − 2!3 !!!! +
4
3 !! ! + 1 ! ! !! + 12 cos! !!

+ 1
6!! ln 2!! + 2!!

! cos! !!  

(2.41) 

 !! ! = − 2!3 !!!! +
1
!!

1
3 2+

1
6 ln 2− 1 ! (2.42) 

 

!! ! = 4
3 !! ! + 1 ! ! !! + 12 cos! !!

− !!!! ! !! + 12 cos! !!

+ 1
6!! ln 2!! + 2!!! cos! !!

− ln 2!! + 2!!! cos! !!  

(2.43) 
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!! ! = 2

3 ! + 1 ! − 43 !!!
! ! !! + 12 cos! !!

+ 1
6!! ln 2+ 1 − ln 2!! + 2!!! cos! !! . 

(2.44) 

 

Fig. 2.2. The probability density function for Macke-1 distribution. Green line is 
simulation by the analytical expression for a fixed (positive z) incident direction (line) 
and the result from the Monte Carlo simulation assuming random incident direction.  

2.3 Surface tilt and beam tilt 

The tilt angle distributions described in the previous section determine the 

original “raw” distribution of ! and !, but it is not the actual distribution of ! used in 

light scattering calculations. This is because some combinations of tilt angle, tilt azimuth 

direction, and incident beam direction are unphysical, and the light scattering program 

computes ! and ! with a new realization until a physically possible combination is 
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obtained. This process is significantly affected by the rejection criteria that depend on tilt 

methods. 

As briefly described in Section 2.2, the surface tilt method changes the direction 

of the surface normal, and the beam tilt method changes the direction of the ray-tracing 

beam. Figure 2.3 shows the schematics of the two tilt methods. The surface normal 

vector is !, the direction of the incident ray is !!, the direction of the reflected ray is !!, 

and the direction of the refracted ray is !!. In Fig. 2.3, primes indicate that the vector is 

modified by the surface or beam tilt method. 

 

 

Fig. 2.3. Schematics of (a) surface tilt method and (b) beam tilt method. 

2.3.1 Surface tilt method 

The surface tilt method requires two rejection criteria: (a) direction of incident 

beam, and (b) direction of reflected beam. Criterion (a) is straightforward. When the 

incident direction makes a small angle to the interface, the surface may tilt more than the 
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angle between the incident direction and interface as shown in Fig. 2.4 (a). The incident 

direction !! is invalid because the beam looks like it is coming from the other side of the 

interface. The second criterion (b) requires the reflected ray to leave the particle and not 

to propagate into the particle. This situation happens when the incident direction !! is 

close to the tilted interface as shown in Fig. 2.4 (b). As a result of these two rejection 

criteria, the distribution of tilt angle (!) and the tilt azimuth angle (!) changes from the 

original distribution as shown in Fig. 2.5. When the roughness is large, the surface tilt 

method prefers a backward direction and it implies that the external reflection (first 

reflection when a ray enters a particle) decreases and a larger intensity of rays 

propagates into the particle. 

2.3.2 Beam tilt method 

The beam tilt method requires only one criterion for the rejection, (a) direction of 

the incident beam. The criterion is the same as for the surface tilt method and Fig. 2.6 

illustrates an example of a rejected tilt configuration. Figure 2.7 shows the distribution of 

! and ! for the same three degrees of surface roughness !! as in Fig. 2.5. As the 

rejection criterion is less restrictive, the distributions are closer to the original 

distribution than the for the surface tilt method. 
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Fig. 2.4. Examples of rejected geometric configurations for the surface tilt method. (a) 
The direction of incident beam !!is from the other side of interface. (b) The reflected 
beam !!! enters into the particle (c.f. downward to the original surface). 

 

Fig. 2.5. Distribution of original and accepted tilt and azimuth angles for the surface tilt 
method. Columns correspond to three degrees of surface roughness. The grey shading 
indicates the results from IGOM calculations and the orange line is the original 
distribution (Yang-1). 
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Fig. 2.6. An example of rejected geometric configurations for the beam tilt method. The 
direction of the incident beam is from the other side of interface. 

 

Fig. 2.7. Distribution of original and accepted tilt and azimuth angles for the beam tilt 
method. Columns correspond to three degrees of surface roughness. The grey shading 
indicates the results from IGOM calculations and the orange line is the original 
distribution (Yang-1). 
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Besides the difference in rejection criteria, the beam tilt method has an 

uncertainty related to the polarization state of the light. The polarization state of light is 

related to the phase and direction of the electric vector. With the surface tilt method, a 

straightforward sequential application of the Fresnel formula simulates a chain of 

reflection/refraction events. Between two reflection/refraction events, the direction and 

magnitude of the electric vector are conserved. However, the beam tilt method cannot 

conserve the direction of the electric vector because the direction of propagation 

changes. This is especially true when the tilt angle is large. 

2.4 Single scattering properties 

To elucidate the differences caused by the tilt distributions and tilt techniques, 

light scattering calculations are performed for a hexagonal column particle using the 

improved geometric optics (IGOM, Yang and Liou 1996) method and Invariant-

Imbedded T-Matrix (IITM) method (Bi and Yang, 2014). The calculations are performed 

for 198 particle sizes ranging from !!"# = 2 µm to 10000 µm, and the results are 

averaged over the gamma particle size distribution (shape parameter ! = 8, scale 

parameter ! = 4.538). The effective diameter of the particle is !!"" = 60 µm, and the 

size distribution (weighted by geometric cross section) is shown in Fig. 2.8. For sizes 

smaller than !!"# = 10.6 µm, scattering properties are computed with the IITM 

method, and results from the IGOM and IITM methods are merged by the method 

described by Yang et al. (2013). Since the particle size distribution is almost completely 

weighted with !!"# > 11.2 µm, the results can be considered to be the results by IGOM 

calculations. 
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Fig. 2.8. Projection-area weighted gamma distribution. The distribution is plotted as a 
function of maximum dimension (!!"#). The shape parameter is ! = 8, and scale 
parameter is ! = 4.538. 

Figure 2.9 shows the asymmetry parameter as a function of roughness parameter 

(!!) or distortion parameter (!). With Yang-0 and Yang-1 distributions (Fig. 2.9a), the 

asymmetry parameter has a peak at !! = 10!! to 10!!, while in Fig. 2.9 (b), with  

Macke-0 and Macke-1 distributions, the peaks are near ! = 7×10!!.  These peaks are 

presumably because of the way IGOM handles the near-forward scattering. In the phase 

matrix calculation, the intensity in scattering angle less than ! < 0.1146° is applied 

with a diffraction phase function instead of a ray-tracing phase function. With the 

current version of IGOM code, it is therefore recommended to use !! > 0.001 and 

! > 0.05. Nonetheless, the location of the peak is a good indicator for the deflection of 

rays from the original direction, and therefore the effective direction of surface 



 42 

roughness. Although the shapes of Macke-0 and Macke-1 distributions are different, the 

asymmetry parameter calculations surprisingly agree with each other. 

Figure 2.10 illustrates the effect of the tilt method on the asymmetry parameter. 

The results indicate that the beam tilt method reaches the peak at a smaller roughness or 

distortion parameter. This is because the beam tilt method is less restrictive in the 

rejection criteria described in Section 2.3, and the effective slope distribution tends to be 

biased low. In addition to the difference of the peak locations, the behavior of the 

asymmetry parameter at large roughness is different between surface and beam tilt 

methods. The asymmetry parameter (!) computed with the surface tilt method increases 

when the roughness reaches about !! = 0.1 or ! = 0.3, but ! from the beam tilt method 

continues to decrease. A hypothesis to explain this difference is related to the difference 

of effective tilt azimuth direction. The surface tilt method prefers azimuth angle ! < 90° 

more strongly than the beam tilt method because of the restrictive rejection criteria as 

discussed in Section 2.3. Such a strong preference for scattering into the backward 

hemisphere increases the chance of a ray to enter the particle with a small specular 

reflection and to exit the particle without total reflection. The consequence is that 

scattering into the forward hemisphere increases, and the asymmetry parameter also 

increases. 
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Fig. 2.9. Asymmetry parameter of a single hexagonal column particle. The aspect ratio is 
fixed at !" = 1 (diameter of basal face is equal to length of column) and the surface tilt 
method is used. (a) For Yang-0 distribution (dotted line) and Yang-1 distribution (solid 
line). (b) For Macke-0 distribution (dotted line) and Macke-1 distribution (solid line). 

 

Fig. 2.10. Asymmetry parameter comparison between surface and beam tilt methods. 
The same hexagonal column as in Fig. 2.9 is used. (a) For Yang-1 distribution with the 
surface tilt method (orange solid line) and with the beam tilt method (purple line). (b) 
For Macke-1 distribution with the surface tilt method (green line) and the beam tilt 
method (purple line). 
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2.5 Summary 

In this section, four common distributions models of surface roughening are 

described, and their corresponding probability density functions and cumulative 

distribution functions are derived. The rejection criteria used in the light scattering 

calculations are compared between the beam tilt and surface tilt methods to examine the 

difference and effect on the asymmetry parameter calculations. From the locations of 

spurious asymmetry parameter peaks that are related to the transition from forward 

scattering to side scattering, it is shown that the Yang-0 distribution reaches the 

asymmetry parameter peak at smaller roughness parameter !! than the Yang-1 

distribution, while the difference between Macke-0 and Macke-1 distributions is small. 

As roughness increases to a severe level, the asymmetry parameter shows the decreasing 

trend with the beam tilt method, but an increasing trend with the surface tilt method. In 

the following part of the dissertation, the surface tilt method with Yang-1 distribution is 

used to compute the single scattering properties. The surface tilt method does not suffer 

from the polarization uncertainty due to the unphysical rotation of the electric vector that 

is associated with the beam tilt method. Yang-1 distribution is selected because it is used 

to produce the widely-used database by Yang et al. (2013). 
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3 TRUNCATION OF PHASE MATRIX* 

 

For an accurate ice cloud polarized reflectance calculation, a strong phase 

function peak in the forward direction requires special treatment. There are two popular 

truncation techniques (δ-M method and δ-fit method) for intensity-only calculations, but 

the application of the δ-fit method is limited. This section describes the theory of 

truncation and derives the δ-fit method for polarized radiative transfer. The results of 

reflectivity and transmissivity calculations are presented using these two techniques. 

3.1. Introduction 

In the application of vector radiative transfer solvers to simulate, for example, ice 

cloud reflectivity and transmissivity, the presence of large particles triggers a trade-off 

between the accuracy and speed of the simulation. The scattering properties of such 

large particles cannot be appropriately represented for the radiance simulation with an 

affordable directional resolution (number of streams). Anisotropic scattering in a 

planetary atmosphere has been a major challenge, and Sobolev (1975) discusses multiple 

methods of approximation for highly anisotropic scattering problems.  Current common 

practice is to adapt a truncation technique to minimize error due to the reduced 

directional resolution used in the numerical radiative transfer simulations.  

The δ-fit method developed by Hu et al. (2000) fits the scattering phase function 

with a limited number of Legendre polynomials to accurately simulate the radiance. The 
                                                
* Edited and reprinted with permission from “Truncation of the scattering phase matrix 
for vector radiative transfer simulation” by Souichiro Hioki, Ping Yang, George W. 
Kattawar, and Yongxiang Hu, 2016. J. Quant. Spectrosc. Radiat. Transf., 183, 70-77. 
Copyright [2016] by Elsevier. 
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method contrasts with the δ-M method developed by Wiscombe (1977), which focuses 

on accurate flux simulation.  Each method starts with the following plane-parallel 

radiative transfer equation: 

−! !"!" = −! !, !,!

+! !
4! !!!

!

!!
! !, cosΘ ! !, !!,!!

!!

!
!!! + 1−! ! ! ,!

(3.1)&

where ! is optical thickness measured from the top of the atmosphere, ! is the cosine of 

the zenith angle, ! is the azimuth angle,  !(!, !,!) is the radiance propagating along the 

direction (!,!), ! is the single scattering albedo,  ! cosΘ  is the phase function value 

at scattering angle Θ, and !(!) is the blackbody emission at  the local temperature !.  

Each method uses the following similarity transformation, which defines scaled 

variables with an arbitrary factor ! in the form:  

!∗ = 1− !" !,! (3.2)&

!∗ = 1− !
1− !"!,! (3.3)&

!∗ cos Θ = 1
1− ! ! cosΘ − 4!"#(1− cosΘ) ,! (3.4)&

where !(1− cos!Θ) is the Dirac delta function peaked in the forward scattering 

direction. Substituting Eqs. (3.2)-(3.4) into Eq. (3.1) yields the same form for the 

radiative transfer equation but now for the scaled quantities indicated by the asterisk 

symbol; namely, 
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−! !"
!!∗ = −! !∗, !,!

+!
∗ !∗
4! !!!

!

!!
!∗ !∗, cosΘ ! !∗, !!,!!

!!

!
!!! !+ 1−!∗ ! ! .!

(3.5)&

In the classic approach (e.g. Potter, 1970), the original phase function ! cosΘ  is 

approximated by the sum of a delta function and a phase function without a forward 

peak !!"#$%∗ cosΘ . 

! cosΘ ≈ 1− ! !!"#$%∗ cos Θ + 4!"#(1− cosΘ),! (3.6)&

and the similarity transformation is derived as a consequence of the approximation. Eqs. 

(3.2)-(3.4) define an approximate radiative transfer problem in the classic approach. 

However, the similarity transformation itself is mathematically exact (Mckellar 

and Box, 1981; Mitrescu and Stephens, 2004) and it is beneficial for our discussion to 

accept the exact similarity transformation to unambiguously derive the vectorized form 

of the δ-fit method. Specifically, we interpret Eqs. (3.2)-(3.4) as definitions of scaled 

quantities !∗, !∗, and !∗ cos Θ  without approximations. When Eqs. (3.2)-(3.4) are 

strictly satisfied, the solution of Eq. (3.5) gives an exact solution of the original radiative 

transfer equation Eq. (3.1). 

By accepting the exact similarity transformation, truncation techniques are seen 

as optimization techniques. Truncation techniques simultaneously adjust parameter ! 

and !!∗ cos Θ , which is a reconstructed phase function from ! coefficients (c.f. Eq. 

(3.14)), to reduce the error in the flux or radiance. Mitrescu and Stephens (2004) 

attempted a similar interpretation, showing that the parameter ! depends on the 
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truncation method and the number of streams in addition to the original phase function. 

Some systematic evaluations of these truncation techniques have been reported in the 

literature (Rozanov and Lyapustin, 2010; Iwabuchi and Suzuki, 2009). 

This section applies the framework discussed above, and interprets the δ-fit 

method as a correction to the source function, following the approach taken by Rozanov 

and Lyapustin (2010). The outcome of the theoretical development is an adaptation of 

the δ-fit method to vector radiative transfer. Some adjustments of the present method are 

provided for numerical implementation as a user-friendly computer program. 

3.2 The δ-fit method 

This section briefly summarizes the δ-fit method based on the original paper by 

Hu et al. (2000). The traditional δ-fit method starts with the expansion of the phase 

function in terms of Legendre polynomials !! ! , 

! ! = !!! !!(!)
!

!!!
,! (3.7)&

where ! = cosΘ and !!!  is the expansion coefficient of order s. The δ-fit method 

approximates this phase function with a limited number of coefficients ! that are the 

result of fitting in the form:  

!! ! = !!! !!(!)
!

!!!
,! (3.8)&

where a hat indicates that the quantity is a result of fitting. 
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The standard least squares method is employed to minimize the sum of squared 

differences between 1 and the ratio of the reconstructed phase function !!(!) to the 

original phase function !(!): 

! = !!(!!)
!(!!)

− 1
!
!!

!

!!!
,! (3.9)&

where !! is the step-function weight defined by the truncation angle Θ!"# .  

!! =
1, ! < cosΘ!"#
0, ! ≥ cosΘ!"#.!

(3.10)&

Linear least square fitting based on Eq. (3.9) by singular vector decomposition yields a 

set of coefficients !!! . Once a set of coefficients is obtained, the similarity 

transformation of the radiative transfer equation is utilized to satisfy the normalization 

condition of the phase function. Specifically, the following scaling adjustments are 

applied:  

1− ! = !!! ,! (3.11)&

!!! ∗ =
!!!
1− !.!

(3.12)&

The scaling factor (truncation factor) ! and fitted, scaled expansion coefficients !!! ∗ are 

used in an arbitrary solver of the scaled radiative transfer equation. 

The fitting process in Eq. (3.9) can be rewritten as a linear least square fitting 

with weight inversely proportional to the variance in the tabulated phase function in the 

form: 
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! !!! = !! !! − !(!!)
! !!
!!!(!!) !

!

!!!
,! (3.13)&

where !! is the precision of the phase function. Note that !!!(!!) ! is the variance of 

the phase function at the !th data point. The variance is due to the numerical 

implementation of light scattering calculations and the numerical representation of a 

phase function. The precision, !!, is chosen as the largest value among machine 

precision, table precision, and the relative error in the numerical algorithm. 

3.3 Source function correction by the δ-fit method 

The effect of truncation is that the reconstructed phase function: 

!!∗ ! = !!! ∗!!(!)
!

!!!
! (3.14)&

may not fully describe the scaled phase function !∗(!) defined in Eq. (3.4). Note that 

the scaled radiative transfer equation (Eq. (3.5)) gives an exact solution only when 

!∗(!) = !!∗ ! . This condition is usually not achieved because the delta function in 

!∗(!) requires an infinite number of coefficients to be fully expanded. 

The error of the reconstructed phase function affects the radiative transfer 

equation through modifying the source function. Since the formal solution of the 

radiative transfer equation is an integral of the source function, the solution is affected 

by the error in the source function. For simplicity, we limit our discussion to cases with 

no emission. The untruncated source function is written as: 

! !∗, !,! = !∗

4! !"′
!

!!
!∗ cosΘ !(!∗, !′,!′)

!!

!
!!!,! (3.15)&
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and the truncated source function is written as: 

!! !∗, !,! = !∗

4! !"′
!

!!
!!∗ cosΘ !(!∗, !′,!′)

!!

!
!!!,! (3.16)&

so the error in the source function is !! !∗, !,! − ! !∗, !,! . As the total radiance is a 

sum of direct solar radiation and diffuse radiation, the source function error can be 

written as the sum of two terms: 

!! !∗, !,! − ! !∗, !,!

= !∗

4! !!!
!

!!
!!∗ cosΘ − !∗ cosΘ !!"# !∗, !!,!!

!!

!
!!!

+!
∗

4! !!!
!

!!
!!∗ cosΘ !!"##,! !∗, !!,!!

!!

!

− !∗ cosΘ !!"## !∗, !!,!! !!!.!

(3.17)&

where !!"# !∗, !!,!!  is the direct solar radiation, !!"##,! !∗, !!,!!  is the diffuse 

radiation with the truncated phase function, and !!"## !∗, !!,!!  is the diffuse radiation 

with the untruncated phase function. 

It is well known that the radiance computed with the δ-M truncation shows a 

significant oscillation about the true value (e.g., Fig. 3.2). This is primarily because the 

oscillation in the reconstructed phase function (see, Fig. 1 in Nakajima and Tanaka, 

1988) propagates through the first term of Eq. (3.17) to cause the radiance error 

(Rozanov and Lyapustin, 2010). The oscillation mainly originates from the first term of 

Eq. (3.17) because the direct solar radiation !!"# !∗, !!,!!  is far more anisotropic than 

diffuse radiation !!"## !∗, !!,!! , which is a result of multiple scattering. 
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In the δ-fit method, a set of fitted coefficients !!!  that minimize the difference 

between the reconstructed phase function !!(!) and the original phase function !(!) is 

used after scaling. The resulting reconstructed scaled phase function !!∗(!) is close to 

!∗(!) because !(!) and (1− !)!∗(!)  are identical except in the exact forward 

scattering direction. Specifically, we have  

!!∗ ! = !∗ ! + !!"# ! ,! (3.18)&

where the error of fitting!!!"#(!) is small except between the forward scattering direction 

and a direction a few degrees from the specified truncation angle. 

