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ABSTRACT

We present multiple-epoch measurements of the size and surface brightness of

the light echoes from supernova (SN) 2014J in the nearby starburst galaxy M82.

Hubble Space Telescope (HST ) ACS/WFC images were taken ∼ 277 and ∼ 416

days after B-band maximum in the filters F475W, F606W, and F775W. Obser-

vations with HST WFC3/UVIS images at epochs ∼ 216 and ∼ 365 days (Crotts

2015) are included for a more complete analysis. The images reveal the temporal

evolution of at least two major light-echo components. The first one exhibits

a filled ring structure with position-angle-dependent intensity. This radially ex-

tended, diffuse echo indicates the presence of an inhomogeneous interstellar dust

cloud ranging from ∼100 pc to ∼500 pc in the foreground of the SN. The second

echo component appears as an unresolved luminous quarter-circle arc centered

on the SN. The wavelength dependence of scattering measured in different dust

components suggests that the dust producing the luminous arc favors smaller

grain sizes, while that causing the diffuse light echo may have sizes similar to

those of the Milky Way dust. Smaller grains can produce an optical depth con-

sistent with that along the supernova-Earth line of sight measured by previous

studies around maximum light. Therefore, it is possible that the dust slab, from

which the luminous arc arises, is also responsible for most of the extinction to-

wards SN 2014J. The optical depths determined from the Milky Way-like dust

in the scattering matters are lower than that produced by the dust slab.

Subject headings: dust, extinction — galaxies: individual (M82) —ISM: structure —

polarization — stars: circumstellar matter — supernovae: individual (SN 2014J)
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1. Introduction

Interstellar extinction caused by dust affects most astronomical observations. Light

traversing a certain distribution of interstellar medium (ISM) produces an integrated effect

on extinction. Extinction traces the dust grains, but also diminishes the starlight and

limits our ability to interpret the local and distant universe. The study of interstellar dust

provides insight into the properties of the extinction. Since dust is a strong coolant, it also

plays a critical role in controlling galaxy evolution and star formation.

Observations of interstellar extinction require a beacon shining through interstellar

material. In the Milky Way, a very large number of sightlines are available for this purpose,

while in external galaxies there are few point source beacons bright enough to study the

local ISM. Supernovae (SNe) are the best, and often only, choice. Light echoes provide

additional information because they literally reflect light-scattering properties and do not

reach the observer along exactly the same path. If SNe are nearby, even resolved light

echoes may be observable.

The extinction (in magnitudes) at a certain wavelength or bandpass, λ, is often

expressed as Aλ = Rλ × E(B − V ). The ‘total-to-selective’ extinction RV = AV /E(B − V )

depends on the properties of the dust along the line of sight and can be derived by

comparing the observed E(λ − V ) with the extinction curves given by Cardelli et al.

(1989). The observed wavelength dependence of interstellar extinction contains information

on both the size and composition of the grains. The value of RV = 3.1 (Cardelli et al.

1989) has been often considered the Galactic standard, but with a range from 2.2 to 5.8

(Fitzpatrick 1999) for different lines of sight. There is increasing evidence that extinction

curves towards Type Ia SNe exhibit a steeper wavelength dependence (RV<3, see Cikota

et al. 2016 for a summary on RV results of earlier studies). Patat et al. (2007) reported the

detection of circumstellar material (CSM) in the local environment surrounding the Type
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Ia supernova SN 2006X in the nearby galaxy M100. Wang (2005), Patat et al. (2006), and

Goobar (2008), show that the scattered light from CSM tends to reduce the value of Rλ

in the optical. The effect on RV and the light curve shape, however, also depends on the

geometrical configuration and dust-grain properties (Amanullah & Goobar 2011; Brown

et al. 2015). It is of critical importance to understand whether the low RV values are caused

by (1) systematic differences from extragalactic environments, or (2) inhomogeneities in

the vicinity of the SN-Earth direct line of sight (DLOS), or (3) modifications by CSM

scattering.

The most reliable approach in determining the extinction is the ‘pair method’ —

comparing spectrophotometry of two sources with the same spectral energy distribution,

one of which has negligible foreground extinction. Extragalactic reddening can be measured

by comparing observed Type Ia SNe to a zero-reddening locus (e.g., Riess et al. 1996;

Phillips et al. 1999). However, information acquired through this pair method is limited

to single sightlines. Photons scattered by dust travel a slightly different path compared

to the directly transmitted light. Therefore, scattered photons provide chances to test the

scattering properties of the dust in a bi-dimensional space.

1.1. Light echoes

Light echoes are from scattered light of a transient event arise from dust clouds. Here

we consider the case of a SN and CSM/ISM. Because of the high initial brightness of SNe,

searches for late-time off-source flux excesses have been the main approaches to detect light

echoes residing close to the SNe, i.e., the slowly fading light curves of SN 1991T (Schmidt

et al. 1994; Sparks et al. 1999), SN 1998bu (Cappellaro et al. 2001), and SN 2006X (Wang

et al. 2008). Outside the solar system, spatially resolved light echoes have been rare events.

The first one reported arose around Nova Persei 1901 (Kapteyn 1901; Ritchey 1901),
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followed by Nova Sagittarii 1936 (Swope 1940). Echoes were also found from the Galactic

Cepheid RS Puppis (Havlen 1972) and, with HST angular sampling, from the eruptive

star V838 Monocerotis (Bond et al. 2003). Vogt et al. (2012) reported the detection

of an infrared echo near the Galactic supernova remnant Cassiopeia A. Additionally,

spectroscopic observations of nearby light echoes provide unique opportunities to probe

the progenitor properties of historical transients (Rest et al. 2008; Davidson & Humphreys

2012) and in some cases the three-dimenisonal structure of the explosion. For instance, an

ancient eruption from η Carinae (Rest et al. 2012), asymmetry in the outburst of SN 1987A

(Sinnott et al. 2013) and Cassiopeia A (Grefenstette et al. 2014). In recent years, the

number of light echoes from extragalactic SNe has grown rapidly, mostly thanks to HST.

Table 1 provides an overview of the events recorded to date, updated from Table 1 of Van

Dyk et al. (2015).

Photons from spatially-resolved light echoes travel a slightly different path compared

to the DLOS from the SN to Earth. Therefore, observations of a resolved light echo around

a nearby SN provide a unique opportunity to measure the extinction properties of the dust

along the DLOS and the scattering properties of the echo-producing dust independently

and simultaneously. As the SN fades, outer echoes (echoes with larger angular diameter)

associated with ISM at large distances to the SN will become less contaminated by its

bright light, and any inner echoes associated with ISM at small distances to the SN, and

even the CSM, will become detectable. The expansion with time of the light echoes maps

out the 3D structure of ISM along and close to the line of sight.

