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The fragment yields from the multifragmentation of gold, lanthanum, and krypton nuclei obtained by the
EOS Collaboration are examined in terms of Fisher’s droplet formalism modified to account for Coulomb
energy. The critical exponents and 7 and the surface energy coefficientare obtained. Estimates are made
of the pressure-temperature and temperature-density coexistence curve of finite neutral nuclear matter as well
as the location of the critical point.
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I. INTRODUCTION A. Overview

In past attempts to investigate the relationship between the naner is organized as follows: Section | B reviews the
nuclear multifragmentation and a liquid to vapor phase ranggg gata sets, Sec. Il A reviews Fisher’s droplet formalism
sition [1-12] various studies have sought to determine one oL, it connection to nuclear evaporation, Sec. Il B discusses
more critical exponenttl,3,9—-11,1§ other studies have ex- e getails of the data analysis, Sec. Il C reports the results of
amined caloric curvef4], and still others have reported the {he gata analysis, Sec. Il D shows the physical implications
observation of negative heat capaciti@. These studies o these results, and finally, in Sec. 11l a brief discussion of
suffer from the lack of knowledge of the system’s location inyhe resyits is made. In order to demonstrate the efficacy of
pressure-density-temperaturg, ¢, T) space. For example, he analysis performed on the EOS data sets, an appendix

interpretations of caloric curves and negative heat capacitie§qows the results of this analysis performed on percolation
depend on assumptions of either constant pressure or copp,ster distributions.

stant densityf14,15. In the case of determining critical ex-
ponents, it was assumed that the fragmenting system is at
coexistence and the dominant factor in fragment production
was the surface energy. The ana|ysis presented below makesThe EOS Collaboration has collected data for the reverse
no assumptions about the location of the systempip(T) ~ kinematics reactions 140GeV Au+C, 1.0A GeV, LatC
space and allows for other energetic considerations with reand 1.0\ GeV Kr+C [16,17. There were ~25 000,
gards to fragment production. ~22 000, and~36 000 fully reconstructed events recorded
In this paper the analysis technique recently used on muffor the Au+C, La+C, and Kr+-C reactions, respectively.
tifragmentation data collected by the 1SiS Collaborafid@] ~ The term “fully reconstructed” means that the total mea-
is applied to the data sets for the multifragmentation of goldsured charge in each event was within three units of the
lanthanum, and krypton nuclei collected by the EOS Col-charge of the projectile.
laboration. All three EOS experimental data sets are shown For every event, the charge and mass of the projectile
to contain the signature of a liquid to vapor phase transitiofémnant Z,, Ao) were determined by subtracting the charge
manifested by the scaling behavior predicted by Fisher&nd mass of the particles knocked out of the projectile from
droplet formalism, and the liquid-vapor coexistence line isthe charge and mass of the projecils,17].
determined over a large temperature interval extending up to The thermal component of the excitation energy per
and including the critical point. The critical exponentand  nucleon of the remnariE* was determined as follows. First,
o as well as the critical temperatufe, the surface energy the total excitation energy per nucleds,, was recon-
coefficientcy, and the compressibility fact@@g are directly  structed based on an energy balance between the initial stage
extracted. From the behavior of the fragment yieldsghe  of the excited remnant and the final stage of the noninteract-
and T-p coexistence curves are determined and the criticaing fragments. The prescriptidi 8] for calculatinggy,, is
pressurep. and critical densityp, are estimated. then

B. EOS data sets
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FIG. 1. (a) The distribution of events as a function of excitation
where R, is the radius of the excited remnaml; is the  energy.(b) The nucleon number of the fragmenting systagnor-
number of fragments with chargg andR; is the radiugat ~ malized to the nucleon number of the projectigyjecie- (C) The
normal density of a fragment with charg&. The volumes charge of the fragmenting systefiy normalized to the charge of
(and radi) were V,, the volume of the remnant at normal the projectileZ,gecie- (d) The number of intermediate mass frag-
density, andV,=V pjeciid Trermi gaJTisotop93’2, the volume  ments (4=Z<2Zyl4) mye normalized to the charge of the frag-
of the excited remnant that isentropically expands from thenenting system(e) The nucleon number of the largest fragment
normal volume of the projectile yjecie [16]; R, is then Anax n(?rmallzed toA,. (f) The .ch.a.rge of the largest fragmefy, 5
determined fromV, assuming a spherical volume. This form normalized toZ,. (g) The multiplicity of fragments (:Z<Zay)
of Ecouoms fOllows Ref. [19] and takes into account the f€sulting from the fragmentation of the systemn, no-
changing volume of the excited remnant as a function of ma!ized ©0Zo.
excitation energy. Previous estimates did not ac- . . . .
count for the c%);nging volume of theagggrr;%nting remnanMeV’ the Size of the fragmentmg systems domlnat(_es. Th!S IS
[16,17). This difference leads to a few MeV difference in reflected in the ordering afyy:/Z,, from lowest to highest:

E* in the most violent collisions. krypton, lanthanum, and gold.
For the analysis in this paper, the data for each system
was binned in terms d&* in units of 0.5A MeV; i.e., 20 bins Il. ANALYSIS

covered the. excitation energy range A MeV_S E* As with several other analys¢$,3,7—11,21-24 the ba-
=10A MeV.. F'G‘”? 1 ;hows some of the systematics of .thesis of the present effort lies in an examination of the frag-
EOS data binned in this manner. These results are consisteifa yield distribution in the context of Fisher's droplet for-
with other EOS publicationgl2,16,17,2Q malism[25—-29. Thus, a brief review of Fisher’s formalism