The δ-fit method minimizes the source function error by using !!∗(!), which is 

close to !∗(!). The source function error for the δ-fit method is as follows: 

!!"#,! !∗, !,! − ! !∗, !,!

= !∗

4! !!!
!

!!
!!"# cosΘ !!!"# !∗, !!,!!

!!

!
!!!

+!
∗

4! !!!
!

!!
!!∗ cosΘ !!"##,! !∗, !!,!!

!!

!

− !∗ cosΘ !!"## !∗, !!,!! !!!.!

(3.19)&

Equation (3.19) shows that the δ-fit method reduces the first term of the source function 

error in Eq. (3.17), and improves the accuracy of radiance computation. 

Another approach to the source function correction is the TMS method 

(Nakajima and Tanaka, 1988). Essentially, the TMS method applies (1− !)!!!(!) =

!∗(!)+ 4!"(1− !)!!!(1− cos!Θ) for the single scattering source function and 
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!!∗(!) for the multiple scattering source function. As multiple scattering is less 

anisotropic, this approach also significantly improves the accuracy of the radiance. 

Rozanov and Lyapustin (2010) theoretically showed how the TMS method reduces the 

error. The disadvantage of the method is that a spurious delta function appears in the 

first-order source function, resulting in an inaccurate transmissivity. This shortcoming is 

corrected by the IMS method (1988) to significantly reduce the error in the 

transmissivity calculation. 

Correction of the source term by these two approaches might not conserve the 

low-order moments, so these methods are not suitable for flux calculations. The δ-M 

method (Wiscombe, 1977) is designed to keep the lower order expansion coefficients for 

accurate flux computations. The contrast of the δ-fit method and the δ-M method 

originates from conserving different characteristics of the original phase function 

through truncations. The δ-fit method conserves the shape of the original phase function 

while the δ-M method conserves the expansion coefficients. As these two characteristics 

cannot be conserved simultaneously, a proper truncation technique should be selected 

based on the purpose.  

3.4 Extending the δ-fit method in scattering matrix expansion 

The vector radiative transfer equation for plane-parallel media is formulated with 

Stokes vector !(!, !,!) and phase matrix !(!, !, !′,!,!!) as follows (Hovenier et al., 

2004; de Haan et al., 1987): 
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−! !!!" = −! !, !,!

+! !
4! !!!

!

!!
! τ, !, !!,!,!! ! !, !!,!!

!!

!
!!! + 1−! ! ! ,!

(3.20)&

where particles and their scattering plane mirror images are randomly oriented. The 

similarity transformation also holds for the vector radiative transfer equation. The reader 

is referred to (Sanghavi and Stephens, 2015) for the derivation. 

Equation (3.20) is transformed by defining scaled variables as follows. 

!∗ = 1− !" !,! (3.21)&

!∗ = 1− !
1− !"!,! (3.22)&

!∗ !, !′,!,!! = 1
1− ! ! !, !′,!,!! − 4!"!!(1− cosΘ) .! (3.23)&

The phase matrix ! !, !′,ϕ,ϕ′  is related to the scattering matrix ! cosΘ  by  

! !, !′,!,!! = ! −!! ! cosΘ ! !! ,! (3.24)&

where !(−!!) and !(!!) are rotation matrices of the second and third elements of the 

Stokes vector. The matrix ! is the 4×4 identity matrix. Since the second term of Eq. 

(3.23) appears only in the exact forward scattering direction, the rotation matrices do not 

modify the identity matrix. This implies that Eq. (3.23) can be written in the following 

form: 

!∗ !, !′,!,!! = 1
1− ! ! !, !′,!,!! − 4!"!!(1− cosΘ) .! (3.25)&

Denoting the elements of the scattering matrix as follows: 
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! cosΘ =
!! cosΘ !! cosΘ 0 0
!! cosΘ !! cosΘ 0 0

0 0 !! cosΘ !! cosΘ
0 0 −!! cosΘ !! cosΘ

,& (3.26)&

the unique elements are expanded in terms of generalized spherical functions !!,!(!) ! : 

 !! ! = !!(!)!!,!(!) !
!

!!!
= !!(!)!! ! ,

!

!!!
& (3.27)&

 !! ! + !! ! = [!!! + !!! ]!!,!(!) !
!

!!!
,! (3.28)&

 !! ! − !! ! = !!! − !!! !!,!!! ! ,
!

!!!
! (3.29)&

 !! ! = !!! !!,!(!) !
!

!!!
,! (3.30)&

 !! ! = !!! !!,!(!) !
!

!!!
,! (3.31)&

 !! ! = !!! !!,!(!) !
!

!!!
.! (3.32)&

By!defining!!± ! = !! ! ± !! ! !and!!±(!) = !!(!) ! ± !!(!) ! ,!Eqs.!(3.28)!and!

(3.29)!are!written!as!the!following:!

 !! ! = !!! !!,!(!) ! ,
!

!!!
! (3.33)&

 !! ! = !!! !!,!!(!) ! .
!

!!!
! (3.34)&
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The application of the δ-fit method is based on the same principle as in the scalar 

version. In an analogy to Eq. (3.18), we have  

!!∗ ! = !∗ ! + !!"# ! .! (3.35)&

Similar to the scalar case, elements in the scaled scattering matrix !∗ !  are identical to 

the elements of the original scattering matrix ! ! !times the factor (1− !)!! except in 

the exact forward direction (c.f. Eq. (3.25)). Therefore, the fitting process should 

minimize the differences between the original scattering matrix and the reconstructed 

scattering matrix, given by  

!!! =
!!,!(!!)
!!(!!)

− 1
!
!!

!

!!!
!!,! (3.36)&

!!! =
!!,!(!!)
!!(!!)

− 1
!
!! !!

!

!!!
.! (3.37)&

Equation (3.36) is applied to diagonal elements (! = 1,+,−,4), whereas Eq. (3.37) is 

applied to off-diagonal elements (! = 1,2). All fittings are conducted independently, 

and the free parameter ! is determined by the normalization constraints for !∗ !  and 

!!∗ ! : 

1− ! = !!! .! (3.38)&

Note that parameter ! is solely determined by the fitting of !!(!). This guarantees the 

consistency between scalar and vector versions of the δ-fit method. The final coefficient 

set for !!∗ !  is obtained by scaling all coefficients from the fitting Eqs. (3.36) and 

(3.37): 
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!!! ∗ =
!!!
1− !!!,!

(3.39)&

!!! ∗ =
!!!
1− !!!.!

(3.40)&

3.5 Theoretical comparison with other approaches 

There are some other approaches to adapt the δ-fit method to fit a scattering 

matrix. Zhai et al. (2009) used the standard δ-fit method to fit !! ! , and applied a 

scaling to obtain other matrix elements to fit. Their scaling is as follows: 

!!,!∗ ! = !! !
!! !

!!!∗ ! !,! (3.41)&

!!,!∗ ! = !! !
!! !

!!!∗ ! !,! (3.42)!

where ! indicates that the phase matrix elements in the left hand side is to be fitted by 

their method. 

The rationale for this treatment is the consistency of ratios !!/!! and!!!/!! in 

all scattering directions. Ignoring the exact forward scattering direction and using Eqs. 

(3.25) and (3.35), we can rewrite Eqs. (3.41) and (3.42) as follows:  

!!,!∗ ! = 1− ! !!∗
1− ! !!∗

!!∗ + !!"# ! = 1+ !!"# !!!∗
!!∗ ! ,! (3.43)&

!!,!∗ ! = 1− ! !!∗
1− ! !!∗

!!∗ + !!"# ! = 1+ !!"# !!!∗
!!∗ ! .! (3.44)&

Note that these relations are strictly applicable except for the exact forward scattering 

direction. As discussed in the previous section, !!"#(!) is small except at small scattering 
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angles. Therefore, the present approach and the approach suggested by Zhai et al. (2009) 

fit nearly the same function to obtain the expansion coefficients in side- to back-

scattering directions.  

Another adaptation proposed by Sanghavi and Stephens (2015) also uses the 

standard δ-fit method to obtain coefficients !!! ∗. The other reconstructed diagonal 

elements in the scattering matrix are as follows (see, Eq. 38 in Sanghavi and Stephens 

(2015)]): 

!!!!!!!!!!!!!!!!!!!!!!!!!,!,!∗ ! = !!,!∗ ! − ! 2! + 1
1− ! !!,!! ! + !!,!!! !

!

!!!
,! (3.45)&

!!!!!!!!!!!!!!!!!!!!!!!!!,!,!∗ ! = !!,!∗ ! − ! 2! + 1
1− ! !!,!! ! − !!,!!! !

!

!!!
,! (3.46)&

!!!!!!!!!!!!!!!!!!!!!!!!!,!,!∗ ! = !!,!∗ ! − ! 2! + 1
1− ! !!,!

! !
!

!!!
.! (3.47)&

where ! indicates that the phase matrix element is computed by Sanghavi’s method. 

The second terms in Eqs, (3.45)-(3.47) are small when the number of expansion 

coefficients ! is large. 

3.6 Adjustments for numerical implementation 

Unlike phase functions, scattering phase matrix elements often have zeros 

(neutral points) at some scattering angles. As obvious from Eq. (3.13), the original δ-fit 

method uses the weight !!!(!!) !!, which is undefined at the aforementioned points. It 

is also counterintuitive that the accuracy of light scattering computation increases near 

neutral points. For this reason, we introduce an additional error term !! to the weighting. 
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The weighted fittings of the scattering phase matrix elements are performed by 

minimizing the following quantities:  

 !!!! = !!! !! − !!(!!) ! !!
!!!! !! ! + !! !

!

!!!
,! (3.46)&

 !!!! = !!! !! − !!(!!) ! !!
!!!! !! ! + !!!! !! ! + !! !

!

!!!
,! (3.47)&

 !!!! = !!! !! − !!(!!) ! !!
!!!! !! ! + !!!! !! ! + !! !

!

!!!
,! (3.48)&

 !!!! = !!! !! − !!(!!) ! !!
!!!! !! ! + !! !

!

!!!
,! (3.49)&

 !!!! = !!! !! − !!(!!)
! !!
!!!! !! ! + !! !

!

!!!
,! (3.50)&

 !!!! = !!! !! − !!(!!)
! !!
!!!! !! ! + !! !

!

!!!
.! (3.51)&

Note that !! !! ,… , !! !!  are original scattering phase matrix elements, 

and!!!! !! ,… , !!! !!  are reconstructed scattering phase matrix elements from ! 

coefficients. Our experiments show that !! = 10!! and !! = 10!!" are good choices for 

fitting typical bulk scattering properties of cloud and aerosol particles.  

The original δ-fit method resamples the phase function at equal scattering angle 

intervals, but some other investigators use an equal sampling with respect to the cosine 

of scattering angles. The present numerical simulations show that the fitting results are 
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better when equal ! = cosΘ intervals are used, or !! are taken proportional to the 

difference of ! if other intervals are chosen. 

3.7 Numerical validation of the theory 

To demonstrate the performance of the vectorized δ-fit method, reflectivity and 

transmissivity of an ice cloud layer are computed by the adding-doubling radiative 

transfer model (de Haan et al., 1987; Huang et al., 2015). A moderately roughened 

hexagonal column shape is selected from the scattering property library (Yang et al., 

2013), and weighted over a gamma-like particle size distribution. The effective variance 

of the distribution is 0.1 and the effective diameter is !!"" = 30!!m. The cloud optical 

thickness is 5. Simulations are conducted at 0.865 µm, and no contributions from 

background aerosol scattering and molecular Rayleigh scattering are considered.  

The original phase matrix is fully expanded with 700 expansion coefficients for 

each scattering matrix element. The radiative transfer simulation result with 700 

expansion coefficients is therefore used as a reference. The simulation results with 

scattering matrices truncated at 50 coefficients are compared with the reference. For the 

δ-fit method, the truncation angle is set to 5°. The original and reconstructed scattering 

phase matrix elements are shown in Fig. 3.1. 
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Fig. 3.1. Original and reconstructed scattering phase matrix elements. The reconstruction 
is from 50 coefficients computed by the δ-fit method. The scattering phase matrix 
elements are identical except in the forward direction. 
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Fig. 3.2. Reflected radiance and relative errors. The radiance in the principal plane is 
computed with an untruncated scattering matrix with 700 expansion coefficients (top), 
and relative errors are plotted when the expansion is truncated at 50 coefficients (middle, 
bottom). The bottom panel expands around zero error. The solar zenith angle is 
!! = 60°, and the result for relative azimuth angle ! = 0° is plotted with positive 
viewing zenith angles, and the result for relative azimuth angle ! = 180° is plotted with 
negative viewing zenith angles. The peak in the error at −60° corresponds to the glory 
direction. 

Fig. 3.2 shows the result for the reflected radiance in the principal plane. The top 

panel is the intensity of the reference calculation, and the middle and bottom panels 

show relative errors of truncated simulations. The δ-fit method which has no TMS 

correction performs as well as the δ-M method with TMS correction. The amplitude of 

oscillation in the reflected radiance is smallest when the δ-fit method is used, but the bias 

is close to zero with the δ-M plus TMS method. These results agree with previous 

studies (Rozanov and Lyapustin, 2010; Iwabuchi and Suzuki, 2009). The transmissivity 

of the same cloud layer is presented in Fig. 3.3.  The combination of the δ-M and TMS  

 0

 0.1

 0.2

 0.3

I

Reflection

-6
-4
-2
 0
 2
 4

Er
ro

r (
%

)

δ-M
δ-fit
δ-M + TMS

-0.2

-0.1

 0

 0.1

 0.2

-80 -60 -40 -20  0  20  40  60  80

Er
ro

r (
%

)

Viewing Zenith Angle ( ° )



 63 

 

Fig. 3.3. Transmitted radiance and relative errors. Lines indicate the same as Fig. 3.2, 
but for transmitted radiance. 

methods results in a significant error in the forward direction. This is because the TMS 

method introduces a spurious source term in the forward direction. 

Figures 3.4 and 3.5 shows the second element (Q) of the Stokes vector in the 

reflected and transmitted directions. The polarized reflectivity calculation with the δ-fit 

method shows a significant improvement over the δ-M method. The overall errors of δ-

M + TMS and δ-fit methods are comparable, but the δ-M + TMS method shows smaller 

biases. The transmission calculation indicates that the δ-fit method performs worse, even 

compared to the δ-M method without TMS correction except near the forward direction. 

Since the δ-fit method improves scattering matrix consistency in side- to back-scattering 

directions at the expense of accuracy in forward scattering directions, the result is not 

surprising.  
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Fig. 3.4. Reflected second element of the Stokes vector and relative errors. Note that the 
third element is zero in the principal plane. In the vicinity of neutral points, data points 
are removed from relative error plots (middle, bottom) 

 

Fig. 3.5. Transmitted second element of the Stokes vector and relative errors. 

-0.005
-0.004
-0.003
-0.002
-0.001

 0
 0.001

Q

Reflection

-20
-15
-10

-5
 0
 5

 10
 15

Er
ro

r (
%

)

δ-M
δ-fit
δ-M + TMS

-4

-2

 0

 2

 4

-80 -60 -40 -20  0  20  40  60  80

Er
ro

r (
%

)

Viewing Zenith Angle ( ° )

-0.004
-0.003
-0.002
-0.001

 0
 0.001
 0.002

Q

Transmission

-150

-100

-50

 0

 50

Er
ro

r (
%

)

δ-M
δ-fit
δ-M + TMS

-8
-6
-4
-2
 0
 2
 4
 6
 8

-80 -60 -40 -20  0  20  40  60  80

Er
ro

r (
%

)

Viewing Zenith Angle ( ° )



 65 

3.8 Conclusions!

This study interprets the δ-fit method as a correction to the source function by 

adapting the similarity transformation to be mathematically exact. With this theoretical 

framework, the traditional δ-fit method is extended for phase matrix expansion. The 

vectorized δ-fit method is consistent with the traditional δ-fit method for the first 

scattering matrix element !!. Some adjustments to the traditional δ-fit method are 

applied to cope with a problem that is specific to phase matrix expansion. 

The numerical experiment with an ice cloud phase matrix shows that the 

vectorized δ-fit method performs as well as the δ-M plus TMS method for reflectivity 

and polarized reflectivity calculations in the principal plane. The transmitted radiance 

calculation by the δ-fit method is also comparable to the δ-M plus TMS method, but 

achieves better accuracy in the forward directions. The polarized transmitted radiance by 

the δ-fit method suffers from larger error than the δ-M method without TMS correction, 

especially in the forward direction. This is presumably because of the design of the δ-fit 

method. 

In the following parts of the dissertation, the δ-M method with TMS correction 

(120 streams) is used to accelerate the radiative transfer calculations. While accuracies 

of the δ-fit method and δ-M method with TMS correction are comparable, the δ-M plus 

TMS method is advantageous in the calculation of small differences between phase 

matrices because the method does not involve a fitting process. 
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4 TWO-STAGE RETRIEVALS OF PARTICLE SHAPE 

AND SURFACE ROUGHNESS* 

 

4.1 Introduction 

Satellite observations at visible and infrared wavelengths can characterize global 

cloud microphysical parameters and radiative properties. Numerous techniques have 

been developed to retrieve ice cloud optical and microphysical properties from 

radiometric measurements (e.g., Inoue, 1987; Nakajima and King, 1990; Minnis et al., 

1993) and have been adopted in operational retrieval efforts (Rolland et al., 2000; 

Platnick et al., 2003; Minnis et al., 2011). A synergetic combination of satellite and in-

situ observations (e.g., Heymsfield et al., 2002, 2013) serves as a constraint for the 

parameterization of bulk ice cloud optical properties for remote sensing implementations 

as well as general circulation models (GCMs). 

The accuracy of these retrieval techniques and the validity of downstream 

applications including GCM radiation parameterization hinges on single scattering 

properties used in the retrievals. As ice clouds consist of nonspherical particles with 

characteristic sizes much larger than the wavelengths of interest, the single-scattering 

properties depend on the size, shape, and microscopic morphology of the particles 

(Macke et al., 1996; Yang et al., 2008a; Xie et al., 2009; Baum et al., 2010; Um and 

McFarquhar, 2007, 2009; Ulanowski et al., 2006, 2014). In the solar shortwave 
                                                
* Part of this section is reprinted with permission from “Degree of ice particle surface 
roughness inferred from polarimetric observations” by Souichiro Hioki, Ping Yang, 
Bryan A. Baum, Steven Platnick, Kerry G. Meyer, Michael D. King, and Jérôme Riedi, 
2016. Atmos. Chem. Phys., 16, 7545-7558. Copyright [2016] by Authors. 
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spectrum, particle shape, surface texture, and crystal imperfections have a substantial 

influence on the single-scattering properties. Recent improvements in scattering 

calculation techniques are being incorporated into models that represent diverse ice 

particle populations in clouds. As a consequence, the degree of freedom on the ice 

particle model has dramatically increased, and validations are needed. 

The knowledge of ice cloud particle shapes, surface textures, and crystal 

imperfections still requires a substantial improvement.  An improved particle model 

reduces the uncertainty of retrieved parameters from satellite data, microphysical 

parameters from the GCM microphysics scheme, and flux estimation from the GCM 

radiation scheme. The discrepancies among climate models (Waliser et al., 2009), in 

terms of ice water path (IWP), indicate that GCM parameterizations need more reliable 

constraints on IWP. One approach to validate IWP simulations in a GCM is to retrieve 

the IWP from the spaceborne measurements (e.g., Sourdeval et al., 2015) and compare 

with IWP computed from GCM.  