Detailed introductions to the relation between 2-dimensional light echoes and

3-dimensional scattering dust distributions has been given in various studies (Chevalier

1986; Sparks 1994; Sugerman 2003; Tylenda 2004; Patat 2005). Here, we just briefly define

the geometry used through this paper, also shown in Figure 1, which considers the SN event
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as an instantaneous flash of radiation. The locus of constant light travel time is an ellipsoid

with the supernova at one focus which we refer to as an iso-delay surface. The ellipsoid

grows with time as the light propagates in space.

The angular radius of the light echo (α) can be easily measured in two-dimensional

images. The SN is centered at the origin of the plane, the x and y give the coordinates of

the scattering materials in the plane of the sky. The projected distance (ρ =
√

x2 + y2) of

scattering material to the SN perpendicular to the DLOS is related to the distance (D) to

the SN as tanα = ρ/D, φ gives the position angle (PA). Because D is significantly larger

compared to other geometric dimensions, the light echo can be very well approximated by

a paraboloid, with the SN lying at its focus. ρ can be obtained by

ρ =
√

ct(2z + ct). (1)

where t is the time since the radiation burst, z gives the foreground distance of the

scattering material along the line of sight, and c denotes the speed of light. The distance r

of the scattering material from the SN is:

r =
1

2

(

ρ2

ct
+ ct

)

(2)

The scattering angle can be obtained from: cos θ(ρ, t) = z/(z + ct), or, tanθ = ρ/z.

1.2. Supernova 2014J in M82

The nearby Type Ia SN 2014J in M82 (3.53±0.04 Mpc, Dalcanton et al. 2009) offers the

rare opportunity to study the physical properties and spatial distribution of dust particles

along and close to the DLOS and as well in the vicinity of the SN. SN 2014J suffers from

heavy extinction (AV = 2.07±0.18, Foley et al. 2014) and is located behind a large amount

of interstellar dust (Amanullah et al. 2014). Additionally, the absorption profiles of Na and
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K lines from high-resolution spectroscopy exhibit more than ten extragalactic absorption

components, indicating the extinction along the DLOS is caused by the combined presence

of a large number of distinct interstellar dust clouds along the DLOS (Patat et al. 2015).

SN 2014J was discovered on Jan 21.805 UT by Fossey et al. (2014). Later observations

constrained the first light of the SN to Jan. 14.75 UT (Zheng et al. 2014; Goobar et al.

2014).

SN 2014J reached its B−band maximum on Feb. 2.0 UT (JD 2,456,690.5) at a

mgnitude of 11.85±0.02 (Foley et al. 2014). Continuous photometric and spectroscopic

observations through late phases have been made by various groups (Johansson et al. 2014;

Lundqvist et al. 2015; Bonanos & Boumis 2016; Srivastav et al. 2016; Porter et al. 2016;

Sand et al. 2016).

There is clear evidence that the strong extinction measured from SN 2014J is caused

primarily by interstellar dust (Patat et al. 2015; Brown et al. 2015), although a mix of

interstellar and circumstellar dust is also possible (Foley et al. 2014; Bulla et al. 2016).

Several independent studies, including photometric color fitting from Swift/UVOT and

HST (Amanullah et al. 2014), near-UV/optical grism spectroscopy from Swift UVOT

(Brown et al. 2015), HST STIS spectroscopy and WFC3 photometry (Foley et al. 2014),

reddening curve fitting near the SN maximum using the silicate-graphite model (Gao

et al. 2015), as well as optical spectroscopy from Goobar et al. (2014) found an RV ∼ 1.4

towards SN 2014J. Moreover, ground-based broad-band imaging polarimetry (Kawabata

et al. 2014; Srivastav et al. 2016) and spectropolarimetry (Patat et al. 2015; Porter et al.

2016) have shown that the polarization peak due to interstellar dust extinction is shortward

of ∼ 0.4µm, which indicates that this line of sight has peculiar Serkowski parameters

(see Patat et al. 2015). This polarization wavelength dependence can be interpreted in

terms of a significantly enhanced abundance of small grains (Patat et al. 2015). Models



– 8 –

considering both interstellar dust and circumstellar dust simultaneously and fitted to

observed extinction and polarization (Hoang 2015) find that a significant enhancement

(w.r.t. the Milky Way) in the total mass of small grains (< 0.1 µm) is required to reproduce

low values of RV . Multiple time-invariant Na I D and Ca II H&K absorption features as

well as several diffuse interstellar bands (DIBs) have also been identified (Graham et al.

2015; Jack et al. 2015). Those are most likely associated with multiple dust components of

interstellar material along the DLOS.

The nature (amount and distribution) of circumstellar material is of interest when

probing the possible diversity of progenitors of type Ia SNe and for accurately correcting

the extinction when using type Ia SNe as standard candles. Johansson et al. (2014) find

no evidence for heated dust in the CSM of SN 2014J with r<1017 cm (∼ 39 light days).

Graham et al. (2015) reported variable interstellar K I lines in high-resolution spectra,

which may form about 10 light years (∼ 1019 cm) in front of the SN.

The extremely dusty environment in M82 and its relative proximity to Earth lead

to the expectation of complex and evolving light echoes if SN 2014J exploded inside the

galactic disk. In fact, Crotts (2015) discovered the first light echoes surrounding SN 2014J

in HST images from September 5 2014, 215.8 days past B-band maximum light (referred to

as +216 d hereafter) on JD = 2456690.5 (Foley et al. 2014). The echo signal tends to be

associated with pre-explosion nebular structures in M82 (Crotts 2015).

In the following, we present the evolution of multiple light echoes of SN 2014J as

revealed by new HST ACS/WFC multi-band and multi-epoch imaging around ∼277 days

and ∼416 days past B-band maximum (referred to as +277 d and +416 d below). We will

also qualitatively discuss similar archival WFC3/UVIS images obtained on +216 d and

+365 d.
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2. Observations and Data Reduction

Late-time observations of the light echoes around SN 2014J discussed in this paper

result from a Hubble Space Telescope (HST) Wide Field Camera 3 UVIS channel (HST

WFC3/UVIS) program (#13626; PI:Crotts) to observe properties of the light echoes and

progenitor environment around SN 2014J and an Advanced Camera for Surveys/Wide Field

Channel (HST ACS/WFC) program (#13717; PI: Wang) to probe the dusty environment

surrounding SN 2014J in M82. A log of observations is assembled in Table 2.

We use bright HII regions to align exposures in different filter combinations and epochs

through Tweakreg in the Astrodrizzle package (Gonzaga et al. 2012). Observations obtained

with three polarizers are needed to calculate the Stokes vectors, but the intensity maps

(Stokes I) are the only input to this analysis.

I =
2

3
[r(POL0) + r(POL60) + r(POL120)], (3)

where r(POL0), etc. are the count rates in the images obtained through the three polarizers.

Figure 2 shows the field around SN 2014J.