The systematics_ O.f the .EOS da’ga sets ;hown in Fig. 1s given in the following section, together with a justification
demonstrates the similarity in behavior exhibited by the dat%r its applicability to nuclear decay rates.

sets when their differing sizes are taken into account by nor-
malizing the quantity in question to the projectile charge _ , _

Zprojectile OF the charge of the fragmenting systefy. The A. Fisher's droplet formalism

exception is seen in Fig.(d) where only belowE* ~4A Fisher’s droplet formalism and its forerunn¢®9,31] are
MeV do all three systems behave similarly. Abde&~4A  based on an equilibrium description of physical clusters or
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droplets that condense in a low density vapor. While Fisher’s AuA  coeA’
formalism has long been applied to nuclear multifragmenta- ”A:%A_TGXF{ T 7T
tion yields[1,3,7—-11,21-2}% the question arises as to the
validity of a picture of clusters in equilibrium within a low
density vapor to experiments in which excited nuclei un-_ = _ s
dergoymultﬂragmentgtion in vacuum. Specifically, in which cr|t|ca_l den_S|ty[32,32ﬂ. The power lawA™" arises from a
sense is there an equilibrium between liquid and vapor in th(gomblnatorlal factor that depends on the fact that the surface
free (vacuunm decay of a(multifragmenting hot intermedi- of _the cIusFer must be clos¢84,33. The distance from co-
ate (nucleug? Or more to the point, where is the vapor? ~ €XIStenceis

If one assumes, as in a compound nucleus reaction, that
the initial collision entity relaxeguicklyto a hot thermalized Ap=w—p, (7)
blob, which proceedslowly to emit particles stochastically,
the answers to this question is simple. The hot blob is thavhere w, is the chemical potential of the liquid at coexist-
liguid which is evaporating in free space according to stanence andu is the chemical potential of the system. For
dard evaporation theories. To establish coexistence, the vapdiuw>0 (a superheated vapoand A =0 (liquid-vapor co-
need not be present. All that is necessary is to appreciate thakistence the above sum always converges. While fou
(i) in first order phase transitions the interaction between the<0 (a supersaturated vappthe sum diverges. The “classi-
two phases is unnecessafiy) the rate of evaporation defines cal” part of the surface energy is parametrized dyA”,
uniquely the vapor phase, even when the vapor phaseherec, is the zero temperature surface energy coefficient,

(6)

Hereqq is a constant of proportionality which is fixed by the

is absent. e=(T.—T)/T, andA’ relates the number of constituents of
In fact the concentration of speciésis completely de- a cluster to the most probable surface area. Fisher’s critical
fined by exponentsos and = depend on the Euclidean dimensionality
o and universality class of the system.
Ra=na(T)va(T), ) The total pressure of the entire cluster distribution is

given by summing all of the partial pressurés,,

whereR,(T) is the emission flux oA, n(T) is the concen-
tration of specied\, andv A(T) is the average velocity oA pzz Tna, ®)
which is of order ofT/A. In other words, the outward flux,
at equilibrium, is the same as the inward flux. and the density is
Thus a direct connection is made between the statistical
decay rate and Fisher’s equilibrium description of cluster for-
mation. Two consequences follow. p=2> An,. 9
(i) At equilibrium, the evaporated particle is replaced by
the back flux from the vapor. However, since the back flux is ) )
absent in the case of nuclear multifragmentation, this analy! "US the pressure and density of the system can be inferred
sis is limited to particles with low emission probabilijrst  "0m knowledge of the cluster distributions.
chancé and must avoid particles which are emitted with high At the critical point the system is at coexistencé
multiplicity. This is approximately achieved by eliminating =0) and the classical part of the surface energy cost van-
fragments withiZ< 4 from the ensuing analysis. !shes €=0). Thus both e_xponentlal factors are unity, leav-
(i) In the same spirit as above, the pertinent temperatur?d only the temperature independent power law
is that of the blob as it evaporates low probability particles.
Thus, rather than worrying about the role of high multiplicity NA=doA " (10
particles and their associated cooling on the energy-
temperature relationship, the Fermi gas relationskip Away from the critical point, but along the coexistence curve

=aT? can be assumed with good confidence. so thatA u =0, the cluster distribution is given by
With this picture in mind, we return to Fisher’s formal-
ism. - CoeA”
The basic idea is that a non ideal vapor of particles inter- Na=0oA "expg — T (13)

acting with repulsive cores and short range attractive forces
can be approximated at low densities and temperature b . .
ideal gaspce)nsisting of noninteracting monomerg, dimers,ér?é]quat'on(ll) can be rewritten as
trimers at equilibrium. Théfree) energy of sufficiently large " ”
clusters can be estimated in terms of their volume and sur- A‘Texy{ CoA ) exr{ _COA )zRexy{ _ E)
face energy. These clusters are in equilibrium with each other Yo Te T T)
and the relative abundances of differently sized clusters (12
changes with temperature and presq2@.