The ability of visible/infrared imaging sensors to correctly infer IWP depends on 

the knowledge of ice cloud single scattering properties. Application of an unrealistic ice 

model, e.g., with only smooth (unroughened) surfaces, results in an overall global bias 

(Macke and Mishchenko 1996; Yang et al., 2007, 2008b; Holz et al., 2015), as well as 

seasonal biases (Zhang et al., 2009) in cloud property retrievals. The overarching goal of 

this section is to gain a better understanding of the constraints in the microphysical 

parameters of global ice clouds using angular polarimetric observations and state-of-the-

art light-scattering computational capabilities. 
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The previous studies imply that the use of roughened particles is necessary to 

achieve maximum consistency between observations and numerical scattering 

calculations. Polarization measurements have been used to infer both particle habit 

(Chepfer, 1998; C.-Labonnote et al., 2001; Masuda et al., 2002; Knap et al., 2005; Baran 

and C.-Labonnote, 2007) and surface roughness (Baran and C.-Labonnote, 2006; Cole et 

al., 2013, 2014). Furthermore, Liu et al. (2014) and Holz et al. (2015) concluded that the 

spectral consistency of retrieved ice cloud optical thickness between visible/near-

infrared and thermal infrared retrievals (Baran and Francis, 2004) improves when 

particles are roughened. 

The treatment of particle surface roughness here is not a rigorous approach. 

Rather, it is an approximation of the effects of roughened surface texture (Neshyba et al., 

2013) and other kinds of imperfections present in natural ice cloud. In this study, I used 

the surface tilt method (Section 2.3.1) with Yang-1 distribution (Section 2.2.2), which is 

consistent with MODIS and CERES ice particle models. The scattering properties 

calculated by this approximate method are in reasonable agreement with those calculated 

by rigorous ray-tracing methods (Yang et al., 2008a). Although previous studies suggest 

that some degree of roughness is desirable, the issue remains as to the amount of 

roughness that should be adopted for global satellite-based retrievals.  

The conventional method to validate particle shape and the degree of surface 

roughness from polarimetric measurement utilizes the sensitivity of the polarization state 

of reflected light to small-scale particle structures and the insensitivity of the 

polarization to optical thickness. Since polarized reflectivity saturates at a relatively 
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small optical thickness (generally about ! = 5, Masuda and Takashima, 1992), thick 

cloud pixels are selected based on the total reflectivity, and the residual sum of squares 

(RSS) are computed from the multi-angle observations of polarized reflectivity and 

reflectivity simulations. The particle model that minimizes the RSS is considered as the 

“best” model. I refer to this conventional method as the “best-fit” approach. 

By utilizing the “best-fit” approach, recent work by van Diedenhoven et al. 

(2012, 2014) simultaneously infers both the aspect ratio and the degree of roughness 

from a combination of polarimetric and intensity observations over a virtually 

continuous parameter space, assuming that simple hexagonal ice particles can explain 

the observations. The ability to infer a representative ice cloud particle aspect ratio adds 

yet another dimension to the problem. Such exploration into the variability of ice particle 

microphysical properties can lead to a more reliable satellite climatology of ice clouds.  

While the conventional “best-fit” approach can constrain the range of the average 

roughness parameter on a global scale, it is not suitable for pixel-by-pixel inferences. 

This is because the signal-to-noise ratio for particle roughness is low, and in the 

conventional “best-fit” approach, even random observational errors can modify the 

inferred histogram significantly when it is applied to individual pixels. Figure 4.1 

illustrates how such a modification takes place if the method is applied to a synthetic 

signal with random noise. To produce Fig. 4.1, viewing geometries are extracted from 

one month (September 2005) of cloud observations by the POLarization and 

Directionality of the Earth’s Reflectance (POLDER) sensor (Deschamps et al., 1994) 

onboard the Polarization and Anisotropy of Reflectances for Atmospheric Sciences 
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coupled with Observation from Lidar (PARASOL) satellite (Fougnie et al., 2007). The 

“best-fit” inference is applied to synthetic multi-angle cloud polarized reflectivities (!!, 

defined in Section 4.2.1) with and without random noise. In synthesizing the signal, a 

column aggregate particle shape (e.g. Yang et al., 2013) is assumed with a roughness 

parameter of !! = 0.15. For the definition of this parameter, readers are referred to 

Section 2.2.2. Radiative transfer calculations are performed assuming an optical 

thickness ! = 5, and the random error following a normal distribution is added. The 

variance of the applied error term is equivalent to the POLDER observational error 

estimated in Section 4.2.2. The hatched bar is the histogram with noise and the gray bar 

is that without noise. Note that the distinct peak at !! = 0.15!is no longer apparent when 

instrumental noise is included, indicating the necessity of appropriate treatment of the 

error distribution in the analysis. 

The rest of this section is constructed as follows. Section 4.2 describes the 

characteristics of the POLDER instrument, and Section 4.3 introduces the two-stage 

retrieval technique that is less sensitive to measurement errors. The method is applied to 

two cases and results are discussed in Section 4.4 and 4.5: surface roughness retrieval 

with a fixed particle shape (Section 4.4) and variable shape and roughness retrieval 

(Section 4.5). Section 4.6 summarizes the findings. 
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Fig. 4.1. The response of the conventional “best-fit” approach to a synthetic signal. The 
solid bars correspond to retrieval without random measurement noise and the hatched 
bars correspond to retrieval with measurement noise. The addition of noise to the 
synthetic signal results in a distribution of the roughness parameter, from which the true 
roughness cannot be inferred. This figure is to be compared to Fig. 4.12. 

4.2 Error characteristics of the POLDER sensor 

To establish a method resilient to observational error, we first examine random 

errors in POLDER data. Section 4.2.1 provides the overview of the POLDER sensor, 

and the error is characterized in Section 4.2.2. 

4.2.1 Reflectivity and polarized reflectivity from the POLDER 

The POLDER sensor aboard the PARASOL satellite provides multispectral 

polarimetric observations at up to 16 viewing geometries for a single overpass (Fougnie 

et al., 2007). The PARASOL satellite was in the A-train satellite constellation from 2004 

to 2009 and continued operation in a separate orbit until late 2013, providing a total of 
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inherited from previous POLDER sensors on the ADEOS (ADvanced Earth Observing 

Satellite) platforms. POLDER sensors provide the first three elements of the Stokes 

vector from three images taken successively with linear polarization filters (Deschamps 

et al., 1994).  

This study uses the single-pixel data set in the PARASOL Level 1B product. The 

nominal resolution of the nadir pixel is 6 km ×"6 km. PARASOL products report the 

intensity of reflection in terms of normalized radiance !!, which is equal to the 

reflectivity ! of the surface-atmosphere system multiplied by the factor !! =

cos!!(cosine of solar zenith angle). 

 
!! !, !!,!,!! = !!! !, !!,!,!!

 
(4.1) 

The reflectivity ! is defined as! 

 ! !, !!,!,!! = !" !, !!,!,!!
!!!!  

(4.2) 

where !(!, !!,!,!!) is the radiance and !!!! is the irradiance of incoming unpolarized 

light (i.e., solar irradiance; !!! is the beam flux). 

In a similar manner, the polarized reflectivity is reported in terms of normalized 

radiance, so (!!,!,!) become the first three Stokes parameters. In other words, the 

normalized polarized radiance !!" = !! + !! is equal to the polarized reflectivity !! 

multiplied by !!. 

 

!!" !, !!,!,!! = !!!! !, !!,!,!! =
! !!! + !!!

!!
,
 

(4.3) 



 73 

where !! and !! are defined to form the first three Stokes parameters in terms of 

radiance (!,!! ,!!). It is worth noting the similarity between Eqs. (4.1) and (4.3). We 

conduct the analysis in terms of !!" = !!!! defined in Eq. (4.3) to simplify the error 

estimation. 

4.2.2 The error characteristics 

The distribution of random errors in !!" observed with the POLDER is estimated 

in the following procedure. A reflection property of an optically thick ice cloud is that 

the modified polarized reflectivity !!"# = ! ! + !! !!"/!! (where ! = ±1, C.-

Labonnote et al., 2001) crosses zero at scattering angle Θ ≈ 170° as shown in Fig. 4.2. 

This implies that the polarization signal at Θ ≈ 170° is primarily due to the 

observational noise with additional contributions from the variation of cloud particle 

scattering properties. We utilize this reflection property to estimate the magnitude of 

observational noise from the POLDER data at scattering angles between 168° and 172°, 

and further estimate the noise level at other angles with a typical polarization state of 

cloud reflection.  
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Fig. 4.2. Observation density of modified polarized reflectivity (!!"#). Measurements 
are collected over the Western Pacific during September 2005. !!"# crosses zero at a 
scattering angle of approximately 170°. The data in the rectangular box is used to derive 
the histogram in Fig. 4.3. 

The POLDER observational noise consists of radiometric noise and 

misregistration noise. The misregistration noise is inherent in the POLDER sensor’s 

design that extracts polarimetric information from three images successively taken with 

different polarizers. The co-registration process of these three images is an inevitable 

source of error. As the distribution of misregistration noise is unknown, our instrument 

model attempts to explain both noise components with a radiometric noise model in the 

following analysis. 

We define a random variable !!" that serves as a statistical model of observed 

!!" as follows. 
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!!" = !!! + !!! + !!! − !!!! − !!!! − !!!!

 
(4.4) 

where random variables !!, !!, and !! represent the radiances of a pixel in the original 

three images with different polarizers (not available in a product). With the statistical 

model outlined in Eq. (4.4), we first assume that !!, !!, and !! follow the same normal 

distribution centered at 0.5 with variance !! (i.e., !!~N(0.5, !!)) because the 

expectation of polarized radiance !!" is assumed to be zero at scattering angles between 

168° and 172°. Note that !!" = 0 when !! = !! = !! in Eq (4.4). With this 

assumption, we apply the parametric bootstrap method (e.g., Evans and Rosenthal, 2010) 

to obtain the distribution of !!" as a function of variance !!.  The observational 

distribution of !!" at 0.865 µm in the scattering angles between 168° and 172° (within 

the rectangular box in Fig. 4.2) is shown in the bar chart of Fig. 4.3, and compared with 

the theoretical distribution with ! = 0.00095 (solid line). Figure 4.4 justifies our 

selection of ! = 0.00095!by showing that the sum of squared errors of the density in 

each bin of the histogram (Fig. 4.3) is minimized when!! = 0.00095. Therefore, we take 

! = 0.00095 as the standard error for !!, !!, and !!. In Fig. 4.3, the distribution from 

observations is slightly more skewed than the distribution from bootstrapping, but their 

agreement justifies the use of the simple statistical model formulated in Eq. (4.4) to 

quantify the magnitude of measurement errors. 



 76 

 

Fig. 4.3. Histogram of observed normalized polarized radiance (!!"). Data are from the 
rectangular box in Fig. 4.2. The solid line is the simulated error using a parametric 
bootstrapping method with ! = 0.00095. The agreement is sufficient for estimating the 
noise level. 

 

Fig. 4.4. Sum of squared error as a function of standard error (!). The minimum error is 
achieved when ! = 0.00095. 
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To obtain the approximate magnitude of the !!" error at other scattering angles, 

the same parametric bootstrap method is applied with the degree of linear polarization 

fixed at 5%, which is the upper limit for typical ice cloud reflection. This selection does 

not significantly affect the results obtained by the following analysis. When the signal is 

polarized, random variables !!, !!, and !! do not follow the same distribution, but it is 

still reasonable to assume that the standard errors for !!, !!, and !! still stay the same 

because they are measured by the same imaging sensor. Figure 4.5 shows the estimated 

magnitude of error (variance) as a function of normalized radiance !!. The variance of 

!!" asymptotically approaches to a near-constant value once !! reaches !! = 0.2. As 

shown in insets, the simulated distribution becomes closer to a normal distribution with 

increasing !! (i.e. cloud becomes brighter). Based on the discussion above, we conclude 

that the error distribution of !!" approximately follows a normal distribution with 

variance var(!!") = 1.35×10!!!for a reflective target (!! ≥ 0.2). This estimate of error 

is about the same magnitude as the value by Fougnie et al. (2007). Note that we assume 

that the error is purely from observational noise, neglecting any natural cloud variability. 

Therefore, the actual radiometric noise level should be somewhat smaller than our 

estimate. We estimate the magnitude of error using the 0.865 µm channel because the 

channel is likely to be the least contaminated by other sources of uncertainty such as 

ozone absorption (0.67 µm) and Rayleigh scattering (0.49 µm, 0.67 µm). We apply the 

same variance to all three POLDER channels used in the analysis (0.865, 0.67, and 0.49 

µm). 
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Fig. 4.5. The simulated variance of !!" as a function of !!. The variance of 
!!"increases as the normalized radiance !! (brightness of a pixel) increases, becoming 
nearly constant at var(!!") = 1.35×10!! once !! reaches !! = 0.2. Insets show that 
the distribution of !!" tends to a normal distribution, justifying the use of a normal 
distribution as an error distribution of !!" for a reflective cloudy pixel. 

4.3 Methodology – The two-stage method 

The two-stage method consists of Stage 1: look-up table computation and Stage 

2: maximum likelihood estimation. The unique feature of the two-stage method is that 

the particle shapes are parameterized by a few parameters and the retrieval is conducted 

in the continuous parameter space. The adaptation of maximum likelihood method 

makes the effect of noise more predictable than the “best-fit” method. The flow chart of 

the two-stage method is presented in Fig. 4.6. The primary input data are particle single 
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(Stage 2), and MODIS Level 2 cloud product (Stage 2). Sections 4.3.1 and 4.3.2 

describes Stage 1, and Section 4.3.3 describes Stage 2 below. 

 

 

Fig. 4.6. The flow chart of the two-stage method. 

4.3.1 Stage 1-1: Parameterization of particle shapes 

To overcome the problem of the conventional “best-fit” approach that uses a 

discrete set of roughness parameters, we construct a continuous parameter space for the 

particle shape and roughness with empirical orthogonal functions (EOF). The goal of the 

EOF analysis is to find the parameters that describe the variation of the phase matrix 

elements when varying the particle shape and roughness. An ideal approach would be to 
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use a collection of phase function (!(!)) and the −!!"(!) element of the phase matrix 

from observations (Rodgers, 2000), but such a dataset is unavailable. For this reason, we 

apply EOF analysis to the ! and −!!" simulated with light scattering calculations.  

For applications in Section 4.4 and 4.5, two different sets of phase matrices are 

prepared with light scattering calculations. I refer to the ice particle model used in 

Section 4.4 as Model A, and that used in Section 4.5 as Model B.  

Model A consists of hexagonal column aggregate particles with a varying degree 

of surface roughness. The particles are aggregates of eight solid hexagonal column 

elements with slightly different particle aspect ratios (originally defined in Yang and 

Liou 1996, see Yang et al., 2013 for geometric parameters). Ten roughness parameter 

(!!) values are used: 0, 0.03, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, and 0.7. These roughness 

parameters are selected to outline the variation of −!!" over the course of roughness 

changes, including the roughness parameter used in MODIS Collection 6 (!! = 0.5). 

The column aggregate shape is chosen because the most extensive previous study on a 

global scale (Cole et al., 2014) implies that this habit produces the most consistent 

agreement with observations. Scattering properties are computed with the Improved 

Geometric Optics Method (IGOM; Yang and Liou, 1996) for large particles (!!"# > 10 

µm) and the Amsterdam Discrete Dipole Approximation method (ADDA; Yurkin et al., 

2007) for small particles. The edge effect is considered when combining the results from 

the ADDA method and the IGOM as described by Yang et al. (2013). A gamma particle 

size distribution with an effective size (diameter) of 60 µm and an effective variance of 

0.1 (shape parameter ! = 8) is used, since we expect little impact on our analysis due to 
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this size distribution selection (Cole et al., 2014). Only −!!" is used in the 

parameterization of Model A. 

Model B consists of hexagonal column and plate particles with varying degrees 

of surface roughness and aspect ratio. Nine surface roughness values are used: 0.01, 

0.03, 0.05. 0.1, 0.2, 0.3, 0.4, 0.5, 1, and 39 aspect ratio (ratio of basal face diameter to 

column height) values from 1/9 to 9 are used. Scattering properties are computed with 

the Improved Geometric Optics Method (IGOM; Yang and Liou, 1996) for large 

particles (!!"# > 11.2 µm) and the Imbedded Invariant T-Matrix method (IITM; Bi and 

Yang, 2014) for small particles. The edge effect is taken into account when combining 

the results from the IITM method and the IGOM as described by Yang et al. (2013). 

Both ! and −!!" are used in the parameterization of Model B. 

For Model A, the first and second EOFs together cover 99.3% of the entire 

variation of −!!" in the scattering angle range from 60° to 160°. This implies that the 

following approximation is valid in the scattering angle range 60° < Θ < 160°. 

 
−!!" Θ = !! !! !! Θ + !! !! !!(Θ)

 
(4.5) 

where Θ is the scattering angle, !! Θ  and !! Θ  are the first and second EOFs, and 

!! !!  and !! !!  are weights for EOFs (EOF Scores). The EOF scores are shown in 

Fig. 4.7. The EOF 1 primarily describes the degree of roughness, and the EOF 2 score 

has sensitivity to large roughness parameters.  
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Fig. 4.7. The pairs of EOF scores needed to reconstruct the original −!!". The EOF 1 
score is a monotonic function of particle roughness parameter !!. The EOF 2 score 
reaches a minimum at particle roughness parameter of !! = 0.1.  

For Model B, the EOF analysis is applied to the combined function of ! and 

−!!" between 90° and 160° with a normalization by the average scattering intensity in 

the interval: 

 ! = ! Θ sinΘ!Θ
!"#°

!"°
 (4.6) 

The first and second EOFs together cover 88.4% of the entire variation of ! and −!!" in 

the scattering angle range from 90° to 160°. This implies that the following 

approximation is valid in the scattering angle range 90° < Θ < 160°. 

 
! Θ
ρ = !! !! !! Θ + !! !! !!(Θ)

 
(4.7) 

 −!!" Θρ = !! !! !! Θ + !! !! !!(Θ)
 

(4.8) 
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where Θ is the scattering angle, !! Θ  and !! Θ  are the first and second EOFs of the ! 

part of the combined EOF,!!! Θ  and !! Θ  are the first and second EOFs of the −!!" 

part, and !! !!  and !! !!  are weights for EOFs (EOF Scores). Since the EOF 

analysis is applied to the combined function !,−!!" , EOF scores !! and !! are 

common for ! and –!!". The EOF scores are shown in Fig. 4.8. A fan-like shape 

indicates that phase functions become similar when the degree of surface roughness 

increases.  

Since the phase matrix follows a linear mixing rule, ! and −!!" of a mixture 

containing multiple degrees of roughness is also approximated by Eqs. (4.7) and (4.8). 

For example, a mixture of MODIS Collection 6 particle (!! = 0.5) and moderately 

roughened particle (!! = 0.03) produces EOF scores (!!, !!) on a straight line between 

(!!(0.5), !!(0.5)) and (!!(0.03), !!(0.03)). Constructing a continuous parameter space 

using EOF scores (!!, !!) is powerful because the method guarantees that the parameter 

space contains any mixture of prescribed shapes or degree of roughness.  