We perform background subtraction to better reveal the faint and time-variant light

echo signals. For observations on +277 d and +416 d with HST ACS/WFC and filters

F475W, F606W, and F775W, we found no pre-SN Hubble images of the region through

filters consistent with our observations. The most recent HST images of SN 2014J obtained

on April 8 2016, (+796 d) with the same photometric and polarimetric filter combinations

were subtracted from the observations on +277 d and +416 d. For the observations on +216

d and +365 d with HST WFC3/UVIS in passbands F438W, F555W, and F814W, pre-SN

images obtained on March 29 2006 (program #10776; PI:Mountain) with HST ACS/WFC

in the F435W, F555W, and F814W were used as background templates, respectively. For

each band, the background templates were scaled and subtracted from the intensity map.
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The resulting images (Figure 3) clearly reveal the shape of the light echoes around

SN 2014J. Negative signals (black in Figure 3) represent the light echoes on +796 d while

positive (white) signals trace the light echoes on +277d and +416 d, respectively. In each

subpanel of Figure 3, we show the light echoes with background removed (labeled ‘Image’

at bottom), the scaled and distortion-corrected PSF (labeled ‘PSF’ on the left), and the

residual around the SN after PSF subtraction (labeled ‘Res’ on the right). Point-spread

functions (PSF) appropriate to the SN position were generated for each bandpass and epoch

with TinyTim (Krist 1993; Krist & Hook 2008). The upper row displays the observations at

earlier epoches (+216 d for F438W and F555W, +277 d for F475W, F606W, and F775W),

and the lower row depicts the observations at later epochs (+365 d for F438W and F555W,

+416 d for F475W, F606W, and F775W). For better visibility, Figure 4 provides a zoom-in

of the PSF-subtracted images (‘Res’) in each panel of Figure 3.

3. Analysis and results

3.1. Total flux of the SN

Photometry of SN 2014J at four epochs was performed in the background subtracted

images described above, and shown in Table 3. Measurements were made with a circular

aperture of 0.4′′ (8 pixels in the ACS/WFC FOV and 10 pixels in the WFC3/UVIS FOV)

in the WFC3/UVIS F438W, F555W, F814W images from +216 d, and the F438W and

F555W images from +365 d. We applied aperture corrections according to Hartig (2009)

and Sirianni et al. (2005) to estimate the total flux from SN 2014J. The photometric

uncertainties in Table 3 include the Poisson noise of the signal, the photon noise of the

background, the readout noise contribution (3.75 electrons/pixel for ACS/WFC), and the

uncertainties in aperture corrections. These quantities were added in quadrature. The
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magnitudes are presented in the Vega system with zero points from the CALSPEC 1

archive. The total flux of the source within the aperture equals the product Total Counts

× PHOTFLAM, where PHOTFLAM is the inverse sensitivity (in erg cm−2 sec−1 Å−1 and

representing a signal of 1 electron per second). For WFC3/UVIS images, we adopted the

values of the PHOTFLAM keyword in the image headers. However, for the ACS/WFC

polarizer images, which were corrected for the throughputs of the polarizers to generate

the intensity maps, we discarded the default PHOTFLAM values. Instead, we adopted the

most up-to-date PHOTFLAM values in the ACS filter bands for images obtained without

polarizers (Bohlin 2012). This is required by the mismatch between (i) the polarizer

throughput curves used by SYNPHOT2 for unpolarized sources and (ii) the values found by

comparing unpolarized sources in both the polarizing and non-polarizing filters (Cracraft &

Sparks 2007). Therefore, the PHOTFLAM keywords in ACS/WFC polarized images are

not applicable to intensity maps derived from polarized images. Polarization properties of

SN 2014J will be discussed in a separate paper (Yang et al., in prep.).

3.2. Residual images

Two main echo components are evident. In Figure 4 we show a luminous quarter-circle

arc and a diffuse ring at angular distance larger than 0.3′′ from the SN. Closer to the

SN, uncertainties in the PSF correction prevent reliable detections. On +277 d, the most

notable features of the light echoes in F475W are three luminous clumps at angular radius

1http://www.stsci.edu/hst/observatory/cdbs/calspec.html, or

http://www.stsci.edu/hst/acs/analysis/zeropoints/#vega and

http://www.stsci.edu/hst/wfc3/phot zp lbn

2http://www.stsci.edu/institute /software hardware/stsdas/synphot
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α = 0.60′′ and PAs 80◦, 120◦, and 150◦, measured from north (0◦) through east (90◦). These

clumpy structures are already present on +216 d at the same PAs but appear smoother and

more extended. They eventually evolve into a fairly continuous luminous quarter-circle arc

seen on both +365 d and +416 d extending from PA = 60◦-170◦. Images obtained on +216

d with F438W and F555W show the luminous arc at angular radii α = 0.54′′ and α = 0.69′′,

over roughly the same range in PA, in agreement with Crotts (2015). However, for the arc

we find a foreground distance of the scattering material, which ranges from 226 to 235 pc

in the four epochs (Table 4) and has a mean value of 228±7 pc. This is different from the

foreground distance of ∼ 330 pc discussed for this prominent echo component by Crotts

(2015). This discrepancy may be due to the difficulties and uncertainties in subtracting the

PSF in earlier epoch when the SN is still bright, or in distinguishing the multiple light echo

components identified in our multi-epoch data.

To enable a more quantitative description of the light echoes and their evolution, we

performed photometry on them in backgound-subtracted images (Figure 4). We measured

the surface brightness of the light echo profile at different radii and over different ranges in

PA. Fan-shaped apertures centered on the SN were used to sample the intensity. The width

in PA of each aperture is 45◦. Contrary to the luminous arc, the diffuse echo can be seen

over the full range in PA from 0◦ to 360◦. But it does not exhibit a common radial profile

(Figures 5 and 6).

In the following subsections, we will use these measurements to investigate the evolving

profile of the light echoes, conduct geometric and photometric analyses, and estimate the

dust distribution and scattering properties responsible for the observed light echoes along

and close to the DLOS. A function characterizing the properties of the scattering material

is constructed to represent the brightness evolution of the observed light echoes on +277 d

and +416 d.
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3.3. Geometric properties of the light echoes

A comprehensive discussion of the formation of light echo arcs is available from Tylenda

(2004). In the context of this paper, it is sufficient to recall that a circular light echo is

created from the intersection of the dust slab with the iso-delay parabaloid. Any uneven

distribution of material in the slab results in an uneven flux distribution along the circle,

and the light echo may be composed of incomplete arcs. A dust slab always produces a

(complete or incomplete) circular light echo, irrespective of its inclination with respect to

the line of sight. When a dust slab is not perpendicular to the line of sight, the center of

the light echo circle will not coincide with the SN position, and it moves with time.

The luminous arc echo is unresolved with a full width at half maximum (FWHM) of

the radial profile approximately that of the SN measured in the same images, i.e. ∼ 0.1′′ (2

pixels). Therefore, we consider the luminous arc was formed by a thin dust slab intersecting

the line of sight. We have fitted circles to the positions of the luminous arc at all available

epochs. None of them are significantly decentered from the SN. This implies that the dust

slab producing the arc echo is fairly perpendicular to the line of sight. Table 4 summarizes

the geometric properties measured from the luminous arc.