The relative abundances of clusters wahconstituents Thus the cluster distribution along the coexistence curve is
are given by given by a Boltzmann factor with

A=
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- CoA” thermore, it is to leading order, linear i and thus inA.
R=0oA "exp — (13 Thus the large values df. An attempt to include the Cou-
¢ lomb energy explicitly is then
and A- 4AA,U/+ ECouI 008AU (18)
na= ex - ,
B=CoA”. (14) A= T T

This Boltzmann factor manifests itself in Arrhenius plots for with
the fragment yields where a linear relation betweemJn(
and and IT is observed. This behavior has long been ob- B (Zo—2)Z e
served in many nuclear fragment yield distributiqs36— Ecou= Fol(Ag—A) Y3+ AL3) (1-e7), (19)

41] and has recently been observed in the cluster distribu-

tions of percolation(with the bond breaking probability ity r,=1.2 fm. In Eq.(19) there is a recognizable Coulomb
playing the role of temperature[36] and the Ising jnteraction energy of two touching spheres modified by a
model[42]. _ _ _ factor of [1—exp(—xe)]. The parametexk (left as a fit pa-
As discussed above, Fisher's formalism relates directly (qametey takes into account the numerical coefficients of the
a reaction rate picture. In this picture, the heavy fragment§near term inz plus polarization effects, ane takes care of
(e.g.,Z=4) are the product of first chance emission from thehe need for the vanishing difference between the liquid and
excited remnant. The first chance emission from a compoungapor near the critical point. Note that the Coulomb energy
nucleus can be written as discussed in Eq(4) is different from the Coulomb energy
_ discussed in Eq(19). Equation(4) describes the total Cou-

NA(T) o T oreED, (15 lomb energy present in the fragmentation process, while Eq.
19) describes the cost in moving a fragment from the
uclear liquid to the nuclear vapor.
The mass of a fragmem prior to secondary decay was
timated by multiplying the measured fragment chargg
2 and then by a factor df1+y(E*/B;)] whereB; is the

Thus the fragment yields, parametrized via Fisher, can b
related to the decay ratéwidthsI'). Furthermorel’, which

controls the first chance emission yields, is the same decags
width which controls the mean emission timtesince

Tt~% (16) binding energy of the fragment andis a fit parameter to
' allow for an increase or decrease in the amount of secondary
and thus decay. _ _
The temperature was determined by assuming a degener-
1 1 ate Fermi gas,
_ (B/T)
T nam ™ (9
A T=JaE". (20

The mean time for fragment emission reported by the ISi
Collaboration[41,43 is well described as a Boltzmann fac-
tor. It was also noted that the Boltzmann factor describing
the emission times is the same as that describing the frag- a=8
ment yieldg 44]. This indicates that the thermal reaction rate

picture is valid for multifragmentation; fragments can be. der t date th iricallv ob d ch .
viewed as being the result of the evaporation of an excited? OrCer 10 accommodate the empirically observed change in
nucleus. a with excitation energy46]. HereBy, is the binding energy

of the fragmenting system. Using the Fermi gas approxima-
tion to relateE* andT gives a more reasonable estimate of
the temperature of the excited remnant at the time of first
Preliminary fits of the gold, lanthanum, and krypton datachance emission than does an isotope thermometer which
with Eqg. (6) led to puzzlingly large results fohu ((Au)  yields a temperature integrated from the first emission to the
~3A MeV) which could be interpreted as a substantial dedast [47]. It has been observed that even the isotope ratio
gree of supersaturation. A much more plausible alternativéhermometer follows the Fermi gas approximation quite well
explanation is the lack of an account of the Coulomb effectsis long as the average number of intermediate mass frag-
in Fisher’s formalism. Equation&l2) and (14) support the ments(IMFs) is less than 148].
presence of a barrier controlling the flux from liquid to vapor ~ To obtain the concentration of fragments of a given mass,
and vice versa. This barrier should depend not only on théhe total number of fragment®y,, of a given sizeA was
surface energy of the fragment but should reflect the entir@mormalized to the size of the fragmenting systégso that
energy necessary to remove a fragment from the liquid anda=Nu/A,.
place it into the vapor. At the least, the energy necessary to The location of the critical point, in terms of excitation
relocate a charge from the bulk to “near” the surface of the energy, was determined from an examination of measured
“residual” nucleus should be evaluated. This energy is negafluctuations. In general, as the critical point of a system is
tive and counteracts the effects of the surface energy. Fuapproached from the two phase region, the difference be-

SI'he parametetr was taken to bg45]

B. Fitting the data
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FIG. 2. Left: the rms fluctuations in the charge of the largest FIG. 3. Numerical derivatives of the smoothed data from Fig. 2
fragment normalized to the charge of the fragmenting system plotef (left) the rms fluctuations in the charge of the largest fragment
ted as a function of excitation energy. Right: the quanifyplotted normalized to the charge of the fragmenting system plotted as a
as a function of the excitation energy. Open symbols show the datlunction of excitation energy andight) the quantityy, plotted as a
points; solid curves show the results of smoothing the data. function of the excitation energy. Solid star symbols show the ap-

proximate location in excitation energy where the derivative is zero,
tween phases diminishes and the system fluctuates from otieus indicating the critical point.
phase to the other. At the critical point the fluctuations are
maximal. However, while the maximum in the fluctuations The peak in the fluctuations was found by smoothing the
occurs at the critical point, the presence of a peak in thelata(solid lines in Fig. 2, taking the numerical derivative of
fluctuations is a necessary, but not sufficient, condition for ahe smoothed data, and finding the valu&dfwhere the the
existence of a phase transiti¢@. derivative passed through zero; see Fig. 3. Finally, the value

The fluctuations measured in the EOS data(ajen the  of the excitation energy at the critical poiEf: was deter-
charge of the largest fragment normalized to the charge ohined by averaging the results from both measures of the
the fragmenting system an@) related to the average mass fluctuations. Table | lists the results. For this analysis the
number of a fragment as measured by the quantty49],  values determined for the excitation energy at the critical
where point for the Aut C reaction are in proximity of other values
observed in previous EOS analyseE;&4.75A MeV)
[36,16,17. Differences in the values dE; arise from the

rmgA) )2 M,M,
7’2—( ) 1=

(A) M2

(22

TABLE |. Critical points of excited nuclei.