When the normalization in Eq. (4.6) is used, the original phase function is 

decomposed into EOF scores (!!, !!), and mean backward scattering (!). Figure 4.9 

shows the correlation between EOF 1 Score and mean backward scattering. Three 

branches are clearly evident for smooth particles, and for a roughened particle, !! and ! 

are approximately on a straight line. 
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Fig. 4.8. The EOF scores of hexagonal column and plate particles. The aspect ratio is 
varied from 1/9 to 9, and surface roughness is varied from !! = 0.01 to 1. Each line 
corresponds to one aspect ratio, and the green line corresponds to long columns, yellow 
lines correspond to compacts columns, and red lines correspond to plates. The end of 
each line with a circle representsthe least roughened particle (!! = 0.01), and the end 
without a circle represents the most roughened particle (!! = 1) 

 

Fig. 4.9. The EOF 1 score and mean backward scattering (!). Color coding is the same 
as in Fig. 4.8. 
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4.3.2 Stage 1-2: Construction of the forward model 

The particle shape is now parameterized by the combination of two EOF scores 

and mean backward scattering as (!!, !!,!). The additional parameters that are needed 

for the simulation of the POLDER observations are cloud top pressure and the cloud 

optical thickness. If the polarization-only analysis is conducted for optically thick 

clouds, the effect of optical thickness can be ignored since the polarized reflectivity 

saturates at a value of about ! = 5. 

The cloud top height influences the retrieval through atmospheric Rayleigh 

scattering above the cloud. Above-cloud Rayleigh scattering has previously been used to 

infer cloud top pressure from polarimetric measurements (e.g., Buriez et al., 1997), with 

results comparable to those from O2-A band retrievals and ISCCP (Parol et al., 1999). 

With the POLDER instruments, Rayleigh scattering is primarily detected as a spectral 

and directional difference of polarized reflectivities. Figure 4.10 shows the change of 

!!" at 0.865 µm, as a function of scattering angle in response to a 300 hPa change in 

cloud top pressure (i.e., from 200 to 500 hPa, the red line). The dashed green line shows 

the change due to roughness parameter difference (from !! = 0.15 to 0.5, the dashed 

green line) for Model A. The effects of cloud top pressure and roughness parameter 

changes on !!" have different directional patterns but comparable magnitudes. Variation 

of the cloud top pressure must therefore be well constrained or retrieved simultaneously 

when attempting to infer the roughness parameter. In this study, cloud top pressure is 

simultaneously retrieved in Section 4.4, while the cloud top pressure from MODIS is 

used in Section 4.5. 
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Fig. 4.10. The impact of particle roughness parameter change (!! = 0.15 → 0.5) and 
cloud top pressure change (200 → 500 hPa). The magnitudes of the differences are 
comparable while the directional patterns are different. In this plot, the solar zenith angle 
is 54° and the viewing zenith angle is 30°. 

For the application of the maximum likelihood estimation (Section 4.3.3), a 

forward model that is fast enough to be embedded in the inversion algorithm is needed. 

From the discussion in Section 4.3.1, the inverse problem is formalized as follows: (1) 

the parameters are the EOF 1 and EOF 2 scores, cloud top pressure, mean backward 

scattering (optional), and cloud optical thickness (optional); and (2) observation data are 

POLDER total and polarized reflectivity values. To satisfy the requirements for 

numerical efficiency, the present forward model is based on look up tables. The adding-

doubling radiative transfer program is used to compute !!" for every phase matrix, 

cloud top pressure, and cloud optical thickness. The result at a specific viewing 
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geometry (denoted by subscript !), a mean backward scattering (denoted by subscript !), 

and an optical thickness (denoted by subscript !) is parameterized by a simple linear 

regression model defined as: 

 !!" !,!,! = ! !,!,! + ! !,!,! !! + ! !,!,! !! + ! !,!,! !!"#
 

(4.9) 

where !! and !! are EOF scores obtained in Sect. 4.3.1, !!"# is the cloud top pressure, 

and !(!,!,!),!!(!,!,!), and !(!,!,!) are regression coefficients. The viewing geometry is 

gridded as follows: solar zenith angles from 0° to 81°, viewing zenith angles from 0° to 

75°, and relative azimuth angles from 0° to 180°, with an interval of 3° for each. The 

regression is repeated for seven atmospheric scattering optical thicknesses above the 

cloud and 40552 viewing geometries. With this forward model, once cloud top pressure, 

cloud optical thickness, EOF scores, and mean backward scattering are given, !!" can be 

obtained for each specific viewing geometry and wavelength. When a set of EOF scores 

(!!, !!) is not exactly at the values corresponding to the ten prescribed phase matrices, 

the forward model linearly interpolates the polarized reflectivity. We confirmed that the 

interpolation produces a reliable polarized reflectivity simulation for a phase matrix of 

intermediate roughness and a mixture of phase matrices. 

The forward model constructed in this way is accurate enough to solve our 

inverse problem. I demonstrate this by taking the Model A as an example. A typical 

difference between an exact calculation and our forward model is shown in Fig. 4.11 for 

Model A. The overall accuracy is within 1×10!! in terms of !!" and the peak-to-peak 

variation is 5×10!! even in the worst case (!! = 0.03). The overall error of 1×10!! 
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implies that the model bias is less than 10% of the observation error given by 

( var(!!") = 1.35×10!! = 1.16×10!!!). The bias may be detected in the residual of 

the inversion, but the influence on the roughness inference is negligible. 

 

 

Fig. 4.11 Forward model error in !!". Difference in !!" between exact radiative transfer 
calculations and our simplified forward model are plotted. At almost all angles, the 
difference is less than 1×10!!. The polar plot shows the distribution of bias when the 
particle roughness parameter is !! = 0.15. The bias is a function of scattering angle. 
However, the magnitude of error is acceptably small compared to the random 
observational error. 

In calculating cloud reflectivity, a single-layer homogeneous cloud is assumed, 

and no aerosol is assumed to be present above and below clouds. As optically thick ice 

clouds occur in the upper troposphere, the radiometric contribution from lower 
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tropospheric aerosols is neglected. For the same reason, the surface is assumed to be 

dark. There may be an influence from aerosols above the cloud layer, such as transported 

mineral dust and stratospheric sulfates, but we disregard them to be consistent with 

previous studies. The influence of such aerosol layers on inferences of cloud properties 

is beyond the scope of this study. 

For the reflectivity calculations, the adding-doubling radiative transfer program 

formulated by de Haan et al. (1987) with significant improvements by Huang et al. 

(2015) is used. The first-order scattering is calculated analytically and combined with the 

multiple scattering results from the adding-doubling model, following the TMS method 

(Nakajima and Tanaka, 1988). Further, the cloud reflectivity is multiplied by the 

transmissivity that changes due to ozone absorption for Model A retrieval. The forward 

model outline is summarized in Table 4.1. 

 

Table 4.1. Forward model settings and retrieval configurations. 
Parameters Model A (Section 4.4) Model B (Section 4.5) 
Particle Shapes Column Aggregate Hexagonal Columns and 

Plates 
Light Scattering Calculation IGOM + ADDA IGOM + IITM 
Particle Size Distribution Gamma (!!"" = 0.1) Gamma (!!"" = 0.1) 
Effective Diameter !!"" = 60 µm !!"" = 60 µm 
Scattering Angle 60° to 160° 90° to 160° 
Variance of EOF 1 and 2 99.3 % 88.4% 
Parameterization !!, !!  !!, !!,!  
Cloud Optical Thickness Fixed at ! = 5 Retrieved 
Cloud Top Height Retrieved Provided from MODIS product 
PARASOL Channels 3 Polarization 

channels 
1 Non-polarization + 1 
polarization channels 
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4.3.3 Stage 2-1: Satellite data 

This study uses the single-pixel data set in the PARASOL Level 1B product. The 

nominal resolution of the nadir pixel is 6 km ×"6 km. In the retrieval described in Section 

4.4, data from three polarization channels (0.49 µm, 0.67 µm, and 0.865 µm)  are used, 

while one polarimetric channel (0.865 µm) and one non-polarimetric channel (0.865 µm) 

are used in the retrieval in Section 4.5. In addition to the PARASOL reflectivity data, 

data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and 

Atmospheric Infrared Sounder (AIRS) sensors aboard the Aqua satellite are used as 

ancillary data. The Aqua and PARASOL satellites were flying in formation between 

2005 and 2009. 

The MODIS Collection 6 Level 2 cloud product (MYD06) provides cloud top 

temperature and thermodynamic phase that are used to select the pixel suitable for the 

analysis, and AIRS Level 3 data provides a monthly mean ozone concentration that are 

used to account for absorption by ozone that reduces reflectivity at visible wavelengths. 

The PARASOL Level 1B radiometric data is first collocated with the MODIS 

Level 2 cloud product (Platnick et al., 2017) to select pixels containing ice clouds. Only 

PARASOL pixels that have corresponding MODIS observations are selected and filtered 

by the criteria summarized in Table 4.2. The filtering process is utilized to avoid cloud 

edge contamination, to avoid supercooled water droplets, and to select pixels where 

clouds are optically thick. The selection criterion of 208 K used in Model A is a 

threshold used to identify convective precipitation in the tropics (Mapes and Houze, 
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1993). The analysis is applied only over oceans so the influence of surface reflection is 

minimal. 

A “pixel” in the PARASOL Level 1 product contains reflectivity data observed 

from up to 16 viewing angles. An individual reflectivity value stored in a pixel is called 

a “view”, and we select valid views using criteria on scattering angle and sunglint angle 

(see Table 4.2). When five or more valid views are contained in a pixel that satisfy all 

pixel criteria previously mentioned, the pixel is marked as valid, and the roughness 

inference is attempted. 

 

Table 4.2. PARASOL pixel and view selection criteria. 
Parameters Applied to Model A Model B 
MODIS Infrared Cloud Phase Pixel Ice Ice 
PARASOL Ocean/Land Flag Pixel Ocean Ocean 
Number of Valid Views Pixel At least 5 At least 5 
Brightness Temperature at 11 µm Pixel less than 208 K N/A 
Heterogeneity Index !! Pixel N/A Less than 5 
Scattering Angle View 60° to 160° 90° to 160° 
Sunglint Angle Threshold View 30° 35° 

 

 

4.3.4 Stage 2-2: Maximum likelihood estimation 

In the second stage of the two-stage retrieval, the retrieval parameters are 

determined so that the forward model most closely simulate the satellite measurements. 

The simple but powerful maximum likelihood method with a normal error distribution is 

appropriate for our problem because we have little knowledge about the distribution of 
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parameters (EOF scores). As each pixel typically contains five to eight valid views at 

two or three channels, the number of observations in each pixel ranges from 10 to 24. 

The standard deviation (SD) and correlation (Corr) of inferred parameters are 

calculated in the framework of maximum likelihood estimation, and used to avoid under-

constrained inferences. The pixel is rejected if 

!" !! > 0.02, !" !! > 0.02,!"## !!, !! > 0.3 for Model A, and !" !! >

0.2, !" !! > 0.2,!"## !!, !! > 0.3for Model B. The standard deviation and the 

correlation depend strongly on the observation geometry and particle model and are 

almost independent of the observed polarized reflectivity. Therefore, this rejection 

process can be interpreted as the refinement of pixels based on the information content 

to achieve a reliable inference. 

The error distribution is confirmed to be normal (see Section 4.2.2), so if the 

problem is not strongly nonlinear, the parameters’ error distributions are expected to be 

normal as well (Rodgers, 2000). As expected, Fig. 4.12 demonstrates that the application 

of the maximum likelihood method with synthetic !!" data results in a symmetric 

distribution about the EOF 1 score corresponding to the true roughness parameter 

!! = 0.15. The distribution is not strictly normal because the number of observations in 

each pixel varies, but the error distribution of each pixel is theoretically derivable, as 

well as the confidence interval. The detailed description of Fig. 4.12 is provided in 

Section 4.4.1. 
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Fig. 4.12. The distribution of inferred EOF 1 scores for synthetic data. The solid bars 
correspond to retrieval without random measurement noise and the hatched bars 
correspond to retrieval with measurement noise.  The distribution for the noise-added 
synthetic data is symmetric about the EOF 1 score corresponding to the true roughness. 
The median of EOF 1 score is -0.00336, corresponding to roughness parameter of 
!! = 0.14. 

4.4 Results from fixed-shape roughness retrieval (Model A) 

4.4.1 Interpreting EOF 1 scores as roughness parameter 

As the EOF 1 score is a monotonic function of the roughness parameter and 

explains most of the −!!" variation (85.6%), it can be considered as an effective 

roughness parameter for the column aggregate shape. The relation between EOF 1 scores 

and the natural logarithm of roughness parameters is nearly linear (Fig. 4.13), indicating 
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that the roughness parameter can be subsequently inferred after the inference of the EOF 

1 score. The straight line in Fig. 4.13 is the regression line defined in the form: 

 
!! = exp −115.755!! − 2.3543 .

 
(4.10) 

As the roughness parameter computed from Eq. (4.10) does not account for the variation 

of EOF 2 score, it is inaccurate for the mixture of particles containing multiple degrees 

of roughness. Equation (4.10) is introduced to compare our retrievals to the conventional 

discrete parameter space. 

 

 

Fig. 4.13. The relation between the particle roughness parameter and the EOF1 score. 
The natural logarithm of the particle roughness parameter is nearly linear to the EOF 1 
score. This implies that the particle roughness can be directly inferred from the EOF 1 
score. 

An example of the synthetic retrieval is shown in Fig. 4.12. The generation of 
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polarimetric channels (0.49 µm, 0.67 µm, and 0.865 µm) are used. The synthetic data is 

generated by adding random noise following the normal distribution with error variance 

1.35×10!!  (PARASOL noise level determined in Section 4.1.2). The median of the 

inverted EOF 1 score is –0.00336 and the corresponding roughness parameter is 

!! = 0.14. The interquartile range of the EOF 1 score distribution is 

−0.01146: 0.00476 , which corresponds to the roughness parameter range of 

0.05: 0.36 . The result indicates that our approach has a practical skill in estimating the 

particle roughness parameter out of observations superimposed with noise. This 

resilience to the instrumental noise is a remarkable contrast with the traditional “best-fit” 

approach (cf. Fig. 4.1). 

The distribution of the !! values for the synthetic retrieval is presented in Fig. 

4.14. The !! value is a variance-normalized residual squared sum that is defined for 

each pixel, and follows the !! distribution with degrees of freedom of !! if the 

inversion is successful, where !! is the observational degree of freedom minus degree of 

freedom of parameter (approximately, the number of observations minus 3 in the 

retrieval). As the !! distribution of !! degrees of freedom has a peak about !!, the 

distribution of the !! value indicates whether the inversion is successful. If the location 

of the peak of a distribution of !! values is smaller than !!, the observation error may 

be overestimated, and if the location of the peak is larger than !!, the observation error 

is underestimated, or the forward model does not represent reality (Rodgers, 2000). The 

distribution in Fig. 4.13 has a peak at about 12, and very few pixels have a !! value over 

40. This is a reasonable distribution because the number of observations (≈ !!) is about 
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15 to 24 for most pixels. Because the 95th percentile for the !! distribution with 24 

degrees of freedom is 36.42, it is no surprise that very few pixels have a !! value over 

40. 

 

 

Fig. 4.14. Frequency distribution of the !! values (variance-normalized residual square 
sum). The distribution has a peak at about 12, tapering to nearly zero at approximately 
40. This is a reasonable distribution because most pixels contain 15 to 24 observations. 

Figures 4.12 and 4.14 demonstrate the validity of our inference framework under 

an idealized situation, where the error distribution and the true roughness parameter are 

constant. In application to actual satellite data, however, the true roughness parameter 

varies from pixel to pixel while the error distribution stays the same. Therefore, the 

distribution of the EOF 1 score must be more spread out as a result of convolution of the 

error distribution and the true roughness parameter distribution. In contrast, the !! 
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distribution is expected to be about the same. The result of the application to actual data 

is given in the next section. 

4.4.2 Roughness parameter of cold ice cloud over oceans 

With the cloud selection criteria listed in Table 4.2, 79192 pixels based on one 

month of collocated PARASOL/MODIS data over oceans during September 2005 were 

selected for inversion. The information content was sufficient for full analysis of 23359 

pixels, for which results are presented in this section. 

The histogram of the inferred EOF 1 score is presented in Fig. 4.15 for the 

extratropical (latitude > 30°) oceans. The width of the histogram in Fig. 4.15 is broader 

than the monodispersive roughness case (Fig. 4.12), indicating significant variability in 

the microphysical properties of clouds. The median of the distribution is –0.0293, 

corresponding to a surface roughness parameter of 2.82. The interquartile range of the 

EOF 1 score is [–0.0429:–0.0165], implying 50% of the data is within the roughness 

parameter (!!) range of [0.65:13.6]. The result supports the use of the roughened 

particle model in extratropical ice cloud retrievals as suggested by previous studies. 

While our analysis is limited to very cold ice clouds over ocean, the validity of using 

roughened crystals in the MODIS Collection 6 ice model is supported, although further 

explorations into warmer and optically thinner clouds are desirable. In general, cloud 

particles become more complex as the cloud temperature increases (Heymsfield, 2002), 

thus we expect more roughened particles in warmer clouds that are not included in our 

analysis. 
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Fig. 4.15. The distribution of EOF 1 scores (retrieval results). Data are obtained from 
cold ice clouds over extratropical oceans during September 2005. The median of the 
EOF 1 score is –0.0293, corresponding to a roughness parameter of 2.82. Consistent 
with previous studies, roughened particles better simulate the measured polarized 
reflectivity. 

 

Fig. 4.16. Distributions of !! values in the tropics and extratropics. The distribution of 
the !! value in the tropics (b) implies that the forward model is not correctly simulating 
the reflectivity in the tropics, while the distribution of the !! value in the extratropics (a) 
indicates successful inversion. 
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The distributions of the !! value in the tropics and extratropics are separately 

presented in Fig. 4.16. As discussed in the previous section, the distribution of !! values 

indicates the validity of the inversion. While the distribution of the !! values in the 

extratropics shows reasonable behavior (Fig. 4.16a), the distribution of the !! values in 

the tropics has a very long tail with the mean !! being 59.7, which is unacceptably large 

(Fig. 4.16b). This long tail implies that our forward model does not properly reproduce 

the observed !!! field in the tropics, presumably because some underlying assumptions 

are not appropriate or the information content is not enough. Some possibilities that 

violate our underlying assumptions include sub-pixel scale cloud heterogeneity, the 

presence of ice particles with other habits or aspect ratios, their vertical heterogeneity, 

cloud 3-D effects, and the effect of aerosols.  

4.4.3 Unexpectedly large roughness values in the extratropics 

As the roughness parameter of 2.82 lies outside of our prescribed roughness 

parameter range (0 to 0.7), it is an estimate by extrapolation. Yet, this projection of 

roughness parameter implies that the conventional degree of roughness may not be 

sufficient to represent actual cloud particles with the aggregate column model. The 

proportion of pixels that contains inferred roughness parameter !! > 0.7 is 74%, which 

also indicates the limit of this particle shape. As the accuracy of roughness 

approximation for such a large roughness parameter is questionable, a particle shape that 

can fit observations with less intense roughening may be suitable for the representation 

of natural clouds. 
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To attribute the cause of unphysically large roughness value in the extratropics, 

the same retrieval process is repeated assuming three additional particle shapes. Figure 

4.17a shows the original inference with aggregate of columns shape, in which the 

observation density peaks away from the line connecting 10 points that corresponds to 

prescribed roughness values. The aggregate of plates (Fig. 4.17d) performs worst among 

the tested particles, and the solid bullet rosette shape (Fig. 4.17c) shows the largest 

overlap of parameter space and observation density. These results indicate that the  

 

 

Fig. 4.17. Distributions of EOF 1 and EOF 2 scores with different particle shapes. The 
observation frequency is shaded with color, and the solid line connects the EOF scores 
for 10 prescribed roughness values (circles). (a) The result of inference with aggregate of 
columns, (b) hollow column, (c) solid bullet rosette, and (d) aggregate of plates. 
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Fig. 4.18. CALIOP-filtered retrieval results. CALIOP data are used to filter out clouds 
with multiple layers or with aerosols above the cloud. The observation frequency is color 
shaded, and the EOF scores for column aggregate particles (circles) are connected by a 
line. This analysis is conducted on a different EOF space from Fig. 4.7. The minimum 
degree of roughness is !! = 0.03 and the maximum is !! = 1.0. To exclude optically 
thin clouds, pixels are selected if the CALIOP vertical feature mask product marks total 
attenuation above ground. No temperature threshold is applied. 

roughness retrieval is sensitive to an assumed particle shape. 

