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Abstract. The absence of a generic modeling framework in1  Introduction

hydrology has long been recognized. With our current prac-

tice of developing more and more complex models for spe-

cific individual situations, there is an increasing emphasisAS in most other fields of science and engineering, growth
and urgency on this issue. There have been some attempt the field of hydrology during the past century has been
to provide guidelines for a catchment classification frame-unprecedented, largely driven by the invention of power-
work, but research in this area is still in a state of infancy. ful computers, measurement devices, remote sensors, geo-
To move forward on this classification framework, identi- 9raphic information systems (GIS), digital elevation mod-
fication of an appropriate basis and development of a suit€lS (DEM), and networking facilities. This growth may be
able methodology for its representation are vital. The presenyiewed in terms of: (1) the various sub-fields that have been
study argues that hydrologic system complexity is an ap_created essentially to “break down” hydrology into specific
propriate basis for this classification framework and nonlin- components for more focused and detailed studies (e.g. sur-
ear dynamic concepts constitute a suitable methodology. Théce hydrology, subsurface hydrology, groundwater hydrol-
study employs a popular nonlinear dynamic method for iden-09Y, forest hydrology, mountain hydrology, urban hydrology,
tification of the level of complexity of streamflow and for iSotope hydrology, snow and glacier hydrology, ecohydrol-
its classification. The correlation dimension method, which©9Y); and (2) the numerous scientific theories and mathemat-
has its base on data reconstruction and nearest neighbor col¢al techniques that have been developed/applied for model-
cepts, is applied to monthly streamflow time series from aing and prediction of hydrologic systems and the associated
large network of 117 gaging stations across 11 states in th@rocesses (e.g. deterministic techniques, stochastic methods,
western United States (US). The dimensionality of the timescaling and fractal theories, artificial neural networks, chaos
series forms the basis for identification of system complex-theory, wavelets, entropy theory, evolutionary computing).

ity and, accordingly, streamflows are classified into four ma- Despite this growth, there remain many grand challenges
jor categories: low-dimensional, medium-dimensional, high-in performing good hydrologic teaching, research, and prac-
dimensional, and unidentifiable. The dimension estimatedice. Among others, two major concerns are dominating dis-
show some “homogeneity” in flow complexity within certain cussions and debates on current hydrologic studies: (1) hy-

regions of the western US, but there are also strong excepdrologic models being developed are often more complex,
tions. having too many parameters and requiring too much data,