with M as thekth moments of the fragment distributions: 3
System E} (AMeV) T, (MeV) pc(po) p.(MeV/fm®)

M, = E nAAk. (23 Au+C 4.6:0.2 7.6£0.2 0.33:0.01 0.1x*+0.04
A=1 La+C 4.9+0.2 7.8-0.2 0.39-0.01 0.12:0.04
Kr+C 5.1+0.2 8.+0.2 0.39-0.01 0.12:0.04

These fluctuations are shown in Fig. 2.
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FIG. 4. (Color) The scaled yield distribution versus the scaled temperature for the gold, lanthanum, and krypton systems. The solid line
has a slope o€,.

different method of constructing the thermal portion of thethis gives 12 free parameters used to fit nearly 200 data
excitation energy described abop2,20. points. Previous analyses of the EOS dg@g6] assumed
Estimates of the critical temperatufg are made by using thatA x=0 and that the effects of the Coulomb energy were
the values ofE} in Eq. (20) and lead to values, shown in small. The analysis presented here makes no such
Table I, which are comparable to theoretical estimates foassumptions.
small nuclear systemfs0-53. As an aside, as shown in  Fixing 7 at 2.2 did not significantly change the results of
Table | the value off; increases with decreasing projectile this analysis. Using a commonvalue for all three data sets
(and thus remnahptmass. This is opposite of the trend as- 5|50 returned results similar to those quoted below. Using a
sumed in a prior analysis of the EOS gold multifragmenta-commony value for all three data sets also returned results
tion data where the Coulomb energy was neglef@8tutin  gimijar to those quoted below. These different methods sug-

agreement with the trend reported in other analysis of th@est 4 systematic error 6f15% of the value in question. Al

EOIS Ic:iatazs?htslz,?q. for the K ‘ ttai K errors quoted below are those returned by the fitting proce-
n Fig. e value oy, for the Kr system aftains a pea dure, propagated where necessary. Finally, the same data col-

value of only~1.8. It ha_s peen_ suggested that the magthd?apse observed below would be seen if the parameters were
of the peak iny, could distinguish between the presence of a

power law with7>2 (y,>2) and an exponential distribu- f|_xed to 7=2.21,0=0.64 (their d=3 Ising values co
tion (y,<2) in the cluster yield$20,49. However, it was =16.8 MeV (the textb_ogk value of the nuclear liquid-drop
seen that this is not the ca@] and it will be seen in the Surface energy coefficientAuayiak=0 (they must be
Appendix that small percolation lattices have valuesypf ~ClOS€ t0 zero since fragments are obsefyeddy=0.5(in
with peak magnitudes of less than 2 yet still exhibit a con-KE€PINg with previous assumptions that the fragments prior
tinuous phase transition with an exponentf2.2 in the O sgcondary decay have the same mass to charge ratio of the
power law describing the cluster yields at the critical point.€xcited remnanf9,12)) and letting onlyx, the Coulomb pa-
Thus, the height of the peak i, cannot be used to rule out ameter vary to minimize the chi squared.
the presence of a critical point and the associated power law
in the cluster distribution or provide information about the
value of the power law exponent. C. Results

Data from each system for 0.25 AM&E* <E} (which Figure 4 shows the fragment mass yield distribution
corresponds to a range ofs:<~0.8) and 4<Z=<Zy/4 scaled by the power law prefactor, the chemical potential,
were simultaneously fit to Eq18), which, as mentioned and Coulomb terma,/qeA~ "exd (AuA+Ecqw)/T] plotted
previously, helps ensure that the fragments examined in thiggainst the inverse temperature scaled by Fisher's parametri-
analysis are produced via first chance emission. There wersation of the surface energ}a’s/T. Now, the scaled data
nearly 200 points from the EOS data sets used in the fittindor all three systems collapse onto a single line over several
procedure. The fit parameters o, and c, were kept the orders of magnitude as predicted by Fisher’s droplet formal-
same for all three data sets whilau, x, andy were allowed ism [25]. This collapse provides direct evidence for a liquid
to vary between the systems to minimize the chi squaredo vapor phase transition in excited nuclei. Furthermore, the
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TABLE Il. Uncommon fit parameters. system is close to coexistence. The valued afshould also

be compared to the values returned when the EOS fragment
System Ap (AMeV) X y yields were fit to Eq.(6): (Au)~3.0A MeV for all EOS
Au+C 0.38+0.02 1102 05-0.1 reactions. The reduction in the magnitude of the values
LatC 0.47+0.03 1.2¢01 03-02 Iisabouta factor of 6 and is due to the modification of €.
Kr+C 0.58+0.08 4.0-1.0 0802 toaccount for the Coulomb energy, i.e., E48). The re-

maining small positivel x values of the systems may indi-
cate that those systems are slightly super-saturated, or more
fact that the data from each system show a commomrobably they may reflect some other energy costs not taken
scaling illustrates the common nature of the underlying pheinto account(e.g., the symmetry energy or pairingr they
nomenon. may reflect that the approximation for the cost in Coulomb
The values of 7=2.2+0.1,0=0.71+0.02, and ¢,  energy to form a fragment given in E¢L9) is not com-
=14.0=1.0 MeV determined in this analysis are in agree-pletely adequatéfor instance, Eq(19) assumes a spherical
ment with those determined for the ISiS gOId multifragmen'geometry which may or may not be the Ch&'g they may
tation data setf10] and are in agreement with values previ- merely reflect noise in the data.
ously determined for the EOS AuUC data sef12,36. The The values ofk for each system may indicate mof&u
value of the surface energy coefficiemntis close to the value 5,4 La or less(Kr) Coulomb energy present in the system.
of the surface energy coefficient of the liquid-drop model-l—hey may also reflect the symmetry of the collision which