We also investigated the contamination by multi-layer clouds and aerosol above 

clouds by collocating the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 

vertical feature mask and cloud layer products. As September 2005, which is analyzed in 

this study, is before the launch of the CALIPSO satellite, we analyzed the collocated 

POLDER3-MODIS-CALIOP dataset in September 2006 in the extratropics. According 

to the CALIOP vertical feature mask, on the CALIOP track, about 20% of pixels that are 

colder than the brightness temperature threshold of 233K are possibly contaminated by 

either multi-layer cloud, aerosol above clouds, or a stratospheric feature. However, the 
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distribution of the retrieved EOF scores is approximately the same even when assuring 

the absence of aerosol above cloud and limiting the analysis to single-layer clouds (Fig. 

4.18). Therefore, we do not consider that aerosol contamination and multi-layer clouds 

introduce a large bias that brings our estimate out of the range of prescribed parameters. 

Removal of the multi-layer clouds helps to reduce the number of pixels with very large 

!! values.  

4.5 Results from variable-shape analysis (Model B) 

Finding that the column aggregate model does not necessarily perform the best 

for cold extratropical clouds over oceans as described in Section 4.4, I apply the two-

stage method to a larger parameter space. The parameter space in Model B is constructed 

to cover the hexagonal column and plate shapes (aspect ration from 1/9 to 9) with 

surface roughness between !! = 0.01 to 1. Single-element hexagonal column particles 

are selected because previous studies show that the phase functions of a single-element 

particle and the aggregate of it look similar (Um and McFarquhar, 2007, 2009; van 

Diedenhoven et al. 2012). However, the mean backward scattering of the aggregate 

shape is usually stronger and the asymmetry parameter is smaller. To incorporate the 

effect of aggregation, Model B retrieves the mean backward scattering simultaneously. 

Since a sensitivity study showed that the information content is not sufficient to retrieve 

three parameters only with polarization channels, I added a non-polarization channel. In 

addition, two changes are made to the retrieval system: (1) Cloud top pressure is no 

longer a retrieval parameter and is extracted from the MODIS cloud product. This 

simplifies the retrieval system so that it uses only one channel (0.865 µm) with and 
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without polarization. (2) The ozone absorption is not varied because the effect is 

negligible for the 0.865 µm channel. 

4.5.1 Retrieval results 

Figure 4.19 shows the retrieval results with Model B in the extratropics and in 

the tropics. The extratropical result for EOF 1 Score (!!) and EOF 2 Score (!!) is 

centered near the !!, !!  corresponding to a long column particle (aspect ratio 1), as 

shown in Fig. 4.19(a) with surface roughness !! = 0.2 (between 0.1 < !! < 0.5). 

However, the distribution of (!!,!) in Fig. 4.19(b) is along the straight line for severely 

roughened particles. This result presumably indicates that the anisotropic reflection from 

the cloud is best simulated with the long column particles, but the observed mean 

backscattering is stronger than the computation with long column particles. One possible 

interpretation of this result is the presence of solid bullet rosette particles or aggregate of 

long column particles that have higher mean backward scattering than the single-element 

column particles. Another possibility is that the retrieval is contaminated by the factors 

that are not accounted for in the current framework of the analysis.  

The tropical data in Fig. 4.19 (c,d) has the observation density peak outside of the 

prescribed parameter range, and implies that the forward model does not represent the 

measurement properly, or the retrievals have failed because of the limited information 

content. The sampling of phase functions in the tropics are limited to ! > 110° as 

indicated in Figure 4.20. Figure 4.21 shows that the first and second EOFs are smooth 

increasing and decreasing functions at ! > 130°, and there is a possibility that some 
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measurements cannot tell the difference between two EOFs. The failure in the tropics is 

consistent to the retrieval in Model A. 

 

 

Fig. 4.19. Retrieval results for Model B (hexagonal column and plate particles with 
varying degree of surface roughness). (a) and (b) are for the extratropics, and (c) and (d) 
are for the tropics. 
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Fig. 4.20. The distributions of scattering angle sampling in the tropics and extratropics. 

 

Fig. 4.21. First and second EOFs for Model B. Solid lines are for the phase function (!) 
and the dotted lines are for –!!" element of the phase matrix (primarily responsible for 
the polarization from the cloud). 

4.5.2 Interpretation of the discrepancy 

Interpretation of the extratropical data is attempted in this section with focuses on 

the cloud 3-D effect and horizontally oriented particles. The cloud 3-D effect decreases 

the reflectivity strongly when the scattering angle is small. This is because 



 106 

measurements at small scattering angles are made when the instrument looks at the 

shadowed side of the cloud. This results in the overestimation of EOF 1 values because 

the first EOF is an increasing function of scattering angle, as shown in Fig. 4.21. 

Assuming that the polarized reflectivity is less affected by the 3-D effect, EOF 2 may 

also be overestimated to keep the polarized reflectivity pattern. Figure 4.22 supports this 

hypothesis as the center of the distribution moves to large !! and !! when !!>2.5. 

However, even for !! < 0.5, the discrepancy between !!, !!  and !!,!  distributions 

are noticeable (Fig. 4.22a, b). 

Another possibility is the effect of quasi-horizontally oriented particles. Natural 

ice particles are anticipated to be quasi-horizontally oriented because of aerodynamic 

forces (Sassen, 1980), and Noel and Sassen (2005) and Marshak et al. (2017) confirmed 

the presence quasi-horizontally oriented particles observationally. The effects of oriented 

particles to total and polarized reflectivity are studied by Masuda and Ishimoto (2004), 

and they conclude that the effect is significant near the direction of specular reflection 

even when the standard deviation of the tilt angle reaches 20°. Figure 5c in Masuda and 

Ishimoto (2004) demonstrates that the reflectivity increases in the direction of specular 

reflection, and decreases in other directions. The specular reflection in the extratropics 

occurs when the satellite looks toward the equator, and the scattering angle is 180°−

2!!. As the results in Fig. 4.19 (a,b) are for extratropical data in September, specular 

reflection occurs in ! < 120°. The direction of specular reflection is masked by the glint 

angle condition, and the suppression of reflectivity may result in the overestimation of 

!!. Previous studies show that the concentration of quasi-oriented particles increase with 
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Fig. 4.22. The extratropical retrieval results stratified by !! value.  
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Fig. 4.23. The extratropical retrieval results stratified by cloud top temperature. The 
cloud top temperature is from the MODIS Level 2 cloud products. 
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increasing temperature, and the temperature stratification (Fig. 4.23) shows the same 

trend from what is anticipated from the effect of quasi-horizontally oriented particles. 

However, the fraction of quasi-horizontally oriented particles for cold ice clouds (i.e. 

viewed by satellite sensors) is less than 1% (Noel and Sassen, 2005; Zhou et al. 2012), 

and the actual magnitude of the effect is uncertain. When the effect of quasi-oriented ice 

particle is small, Figure 4.23 indicates that the surface roughness increases with 

increasing cloud top temperature. 

4.4 Conclusions 

In this study, the particle roughness parameter of thick ice clouds over oceans is 

inferred by employing a new framework that is resilient to the observational error. The 

distinct feature of the framework is the continuous parameter space that is constructed 

with an empirical orthogonal function (EOF) analysis. Two EOFs are found to be 

sufficient to explain the variation of −!!" with a changing particle roughness parameter, 

substantially reducing the number of parameters for the forward model.  

From unpolarized cloud reflection at a scattering angle of 170°, the observational 

error of the PARASOL data is empirically estimated. Supported by the error analysis 

with parametric bootstrapping, the maximum likelihood method is applied to the inverse 

problem. The method provides error estimates and correlations for inverted parameters, 

which are unavailable with the “best-fit” approach used in the previous studies. To 

correctly incorporate the effect of atmospheric Rayleigh scattering, the cloud-top height 

is inferred simultaneously. 
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The application of the present method to cold ice clouds over extratropical 

oceans results in a roughness parameter of 2.82, implying that the use of the roughened 

particle model is suitable for cloud property retrievals. Additional analysis with three 

other particle shapes indicates that solid bullet column models may be more appropriate 

to represent cold ice clouds over extratropical oceans. 

With the analysis employing extended parameter space, moderately to severely 

roughened (0.1 < !! < 0.5) long column particles represent the shape of the observed 

phase function the best, while the mean backward scattering may be underestimated. The 

cloud 3-D effect may affect the retrieval results, but aggregates of long column particles 

or solid bullet rosette shapes are recommended to mimic clouds with 1-D radiative 

transfer calculations. Slight temperature dependence of the shape is seen, implying 

surface roughness increases with increasing surface roughness with increasing cloud top 

temperature. 
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5 ESTIMATION OF PHASE FUNCTION 

 

The implication from the EOF-based two-stage approach in Section 4 is that ice 

cloud reflectivity in the extratropics shows maximum consistency with roughened 

hexagonal long column particles, and presumably an aggregate of these, including bullet 

rosettes. However, it is not appropriate to conclude that ice clouds consist of those 

particles because the center of the observation density distribution is out of the 

prescribed range of parameters. The results indicate that the phase function may not be 

completely reproduced by the mixture of hexagonal column and plate particles. In 

addition, the number of reliable data in the tropics is limited. 

The rest of section introduces a new phase function inference technique based on 

approximate radiative transfer calculations and presents the result of inference from 

Multi-angle Imaging Spectroradiometer (MISR) data to supplement the results obtained 

in Section 4. 

5.1 Introduction 

This section revisits notable previous studies related to the validation of particle 

model using multi-angle intensity measurements from satellite sensors. I illustrate that 

the particle model validation techniques developed in early years require the knowledge 

of cloud optical thickness, but the later techniques do not. The new inference technique 

described later is based on these techniques, but further the theory and approximation to 

infer shape of phase functions. 
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An early application of multi-angle measurements to infer an appropriate particle 

shape was attempted by Baran et al. (1998) with the ATSR-2 instrument. They utilized 

the ratio of reflectivity from two viewing angles, and found that a polycrystalline shape 

is the most appropriate among the shapes they tested. Chepfer et al. (1998) conducted a 

similar study with the airborne version of the Polarization and Directionality of the 

Earth’s Reflectance (POLDER) sensor. 

These authors chose some realistic particle shapes to compute the single 

scattering albedos and phase functions, and used the computed single scattering 

properties to compute the reflectivity at multiple viewing directions with radiative 

transfer models. They compared the results to the measurements, and the best-fit particle 

model was considered to be the most appropriate particle shape for the ice cloud. Their 

approach requires prior knowledge about the optical thickness. 

To validate the consistency of multi-angle intensity simulations with 

measurements without prior knowledge of the optical thickness, Doutriaux-Boucher et 

al. (2000) proposed the spherical albedo difference (SAD) method. The method defines 

SAD as the deviation of retrieved spherical albedo in a particular viewing direction from 

the mean averaged across all viewing directions. As the retrieved spherical albedo 

depends on an assumed phase function in the forward radiative transfer calculation, the 

SAD values indicate the difference of anisotropy between the model and measurements. 

If the assumed phase function is consistent with the actual phase function the SAD 

values become zero at all scattering angles. Utilizing the SAD method, later studies with 

the POLDER sensor and the Multiangle Imaging Spectroradiometer (MISR) sensor 
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show that irregular particle shapes or particles with a high degree of surface roughness 

are representative models for ice particles at the global scale (Chepfer et al., 2001; C.-

Labonnote et al., 2001; Baran and C.-Labonnote, 2006, 2007; McFarlane et al., 2005). 

The basic objective of work presented in this section is to semi-analytically 

estimate the phase function that explains the ice cloud reflectivity observed by the MISR 

over ice-free ocean and to determine the combination of particle shape and the degree of 

surface roughness that realizes such phase function. The MISR has 9 fixed “push 

broom” cameras that record lines of pixels across the satellite track (Diner et al. 1998). 

The cameras measure the intensity of reflected sunlight at each location over 

approximately 7 minutes at these angles along the ground track: 70.5°, 60°, 45.6°, and 

26.1° forward (cameras Df, Cf, Bf, Af), nadir (camera An), and 26.1°, 45.6°, 60°, 70.5° 

aft (cameras Aa, Ba, Ca, Da). Camera pixels (275 m at nadir) are averaged over 4 × 4 

pixels as data pixels (1.1 km at nadir).  

A semi-analytical method described in this study is a modified version of the 

SAD method and inspired by a property of SAD that it is related to the difference 

between assumed and actual phase functions. This paper focuses on the results from the 

MISR sensor, but the same principle is applicable to any multi-angle intensity 

measurements. Section 5.2 introduces the principles of our phase function estimation. 

Section 5.3 describes the implementation of the principle, and Section 5.4 presents 

results from the application to MISR data. Discussions and concluding remarks are given 

in Section 5.5 and 5.6.  
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5.2 Principles of the phase function estimation 

The semi-analytical technique developed in this study estimates the phase 

function of a collection of ice particles in clouds. The fundamental assumption in the 

method is that in-cloud radiance is approximately a sum of the forward-traveling 

component and azimuthally-independent component. This assumption enables us to 

derive an analytical expression to estimate an unknown phase function as a difference 

from a known phase function. As the accuracy of the estimation is high when the known 

phase function is close to the unknown phase function, our retrieval system consists of 

three steps: (1) select satellite pixels that qualify for the estimation, (2) estimate the 

unknown actual phase function with precomputed 39 known phase functions in each 

viewing direction in every pixel, and (4) select the most appropriate phase function by 

checking the consistency at a large scale. 

In Section 5.2, the derivation of the analytical expression is discussed, whereas 

the application of the method to the actual data is documented in Section 5.3. Section 

5.2.1 describes the approximation of in-cloud radiance we use in our method, and 

Section 5.2.2 derives a fundamental formula of our phase function estimation. 

5.2.1 Approximating radiance 

Under the assumption of a single layer ice cloud with optical thickness !!  in a 

plane parallel homogeneous atmosphere, the optical thickness and the measured satellite 

radiance satisfy the formal solution of the radiative transfer equation as follows: 

 ! ! 0,Ω − ! !! ,Ω !!
!!
! = !!

!!
! !
4! ! !!,Ω′ ! Ω,Ω′ !Ω′

!!

!!

!
!!!, (5.1) 
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where ! is the cosine of the viewing zenith angle and ! !!,Ω  is the radiance 

propagating into the viewing direction Ω in the cloud at the optical depth !!. The phase 

function of a collection of cloud particles is ! Ω,Ω! , and the single scattering albedo is 

!. On the right-hand side, the double integral represents a 2-D integration with respect 

to all directions Ω!, and the outermost integral represents an in-cloud integration with 

respect to optical depth !!. All quantities with a prime are integration variables. Note that 

the estimated phase function from this study is an “effective” phase function that 

includes contributions from cloud heterogeneity and 3-D effects because the framework 

of this theory is based on plain-parallel homogeneous atmosphere. 

We hereby introduce an approximation that the in-cloud radiance is the sum of a 

forward-traveling component and azimuthally-independent component. This 

approximation is expected to be accurate within and below the diffusion domain of 

clouds (azimuthally-independent component) as well as at the top of clouds where strong 

light beam is concentrated in the solar direction due to the strong forward scattering by 

cloud particles (forward-traveling component). With this approximation, the in-cloud 

radiance in an arbitrary direction Ω! becomes: 

! !!,Ω! = ! !!, !! 4!" Ω!,Ω! ! !!, !! + 1− ! !!, !! !! !! !! !!
!

!!!

+ !!, 

(5.2) 

where ! !!, !!  is the approximate actinic flux, Ω! is the solar direction, !! is the cosine 

of the solar zenith angle, ! !!, !!  is the partitioning factor that divides the in-cloud 
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radiance into the forward-traveling term and the azimuthally-independent term, !! !!  is 

the Legendre polynomial of degree !, !! !!  is the expansion coefficient !! = 1 , and !! 

is the error of this approximation. ! Ω!,Ω!  is the Dirac delta function satisfying 

 ! Ω! = 1
4! 4!" Ω!,Ω! ! Ω!

!!
!Ω′ (5.3) 

for an arbitrary function ! Ω . Integrating both sides of Eq. (5.2) with respect to Ω!, we 

find that that the function ! !!, !!  is indeed the approximate actinic flux: 

 
1
4! ! !!,Ω!

!!
!Ω! = ! !!, !! + !!

!!
!Ω!. (5.4) 

In summary, the approximation in Eq. (5.2) expresses the in-cloud radiance at optical 

depth !! as a product of approximate actinic flux ! !!, !!  and the linear combination of 

a delta function and an azimuthally-independent function. 

Substituting Eq. (5.2) into ! !!,Ω!  in the double integral of Eq. (5.1), the double 

integral can be rewritten as follows: 

1
4! ! !!,Ω′ ! Ω,Ω′ !Ω′

!!

= ! !!, !! ! !!, !! ! Ω,Ω!

+ ! !!, !! 1− ! !!, !! × !! !!
4! !! !!

!

!!
! Ω,Ω′ !!!

!!

!
!!!

!

!!!

+ !!!  

(5.5) 

where !! is the azimuthal component of integration variable Ω! and 
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!!! =
1
4! !!! Ω,Ω′ !Ω′

!!
. (5.6) 

The phase function ! Ω,Ω′  can be expanded with associated Legendre polynomial by 

using the addition theorem as follows: 

 ! Ω,Ω′ = !!
!

!!!
2− !!!

! − ! !
! + ! !

!

!!!
!!! ! !!! !! cos! ! − !! , (5.7) 

where !! is the expansion coefficient, !!! !  is the associated Legendre polynomials 

with degree ! and order !. !!! is the Kronecker delta (i.e. 1 when ! = 0, and 0 

otherwise). Only ! = 0 terms survive when Eq. (5.7) is integrated with respect to !! as 

appears in Eq. (5.5), i.e. 

! Ω,Ω′ !!!
!!

!
= 2! !!

!

!!!
!! ! !! !! . (5.8) 

Note that the associated Legendre polynomials on the right hand side of Eq. (5.7) is 

reduced to the Legendre polynomials in Eq. (5.8). With Eq. (5.8) and the orthogonality 

of Legendre polynomials, Eq. (5.5) can be rewritten as follows: 

1
4! ! !!,Ω′ ! Ω,Ω′ !Ω′

!!

= ! !!, !! ! !!, !! ! Ω,Ω!

+ ! !!, !! 1− ! !!, !!
!!

2! + 1!! !
!

!!!
!! !! + !!! . 

(5.9) 

Therefore, substitution of Eq. (5.2) into ! !!,Ω!  in the integral of Eq. (5.1) results in the 

following equation: 
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! ! 0,Ω − ! !! ,Ω !!
!!
!

= ! !!
!
!! !′, !! ! !′, !! ! Ω,Ω! !!!

!!

!

+! !!
!
!! !′, !! 1− ! !!, !!