than perhaps needed; and (2) models are often developed
for specific situations, and their extensions and generaliza-
tions to other situations are rather difficult. In addition, our
general lack of emphasis in studying the crucial connections
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between the (model) theories and the actual system propemade based on the dimensionality of the streamflow time se-
ties (e.g. data), our increasing emphasis in applying specificies.
(and often pre-selected) mathematical techniques indepen- The rest of this paper is organized as follows. Section 2
dently as opposed to the integration of techniques for modelpresents a brief account of major attempts on classification
ing hydrologic systems, and our focus mainly on local-scalein hydrology. Section 3 highlights the role of complexity and
hydrologic problems rather than global-scale hydrologic is-nonlinearity in hydrologic systems. Section 4 describes the
sues have also come under severe scrutiny (e.g. Beven, 2002orrelation dimension method. Section 5 presents the details
Sivakumar, 2008). With growing concerns on the occurrenceof streamflow data from the western United States and re-
of global climate change and its potential impacts on wa-sults of their analysis. Conclusions and directions for further
ter resources and the environment (including more frequentesearch are presented in Sect. 6.
and greater magnitudes of extreme events, such as floods
and droughts), the limitations of the “confines of traditional
hydrology” and the need to go beyond and perform cross2 Classification in hydrology: a brief history and scope
disciplinary research integrating hydrology with atmospheric
science, geomorphology, geochemistry, ecology, and othefhe realization of the need for a classification framework
areas have also been increasingly recognized (see, for exarim hydrology is not entirely new. It had indeed been dis-
ple, Paola et al., 2006, for some details). cussed some time ago, and since then several studies have
In view of these concerns, many studies during the pastlso attempted to advance the idea. These studies have inves-
decade or so have emphasized the need for simplification itigated different ways for developing such a framework and
modeling wherever possible as well as a common frameworkheir implications, including river morphology (e.g. Rosgen,
in hydrology (e.g. Grayson and &chl, 2000; McDonnell 1994, Poff et al., 2006), river/flow regimes (e.g. Beckinsale,
and Woods, 2004). Within this context, some attempts havel 969; Haines et al., 1988), landscape and land use parameters
also been made towards a catchment classification framele.g. Merz and Bischl, 2004; Wardrop et al., 2005), simi-
work (e.g. Snelder et al., 2005; Sivakumar et al., 2007; sedarity indices (e.g. Olden and Poff, 2003; Ali et al., 2012),
also the other articles in the current special issue “Catch-eco-hydrologic factors (e.g. Harris et al., 2000; Olden et al.,
ment Classification and PUB” for some latest studies), with2011), geostatistical properties (e.g. Vormoor et al., 2011),
an aim to streamline catchments into different groups andentropy (e.g. Krasovkaia, 1997), nonlinear and chaotic dy-
sub-groups on the basis of their salient characteristics (e.gnamic properties (e.g. Sivakumar et al., 2007), and other rel-
data and process complexity) and to provide directions toevant characteristics/methods (e.g. Chapman, 1989; Isik and
model developers on the level of model complexity to in- Singh, 2008). Extensive details of these studies are available
voke. Nevertheless, these attempts are only preliminary antboth in the traditional hydrologic literature and in related
research in this direction is still in a state of infancy. Indeed,fields (e.g. geomorphology, ecohydrology, and freshwater bi-
there are even questions on the basic form of the classificaglogy); for some very latest accounts, see Ali et al. (2012)
tion framework and on the components to be included (e.gand also the articles in the current special issue “Catchment
Wagener et al., 2007). Therefore, identification of an appro-Classification and PUB.”
priate basis for the classification framework and development Although useful in their own ways, these studies are
of a suitable methodology are crucial for moving forward in largely inadequate for a generic classification framework. In
hydrology. addition to the limitations that exist in each of the different
The present study attempts to offer some workable guideforms, a coherent effort to bring these disparate forms to-
lines for an appropriate basis and a suitable methodology together for a workable classification framework is also miss-
wards a classification framework in hydrology. The study ar-ing. The urgency to formulate a generic classification frame-
gues, through highlighting the relevance of complexity andwork in hydrology is increasingly realized now, especially
nonlinearity in hydrologic systems, that system complexity with our current practice of employing more and more so-
is an appropriate basis for the classification framework andohisticated mathematical techniques and developing more
nonlinear dynamic concepts constitute a suitable methodoland more complex models for each and every individual hy-
ogy for assessing system complexity. With this, it examinesdrologic system/situation, rather than the emphasis needed
the usefulness of a nonlinear dynamic method for streamfor addressing broader-scale hydrologic issues (e.g. Sivaku-
flow classification. This is done by employing the corre- mar, 2008).
lation dimension method (e.g. Grassberger and Procaccia, The fundamental idea behind a classification framework
1983a) to streamflow from a large network of gaging stationsin hydrology is to streamline hydrologic systems into groups
in the western United States. Monthly streamflow data ob-and sub-groups to recognize salient characteristics that are
served over a period of 52 yr from 117 gaging stations acrosgmblematic and to develop suitable methods/models. This
11 states are considered for analysis. The identification otlassification also serves as a middle-ground to the follow-
the level of complexity and the subsequent classification areng two extremes: (1) treatment of all hydrologic systems in
the same way, regardless of the differences among them; and
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(2) treatment of each and every individual hydrologic systemreconstruction, for assessing the complexity of hydrologic
in its own way, regardless of the similarities among them. Ei-systems and, thus, for their classification. They used the “re-
ther of these approaches has enormous implications for modgion of attraction of trajectories” in the phase space to iden-
eling, including complexity of the models, data and computertify data as exhibiting “simple” or “intermediate” or “com-
requirement, accuracy of results, and overall understandinglex” behavior and, correspondingly, classify the system as
of the systems. The classification framework, therefore, ispotentially low-, medium-, or high-dimensional. The utility
aimed at providing an optimum way of studying hydrologic of this reconstruction concept was first demonstrated on two
systems, taking into account both minimization of costs andartificial time series possessing significantly different char-
maximization of benefits. In the end, it should help modelersacteristics and levels of complexity (purely random and low-
identify suitable catchments to apply their models to and alsadimensional deterministic), and then tested on a host of river-
users to identify suitable models for their catchments. related data representing different geographic regions, cli-

For its usefulness to be realized both at the global and atnatic conditions, basin sizes, processes, and scales. The abil-
the regional/local levels, the classification framework shouldity of the phase space to reflect the river basin characteristics
be able to accommodate important general as well as specifiand the associated mechanisms, such as basin size, smooth-
characteristics of hydrologic systems/processes. The frameng, and scaling, was also observed. The “dimensionality”
work must also be simple enough and commonly agree-and “complexity” ideas used by Sivakumar et al. (2007) were
able to provide a “universal” language for communication along the lines of the dominant processes concept (DPC),
and discussion in hydrology and water resources. The cruwhich was originally introduced in the context of hydrologic
cial questions now are: (1) What form should the classifi-model simplification (Grayson and @&chl, 2000) and sub-
cation framework assume? (2) What components need to bsequently suggested as a potential means for formulation of
included? (3) What is the appropriate methodology for itsa classification framework (e.g. Woods, 2002; Sivakumar,
formulation? and (4) How to effectively verify such a classi- 2004a).
fication framework? A few studies have attempted to address Following up on the preliminary ideas by Sivakumar et
these questions and relevant issues, such as the examples la-(2007) based on just a few example cases, we attempt here
low. to advance the studies on nonlinear dynamic concepts for