In addition to the luminous arc, a radially extended and diffuse structure is identified,

which on +277 d is present in F475W and F606W and spread over α = 0.40′′ to α = 0.90′′.

This structure can also be noticed on +365 d in F438W and F555W (from α = 0.47′′ to

α = 1.03′′). It appears more clearly on +416/417 d in F475W and F606W (from α = 0.50′′

to α = 1.08′′) because for these observations longer exposure times were used. The epochs

of observation and the exclusion of the inner 0.3′′ limit the foreground distances explored

from z = 100 pc to z = 500 pc. On +216 d, the diffuse component cannot be identified in

F438W but is marginally seen in F555W. However, the inner and outer radii of the diffuse

structure cannot be well determined because of uncertainties in the PSF subtraction. The
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diffuse light echo observed on +277 d can be produced by a dust cloud intersecting the

iso-delay surface over a wide range in foreground distance. The line-of-sight extent of this

diffuse dust cloud is indicated by the filled profile of the echoes. Therefore, a continuous

dust distribution over a certain range of foreground distances along the line of sight is

required.

In each panel of the radial profiles in Figures 5 and 6, the radially-resolved positive

flux excesses (on +277 d and +416 d), and also the radially-extended negative flux due

to the subtraction of the light echo on +796 d, suggest the presence of an extended and

inhomogeneous foreground dust distribution. Outside the ∼ 0.3′′ region, as discussed

earlier, the imperfect PSF subtraction makes the detection of echoes unreliable. The most

prominent structure with an intensity peak at the second and third curve near the top in

Figure 5 can be seen clearly on +277 d with an angular radius of ∼ 0.60′′, which at the

distance of M82 (3.53±0.04 Mpc, Dalcanton et al. 2009) is at a radius ρ = 10.3 pc from the

SN in the plane of the sky. By +416 d, the radius has increased to ∼ 0.735′′ or ρ = 12.6 pc

from the SN. The scattering angles are 2.6◦ and 3.2◦, respectively.

3.4. Light echo mapping of the foreground dust distribution

To our knowledge, and with the exception of SN 1987A in the LMC (Crotts 1988,

Suntzeff et al. 1988), this is the first radially-extended light echo detected from any SN. For

epochs discussed in this paper, the diffuse echo component around SN 2014J reveals the

SN-backlit ISM over ∼ 40 pc × 40 pc around the DLOS. Standard methods for estimating

the optical properties of the ISM towards the supernova only consider the extinction along

the DLOS. They include the spectrophotometric comparison between the observed SN

and an unreddened SN or template, and comparing the integrated echo flux with the

surface brightness calculated from the scattering properties of various dust models. But
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the resolved dust echoes of SN 2014J and their temporal evolution in the gas-rich and very

nearby galaxy M82 provide an unprecedented opportunity to do better. In the following,

we take advantage of this to measure the scattering properties of the ISM at different

foreground distances and PAs relative to SN 2014J.

We assume that dust scattering follows the Henyey–Greenstein phase function (Henyey

& Greenstein 1941):

Φ(θ) =
1− g2

(1 + g2 − 2gcosθ)3/2
(4)

where g = cosθ is a measure of the degree of forward scattering. With Lλ(t) as the number

of photons emitted per unit time by the SN at a given wavelength, Fλ(t) = Lλ(t)/4πD
2 is

the number of photons observed at time t. D is the distance to the SN. For the modeling

of our observations, t is the time of the light-echo observation, te denotes the time when

photons emitted by the SN would be directly observed along the DLOS, and Fλ(t − te) is

the brightness of the SN at (t− te). At t, the photons emitted at the same time as te, but

experiencing scattering leading to a light echo, arrive at the observer with a time delay

(t− te).

For a single short flash of light of duration ∆te emitted by the SN at te, Fν(t− te) = 0

for t 6= te and
∫ t

0
Fν(t − te)dte = Fν(t − te)|t=te∆te. Then, the surface brightness, Σ, of a

scattered-light echo at frequency ν and arising from an infinitely short (δ function) light

pulse is given by:

Σδ
ν(ρ, φ, t) = ndQsσd

Fν(t− te)|t=te∆te
4πr2

∣

∣

∣

∣

dz

dt

∣

∣

∣

∣

Φ(θ) = ndQsσd

∫ t

0
Fν(t− te)dte

4πr2

∣

∣

∣

∣

dz

dt

∣

∣

∣

∣

Φ(θ) (5)

Where nd is the volume number density of the scattering material in units of cm−3; Qs

is a dimensionless number describing the scattering efficiency of the dust grains; σd is the

geometric cross-section of a dust grain, Φ(θ) is the unitless scattering phase function. This

means that the surface brightness at a certain instance of the light echo at t = te + (t− te)

is determined by the flux emitted from the SN at te, together with the local geometric
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properties of the iso-delay surface at t− te.

In reality, the SN emission has a finite duration. Fν(t − te) is no longer a δ function,

and the surface brightness of the light echo unit at a certain frequency Σν is the time

integral of Fν(t− te) from 0 to t:

Σν(ρ, φ, t) =
Qsσd

4π

∫ t

0

ndFν(t− te)dte
r2

∣

∣

∣

∣

dz

dt

∣

∣

∣

∣

Φ(θ) (6)

Recalling that

z =
ρ2

2ct
−

ct

2
(7)

one can easily find:

dz

dt
= −

c

2

(

ρ2

c2t2
+ 1

)

, r = z + ct =
ct

2

(

ρ2

c2t2
+ 1

)

(8)

Therefore,

Σν(ρ, φ, t) =
Qsσdc

2π

∫ t

0

nd(ρ, φ, t)

c2t2 + ρ2
Φ(θ) Fν(t− te)dte (9)

Because of the relative proximity of M82, some light echoes around SN 2014J are resolved

by HST at late phases, and each pixel represents the surface brightness of the light echo

multiplied by the physical area covered by the pixel in the sky.

Therefore, in order to compare the model flux distribution with the flux in a

2-dimensional image, one needs to integrate the model flux over the physical depth covered

by the pixel. Since each pixel has size ∆x∆y, and ∆x = ∆y, this implies:

Imν(x, y, t) =

∫ x+∆x
2

x−∆x
2

∫ y+∆y

2

y−∆y
2

Σ(x, y, t)dxdy (10)

The geometric factor is determined by the radial distance to the SN, ρ =
√

x2 + y2.