!!
2! + 1!! ! !! !!

!

!!!
!!!

!!

!

+! !!
!
!!!!!!!

!!

!
. 

(5.10) 

Multiplying !/!! and extracting ! Ω,Ω!  out of the integral, Eq. (5.9) can be rewritten 

as follows: 

 
!"
!!

! 0,Ω − ! !! ,Ω !!
!!
! = ! !! , !, !! ! Ω,Ω! + ! !! , !, !! + !!, (5.11) 

where 

 ! !! , !, !! = !"
!!

!!
!!
!

!!

!
! !!, !! ! !!, !! !!! (5.12) 

 

! !! , !, !! = !"
!!

!!
!!
!! !!, !! 1− ! !!, !!

!!

!

× !!
2! + 1!! ! !! !!

!

!!!
!!!, 

(5.13) 

and !! is the solar irradiance at the top of the atmosphere. The function ! !! , !, !!  is 

called the amplification function because it determines the magnitude of the single 

scattering-like component of the measured reflectance, and the function ! !! , !, !!  is 

called the anisotropy function because it describes the anisotropy of the radiance that 

depends only on the solar and viewing zenith angles (not on relative azimuth angle). 
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Note that the error of fitting varies with direction, and error of fitting !! is related to !! 

by: 

 !! =
!
!!

!!
!
! !
4! !!! Ω,Ω′ !Ω′

!!

!!

!
!". (5.14) 

5.2.2 Improved phase function estimation 

In this section, we derive a fundamental formula used in our phase function 

estimation, utilizing the approximation introduced in Section 5.2.2. From here on, 

! !! , !, !!  and ! !! , !, !!  are written as ! !!  and ! !!  for simplicity, and all 

quantities with a dagger means that they are defined similarly to the non-daggered 

quantities but for a known phase function, instead of actual phase function.  

In the SAD analysis, we first retrieve the spherical albedo from a measurement in 

each viewing direction independently, assuming a phase function to be evaluated. 

Denoting the retrieved optical thickness from a measurement in direction Ω as !!! Ω , 

the retrieved spherical albedo can be written as!!! !!! Ω . Daggers are added because 

the optical thickness retrieval requires the knowledge of the phase function, and the 

results depend on the assumed phase function. The retrieved optical thickness and the 

relation between the optical thickness and spherical albedo depend on the assumed phase 

function. The mean of retrieved spherical albedos averaged over available angles is 

defined as the mean spherical albedo and written as !! = !! !!! Ω . The SAD value is 

the difference between the retrieved spherical albedo and the mean spherical albedo: 

!! !!! Ω − !!. While the SAD value is to some extent indicative of the difference 
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between assumed phase function and actual phase function, it cannot predict the actual 

phase function. 

We utilize the property of the SAD method that the mean spherical albedo !! is a 

good estimate of the true spherical albedo!! !! , where !!  is the actual optical thickness. 

As there is a one-to-one relation between the optical thickness and the spherical albedo 

for a given phase function (Doutriaux-Boucher et al. 2000), we can define the optical 

thickness at mean spherical albedo as !!! satisfying !! !!! = !!.  

Our approach uses the reflectivity at such cloud optical thickness and defines it 

as !!"#! Ω . From Eq. (5.11), we can write as follows: 

 !!! !!"#! Ω − !!! Ω !!
!!!
! = !! !!! !! Θ + !! !!! + !!!, (5.15) 

where !!! Ω  is the reflectivity of surface and atmosphere below clouds, and !! is an 

approximation error. On the other hand, Eq. (5.11) can be written as follws: 

 !!! !!"# Ω − !! Ω !!
!!
! = ! !! ! Θ + ! !! + !!. (5.16) 

Taking the difference of Eqs. (5.15) and (5.16),  

 

!!! !!"# Ω − !!"#! Ω

= !!! !! Ω !!
!!
! − !!! Ω !!

!!!
!

+ ! Θ − !! Θ !! !!! + ∆. 

(5.17) 

The first term on the right-hand side represents the difference of surface contribution, 

and this term is usually small for the MISR measurements over oceans at near infrared 
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wavelengths. The second term is the phase function difference with a amplification 

function !! !!! , and the last term is the contribution from the in-cloud radiance 

difference, i.e., 

 ∆!= ! !! − !! !!! + ! Θ ! !! − !! !!! + !! − !!! . (5.18) 

We find that the magnitude of ∆ is reduced by multiplying ! !!  by the mean backward 

scattering !: 

 ! = ! Θ !
!!"#

!!"#
cosΘ  (5.19) 

where Θ!"# = 90° and Θ!"# = 160° in this study. By multiplying !/! to ! Θ  in Eq. 

(5.16) and !!/!! to !! Θ  in Eq. (5.15), the rewritten form of Eqs. (5.17) and (5.18) are 

obtained as follows: 

 !!! !!"# Ω − !!"#! Ω = ! Θ
! − !

! Θ
!! !!!! !!! + ∆!"#, (5.20) 

where ! is the mean backward scattering of the actual phase function (unknown), !! is 

the mean backward scattering of the assumed phase function, and ∆!"# are defined as 

follows: 

∆!"#= ! !! − !! !!! + ! Θ
! !" !! − !!!! !!! + !! − !!! . (5.21) 

Note that in the actual retrieval, all functions without dagger (i.e. ! !! , ! Θ , ! !! , 

and !!) are true but unknown, so ∆!"# cannot be explicitly computed. The ∆!"# 

contains contributions from the difference of in-cloud radiance structure between 

assumed and actual clouds.  
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The retrieval errors are given by ∆!"#. Readers are reminded that the only 

differences between functions ! !! , ! !! , and !! appear in ∆!"# (see Eq. (5.21)), and 

even when the approximation in Eq. (5.2) introduces approximation error !!, the 

approach in this study is valid as long as a small change of phase function triggers a 

small change of !!. 

In this study, results at scattering angles between 100° and 160° are presented 

because our sensitivity study shows that Eq. (5.20) provides a reliable phase function 

estimate in this scattering angle range. Further study is needed to identify the relative 

contributions of each term in ∆!"# to the error outside of this range. 

5.3 Data and methodology 

This section describes the method of applying Eq. (5.20) to actual satellite data 

from the MISR sensor. As mentioned in Section 5.2, our phase function estimation 

consists of three steps: (Step 1) selection of satellite data that qualifies for the analysis, 

(Step 2) estimation of 39 actual phase function values corresponding to 39 precomputed 

phase functions, and (Step 3) selection the most appropriate phase function from the 39 

candidates. 

In Step 2, Eq. (5.20) is applied to actual satellite data, assuming ∆!"#= 0. This 

assumption is justified as long as (1) the actual phase function ! Θ  is close to the 

precomputed phase function !! Θ  and (2) the number of measurement directions is 

reasonably large. With ∆!"#= 0, Eq. (5.20) becomes: 

 
! Θ
! = !! Θ

!! + !!! !!"# Θ, !, !! − !!"#! Θ, !, !!
!!!! !!!, !, !!

. (5.22) 
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We apply this formula to estimate the actual renormalized phase function ! Θ /! from 

the precomputed renormalized phase function !! Θ /!! and measured reflectivities 

!!"# Θ, !, !! . 

The precomputed phase function !! Θ  is called a “base phase function” in the 

following sections. This is because the right-hand side of Eq. (5.22) can be seen as a sum 

of the renormalized “base phase function” !! Θ /!! and a correction term. Note that 

!!"#! Θ, !, !!  and !! !! , !, !!  in the correction term also depend on !! Θ /!!, as the 

dagger symbol indicates. Therefore, when a base phase function is given, a set of multi-

angle measurements provides an analytical estimate of the actual phase function through 

Eq. (5.22). We estimate the actual phase function corresponding to all 39 base phase 

functions in Step 2 and select the most appropriate base phase function in Step 3. 

This section describes the criteria of pixel selection, the method to compute 

quantities in Eq. (5.22) from actual satellite data, and the selection of the best base phase 

function. Section 5.3.1 outlines the satellite data we use and Section 5.3.2 explains how 

we select pixels suitable for the analysis. Section 5.3.3 describes the details of these 39 

base phase functions, and Section 5.3.4 illustrates how !! !! , !, !!  and !!"#!  are 

computed for a given base phase function. Finally, Section 5.3.5 describes how Eq. 

(5.22) is applied to the qualified satellite data and how the best base phase function is 

selected from 39 candidates. 

5.3.1 MISR-MODIS collocated data 

This study applies the phase function estimation method introduced in Section 

5.2 with practical refinements described in the following part of Section 5.3 to MISR 
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data, including the MISR Level 1 Radiance product and Level 2 Cloud Product 

(TC_CLOUD) for a one month period between September 1, 2013 and September 30, 

2013. The radiances are projected onto the reference ellipsoid, and co-registered so 

every pixel is observed from 9 different viewing directions. The stereo-photogrammetric 

height reported in the Level 2 product is used to correct the parallax in the Level 1 

product. The parallax corrected data is collocated to the Moderate Resolution Imaging 

Spectroradiometer (MODIS) Level 2 Cloud Product (Platnick et al., 2017) to provide 

additional information needed in the pixel selection. 

5.3.2 Selection of pixels 

Pixel selection consists of three stages. The first stage detects cloud ridges by 

finding radiometrically convex parts of clouds because the cloud 3-D effect is least 

evident in such parts, and the second stage limits clouds to be ice cloud over ice-free 

ocean between 60°S and 60°N. Finally, we confine our analysis to pixels observed with 

two cameras at the same scattering angle. As a result of this selection, 208,731 pixels in 

September 2013 are selected for analysis. 

Radiometrically convex and flat parts of clouds are first selected by applying a 

Sobel on Gaussian (SoG) filter and a Laplace on Gaussian (LoG) filter to the MISR 

bidirectional reflectance factor (BRF) times the cosine of the solar zenith angle (i.e. 

reflectance product, following the MODIS terminology). The SoG filter is used to select 

radiometrically flat parts of clouds, and the LoG filter is used to remove radiometrically 

concave parts of clouds. The standard deviation of both Gaussian filters is set to 2.0 
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pixels, and SoG < 0.06, LoG > -0.001 are used as thresholds. These threshold values are 

validated qualitatively by visual inspection of one day (15 orbits) of MISR data. 

The analysis is limited to the brightest cloud pixels (i.e. roughly corresponding to 

ridges of clouds) identified in this way, and among them, only ice cloud pixels over ice-

free ocean are selected. The selection is based on the surface flag in the MISR Ancillary 

Geographic Product and the Thermal Infrared/Visible combined cloud phase flag in the 

MODIS Level 2 Cloud product. To avoid contamination from inhomogeneous clouds, 

we select pixels with sub-pixel inhomogeneity index !! !(Liang et al. 2009) less than 1. 

The last refinement is motivated by the necessity to select the best base phase 

function from the 39 candidates. To do this by the method described later in Section 

5.3.5, we select pixels seen by two cameras at the same scattering angle. We call a pair 

of such cameras a base-finding pair. Because of the symmetric configurations of MISR 

cameras, pixels with base-finding pairs appear as multiple latitudinal bands, stretching 

primarily in the cross-track direction as shown in Fig. 5.1. As a pixel can have up to 4 

base-finding pairs, the 9 cameras provides 8, 7, 6, or 5 different scattering angles, and 

duplicated angles are used to identify the most appropriate base phase function. 

In some observation geometries, more than one base-finding pair is available. In 

such a case, we select the pair that does not involve the An (nadir-viewing) camera. If 

more than two pairs do not involve the An camera, the pair with the largest scattering 

angles is selected. 
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Fig. 5.1. Location of pixels with base-finding pairs. At yellow pixels, there is at least one 
base-finding pair (a pair of measurements with the same scattering angle). White texts 
beside yellow bands indicate camera combinations of base-finding pairs, and green lines 
and texts show latitude and longitude. The geometry data is from orbit 73105 
(September 15, 2013). 

5.3.3 Base phase functions 

The base phase function is the known phase functions utilized in the estimation 

of unknown actual phase function. The formal definition is given in the beginning of 

Section 5.3, as the precomputed phase function !! Θ  in Eq. (5.22). 
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The base phase functions are calculated by assuming the ice cloud particles are 

single hexagonal shapes. Light scattering calculations are performed to compute base 

phase functions at 39 aspect ratios varying from ! = 2!/! = 1/9 (long hexagonal 

column) to ! = 9 (thin hexagonal plate) with a constant surface roughness of !! = 0.1. 

The surface roughness (Yang and Liou, 1998) in this study is a surrogate for roughened 

surface textures and other imperfections that exist in natural ice cloud particles. The 

surface tilt method (Section 2.3.1) with Yang-1 distribution (Section 2.2.2) is used to 

simulate the surface roughness. 

This combination of particle shape, aspect ratio, and surface roughness parameter 

is selected to capture a wide range of actual phase functions with a minimum number of 

base phase functions derived from simple particle shapes. Surface roughness is assumed 

constant at !! = 0.1 because previous studies indicate that roughened particles provides 

more consistent multi-angle reflectivities than smooth particles, and our ! !! , !, !!  

depends primarily on aspect ratio and less on the surface roughness parameter. The 

moderate roughness !! = 0.1 is assumed rather than the severe roughness !! = 0.5 in 

the MODIS Colleciton 6 ice cloud model and the CERES Edition 4 ice cloud model so 

that the retrieval successfully covers a wide range of solutions centered at !! = 0.1 (i.e. 

either less roughened or more roughened). 

These base phase functions and corresponding single scattering properties are 

computed with the Improved Geometric Optics Method (IGOM; Yang and Liou, 1996) 

and the Invariant Imbedded T-Matrix (IITM) method (Bi and Yang, 2014). The IITM 

method is used for small particles with size parameter (! = !!!"#/!) less than 40, 
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where !!"# is the maximum dimension and ! is the wavelength, and the IGOM is used 

for larger particles. The edge effect is taken into account by the method described by 

Yang et al. (2013). A Gamma particle size distribution (!!"" = 0.1,!!"" = 60!!m) is 

assumed, but our sensitivity study shows that ! !! , !, !!  and ! !! , !, !!  are not 

sensitive to particle size variations for !!"" > 40!!m. 

5.3.4 Computing the amplification function “!!” and reflectivity “!!"#! ” 

In addition to base phase functions, the correction term in Eq. (5.22) requires the 

amplification function !! !! , !, !!  and the reflectivity at the mean spherical albedo 

!!"#! (Ω). Both quantities are computed from the results of rigorous radiative transfer 

simulations. For each base phase function, the radiance is computed with the adding-

doubling full vector radiative transfer model (Huang et al. 2015) with δ-M truncation 

(Wiscombe, 1977) and the TMS correction(Nakajima and Tanaka, 1988). No surface 

reflection and aerosols are assumed, so all reflected radiance is assumed to come from 

the ice cloud layer. The process described in this section is repeated for all 39 base phase 

functions, as !! and !!"#!  depend on the specific base phase function. 

5.3.4.1 Computing !! !! , !, !!  

As the amplification factor!!! !! , !, !!  is defined in the same way as in Eq. 

(5.12), a straightforward approach to compute !! !! , !, !!  is to directly integrate the 

product of actinic flux !! !, !!  and partitioning factor !! !, !!  vertically through a 

cloud. This approach is possible only when the angular profile of the forward peak is 

well simulated with the radiative transfer simulation. For large ice cloud particles, this 

usually requires a very large number of ray streams, and the computational cost is 
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prohibitively large with standard radiative transfer solvers. For this reason, we 

empirically fit !! !! , !, !!  with the simulated reflectivity, assuming empirical 

functional forms. 

When assuming there is no incident radiance onto the bottom of the cloud, and 

assuming a precomputed phase function !! Θ  in place of the actual phase function 

! Θ , Eq. (5.11) is equivalent to: 

 ! !!! Ω = !! !! , !, !! !! Θ + !! !! , !, !! + !!(!!)+ !!!. (5.23) 

We assume the following empirical functional forms: 

 !! !! , !, !! = !!!!!!! + !!!!! (5.24) 

 !! !! , !, !! = ! !!!!!!! + !!!!! + !!!!!

+ !!!!!!! + !!!!! + !!!!! 1
!!
− 1!

!
 

(5.25) 

 !!! = ! + !" cosΘ+ !!"# (5.26) 

where !!, !!, !!, !!, !!, !!, !!, !!, !!, !!, !!,! and ! are regression coefficients at cloud 

optical thickness !! , ! = !
!!
+ !

!  is the sum of the air mass factor including the 

incoming and outgoing ray directions, and !!"# is the fitting error. The functional forms 

defined in Eqs. (5.24), (5.25), and (5.26) are selected based on previous experimental 

fitting of !-stratified data with M-independent functional forms. By assuming !-

dependent functional forms, fitting becomes stable even in directions where the variation 

of the phase function is too small to accurately compute ! !! , !, !! . The accuracy of the 



 130 

fitting is better than 0.65% or 0.001 (in terms of reflectance product, !!!) for all particle 

shapes, all optical thickness values from 0.5 to 100, and all directions with ! < 7. 

 

 

Fig. 5.2. Air mass factor ! = !
! +

!
!!

 dependence of functions !! !, !!, !  and 

!! !, !!, ! + !! ! . A single column ice crystal with aspect ratio ! = !!
! = 1 and 

degree of surface roughness !! = 0.1 is used. Three cloud optical thickness values are 
assumed: ! = 2,5,10. 
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Fig. 5.3. Optical thickness dependence of functions !! !, !!, !  and !! !, !!, ! +
!! ! . A single column ice crystal with aspect ratio ! = !!

! = 1 and degree of surface 
roughness !! = 0.1 is used. Solar zenith angle is 33.56°, and three viewing zenith 
angles corresponding to MISR B, C, and D cameras are assumed: 44.52°, 60°, 70.53°. 

The fitted functions !! !! , !, !!  and !! !! , !, !!  primarily depend on cloud 

optical thickness and the air mass factor !. They are both monotonically decreasing 

functions of the air mass factor as shown in Fig. 5.2. Note in Fig. 5.2 that !! for !! = 5 

and !! = 10 are indistinguishable, whereas the separation of !! is clear. This is further 
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illustrated in Fig.5.3 While both !! and !! are non-decreasing functions of cloud optical 

thickness, the value of !! saturates out at about an optical thickness !! = 5. The 

implication of this saturation is that the magnitude of single scattering-like signal is 

constant at optical thickness 5 or greater, and the increase of cloud reflectivity depends 

on the azimuthally-independent term. This saturation appears to be analogous to the 

saturation of polarimetric reflectivity reported by Masuda and Takashima (1992) and 

others (Goloub, 1994; Goloub et al., 2000; Riedi et al., 2010). 

5.3.4.2 Computing !!"#! (!) 

As defined in Section 5.2.3, !!"#!  is the reflectivity of a cloud with a specified 

base phase function when the optical thickness is !!!. The results of the radiative 

transfer simulation in Section 5.3.4.a are tabulated and used to provide !!"#! (Ω,Ω!). The 

challenge in computing !!! is posed by the non-uniform angular sampling in satellite 

data. 

As the satellite angular sampling is not uniform, we use the weighted mean of 

spherical albedo to compute !!!:  !! !!! = !! !!! Ω !, where ! is the normalized 

weight to adjacent scattering angles as follows:! 

 !! =
1
!

1
2 !!(cosΘ)

!!!!

!!!!
!. (5.27) 

where ! is the normalization constant, Θ is the scattering angle, and ! is the index of 

viewing directions out of the sun glitter (glitter angle > 30°) and at scattering angles 
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between 90° and 160°. For measurements at the largest and smallest scattering angles 

between 90° and 160°, different weights are used as follows. 

 !! =
1
! ! cosΘ

!!