Wh'i:h is~.16.8 M?V'. f the EOS gold lif ._may affect the geometry of the remnant; e.g., a very asym-
previous analysis of the gold multifragmentation metric collision like Au+C may leave a nearly spherical

showed the surface energy coefficient to &g=6.8+0.5 . . SR
MeV [36]. The difference between they=6.8+0.5 MeV remnapt, while a more symmetric _coII|S|on like KC may
result in a less spherical fragmenting system.

from that work and they=14.0=1.0 MeV presented here SV
arises from the differing analyses. In the previous analysis if The values ol retumed indicate that the fragments have

was assumed thatu =0, that the Coulomb energy was neg- the same mass to_charge ratio as the excited remnant.
ligible, and that the level density parameter was constant at '€ difference in values ahu, x, andy determined in
a=13. These assumptions allowed some degree of scalin@e analysis (?f the three.EOS data sets and those gletermmed
and yielded sensible values for the critical exponents, bufl! the analysis of the ISiS 8.0 Gew/m on gold multifrag-
resulted in a surface energy coefficient that was a factor of fhentation sef10] is left an open question. The small differ-
of lower than that of the present analysis. ences inE; and T, are due to the differences in recon-

In addition to a surface energy coefficient that is in betterstructed excitation energy scal&st]. This difference carries
agreement with the standard liquid-drop model, the greateover to all energy related quantities, ey,
collapse of the data in the present work demonstrates the Finally, in light of the above parameter results, it is clear
improvements of the present analysis over the previous onghat the same data collapse would be observed if the param-
The improvements in analysis are related to allowing a noneters were fixed to some nominal values, discussed above,
zeroA ., taking into account the cost in Coulomb energy towith only x, the Coulomb parameter varying to minimize the
move a fragment from the liquid to the vapor and accountingchj squared. Thus only three free parameters are truly needed

for the change in the level density parameter over the excitg fit the ~200 data points of the EOS data sets.
tation energy range. The treatment of secondary decay in

both analyses is different: previously it was assumed that the
fragments, prior to any secondary decay, had the same mass p. coexistence curve of finite neutral nuclear matter
to charge ratio as the fragmenting remnant. In the present
analysis the amount of secondary decay is left as a free 1. Pressure-temperature coexistence line
parameter. Before determining the pressure-temperature coexistence
The values ofA . reported in Table Il can be considered |ine, the meaning of a pressure associated with an excited
“small” in light of Eq. (7). The chemical potential of the nyclear remnant must be addressed. As discussed above, in
liquid can be found by the actual experiment, this pressure is virtual; it is the pres-
w=Eog+TS, (24) sure the vapor would have in ordgr tq provide the ba(?k flow
needed to keep the source at equilibrium. However, since the
with E, as the bulk energy per particle ag as the bulk yields from Fisher’s formalism are _proportional to b_ot_h the
entropy per particl¢25]. Treating the system as a Fermi gas Pressure, Eq(8), and the evaporation rate, E(L7), it is

so thatS/A=aT yields clear that by fitting the yields as has been done above, one
can infer an associatddirtual) vapor pressure.
u=Eo+E*. (25) The p-T coexistence curve can be determined from this

analysis. As seen in Sec. Il A, Fisher’s theory assumes that
Thus the important energy scale fa is Eq+E* and for  the nonideal fluid can be approximated by an ideal gas of
nuclear mattelEy~15.5 MeV. The values ofA u returned clusters. Accordingly, the quantity, is proportional to the
by this analysis are<6% of Ey+E*, indicating that the partial pressure of a fragment of ma&sand the total pres-
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™ rFrrrrrrrrrrprrrr T T TABLE Ill. Thermodynamic properties of excited nuclei.
= 1 ; Critical point =
P System AH (MeV) (T) (MeV) AE/A (AMeV)  CF
1: ] Au+C  19.4-0.7 4.6£0.6 14+1 0.28:0.09
10 b - La+C  19.6-0.7 4.9+0.6 14+1 0.28+0.09
E ] Kr+C 19507 4.9-0.6 14+ 1 0.28+0.09
_2_ h
10 3 3 which would lead to the ratio of
L 1 p AH Te
3 _ —=exp{— 1-—= (30)
R pe M Tol T
i ] if AH were assumed to be temperature independent. How-
107 . ever, asT — T, the gas is not ideal anfiH # const, but it has
c 3 long been known that for several normal fluids these devia-
i ] tions compensate so that pig.) is approximately linear in
107k , T/T. [55].