Therefore, in the tangential direction inside each pixel, we approximate the integration

by assuming that nd(x, y, t) is invariant over the angle ∆φ subtended by a single pixel.
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Furthermore, the angular size of each ACS/WFC pixel is 0.05′′. At the distance of

D = 3.53± 0.04 Mpc, the corresponding physical pixel size in the sky is:

pixscale = (3.53± 0.04) Mpc× tan(0.05′′) = (0.86± 0.01) pc = ∆x = ∆y (11)

Recall the geometric configuration of the iso-delay light surface at +277 d presented

by Figure 1. In Figure 7, we modify this schematic diagram to demonstrate how we use a

2-dimensional image to map the ISM in 3D. The gray-shaded fields on the vertical axis show

the pixelation of the sky view by the camera, with each pixel measuring 0.86 pc on both

sides. ∆z is the position-dependent line-of-sight extent of the foreground column covered

by each pixel. Gray-shaded rectangles superimposed to the iso-delay light surface mark

columns of ISM which would be responsible for respective light echoes as projected onto

the sky. The fixed size of the sky pixels leads to varied lengths of the foreground columns

of ISM. If the ISM is homogeneously distributed in the x/y plane, the total per-sky-pixel

extinction of the scattering materials as revealed by the light echo can be estimated by

summing up the extinction along each rectangular column of ISM intersecting the iso-delay

light paraboloid. Comparison of the extinction by the scattering materials to the extinction

along the DLOS (marked by the gray line on the z-axis in Figure 7) may reveal if they are

caused by the same dust mixture and perhaps even the same dust cloud.

Now we can compare the intensity map obtained from the observations with the light

echo modeled at each physical position for a given time t of the observation as follows:

Imν(x, y, t) =
ωCextc

2π
∆x

∫ x+∆x
2

x−∆x
2

dx

∫ t

0

nd(x, y, t)

c2t2 + ρ2
Φ(θ)Fν(t− te)dte (12)

3.5. Extinction of the scattering materials

The optical properties of the dust grains responsible for the light echoes around

SN 2014J can be deduced within each observed pixel. We estimate the extinction properties
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of the scattering materials based on a single-scattering-plus-attenuation approach (see

Section 5 of Patat 2005 for more details). Conversions from the intensity map to the

number-density map (’nd’) are presented by Figure 8 based on Equation 12. We follow the

sampling in Figures 5 and 6 and present the deduced optical properties of the dust grains

for the PA sector 45◦ - 90◦, which includes the brightest part of the luminous arc, and PA

sector 315◦ - 360◦, which covers the diffuse echo ring observed with the highest S/N. They

are shown in Figure 9 for F475W and Figure 10 for F606W, both on +277 d. In these

diagrams, rectangular coordinates x and y are replaced with polar coordinates ρ and φ, and

the abscissa corresponds to the physical distances in the plane of the sky. The left ordinate

represents the quantity ωCextnd(ρ, φ, t), which is determined by the optical properties of

the dust grains. The right ordinate shows ωCextnddz = ωτ , where τ is the optical depth of

the dust mapped onto a single pixel. By looking at the entire echo profile, we found that

a major part of the luminous-arc echo spreads over 45◦ - 180◦ in PA, and the diffuse echo

ring attained the highest S/N over 270◦-360◦ in PA. For completeness, on-line Figures 14

and 15 present the same diagrams over the entire eight bins in PA.

We applied a Galactic extinction model with RV=3.1 to the scattering materials

and compare the reproduced extinction properties with the extinction along the DLOS.

Discrepancies between the derived quantities and the assumed model will indicate that the

extinction properties of the scattering dust are different from the Milky Way dust with

RV=3.1. For each photometric bandpass its pivot wavelength was used in interpreting the

parameters from dust models. The extinction curve is obtained from Weingartner & Draine

(2001) and Draine (2003a,b) 1. For Cext, the extinction cross section per hydrogen nucleon

H, we adopted 5.8 × 10−22 cm2/H for F475W, and 4.4 × 10−22 cm2/H for F606W; for the

scattering phase function, we adopted g = 0.555 for F475W, and g = 0.522 for F606W, and

1ftp://ftp.astro.princeton.edu/draine/dust/ mix/kext albedo WD MW 3.1 60 D03.all
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nd is the H volume number density in units of cm−3.

For a uniform dust distribution in the x/y direction (in the plane of the sky),

integrating ωτ over each position angle will provide a rough estimate of the product of the

total optical depth and the scattering albedo, which is the main value added by the separate

analysis of light echoes. We applied the same extinction measured along the DLOS to the

scattered light echoes and calculated the optical depth of the materials from scattering.

This is labeled by the red text in the upper right of each panel of Figures 9 and 10. The

inhomogeneity of the ISM in M82 has small scales as is indicated by the rapid variability of

the strength of the echo with PA along the rings as well as with time. The optical depth

along the DLOS has been measured by Foley et al. (2014) around maximum light as τB

= 3.11(0.18) and τV = 1.91(0.17) based on AB = 3.38(20), AV = 2.07(18) and using the

relation Aλ = −2.5log10(e)τ
ext
λ = 1.086τ extλ .

The hydrogen column number density along the line of sight is nH =
∫

LOS
nd(z)dz.

Therefore, nH can be obtained by dividing the total optical depth per bin in position angle

by ωCext (Figure 9 for F475W and Figure 10 for F606W). For example, for F475W and

+277 d, the maximum value of ωτ(ρ, φ, t) in the luminous arc was observed to be around

0.58. Using ω ∼ 0.65 for the Milky-Way dust model with RV = 3.1 given by Weingartner

& Draine (2001), nH can be estimated to be nH = 0.58/ωCext = 0.58/(0.65× 5.8 × 10−22

cm2/H) ∼ 1.5 × 1021 H cm−2 in the bin which shows the densest part of the dust slab

producing the luminous arc echo. This is ∼15 times denser than the scattering material

in the foreground of the Type-II plateau SN 2008bk (Van Dyk 2013), for which the visual

extinction of the dust responsible for the echo is AV ≈ 0.05. It is also ∼ 4 times denser

than the ISM in the foreground of the Type II-plateau SN 2012aw (Van Dyk et al. 2015),

for which the dust extinction in the SN environment responsible for the echo is consistent

with the value that was estimated from observations of the SN itself at early times, i.e.,
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AV=0.24.

Figure 12 presents the three-dimensional dust distribution estimated for SN 2014J.

Data-points show the number densities as derived from two iso-delay paraboloids. Scattering

materials producing the luminous arc and the diffuse echo, respectively were mapped out

at epochs +277 d (inner layer) and +416 d (outer layer).

3.6. Scattering wavelength dependence of the ISM

From the scattering properties of the dust, its optical properties can be estimated by

comparing the quantity ωCextnd derived for F475W and F606W. Figure 11 presents the

division of the profiles of Figure 9 by Figure 10. This yields the wavelength dependence

of the extinction cross-section. As the ordinate of Figure 11 we use ωτF475W/ωτF606W .

Overplotted histograms show (in red) the number density of the scattering material derived

from the strength of the echoes in F475W. The horizontal gray dashed lines mark the value

of τF475W /τF606W = AF475W/AF606W =1.66, 1.30, and 1.19 for Milky Way-like dust with

RV =1.4, 3.1, and 5.5, respectively, according to the algorithm determined by Cardelli et al.