!"°
+ 1
!

1
2 !!(cosΘ)

!!

!!
, (5.28) 

 !! =
1
!

1
2 !!(cosΘ)

!!

!!!!
+ 1
! !(cosΘ)

!"#°

!!
. (5.29) 

This approach provides a more stable !!! than a simple arithmetic mean of the retrieved 

spherical albedo values. 

5.3.5 Phase function estimation 

Equation (5.22) is applied to each viewing direction in a cloud pixel that passes 

all these tests to produce 39 sets of estimated renormalized phase function values at 8, 7, 

6, or 5 scattering angles. To select the most appropriate base phase function from 39 

candidates, the difference of the estimated renormalized phase function values (∆!") 

from the base-finding pair (two viewing directions with the same scattering angle) is 

computed for all 39 candidates. Then, cloud pixels that pass all previously mentioned 

tests are collected into cloud groups based on adjacency. When another valid cloud pixel 

exists in the 8 neighboring pixels around a valid cloud pixel, those two cloud pixels are 

grouped into the same group. This step is repeated and the group usually contains more 

than 10 ice cloud pixels. Finally, the mean values of ∆!" averaged over all pixels in the 

cloud group are compared among the 39 candidates, and the base phase function that 

gives the smallest average ∆!"  is selected as the base function for the all pixels in the 

group. 
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In summary, the phase function estimates from the base-finding pair determines 

the best base phase function. The phase function estimates corresponding to the best 

base phase function identified in this way is recorded and presented as results in the 

following section. 

5.4. Results 

In September 2013, the MISR multi-angle measurements at cloud ridges from 

60°S to 60°N show that two hexagonal column models best agree with the estimated 

renormalized phase functions ! Θ /! (Fig. 5.4) at scattering angles greater than 120°. 

At scattering angles between 135° and 160°, a plate particle model (! = 3.15,!! = 0.5) 

agrees with the estimated median, and between 120° and 135°, a column particle model 

(! = 0.625,!! = 0.5) performs well. No single hexagonal column or plate model in our 

calculations (! = 1/9− 9,!! = 0− 0.5) has a renormalized phase function that agrees 

with the estimate at all scattering angles between 100° and 160°. 

The inconsistency of the fitting of the renormalized phase function in portions of 

the scattering angle range is partly because the estimated renormalized phase functions 

have different latitudinal weights at different scattering angles. In Fig. 5.5, the tropical 

(latitude < 30°) data show that a column particle model (! = 0.625,!! = 0.5) agrees 

well with the estimated renormalized phase functions. As a large population of tropical 

cloud pixels in the scattering angle range between 120° and 135° contributes to the 

global data, a good fit with this particle model is achieved in Fig. 5.4 as well as in Fig. 

5.5. In Fig. 5.5, the MODIS Collection 6 particle model also performs as well as the  
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Fig. 5.4. Estimated renormalized phase function from the MISR data for all latitudes (0° 
to 60°). The data are collected during September 2013. Shading indicates the 
interquartile range of all estimated values in 5° scattering angle bins, and the solid line is 
the median. Dotted lines show the partially matching renormalized phase functions: a 
hexagonal column with ! = 0.625 and !! = 0.5; and a hexagonal plate with ! =
3.15!and !! = 0.5. 

single column model, especially at scattering angles between 135° and 160°. Having an 

accurate model for this scattering angle range is significantly important for tropical 

cloud retrievals as a large number of pixels are measured at this scattering angle range in 

the tropics. 

On the other hand, in Fig. 5.6, the extratropical (30° < latitude < 60°) data do not 

show agreement with any of our single column models or aggregate models (plate and 

column aggregates, solid bullet rosette) described in Yang et al. (2013). At scattering 

angles between 135° and 160°, however, a roughened plate particle model (! =

3.15,!! = 0.5) provides a good fit to the measurements. As extratropical data from 

scattering angles 
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Fig. 5.5. Estimated tropical (latitude < 30°) renormalized phase function. The data are 
collected by the MISR during September 2013. Shading indicates the interquartile range 
of the all estimated values in 5° scattering angle bins, and the solid line is the median. 
Dotted lines show two renormalized phase functions for a hexagonal column with 
! = 0.625 and !! = 0.5; and the MODIS Collection 6 ice particle model. 

 

Fig. 5.6. Estimated extratropical (30° < latitude < 60°) renormalized phase function. The 
data are collected by the MISR during September 2013. Shading indicates the 
interquartile range of the all estimated values in 5° scattering angle bins, and the solid 
line is the median. Dotted lines show two renormalized phase functions for a roughened 
hexagonal plate with ! = 3.15 and !! = 0.5; and the same plate particle with less 
roughness !! = 0.03.  
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between 135° and 160° are most numerous, Fig. 5.4 shows a good fit with the roughened 

plate particle at scattering angles between 135° and 160°. 

In the extratropics, estimated renormalized phase function from 100° to 110° is 

significantly larger than renormalized phase functions of any column and plate particles 

with severe roughness !! = 0.5, and can be fitted only by less roughened models such 

as another plate particle model (! = 3.15,!! = 0.03) shown in Fig. 5.6. However, less 

roughened models commonly have a smaller renormalized phase function between 115° 

and 145°, that does not match the measurements. Further investigation is needed for the 

extratropical latitudes, with considerations of stronger cloud 3-D effects due to oblique 

solar illumination. 

5.5 Discussion 

5.5.1 Performance of the method with other degrees of surface roughness 

This study estimates the phase function as a difference from the base phase 

function computed with a fixed degree of surface roughness !! = 0.1, and finds that 

certain scattering angle ranges are fitted better by severely roughened particles with 

!! = 0.5. As the measurement principle relies on the approximation theory described in 

Section 5.2, the use of !! = 0.1 to define base phase functions must be validated. More 

precisely, as long as the retrieval errors ∆!"#  are confirmed to be small enough, 

!! = 0.1 models can still be used to retrieve !! = 0.5 phase functions. 

For this purpose, we estimate the renormalized phase functions from synthetic 

data, using exactly the same technique applied to the estimation from the actual data in 

Section 5.4. The synthetic data is produced by applying 1% radiometric noise to the 
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radiative transfer simulation results using one day of MISR geometry data on September 

22, 2013. The results indicate that the current method can estimate the phase functions 

with deeper roughness, while Fig. 5.7 shows that there is an aspect-ratio dependent bias 

when phase functions of less roughened particles are estimated. In Fig. 5.7, this method 

is valid at roughness !! = 0.03 to 0.5 for column particles with ! = 1, !! = 0.05 to 

0.5 for plate particles with ! = 2.5, and !! = 0.1 to 0.5 for column particles with 

! = 0.4. 

 

 

Fig. 5.7. Estimations of renormalized phase function with synthetic data. Each estimated 
interquartile range and median is shown with brown color shading and a solid line. Black 
solid lines show true phase functions with roughness !! = 0,0.03, 0.05, 0.1,0.5 (from 
top to the bottom). A hexagonal column shape with three aspect ratios is assumed in the 
computation of true phase functions: (a)!! = 1, (b)!! = 2.5, and (c)!! = 0.4.  
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5.5.2 Performance of the method to infer phase functions of aggregate particle models 

A similar test based on synthetic data is conducted to evaluate the performance of 

the method for aggregate ice particle models. Some light scattering simulations show 

that the phase function of an aggregate particle resembles that of the constituent 

elements (Um and McFarquhar, 2007, 2009; van Diedenhoven et al. 2012). Therefore, 

we anticipate that the same set of single-element base functions works for the aggregate 

models as well. 

In Fig. 5.8, the results of estimation with synthetic data assuming the column 

aggregate ice particle model show that the interquartile range of the estimated phase 

function includes the true phase functions with degrees of surface roughness from 

!! = 0.03 to 0.5. However, there is a negative bias between scattering angles at 115° 

and 135° when phase functions of severely roughened particles (!! = 0.1,0.5) are 

estimated. This negative bias might explain the difference in Fig. 5.5 between the 

estimate in the tropics and the MODIS Collection 6 phase function !! = 0.5 . The 

magnitude of the difference between true and the estimated renormalized phase function 

in Fig. 5.8 is 0.099 for !! = 0.5, whereas the difference between MODIS Collection 6 

and the estimated renormalized phase function is 0.125. 
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Fig. 5.8. Estimations of renormalized phase function with synthetic data for the MODIS 
Collection 6 particle shape. 

While the performance for the roughened aggregate particle model has a small 

error, the estimated renormalized phase function for the moderately roughened aggregate 

particle (!! = 0.03) shows a nearly perfect match to the true phase function. This 

indicates that the functions !! !! , !, !!  and !! !! , !, !!  of less roughened aggregates 

are close to their counterpart of a more roughened single-element hexagonal column 

particle. We presume this is not likely to be a mere coincidence because !! and !! 

functions are determined by the light that travels into the forward direction in a cloud, 
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and less surface roughness is required for aggregates to partition more rays from the 

forward-traveling part (!!) into the azimuthally-independent part (!!) than single-

element hexagonal particles. Attached aggregate elements deflect light away from the 

forward direction effectively. Future research is needed to investigate whether !! and !! 

functions of less roughened aggregates are approximated by the !! and !! functions of 

more roughened single-element hexagonal particles in general. 

5.5.3 Selection of the base phase function to reduce estimation errors 

Some estimation errors are seen in the experiments with synthetic data as in 

Sections 5.5.1 and 5.5.2. However, mitigating the errors by adding more base phase 

function candidates (specifically, more possible ice particle shape and size distributions) 

requires caution. The top panel in Fig. 5.9 shows the magnitude of estimation error 

∆!"#  using the Ca camera for a single tropical pixel, and the bottom panel shows the 

difference of estimated phase function between base-finding pairs (Bf and Ca cameras) 

at Θ = 121° (hereafter, ∆!"). Both values are computed when assuming the cloud layer 

consists of a moderately roughened hexagonal plate particle (! = 2.5,!! = 0.03). Note 

that the phase function of this particle is accurately estimated as shown in Fig. 5.7. 

As our current candidates of the base phase function are confined to 39 models 

with degree of roughness !! = 0.1, the selected model is at the minimum of ∆!" along 

the blue vertical line in the bottom panel. The location of the selected base particle 

model is shown in a purple circle. The estimation error, ∆!"# , in the purple circle is 

less than 0.001 as read from the top panel, so the retrieval is successful. The situation 

would be different when adding a candidate in Zone A in the left bottom corner (nearly 
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smooth hexagonal plates). The ∆!" in Zone A is small enough to accept such a candidate 

as a base model, but the estimation error ∆!"#  is large enough to produce incorrect 

estimation. This result implies that we need more base-finding pairs to estimate phase 

functions more accurately by distinguishing the most appropriate base phase function 

effectively. 

 

Fig. 5.9. Performance of estimation at a fixed viewing direction for plate particles. The 
top panel shows the magnitude of estimation error Δ!"#  for the Ca camera, and the 
bottom panel shows the magnitude of estimated renormalized phase function difference 
at Θ = 121° (Bf and Ca cameras). The true phase function is assumed to be for a single 
hexagonal plate particle with aspect ratio ! = 2.5.  
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Fig. 5.10. Performance of estimation at a fixed viewing direction for column particles. 
The viewing direction is the same as Fig. 5.9, but the true phase function is assumed to 
be for a single hexagonal column particle with aspect ratio ! = 0.4. 

The analysis technique introduced in Fig. 5.9 can also be applied to demonstrate 

why the phase function of a long column particle (! = 0.4,!! = 0.03) is less accurately 

estimated than that of a plate particle (Fig. 5.7). Figure 5.10 shows the estimation error 

∆!"#  and the estimation difference at the base-finding cameras (∆!") for the long 

column particle. The error pattern ∆!" in Fig. 5.10 resembles Fig. 5.9, so a plate phase 
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function is likely to be selected as a base phase function, even though the actual shape is 

a column. This particle selection introduces an error as shown in the purple circle at the 

top panel, biasing the phase function estimation as in Fig. 5.7. Even though it is not 

actually possible to explain the estimation error from all latitudes as in Fig. 5.7 with a 

single-pixel error analysis as in Fig. 5.10, Figs. 5.9 and 5.10 provide valuable insights 

into the appropriate selection of base phase functions. 

5.6 Conclusions 

This study introduces a phase function estimation technique that is derived from 

the radiative transfer equation for a plane parallel homogeneous medium. The inspiration 

of the technique comes from the resemblance of the spherical albedo difference and the 

phase function difference reported in previous studies. It is shown that the reflectivity 

difference is proportional to the difference between the actual phase function and the 

phase function assumed in the retrievals under certain circumstances. The 

proportionality coefficient is a decreasing function of air mass factor and an increasing 

function of the optical thickness, and saturates at optical thickness ! ≥ 5. 

The proposed method is applied to MISR data collected over global ice-free 

oceans during September 2013 to compare the estimated phase functions at scattering 

angles between 100° and 160°. The estimated renormalized phase function shows two 

scattering angle ranges with different biases in the tropical (latitude < 30°) and 

extratropical (30° < latitude < 60°) bands. In the global average, the tropical band 

contributed strongly at scattering angles between 120° and 140°, and the extratropical 

band between 140° and 160°. In these two latitudinal bands, the estimated renormalized 
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phase functions are significantly different from the other, resulting in failure of global 

fitting by any single-element hexagonal particle model with aspect ratios ranging from 

! = 1/9 to 9 and roughness ranging from !! = 0 to 0.5. 

In the tropical latitudes, the estimated renormalized phase function is in good 

agreement with the phase function of a hexagonal column particle model with aspect 

ratio ! = 0.625 and severe surface roughness !! = 0.5, or with the MODIS Collection 

6 cloud models, especially at scattering angles between 135° and 160°. 

On the other hand, extratropical data does not match any phase function from the 

range of pre-computed single hexagonal particle models. However, a plate particle with 

aspect ratio ! = 3.15 and surface roughness !! = 0.5 fits the measurements at 

scattering angles between 140° and 160°. 

Experiments with synthetic data show the validity of the method to estimate 

renormalized phase functions by assuming hexagonal particles with moderate roughness 

(!! = 0.1). The performance is best for a column particle with aspect ratio ! = 1, but 

aspect ratio- and scattering angle-dependent biases are found for less roughened 

particles. The bias in estimating the phase function of a long column particle is 

especially large, presumably because the analysis selects a plate particle as the base 

phase function. 

The accuracy of the technique is expected to improve when a wider range of ice 

particle models is employed as base phase function candidates. However, there are some 

combinations of aspect ratio and optical thickness that might reduce the retrieval 

accuracy. A theoretical framework developed in this study is helpful to identify such 
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combinations and to make an appropriate choice of ice particle models used in the 

retrieval. It also suggests the importance of a well-designed measurements, especially 

multi-viewing measurements at the same scattering angle. 
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6 CONCLUSIONS 

 

Recent advances in light scattering calculations made it possible to implement 

more complex and realistic particle shapes into satellite retrieval algorithms and general 

circulation model (GCM) radiation schemes. To incorporate the complexity and 

irregularity of natural cloud particles, various models were developed and validated in 

the past. These previous studies are based on the “best-fit” method and the effect of 

instrumental and observational noise are not considered in the validation. Light 

scattering calculations for these ice cloud models often involve the simulation of surface 

roughening, but the implementations are poorly documented. In addition, some 

truncation techniques used in polarized radiative transfer calculations need more solid 

theoretical support. 

Section 2 investigates the tilt angle distribution and tilt methods implemented in 

the light scattering calculations. It is demonstrated that the surface and beam tilt methods 

result in different effective roughness distributions due to different rejection criteria for 

the generated tilt angle and direction. Four tilt angle distributions are summarized and 

the probability density functions of tilt angles are derived for comparison. 

Section 3 derives the application of the δ-fit method to polarized radiative 

transfer based on the theoretical developments of truncation approximations. The 

accuracy of the δ-fit and δ-M methods are comparable for the backward scattering 

directions and the error is on the order of 0.1%.  
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In Section 4 and 5, different methods are applied to infer the particle shape and 

surface roughness from multi-angle satellite measurements over tropical and 

extratropical oceans. In Section 4, the application of the Empirical Orthogonal Function 

(EOF) analysis reduced the number of parameters to describe particle shapes and surface 

roughness, allowing the statistical inference technique to play a central role in the 

retrieval system. The extratropical results indicate that the long column particle shapes, 

or aggregates of them, with moderate to severe (0.1 < !! < 0.5) roughness most closely 

reproduce the total and polarized reflectivity measured by the Polarization and 

Directionality of Earth’s Reflectance (POLDER) sensor. Weak temperature dependence 

and cloud heterogeneity dependence are seen in the retrieval results. The trend of both 

dependences are not surprising when the effect of cloud inhomogeneity and the presence 

of quasi-horizontally oriented particles are considered. The cloud pixels with a large 

inhomogeneity index (!! > 2.5) showed a broader distribution of retrieved parameters, 

indicating that cloud inhomogeneity reduces the precision of retrieved particle shape and 

surface roughness. 

In Section 5, a supplementary retrieval of phase functions from Multi-angle 

Imaging Spectroradiometer (MISR) data showed that phase functions for both column 

aggregate particle and compact hexagonal column particle fit the observation in the 

tropics. 

This doctoral research project contributes to the better understanding of the 

particle shape and surface roughness to simulate natural clouds, existing framework of 

surface roughness simulations, and truncation approximation in polarized radiative 
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transfer calculations. The response of newly-developed two retrieval methods to 

instrumental noise is more predictable than the “best-fit” approaches conventionally 

used.  
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APPENDIX A 

DERIVATION OF THE DENSITY FUNCTIONS OF THE TILT ANGLE 

DISTRIBUTION USED IN MACKE’S LIGHT SCATTERING PROGRAM 

 

A.1 Implementation in Macke’s code 

The geometric optics computer program by Macke et al. (1996) is publicly 

available from the following web site: http://tools.tropos.de/. The probability density 

function (PDF) and cumulative distribution function (CDF) derived in this appendix is 

based on the “tilt” subroutine of the distributed computer programs. 

In the “tilt” subroutine, the new direction of the beam ! = !! , !! , !!
!
is 

determined from the original direction of the beam !! = !!! , !!! , !!!
!
 by the 

following formula: 

 ! = !! + 2! − 1 !
!! + 2! − 1 !

. (A.1) 

where ! = !!,!!,!! ! and ! is the distortion parameter specified by a user. !!,!! 

and !! are random variable following identical and independent uniform distribution 

spanning from 0 to 1 (i.e.  !!,!!,!!~Uniform 0,1 , !. !.!.).  

The distribution of tilt angle depends on the original direction of the beam !! 

because the probability density function of vector ! is not isotropic. This 

implementation is not physical because the magnitude of roughness depends on the 

rotation of coordinate system to. In this Appendix, I derive the CDF and PDF for a fixed 

incident direction. A Monte Carlo simulation shows that the distribution of tilt angle for 
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a fixed !! is a good approximation for the distribution for completely random !!. I fixed 

the incident direction at !! = 0,0,1 ! because the direction of incident beam is fixed at 

!! = 0,0,−1 ! in Macke’s code. This selection implies that derived CDF and PDF are 

for initial reflection/refraction event. 

When assuming !! = 0,0,1 !, cosine of tilt angle the angle ! can be written 

with samples !!,!! and !! from random variables !!,!! and !! as follows: 

 

cos! = ! ∙ !!

= 2! − 1 ! + 1

2!! − 1 !!! + 2!! − 1 !!! + 2!! − 1 ! + 1
!
. (A.2) 

Assuming that distortion parameter is not zero, 

 cos! = ! ∙ !! =
!! − 12+

1
2!

!! − 12
!
+ !! − 12

!
+ !! − 12+

1
2!