Afit of Eq. (30) to the coexistence curves for the systems
is shown in Fig. 5 yields the ratio cAH/T.. Using the

FIG. 5. The reduced pressure-temperature phase diagram: thcgrrespondlng values of; gives the molar enthalpies of

points show calculations performed at the excitation energies belo vaporation of t.he liquidhH shovyn m;l'able 1. Frolm these

the critical point and the lines show fits to the Clausius-Clapeyro H val.uesAE.ls constructed V'_EAE__AH_ pV with pV

equation. =T (with the ideal gas approximatiprusing the average
temperature from the range in Fig. 5 listed in Table NE

sure due to all of the fragments is the sum of their partiaefers to the cost in energy to evaporate a single fragment. To

pressurefsee Eq(8)]. The reduced pressure is then given bydetermine the energy cost on a per nucleon basisis di-
vided by the most probable size of a fragment over the tem-
TE na(T) perature range in Fig. 5. Since the gas described by Fisher’s
- . (26) formalism is an ideal gas of clusters, the most probable clus-
T Z nA(To) ter size is greater in size than a monomer. The most probable
€ AlTe size of a fragment in the region of theT coexistence line
obtained from Eq(18) and the experimentally determined

The coexistence curve for finite neutral nuclear matter is ob- .
tained by substituting tha(T,A u=0Ece,=0) from Eq. parameters is 1.060.05. Thus theAE/A becomes~ 14A

(18) in the numerator of EQ(26) andn(Te,Au=0Ecey MeV, close to the nuclear bulk energy coefficient of 15.5

R . . MeV and close to the average excitation energy removed by
=0) in the denominator. This allows one to transform thea nucleon and the threshold for particle evaporation observed
information in Fig. 4 into the familiar phase diagram in Fig. P P

5. The data points shown give the valuespdp, and T, /T in compound nucleus dec4$6]. The agreement of the esti-

calculated via Eq(26) for the bins inE* up to and including mate of AE/A determined fr(_)m_ these mulﬂfragmentaﬂon
the critical point, data and measurements of similar energies from compound

. . : . . ... nucleus data is not surprising as it has been recently ob-

Figure 5 gives an estimate of the coexistence line of finite : . .

S i served that the Fisher droplet formalism provides a good

nuclear matter and from this it is possible to make an esti- L : ;

- parametrization of the evaporation yields of compound

mate of the bulk binding energy of nuclear matter. One be-

. . . nucleus decay47].
gins by assuming that the system behaves as an ideal gas an

uses the Clausius-Clapeyron equation
ap AH

p

Pc

2. Temperature-density coexistence curve

9 _ 27) As seen in Sec. Il A the system’s density can be found
JT  TAV' from Eq. (9). The reduced density is given by
whereAH is the molar enthalpy of evaporation aid/ is
the molar volume difference between the two phases. Then 2 Ana(T)
solving for the vapor pressure with P _ A (31)
T Pc .
AV:Vvapor_ Vliquid%Vvapor:B (28) 2 A(Te)
gives With A andEc, set to 0 in the numerator of E¢L8) and
Ap andEcq, set to O withT set toT. in the denominator,
p=p exr{ —AH (29) Eq. (31) gives the low densityvapon branch of the coexist-
0 T ) ence curve of finite nuclear matter, shown in Fig. 6.
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FIG. 6. The points are calculations performed at the excitation FIG. 7. The points are calculations performed at the excitation
energies below the critical point and the lines are a fit to and reflecenergies below the critical point and the lines are the results of the
tion of Guggenheim’s equation. fits from the previous sections.

Following Guggenheim’s work with simple fluids, it is 4. Compressibility factor
possible to determine the high densityquid) branch as
well: empirically, thep/p.—T/T, coexistence curves of sev-
eral fluids can be fit with the functiofb7]

The critical compressibility factoﬁsz p./T.p. can also
be determined in a straightforward manner fr{ig]

Pl T) T)ﬁ > na(Te)
L4y 1 | by 1- =] , 32 AlTe
Pc ' Te 2 Te 32 CEZ—. (34)
where the parameté, is positive(negative for the liquid p, > An(Ty)

(vapor p,) branch. Using Fisher’s formalisng can be de-
termined fromr and o [25]:

B=

For this work3=0.3*=0.1. Using this value oB and fitting
the coexistence curve from the EOS data sets with(E&2).
one obtains estimates of the, branch of the coexistence
curve and changing the sign b} gives thep, branch, thus
yielding the full T-p coexistence curve of finite nuclear
matter.
From Fig. 6 it is possible to make an estimate of the

density at the critical poing.. Assuming that normal nuclei
exist at theT=0 point of thep, branch of the coexistence

curve, _then using _the parametrization of the coexis_tence Through a direct examination of the most accessible fea-
curve in Eq.(32) gives pc~po/3. See Table | for precise o5 of nuclear multifragmentation, namely, the fragment
values. distributions themselves, and the use of Fisher’s droplet for-
malism, modified to account for the Coulomb energy cluster
formation, a measurement of the coexistence curve of finite
For the sake of completeness th&p.—p/p. projection  neutral nuclear matter has been made for three different mul-
of the coexistence curve is determined by combining thdifragmenting systems and estimates of the critical point for
results of the previous two sections. This is shown in Fig. 7finite nuclear matter have been made. Alternative analyses to
It is clear from Fig. 7 that the fitted curves do not reachthe one presented here have been applied to theoretical mod-
p/p.=1 atp/p.=1 while the data points do. This is a re- els with results that seem to cast some doubt on the results
flection of the validity of the assumptions that went into presented in this pap¢#48,58,59. However, these models,
deriving Eq.(30). the analyses applied to them, and their interpretations are the

Table 11l shows the results for the EOS data sets which are in
T—2 agreement with the values for several fluj@8] and that of
. 33 the ISis datd10].

Finally, a measure of the pressure at the critical ppint
can be made by using, andp. from above in combination
with CL. The results are shown in Table 1. This last calcu-
lation gives a complete experimental measure of the location
of the critical point of finite neutral nuclear matter
(pe,Te,pe) and is in agreement with the ISIS results and in
rough agreement with theoretical calculatigf®,53.