(1989). Similar diagrams over the entire eight bins of PA are shown by Figure 16 in the

electronic version.

Plausible estimates of ωτF475W/ωτF606W can only be made in high-S/N regions of the

echoes. In the left panel of Figure 11, the luminous arc at ρ = 10∼11 pc has an average

value ωτF475W/ωτF606W ∼1.7 (dimensionless), shown by the black histograms. For the

diffuse structure, the right panel indicates an average value ∼1.3. This difference in the

wavelength dependence measured from the scattering optical depth indicates that the size

of the grains in the thin dust slab producing the luminous arc are different from the grains

in the foreground extended dust cloud producing the diffuse echo. While this difference
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is significant, one should be cautious about the inferred absolute values of RV in this

approach, considering the low signal-to-noise ratio and the large uncertainties.

4. Discussion

The diffuse echo component favors a higher RV than the luminous arc, corresponding

to a less steep wavelength dependence of the extinction in the diffuse echo compared to the

luminous arc. In general terms, this implies that the grains in the dust slab producing the

luminous arc are smaller than those in the extended, diffuse ISM. The RV value measured

from the diffuse echo at ρ ∼ 10 − 14 pc to the position of SN 2014J, i.e., RV ∼ 3, is

close to that found by Hutton et al. (2015) by modelling the attenuation law based on

near-ultraviolet and optical photometry of M82 at large. Accordingly, the dust grains in

the extended foreground ISM producing the diffuse echo ring are similar in size to those in

the Milky Way. Extinction in the luminous arc, however, favors a smaller RV value, similar

to the extinction law deduced from the SN itself, represented by RV ∼ 1.4. This similarity

indicates that the grain size distribution in the slab of ISM producing the luminous arc is

similar to the ISM responsible for the extinction measured towards the SN at early epochs.

The optical depth due to light scattered by the ISM can be estimated as follows. If

they have similar properties as Milky Way-like dust with RV = 3.1, τF475W ranges from

0.3 at PA 225◦ - 270◦, covering part of the diffuse ring, to 0.9 at PA 45◦ - 90◦, where the

luminous arc is brightest. These optical depths are smaller than that along the DLOS. One

possible explanation for the discrepancy can be an overestimate of the degree of forward

scattering. At +277 d, the scattering angle is ∼ 2.6◦ for the luminous arc-producing dust.

A dramatic increase in forward scattering occurs with increasing grain size while smaller

grains scatter light more isotropically, leading to a smaller value of the phase function, see

Chapter 5 of van de Hulst (1957). Therefore, to produce a light echo of the same strength,
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smaller dust grains in the ISM responsible for the luminous arc require a higher optical

depth than larger Milky Way-like dust grains do.

To illustrate the dependence of the degree of forward scattering on the optical depth,

we investigate the Heyney-Greenstein phase function characterizing the angular distribution

of scattered light intensity as shown by Equation 4. Figure 13 demonstrates the fraction

of scattered light at small scattering angle, i.e., 2.6◦ as a function of scattering asymmetry

factor, g. In this figure, values of g = 0.439 and g = 0.345 are indicated for astronomical

silicate and graphite grains with radius of 0.1 micron according to calculations based on

Draine & Lee (1984) and Laor & Draine (1993).

When the grains are significantly smaller than the wavelength of light, the classical

Rayleigh scattering limit is reached. The asymmetry factor for Rayleigh scattering is g = 0,

and the phase function becomes unity, indicating no directional preference of scattering.

This is the case for the luminous arc while the phase function has a value of 7.8 for

Milky-Way dust with RV = 3.1. This means that the optical depth calculated for the case

of Rayleigh scattering is 7.8 times larger than for Milky-Way dust with RV = 3.1. The

densest part of the scattering material will attain a value of ∼ 7.0 in F475W, significantly

larger than the optical depth measured along the DLOS. On the other hand, for larger

grains the asymmetry factor g approaches unity, and the efficiency of forward scattering

increases substantially.

The grain size distribution in the extinction-producing material towards SN 2014J itself

is similar to that of the luminous arc-producing material, as inferred from the similarity

of RV found in both of the two ISM components. Considering this low RV and the lower

optical depth found in the scattering material responsible for the luminous arc, we infer

that these scattering materials are also responsible for the extinction towards SN 2014J.

Our result is consistent with the relationship between the host galaxy extinction AV and



– 23 –

their measured RV (Mandel et al. 2011), which for SNe with low extinction, AV . 0.4,

RV ≈ 2.5−2.9 is favored, while at high extinction, AV & 1, low values of RV<2 are favored.

Due to the lack of knowledge about the detailed distribution and optical properties of the

dust in M82, we cannot rule out the possibility that the different extinctions along the

scattering line of sight of the materials and the DLOS may partly also be caused by a denser

ISM along the DLOS. The extinction along the DLOS may also be due to dust at small

foreground distances which would produce light echoes too close to the SN to be detected.

Additionally, it is possible that the extinction can be generated by interstellar dust clouds

placed too far in front of the SN. Recall Equations 8 and 9, the luminosity of the light echo

resulting from a dust slab intersecting the DLOS decreases as 1/r (where r is the distance

between the SN and the dust slab). Considering numerous Na, Ca, and K features have

been seen along the DLOS (Patat et al. 2015), we cannot rule out the possibility that there

are dust clouds placed more than 500 pc away from the SN and can hardly be detected in

current images.

The presented light-echo model is necessarily only a simplified approximation of reality.

Our model attempts to reproduce the optical depth of the scattering material over a

projected area of ∼ 40 pc × 40 pc in the plane of the sky, and compares it to the optical

depth measured for the DLOS. One major source of uncertainty is the assumption of single

scattering (Wood et al. 1996; Patat 2005). In view of the large extinction measured towards

SN 2014J, a Monte Carlo simulation with various grain size distributions should give a

better representation of the real scattering process. Another uncertainty results from the

usage of the extinction measured along the DLOS around maximum light also for the

echo-producing material. Additionally, the assumption of Galactic RV values may not be

realistic for M82.
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5. Summary

The geometric and photometric evolution of resolved light echoes around SN 2014J

was monitored with HST. Two main constituents were found. From a luminous arc, a

discrete slab of dust was inferred at a foreground distance of 228±7pc. In addition, a

resolved, diffuse ring-like light echo implies that another foreground ISM component is

widely distributed over distances of ∼ 100-500 pc. If the scattering material suffers the

same extinction as along the DLOS, the densest part has a number density of ∼ 1.5 ×1021

cm−2, based on a single-scattering-plus-attenuation approach. The scattering material is

unevenly distributed with PA. The wavelength dependence of the scattering optical depth is

steeper in the luminous arc than in the diffuse ring. The former favors a small RV ∼ 1.4 as

also measured along the DLOS, and the latter is more consistent with a ’normal’ RV ∼ 3.