!. (A.3) 

As the slope (! = tan!) and cosine of tilt angle (cos!) are related by  

 1+ !! = 1
cos! !, (A.4) 

the slope can be written with the random variables  !!,!! and !! as follows: 

 s =
!! − 12

!
+ !! − 12

!

!! − 12+
1
2!

! . (A.5) 

A new random variable !!! is defined as follows: 
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 !!! =
!! − 12

!
+ !! − 12

!

!! − 12+
1
2!

! . (A.6) 

In the following parts of this appendix, the PDF and CDF of variable !!! are discussed. 

For the sake of simplification, following two new random variables ! and ! are defined: 

 X = !! −
1
2

!
+ !! −

1
2

!
 (A.7) 

 
Y = 1

!! − 12+
1
2!

!. (A.8) 

Using these two new random variables, !!! = !". To obtain the PDF and CDF for !!!, 

PDFs and CDFs of X and Y are investigated in this subsection. 

A.2 PDF and CDF of component ! 

From the definition of CDF, the CDF of !!! = !! − !
!
!
can be written as 

probability of !! satisfying a specific condition: 

 !!!! !! = P !! − !
!
!
≤ !! = 2P !! < !! − 1. (A.9) 

It is obvious that the CDF of uniform distribution is a linear curve. Thus, 

 !!!! !! =
0 !! ≤ 0

2 !! 0 < !! ≤ 1/4
1 1/4 < !!

. (A.10) 

Similarly, 
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 !!!! !! =
0 !! ≤ 0

2 !! 0 < !! ≤ 1/4
1 1/4 < !!

. (A.11) 

Therefore, CDF of !! can be written as follows: 

 !!! ! = ! !! ≤ ! = !!!! !! !!!! !!!!!!!!!!!
!!" (A.12) 

where !!!! !!  and !!!! !!  are PDFs: 

 !!!! !! =
!!!!!
!!!

=
0 !! ≤ 0

1/ !! 0 < !! ≤ 1/4
0 1/4 < !!

, (A.13) 

 !!!! !! =
!!!!!
!!!

=
0 !! ≤ 0

1/ !! 0 < !! ≤ 1/4
1 1/4 < !!

. (A.14) 

The CDF of !! is finally: 

 !!! ! =

0 ! ≤ 0
!!! 0 < ! ≤ 1

2
2 sin!! 1

2! − 1
!

!/!
!!" + !4

1
2 < ! ≤ 1

2
1 1

2 ≤ !

. (A.15) 
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Therefore, the CDF of ! is obtained as follows: 

 !! ! = ! !! ≤ !! =

0 ! ≤ 0
!!! 0 < ! ≤ 1

2
2 sin!! 1

2! − 1
!!

!/!
!!" + !4

1
2 < ! ≤ 1

2
1 1

2 ≤ !

. (A.16) 

To evaluate the integral we first change the variable from ! to ! = !!. 

 2 sin!! 1
2! − 1

!!

!/!
!!" = 4 !!sin!! 1

2!! − 1
!

!/!
!!". (A.17) 

Since this form of integral appears many times in later part of derivation, I define ! !  

and !! !, !  as follows: 

 ! ! != !sin!! 1
2!! − 1 , (A.18) 

 !! !, ! = !!!! ! !
!

!
!!", (A.19) 

and the desired integral can be written as follows: 

 2 sin!! 1
2! − 1

!!

!/!
!!" = 4!!

1
2 , ! . (A.20) 
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To evaluate !! !, ! , defining ! = !
!!! − 1 is helpful. Integrating by parts: 

 

!! !, ! = !! !sin!! !
!

!
!"!

= − 1
2!!!

!sin!! !
! + 1

!!!
!

!!

!!
!"!

= 1
2!!!

2
! + 1

!sin!! !
! + 1

!!!
!

!!

!!

− 1
2!!!

2
! + 1

1
! + 1

!!!
!

!!

!!

1
1− !!

!", 

(A.21) 

where !! = !
!!! − 1 and !! = !

!!! − 1. Taking ! = cos2!, 

 !! !, ! = 1
! + 1 !!!!! ! !! +

1
2!

1
! + 1

1
cos!!! !

!!

!!
!", (A.22) 

where !! = !
! cos

!! !
!!! − 1  and !! = !

! cos
!! !

!!! − 1 .  

When ! = 1, 

 
1

cos! !
!!

!!
!" = tan 1

2 cos
!! 1

2!! − 1 !

!
= 2!! cos! ! !! . (A.23) 

This result produces: 

 !! !, ! = 1
2 !! ! ! + cos! ! !! , (A.24) 

and 

 !!
1
2 , ! = 1

2 !! ! ! + cos! ! − !
16. (A.25) 

Therefore, the CDF of ! is obtained as follows: 
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 !! ! =

0 ! ≤ 0
!!! 0 < ! ≤ 1

2
2 !! ! ! + cos! ! 1

2 < ! ≤ 1
2

1 1
2 ≤ !

!. (A.26) 

From Eq. (19), the derivative of !!
!
! , !  is easily obtained: 

 
!
!"!!

1
2 , ! = !

!" !!! ! !
!

!
!

!!" = !!! ! . (A.27) 

Therefore, the PDF of ! is as follows: 

 !! ! =

0 ! ≤ 0
2!" 0 < ! ≤ 1

2
4!!! ! 1

2 < ! ≤ 1
2

0 1
2 ≤ !

!. (A.28) 

A.3 PDF and CDF of component ! 

From the definition of CDF, the CDF of ! = !! − !
! +

!
!!

!!
can be written as 

probability of !! satisfying a specific condition: 

 !! ! = P !! −
1
2+

1
2!

!!
≤ ! = P !! >

1
! +

1
2−

1
2! . (A.29) 

Defining ! as: 

 ! = 1
2
1
! − 1 , (A.30) 

The CDF of ! is as follows: 
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 !! ! = 1− P !! ≤
1
! − ! =

0 ! ≤ 1
! + 1

1+ !! − 1!
1

! + 1 < ! ≤ 1
!

1 1
! < !

!. (A.31) 

The PDF of ! is the first derivative of the CDF: 

 !! ! = !
!"!! ! =

0 ! ≤ 1
! + 1

− 1
!!

1
! + 1 < ! ≤ 1

!
0 1

! < !

!. (A.32) 

A.4 The outline of PDF and CDF of !!" 

From the discussions in previous subsections, PDFs of random variables ! and ! 

are obtained. The PDF of random variable ! is nonzero when 0 < ! ≤ 1/ 2, and the 

PDF of random variable ! is nonzero when !
!!! < ! ≤ !

!. Figure A.1 shows the location 

where PDFs are nonzero (Domains A and B), and black lines are contours of  !!! = !". 

Note that for different distortion parameters, contours intersect with Domain B 

(1/2 < ! ≤ 1/ 2) in a different way. For distortion parameter ! > 1− !
! ≈ 0.293, the 

contours run the nonzero domain horizontally, while they run vertically for distortion 

parameter ! < 1− !
! . 
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Fig. A.1. Contours of ! − !" and domains A and B for ! = 0.1 and ! = 0.5. The 

contours are from 0.2 to 4.6 with interval of 0.2. Thick contours are at ! = 1,2,3, and 4. 

Because the way of intersection depends on the distortion parameter, the PDF 

and CDF of !!! have three subtypes. Each subtype consists of several piecewise 

continuous functions. Integration intervals are as follows: 
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1 !! ≤
1
2 and !! ≤

1
2

2 !! ≤
1
2 and 1

2 < !! ≤
1
2

3 !! ≤
1
2 and 1

2 < !!

4 1
2 < !! ≤

1
2 and 1

2 < !! ≤
1
2

5 1
2 < !! ≤

1
2 and 1

2 < !!

6 1
2 < !! and 1

2 < !!

 (A.33) 

where !! = !" and !! = ! + 1 !. The first subtype of PDF and CDF uses (1), (2), (3), 

(5), and (6), the second subtype (1), (2), (4), (5), (6), and the third subtype (1), (2), (5), 

(6). The first subtype corresponds to less distorted particle ! < 1− !
! , second subtype 

corresponds to more distorted particle ! > 1− !
!  and the third subtype is only when 

! = 1− !
! . In following subsections, I derive the explicit formulae for each subsection.  
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A.5 PDF and CDF of !!"in each interval 

Before starting, I evaluate the integral !! !, ! . From Eq. (A.22),  

 !! !, ! = 1
3 !!! ! !! +

1
12

1
cos! !

!!

!!
!". (A.34) 

Integrating the integral on the right hand side by parts, the integral produces itself as 

follows: 

 

1
cos! !

!!

!!
!" = 1

cos! !
1

cos!
!!

!!
!"!

= tan!
cos! !!

!!
− tan! !

cos!
!!

!!
!"!

= tan!
cos! !!

!!
− 1

cos!
!!

!!
!" − 1

cos! !
!!

!!
!" 

(A.35) 

Thus, 

 !! !, ! = 1
3 !!! ! !! +

1
24

tan!
cos! !!

!!
+ 1
24

1
cos!

!!

!!
!". (A.36) 

Defining ! = ln tan !
! +

!
! , the derivative of ! is 1/ cos!!as follows: 

 

!"
!" =

1
2 tan !

2 +
!
4

1
cos! !

2 +
!
4
!

= 1
sin ! + !2

!

= 1
cos!. 

(A.37) 

Substituting Eq. (A.37) to Eq. (A.36), 
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 !! !, ! = 1
3 !!! ! !! +

1
24

tan!
cos! !!

!!
+ 1
24 ! ! !!

!! . (A.38) 

With the properties of trigonometric functions, ! can be simplified as follows: 

 ! ! = ln tan !
2 +

!
4 = ln tan! + 1

cos! . (A.39) 

In addition, 

 tan! = tan 1
2 cos

!! 1
2!! − 1 = 2!! cos! ! ,!and (A.40) 

 
1

cos! =
1

cos 12 cos!!
1
2!! − 1

= 2

1+ 1
2!! − 1

= 2!. (A.41) 

Substituting Eq. (A.39) through Eq. (A.41) into Eq. (A.38), 

 !! !, ! = 1
3 !! ! ! + 12 cos! ! + 18 ln 2! + 2!

! cos! !
!

!
. (A.42) 

A.5.1 !!! ≤ !
! and !! ≤ !

! 

This is when only the domain A is involved in the integral. 

 

!!! = !! ! !!"!
!!

!
+ !! ! ! ! ≤ !

! !"
!!

!!
!

= !! ! !!" +
!!

!
!! ! ! + 1 − !!

!!

!!
!!"!

= ! ! ≤ !! + ! ! ! ≤ !! − ! ! ≤ !! − 1! 2!!!!!"
!!

!!
. 

(A.43) 

The integral can be evaluated as follows: 

 
2!
! !!!!"

!!

!!
= 2!
3! !!! − !!! = 2!

3 ! + 1 ! − !! !!. (A.44) 
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Therefore, the CDF of !!! is 

 !!!! ! = !!! =
1
3 ! + 1 ! − !! !!!, (A.45) 

and the PDF is derived as the first derivative of the CDF as follows: 

 !!!! ! = 2
3 ! + 1 ! − !! !". (A.46) 

A.5.2 !! ≤ !
! and !

! < !! ≤ !
!! 

The CDF involves both domain A and domain B. The integral in domain A is 

defined as !!! and the integral in domain B is defined as !!!. The CDF is !!!! ! =

!!! + !!!. The integral !!! is the special case of the integral !!! with the upper limit 

being 1/2: 

 

!!! = !! ! !!"
!!

!
+ !! ! ! ! ≤ !

! !!"
!
!

!!
!!

= ! ! ≤ !! + ! ! ! ≤ 1
2 − ! ! ≤ !! − 1! 2!!!!!"

!
!

!!
!

= !
4 + !"

1
4− !!

! − 2!3!
1
8− !!

! !!

= !
4 ! + 1 − !3 !

!!! − !
12! 

(A.47) 
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!!! = !! ! ! + 1 − !! !"
!!

!
!

!

= ! + 1 ! ! ≤ !! − !4 − 4! !!! ! !!"
!!

!
!

!

= −!4 ! + 1 + 2!!! ! + 1 ! !! + cos! !! − 4!!!
1
2 , !! .!

(A.48) 

From Eq. (A.42), we can write !! as follows: 

 

!!
1
2 , !! = 1

3 !!! ! !! + 12 cos! !!

+ 18 ln 2!! + 2!!
! cos! !! − !

48.!
(A.49) 

Therefore, the CDF of !!! is obtained as: 

 

!!!!(!) = −!3 !!
!! + 23 !!

! ! + 1 ! !! + 2 cos! !!

− 1
6! ln 2!! + 2!!

! cos! !! .!
(A.50) 

Differentiating Eq. (A.48) with respect to !,  

 
!
!" !!! = 4 ! + 1 !!" ! + 4

!!!!
1
2 , !! − 4!

!
!"!!

1
2 , !!  (A.51) 

and utilizing: 

 
!
!"!!

1
2 , !! = ! + 1 !!!! !! = ! + 1 !!!!! !! , (A.52) 

!!! is simplified as follows: 

 
!
!" !!! =

4
!!!!

1
2 , !! . (A.53) 

Therefore, the PDF of !!!!is as follows: 
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!!!! ! = − 2!3 !!!! +
4
3 !! ! + 1 ! ! !! + 12 cos! !!

+ 1
6!! ln 2!! + 2!!

! cos! !! . 
(A.54) 

A.5.3 !! ≤ !
! and !

! < !! 

The CDF involves both domain A and domain B. The integral in domain A is 

already computed as !!! and the integral in domain B is defined as !!!. The CDF is 

thence !!!! ! = !!! + !!!. The integral !!! is the special case of the integral !!! with 

the upper limit being 1/ 2: 

 

!!! = !! ! ! + 1 − !! !"
!
!

!
!

!

= ! + 1 1− !4 − 4! !!! ! !!"
!
!

!
!

!

= ! + 1 1− !4 − 4!!!
1
2 ,

1
2 . 

(A.55) 

From Eq. (A.42), !! can be written as: 

 !!
1
2 ,

1
2 = 1

12 2+
1
24 ln 2− 1 − !

48.! (A.56) 

Therefore, the CDF and PDF of !!!!are obtained as follows: 

 !!!! ! = ! + 1 − !3 !!!
! − 1!

1
3 2+

1
6 ln 2− 1 .! (A.57) 

 !!!! ! = − 2!3 !!!! +
1
!!

1
3 2+

1
6 ln 2− 1 .! (A.58) 
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A.5.4 !! < !! ≤ !
! and !

! < !! ≤ !
! 

The CDF involves both domain A and domain B. The integral in domain A is 

defined as !!! and the integral in domain B is defined as !!!. The CDF is !!!! ! =

!!! + !!!. Since !! > 1/2, !!! = !/4. 

 !!! = !! ! !!"
!
!

!
= !
4!

(A.59) 

The integral in the domain B is as follows: 

 

!!! = !! ! !!"
!!

!
!

+ !! ! ! + 1 − !! !!"
!!

!!
!

= −!4 + ! + 1 ! ! ≤ !! − !" ! ≤ !! − 4! !!! ! !!"
!!

!!
!

= −!4 + 2!!
! ! + 1 ! !! + cos! !!

− 2!!!! ! !! + cos! !! − 4!!! !!, !!  

(A.60) 

From Eq. (A.42),  

 

!! !!, !! = !
3 !!!(! + 1) ! !! + 12 cos! !!

− !!!! ! !! + 12 cos! !!

+ 1
24 ln 2!! + 2!!! cos! !!

− ln 2!! + 2!!! cos! !! , 

(A.61) 

and 
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!!! = −!4 +
2
3 !!

! ! + 1 ! !! + 2 cos! !!

− 23 !!
!! ! !! + 2 cos! !!

− 1
6! ln 2!! + 2!!! cos! !!

− ln 2!! + 2!!! cos! !! . 

(A.62) 

Therefore, the CDF of !!! is as follows: 

 

!!!! ! = 2
3 !!

! ! + 1 ! !! + 2 cos! !!

− 23 !!
!! ! !! + 2 cos! !!

− 1
6! ln 2!! + 2!!! cos! !!

− ln 2!! + 2!!! cos! !! . 

(A.63) 

The PDF is obtained by differentiating Eq. (A.60) as follows: 

 

!
!" !!!! = ! + 1 !

!" ! ! ≤ !! − ! !
!" ! ! ≤ !! − 4!

!
!"!! !!, !!

+ 4
!!!! !!, !! . 

(A.64) 

First three terms in the right hand side of Eq. (A.64) cancel out because 

 !
!" ! ! ≤ !! = !!! !! = 4!!!" !! , (A.65) 

 !
!" ! ! ≤ !! = ! + 1 !! !! = 4!! ! + 1 ! !! ,!and (A.66) 

 !
!"!! !!, !! = ! !! ! + 1 !! !! − !!!!! !! . (A.67) 
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Therefore, the PDF of !!!is: 

 !!!! ! = 4
!!!! !!, !! !

= 4
3 !! ! + 1 ! ! !! + 12 cos! !!

− !!!! ! !! + 12 cos! !!

+ 1
6!! ln 2!! + 2!!! cos! !!

− ln 2!! + 2!!! cos! !! . 

(A.68) 

A.5.5 !! < !! ≤ !
! and !

! < !! 

The CDF involves both domain A and domain B. The integral in domain A is !!! 

and the integral in domain B is defined as !!!. Note that !!! is a special case of !!! when 

the upper limit of the integral is 1/ 2. The CDF is thence !!!! ! = !!! + !!!. The 

integral in domain B is as follows: 

 

!!! = !! ! !!"
!!

!
!

+ !! ! ! + 1 − !! !!"
!
!

!!
!

= −!4 + ! + 1 − !" ! ≤ !! − 4! !!! ! !!"
!
!

!!
!

= −!4 − 2!!
!! ! !! + cos! !! − 4!!! !!,

1
2 . 

(A.69) 

From Eq. (A.42),  
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!! !!,
1
2 = !

3
1
4 2 (! + 1)− !!

!! ! !! + 12 cos! !!

+ 1
24 ln 2+ 1 − ln 2!! + 2!!! cos! !! , 

(A.70) 

and 

 

!!! = −!4 +
1
3 ! + 1 − 23 !!

!! ! !! + 2 cos! !!

− 1
6! ln 2+ 1 − ln 2!! + 2!!! cos! !! . 

(A.71) 

Therefore, the CDF of !!! is as follows: 

 

!!!! ! = !13 ! + 1 − 23 !!
!! ! !! + 2 cos! !!

− 1
6! ln 2+ 1 − ln 2!! + 2!!! cos! !! . 

(A.72) 

The PDF is obtained by differentiating Eq. (A.69) as follows: 

 
!
!" !!!! = −! !

!" ! ! ≤ !! − 4!
!
!"!! !!,

1
2 + 4

!!!! !!,
1
2  (A.73) 

First two terms in the right hand side of Eq. (A.73) cancel out because 

 !
!" ! ! ≤ !! = !!! !! = 4!!!" !! ,!and (A.74) 

 !
!"!! !!,

1
2 = −!!!!!! !! . (A.75) 
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Therefore, the PDF of !!!is: 

 !!!! ! = 4
!!!! !!,

1
2 !

= 2
3 ! + 1 ! − 43 !!!

! ! !! + 12 cos! !!

+ 1
6!! ln 2+ 1 − ln 2!! + 2!!! cos! !!  

(A.76) 

A.5.6 !! < !! and !
! < !! 

This is when the contour does not cross any of two domains. The CDF and PDF 

are as follows: 

 !!!! ! = 1,!and! (A.77) 

 !!!! ! = 0.! (A.78) 

 