IIl. CONCLUSION

3. Pressure-density coexistence curve
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subject of much debatgl5,6Q and the meaningfulness of
the model results with respect to analysis of data is far from —
certain. The precise values of quantities like the critical ex-
ponents and critical temperature and precise locations of co-\g
existence curves depend on the assumptions made for theN
cost in Coulomb energy for fragment formation and the as- %
sumptions made to account for the secondary decay of theg
fragments. While thexactforms are unknown, the estimates
made in this paper have solid physical origins and yield val-
ues of the surface energy coefficient and the bulk binding
energy of nuclear matter which are consistent with estab-
lished values. Both th@-T coexistence lines and thE-p
coexistence curves for all three EOS systems are consistent
These are strong indications that this analysis determines the
coexistence curve and can be used to construct the phast
diagram of finite neutral nuclear matter based on experimen-
tal data.

To demonstrate the efficacy of the above analysis, it is
applied to the cluster distributions from three dimensional
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FIG. 9. Left: the numerical derivative of rms fluctuations in the
size of the largest cluster normalized to the size of the lattice system
plotted as a function of bond breaking probability. Right: the nu-
merical derivative of the quantity, plotted as a function of bond
breaking probability. Open symbols show the estimate of the exci-
tation at the critical point based on the maximum of the fluctua-
tions; the solid stars show where the derivatives are zero.

simple cubic lattices of side=4, 6, and 9. It will be seen
that if the above procedures are followed, well-known quan-
tities are recovered.

Cluster distributions for over 100 000 lattice realizations
were generated by breaking bonds between ditd3. A
value of the lattice’s bond breaking probabilgywvas chosen
from a uniform distribution or{0,1). Next, a bond probabil-
ity g; was randomly chosen from a uniform distribution on
(0,2) for theith bond. Ifg; was less than, then theith bond
was broken and two sites were separated. This process was
performed for each bond in the lattice. At low valuesgpf
few bonds were broken, resulting in a cluster distributions
that are analogous to the liquid-vapor coexistence of a fluid.
In an infinite lattice the distinguishablity of the “liquid”

FIG. 8. Left: the rms fluctuations in the size of the largest clusterPhase and the “vapor” phase vanishes at a unique value of
normalized to the size of the lattice system plotted as a function ofh€ lattice probabilityg. when the probability of forming a

bond breaking probability. Right: the quantipy plotted as a func-

percolating cluster changes from zero to unié2,63. For

tion of bond breaking probability. Open symbols show the estimatéhe ensuing analysis, the number of clusters of gizper
of the excitation at the critical point based on the maximum of thelattice siten, was calculated by histogramming the lattice
fluctuations; the solid line shows the results of smoothing the datarealizations into 100 bins og from 0 to 1.
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TABLE IV. Critical points of finite percolation lattices. TABLE V. Percolation fit parameters.
L dc Pc Pc L Aup Co
9 0.705:0.004 0.216:0.001 0.0410.001 9 —0.008+0.004 2.62-0.04
6 0.685+-0.004 0.216:0.001 0.0410.001 6 0.001=0.001 2.42-0.04
4 0.655+-0.004 0.24%0.002 0.044:0.001 4 0.0070.001 1.9%0.04
First the value of the probability at the critical poigt is na=A""f(X), (A1)

determined by locating the maximum in the fluctuations of

(1) the size of the largest cluster at®) y,. Figures 8 and 9 with X=A%¢¢/T and wheref(X) is some general scaling
show these measures of the fluctuations. The location of thinction. This scaling function should be valid on both sides
maximum is determined as in the EOS data, the data aref the critical point. For smalX (T~T,. and smallA) and
smoothed, and then the numerical derivative is taken. The>0, f(X) will vary as exp-X) with o=1/(856)=1/(y
location of the peak in the largest cluster is averaged with the- 8) =0.64 ford=3 Ising systems or 0.45 fat=3 perco-
location of the peak iny, and the results are recorded in lation systems ang=1. For largeX (T far from T or large
Table IV. As expected the value of changes with the lat- A) ande>0, f(X) will vary as exp( X) with o= 2/3 for all
tice size. three dimensional systems and with+2v, wherer=0.63

Note that in Fig. 8 the value of, for the L=4 lattice for d=3 Ising systems and=0.88 for d=3 percolation
attains a peak value of onhy 1.9; this is a finite size effect lattices.
and due to the small size of the lattice. Singeis related to The fitting procedure using Ed6) returned a value of
the fluctuations in the average size of a cluster, it is clear that-=0.44=0.01 andr=2.192+ 0.003 in good agreement with
as the size of the lattice decreases, the upper limit in the sizether measurements;=0.45 and7=2.18[63]. It is clear
of a cluster decreases, thus imposing a limit on therom these results that the data examined here are in the
size of y,. small X, >0 region where the approximation df(X)

Next the cluster yields from the three different lattices aregiven in Eq.(6) is valid. As with the EOS data, the errors
fit simultaneously to Eq(6), with g.(L) keeping the fit pa- quoted here are from the fitting procedure. Systematic errors
rameterso- and 7 consistent between lattices and lettifge that arise from the use of Fisher’s scaling form and from the
andc, vary between lattices. Data from G4 <1.05. and fitting regions inA andq are on the order of-10%.
5<A=<3L were included in the fitting procedure. This gives  The value ofc, for theL=6 lattice is in good agreement
seven fit parameters with 1083 points to fit. The results aravith previous measure$36]. The interpretation of the
shown in Fig. 10 and recorded in Table V. change incy with lattice size will be discussed below.