This suggests that the average grain size is smaller in the ISM responsible for the luminous

arc, and the more widely distributed scattering materials have average properties similar to

Milky Way-like dust. This study reveals the RV fluctuation of the extragalactic dust on

parsec scales. We deduce that systematically steeper extinction laws towards Type Ia SNe

do not have to represent the average behavior of the extinction law in the host galaxy.

The optical depth of the scattering material estimated from the scattering properties

of Milky-Way-like dust with RV = 3.1 is smaller than the optical depth measured along the

DLOS. The optical depth along the DLOS is better reproduced with smaller grains as also

indicated for the dust slab responsible for the luminous arc. This suggests that an extension

of this dust slab, or a separate cloud with similar properties, is also responsible for the

extinction towards SN 2014J. More data will be collected in future observing campaigns

that will help additionally characterize the extinction laws measured within different light

echo components. Further constraints on the amount and properties of the circumstellar

and interstellar material from polarimetry and very late-time photometry will be discussed
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in future work.
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Fig. 1.— Schematic diagram identifying the geometrical parameters used in this paper. The

paraboloid represents the iso-delay light surface at some arbitrary epoch after the supernova

explosion. The observer located along the z-axis and beyond the right edge of the diagram

would see light echoes in the x-y plane (the y is perpendicular to the drawing). The SN is

located at the origin and θ denotes the scattering angle.

F475W, +277 d F475W, +416 d F475W, +796 d

Fig. 2.— HST ACS/WFC F475W images of SN 2014J obtained at different epochs as

labeled. Each square measures 3.2′′= 54 pc along its sides (North is up, East is left). The

distance between little tick marks corresponds to 0.1′′.
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Fig. 3.— Background-subtracted images of the SN (‘Image’), the TinyTim PSF (Krist

1993; Krist & Hook 2008), and the residuals around the SN after PSF subtraction (‘Res’).

Background structures in F438W and F555W were removed by subtracting scaled pre-SN

archival F435W and F555W HST images. Background in F475W, F606W, and F775W was

corrected for by subtracting the respective most recent +796 d image; therefore, the +796 d

echoes appear as negative structures. Note the different orientations.
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F555W, +216 d

F438W, +365 d

F475W, +277 d F606W, +277 d

F475W, +415 dF555W, +365 d F606W, +417 d

F775W, +277 d

F775W, +417 d

F438W, +216 d

Fig. 4.— A zoom-in view of the background-corrected light echoes shown in Fig. 3. North is

up and East is left. The distance between each little tickmark is 0.1′′. Each square measures

3.4′′= 58 pc along its sides. The diffuse and radially extended light echo profiles can be

clearly identified in all panels except for F438W (+216 d) and F775W (all epochs). Note

the uneven signal distribution with position angle in the rings and the consistency of the

overall patterns at different epochs. A luminous arc is visible in the lower left quadrant and

not resolved in the radial direction. This is at variance with the appearance of the complete,

radially diffuse rings.
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Fig. 5.— F475W band radial surface-brightness profile centered on SN 2014J at 277 days

after B-band maximum. Different curves in each panel show the surface brightness of the

background-subtracted image (black), the TinyTim PSF (red), and the residual after PSF

subtraction (blue). Each panel depicts a different 45◦ sector in PA as labeled. The lower

subpanels of each pair display the residuals after PSF and background subtraction; the

luminous arc at ∼ 0.6 arcsec is prominent in the PA bins from 45◦ to 180◦. The diffuse light

echoes can be identified at other PAs, by continuous positive signals from the early epoch

of +277 d and continuous negative signals due to the subtraction of the intensity map on

+796 d. Surface brightnesses are in units of 10−16erg s−1Å−1arcsec−2. The inserts display

the radial run of the functions (identified by their colors) over the innermost 0.2 arcsec.
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Fig. 6.— Same as Figure 5 except for epoch being +416 d.
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Fig. 7.— Schematic diagram from Figure 1 adapted to real scale. The paraboloid represents

the iso-delay light surface at ∼ 277 d. The gray-shaded squares on the vertical axis indicate

the pixelation of echo signals measured from images of this epoch. Rectangles at the same

observed angular distance delineate the range in z, over which dust can produce an unresolved

light echo. Different gray levels only serve to distinguish immediately neighboring pixels.
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F475W, +277 d, Res F606W, +277 d, Res F475W, +415 d, Res F606W, +417 d, Res

F475W, +277 d, nd F606W, +277 d, nd F475W, +415 d, nd F606W, +417 d, nd

Fig. 8.— Intensity maps of the backgound- and PSF-subtracted images (labeled ‘Res’) and

scaled volume number-density maps (‘nd’) showing the relative column density calculated

from the flux and location in space of each pixel. North is up and east is left. Epoch and

passband of the observations are labeled. Dashed circles trace the dust slab at z ∼228 pc,

which is responsible for the luminous echo arc appearing with different diameter at different

epochs. Overdensities can be identified at PAs 60◦ – 180◦ along the lunimous arc and also

at PAs 0◦ – 60◦ and larger radii in F475W and F606W +416/+417 d.
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Fig. 9.— Radial profiles at different PAs (as labeled) of optical properties of the scattering

material. The calculations are based on the density map (transformed from the residual

image) in passband F475W on +277 d. The left panel shows the luminous arc echo, and

the right panel presents the diffuse ring echo. The x-axis shows the physical distances in

the plane of the sky (ρ-direction). Black histograms represent ωCextnd(ρ, φ, t) in units of

10−20cm−1 as shown on the left ordinate and can be used to infer the volume densities. Red

histograms represent the dimensonless ωCextnddz = ωτ and share the tick marks of the left

ordinate, from which column number densities can be deduced. The optical depth of the

dust mapped onto a single pixel gives τ .
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Table 1. Spatially resolved supernova light echoes

SN Type Host Distance References

Galaxy (Mpc) a

1987A II-Peculiar LMC 0.05 1, 3, 16, 17, 23

1991T Ia 91T-like NGC 4527 15.2 11, 12

1993J IIb M81 3.6 6, 13

1995E Ia NGC 2441 49.6 10

1998bu Ia M96 9.9 2

1999ev II-P NGC 4274 9.9 7

2002hh II-P NGC 6946 5.5 8, 22

2003gd II-P M74 9.5 14, 18

2004et II-P NGC 6946 5.5 9

2006X Ia M100 15.9 21

2007af Ia NGC 5584 22.5 5

2008bk II-P NGC 7793 3.7 19

2012aw II-P M95 10.0 20

2014J Ia M82 3.5 4

2016adj IIb NGC 5128 3.7 15

a(1) Bond et al. (1990), (2) Cappellaro et al. (2001) (3) Crotts

(1988) (4) Crotts (2015) (5) Drozdov et al. (2015) (6) Liu et al. (2003)

(7) Maund & Smartt (2005) (8) Meikle et al. (2006) (9) Otsuka et al.