The formula in Eq.(6) used in this analysis is only one The values ofAu for all lattices are close to zero, in
example of a more general form of the scaling assumptiomgreement with the fact that percolation calculations such as

[62,63 these are at coexistence.
= | |
= " A5 = = A=5 = A=[5 - " A5 -
=. e A=6 o e A=6 e A=]|6 J e A=6 I
§ mA=7 = mA=7 ® A=]7 | m A=7
% ° A:(S) ® e A=8 e A=1]8 ° ﬁ:?)
m A= ] m A=9 B ] = n
L e A=10 o e A=10 e A=10
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FIG. 10. (Color) The scaled yield distribution versus the scaled bond breaking probability far-t8 6, and 4 lattices. The solid lines
have a slope ofy(L).
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FIG. 11. The reduced pressure-probability phase diagram: the FIG. 12. The points shown on the low density branch are from
points show calculations performed at the probabilities below thehe calculations performed at the bond breaking probabilities below
critical point and the lines show fits to the Clausius-Clapeyronthe critical point. The lines are a fit to and reflection of Guggen-
equation. heim’s equation. The points shown on the high density branch show

the size of the largest fragment at a given valug oformalized to

It is now a simple matter to follow the analysis describedthe size of the largest fragment ag.
above using Fisher’s parametrization of the cluster distribu-

tion to determine the “phase diagrams” for these percolationjcy to the values of the surface energy coefficieptwhich
lattices. The interpretation of these “phase diagrams” is nofis ot surprising since for percolation on a simple cubic lat-
as s.|mple. . , ) ) tice ¢y arises from the bonds broken to form the surface.

First the “reduced pressure” as a function of the inverserthermore, the “energy of vaporization” is approximately
of the “reduced probability'q/q. is determined via Eq26),  gqual to the number of bonds per lattice giéso shown in

and as usual for percolation studigseplacesT andqc re-  Tapje V), a strong indication that thaE/A calculated here
placesT.. The results are shown in Fig. 11 where the points

are fit with Eq(30). This leads to an estimate of the “en- .
thalpy of evaporation of a cluster” given in Table VI. The %
values ofAH are on the order of the values of and in- 1
crease with increasing.

To determine the “energy of vaporization” of a cluster
AE the ideal gas approximatiopV=q is followed so that
AE=AH-—q, whereT is replaced by in keeping with stan-
dard practice in percolation work amplis the average bond
breaking probability considered: 0.5®.02, 0.54-0.02,
and 0.53:0.02 forL=9, 6, and 4, respectively. Th®E/A
values listed in Table VI were found by dividingH —q by N
the most probable cluster size (1#48.05, 1.25-0.05, and 10
1.25+0.05 forL=9, 6, and 4, respectivelythis putsAE
on a “per site” basis.

The values ofAE/A shown in Table VI are nearly iden-

Critical point

TABLE VI. “Thermodynamic” properties of finite percolation
lattices.

llII|IIII|IIII|IIII|IIII|IIII|II I|IIII|IIII|LLII

L AH AE/A ct Bonds/site 0 05 1 15 2 25 3 35
p/p,
9 3.62+0.03 2701 0.275-0.003 2.67
6 3.35-0.03 22:0.1 0.275:0.003 2.50 FIG. 13. The points are calculations performed at the bond
4 2.75-0.03 1.8-0.1 0.275-0.003 2.25 breaking probabilities below the critical point and the lines are the

results of the fits from the previous sections.
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is the “bulk binding energy” of the lattice in question. The ken at the critical point. Thus it seems that the density in Fig.
value of AE/A decreases with the size of the lattice becausé.2 is related to the number of broken bonds. It is also noted
the percolation calculations were performed for open boundthat for q=0 the vapor branch of the coexistence curve

ary conditions.

showsp/p.>0; this serves as an illustration of the magni-

The compressibility factor at the critical point was deter-tude of the error associated with this procedure.

mined via Eq.(34), the results are shown in Table VI. From
CE, Jc, and p. (determined beloythe “pressure” at the
critical point can be found. The resulting values mf are

It is also possible to directly explore the behavior of the
reduced density of the “liquid,” at least in the larger system.
This is done by normalizing the size of the largest cluster at
a given value ofq to the size of the largest cluster at the

shown in Table IV, but the interpretation of these values is arritical pointA,a(a)/Amadc). Figure 12 shows that for the

open question.

L=9 lattice, the measured normalized density of the liquid

_ Following the thermodynamic treatment of the percola-tracks along the coexistence curve predicted by Guggen-
tion results, the reduced probability versus “reduced denheim’s empirical formula and the reduced density of the va-

sity” phase diagram is produced via E@1). This leads to

por. Forg/q.<0.75 the effects of the finite size of the lattice

the points shown in Fig. 12. These points are then fit taare observed and the measured reduced density of the liquid

Guggenheim’s empirical formula, Ed32), with 3=0.43
+0.01 (in good agreement with textbook values 0[4B])

deviates from the coexistence curve. The effects of finite size
are more evident in the smaller lattices where there is little or

from Eq.(33). These results are shown for each lattice by theno agreement between the measured reduced density of the

solid lines in Fig. 12.

liquid and the coexistence curves. Effects of finite size on the

While it is not clear what density this plot describes, someélargest cluster such as these have been observed previously
insight can be gained by noting that the “liquid” branch [64].

reachesp/p.,~4 to ~4.5 at q=0. Assuming that, af
=0, p=1, since no bonds are broken, then~0.22 to

For the sake of completeness, the “reduced pressure” ver-
sus “reduced density” projection of the phase diagram is

~0.25, which is approximately the percentage of bonds broshown in Fig. 13.
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