(2012) (10) Quinn et al. (2006) (11) Schmidt et al. (1994) (12) Sparks

et al. (1999) (13) Sugerman & Crotts (2002) (14) Sugerman (2005)

(15) Sugerman & Lawrence (2016) (16) Suntzeff et al. (1988) (17)

Spyromilio et al. (1995) (18) Van Dyk et al. (2006) (19) Van Dyk

(2013) (20) Van Dyk et al. (2015) (21) Wang et al. (2008) (22) Welch

et al. (2007) (23) Xu et al. (1994)
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Fig. 10.— Same as Figure 9 except for F606W.

Table 2. Log of observations of SN 2014J with HST WFC3/UVIS and ACS/WFC POLV

HST Date of 1st Obs. Exp. Time Epocha Date of 2nd Obs. Exp. Time Epocha
Filter polarizer

Camera (UT - 2014) (s) (Days) (UT - 2015) (s) (Days)

WFC3/UVISb F438W N/A 09-05 19:12:57 8×64 215.8 02-02 05:24:41 12×128 365.2

F555W N/A 09-05 19:29:44 4×64 215.8 02-02 05:06:06 12×32 365.2

F555W N/A 09-05 22:05:11 8×32 215.9 N/A N/A N/A

F814W N/A 09-05 20:32:05 8×64 215.9 N/A N/A N/A

ACS/WFCc F475W POL0V 11-06 00:24:42 3×130 276.5 03-25 01:56:17 3×400 415.6

F475W POL120V 11-06 00:42:24 3×130 276.5 03-25 03:22:43 3×400 415.6

F475W POL60V 11-06 01:00:03 3×130 276.5 03-25 03:53:40 3×400 415.7

F606W POL0V 11-06 01:18:11 2×40 276.6 03-27 10:17:38 3×60 417.9

F606W POL120V 11-06 01:59:48 2×40 276.6 03-27 11:10:48 3×60 418.0

F606W POL60V 11-06 02:13:58 2×40 276.6 03-27 11:30:17 3×60 418.0

F775W POL0V 11-06 02:23:28 2×30 276.6 03-27 11:50:26 3×20 418.0

F775W POL120V 11-06 02:37:21 1×55 276.6 03-27 12:58:00 3×20 418.0

F775W POL60V 11-06 02:41:46 1×55 276.6 03-27 13:02:17 3×20 418.0

aDays after B maximum on 2014 Feb. 2.0 (JD 2 456 690.5).

bObservations result from HST WFC3/UVIS, program (#13626; PI: Crotts)

cObservations result from HST ACS/WFC, program (#13717; PI: Wang)
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Fig. 11.— Radial run of the wavelength dependence of the scattering material characterized

by ωτF475W/ωτF606W on +277 d, shown by the black histograms. Red histograms represent

the dimensionless quantity ωCextnddz = ωτ , which is a measure of the strength of the echoes.

The abscissa measures the physical distances (in pc) in the plane of the sky. The upper,

middle, and lower horizontal dashed lines represent the values calculated for Milky Way

extinction laws with RV = 1.4, 3.1, and 5.5, respectively. The left panel includes the luminous

arc echo at ρ = 10∼11 pc and ωτF475W/ωτF606W ∼1.7. The right panel presents the diffuse

ring echo, exposing a different wavelength dependence of scattering with ωτF475W/ωτF606W ∼

1.3.
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Fig. 12.— The three-dimensional dust distribution derived from the light echoes around

SN 2014J. From left to right, the vertical axis corresponds to the directions East-West,

North-South, and the DLOS (z). The color encoding of the number density of the dust is

indicated by the vertical bar. The measurements map out density along iso-delay parabloids

as schematically depicted in Figure 1. They correspond to epochs +277 d and +416 d and

are too close to one another to appear separately.

Table 3. HST photometry of SN 2014J and light echoes (total echo profile)

ta F438WSN F555WSN F814WSN F438WLE F555WLE

215.8 17.610±0.016 16.446±0.011 15.301±0.011 22.05±0.36 21.12±0.06

365.3 19.735±0.011 18.715±0.013 N/Ab 21.53±0.13 20.87±0.06

ta F475WSN F606WSN F775WSN F475WLE F606WLE

276.5 17.467±0.002 17.343±0.002 16.354±0.005 21.16±0.03 20.73±0.08

415.6c 19.568±0.002 19.516±0.004 17.888±0.008 21.37±0.02 20.98±0.05

aDays after B maximum, 2014 Feb. 2.0 (JD 245 6690.5).

bSN 2014J was not observed in F814W at +365 d.

c+417.9 d for F606W, +418.0 d for F775W.
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Fig. 13.— Fraction of light scattered at the small angle of 2.6◦ as a function of the value

of the phase scattering function, g, as calculated from Equation 4. MW3.1, Gra, and Sil

represent the g factors for Milky-Way dust with RV = 3.1, graphite spheres with radius 0.1

µm, and ”astronomical silicate” spheres with radius 0.1 µm.

Table 4. Geometric properties of (unresolved) luminous-arc light-echo (LE) components

LE Epoch1 Angular Radius Offset Foreground Distance Projected Radius Scattering Angle

# (Day) α (′′) (′′) z (pc) ρ (pc) θ (◦)

Arc 215.8 0.539±0.020 0.009±0.014 234.6±18.2 9.22±0.36 2.25±0.20

276.5 0.599±0.014 0.006±0.015 226.3±11.8 10.25±0.27 2.60±0.15

365.3 0.689±0.020 0.011±0.014 226.4±14.1 11.79±0.37 2.98±0.21

415.6 0.735±0.012 0.012±0.010 226.6±9.0 12.58±0.25 3.18±0.14

1Days after B maximum on 2014 Feb. 2.0 (JD 245 6690.5).
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Fig. 14.— Radial profiles at different PAs (as labeled) of optical properties of the scattering

material. The calculations are based on the density map (transformed from the residual

image) in passband F475W on +277 d. Black histograms represent ωCextnd(ρ, φ, t) in units

of 10−20cm−1 as shown on the left ordinate and can be used to infer the volume densities.

Red histograms represent the unitless ωCextnddz = ωτ and share the same tick marks as the

left ordinate, which can be used to infer the column number densities. τ is the optical depth

of the dust mapped onto a single pixel.

This manuscript was prepared with the AAS LATEX macros v5.2.
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Fig. 15.— Same as Figure 14 except for F606W.

Fig. 16.— Radial run of the wavelength dependence of the scattering material characterized

by τF606W on +277 d. The abscissa measures the physical distances (in pc) in the plane of

the sky. Each panel shows a different bin in position angle of width 45◦ (as labeled). The

upper, middle, and lower horizontal dashed lines represent the values calculated for Milky-

Way dust with RV = 1.4, 3.1, and 5.5, respectively. The luminous arc in PA bins from 45◦

to 180◦ appear at ρ = 10∼11 pc and ωτF475W/ωτF606W ∼1.7. Diffuse structures at large PAs

expose a different wavelength dependence on scattering because ωτF475W/ωτF606W ∼ 1.3.