Wagener et al. (2007) reviewed the existing approachesdentifying complexity of hydrologic systems and for their
to define hydrologic similarity, which has often been in- classification. To this end, we particularly consider that the
voked for classification purposes, and offered some genextent of “complexity” of the system is reflected by the “vari-
eral guidelines for catchment classification that include theability” of the representative (observed) data (i.e. streamflow
use of catchment structure, hydro-climatic region, and catchin the present case), which, in turn, is assessed by its “di-
ment functional response, among others. They also identifiednensionality”. We apply the correlation dimension method
the following requirements for a classification framework: for studying data dimensionality and system complexity, and
(1) mapping catchment form/hydro-climatic conditions on use such information for classification purposes.
catchment function across spatial and temporal scales; (2) in-
cluding partition, storage, and release of water in catch-
ment functions; (3) consideration of uncertainty in the met-3  Complexity and nonlinearity in hydrologic systems
rics/variables used; and (4) basing on functions characterized
by streamflow to start with and subsequently expanding ta3.1 Complexity in hydrologic systems
other more complex functions.

Using the Shannon entropy, Krasovskaia (1995, 1997) deAlthough words “complex” and “complexity” are widely
veloped a quantitative methodology for studying river flow used both in scientific theory and in common practice, there
regimes and their classification. The entropy-based methodis no general consensus on the definition. Nevertheless, one
ology involves: (1) classification of mean monthly flows into workable definition may be this: “consisting of intercon-
different types; (2) identification of discriminating periods nected or interwoven parts”. Qualitatively, to understand the
for different classes; (3) specification of instability index; behavior of a complex system, we must understand not only
(4) computation of instability index value for each regime the behavior of the parts but also how they act together to
type; and (5) computation of instability index for all flow se- form the behavior of the whole. This is because: (1) we can-
ries. Another method for grouping river regimes, developednot describe the whole without describing each part; and
by Krasovskaia (1997), employs minimization of an entropy- (2) each part must be described also in relation to other
based objective function. This function uses a concept ofparts. For a quantitative description, the central issue again
information loss resulting from flow aggregation and deter-is defining quantitatively what “complexity” means. In the
mining the difference between the series aggregated into onspecific context of classification of systems, such as the one
group. addressed in this study, it may perhaps be even more use-

Sivakumar et al. (2007) explored the utility of a simple ful to ask: (1) What do we mean when we say that one sys-
nonlinear data reconstruction approach, called phase spad¢em is more complex than another? and (2) Is there a way
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to identify the complexity of one system and to compare it no rainfall at all, while the runoff process in a large river
with the complexity of another system? To develop a quanti-basin may be highly complex due to the basin complexities
tative understanding of complexity, a variety of tools can beand heterogeneities, in addition to rainfall variability. Conse-
used. These may include: statistical (e.g. coefficient of varia-quently, hydrologic modeling must also be viewed from these
tion), nonlinear dynamic (e.g. dimension), information theo- three angles; in other words, the appropriate model to repre-
retic (e.g. entropy), or some other measure. In this study, wesent a given hydrologic system may also be either simple or
discuss the nonlinear dynamic tools, which allow identifica- complex. The obvious question, however, is: how simple or
tion of complexity of different systems and interpretations how complex should the models be? This issue is addressed
and distinctions on “more complex” and “less complex” sys- in this study, since the basic purpose behind formulation of
tems. In particular, we attempt to assess the complexity of th& catchment classification framework is the identification of
system in terms of variability of the data through dimension the most appropriate model (type and complexity) for a given
estimation. catchment.

Hydrologic phenomena arise as a result of interactions be- Since complexity is a fundamental and central characteris-
tween climate inputs and landscape characteristics that odic of hydrologic systems, and is also a representation of their
cur over a wide range of space and time scales. Due t@enerality and specificity, it should form the basis for a clas-
the tremendous heterogeneities in climatic inputs and landsification framework. The study by Sivakumar et al. (2007),
scape properties, such phenomena may be highly variabléor example, offers some clues as to the use of complexity
and “complex” at all scales. Consequently, they are not fully (defined in terms of extent of data variability) as a viable
understood. In the absence of perfect knowledge, a simplimeans for a classification framework.
fied way to represent them may be through the concept of
“system”. There are many different definitions of a system,3.2 Nonlinearity in hydrologic systems
but perhaps the simplest may be: “a system is a set of con-
nected parts that form a whole”. Chow (1964) defined a sysMuch of the research in hydrologic systems, at least until
tem as an aggregate or assemblage of parts, being either otiie 1990s, has been based on the assumption of “linearity”;
jects or concepts, united by some form of regular interactioni.e., the relation between cause (e.g. input) and effect (e.g.
or inter-dependence. Dooge (1967a), however, defined a sysutput) is linear or proportional. One of the important fac-
tem as: “any structure, device, scheme, or procedure, real dors that contributed to, or necessitated, this linear approach
abstract, that inter-relates in a given time reference, an inputwas the lack of computational power to develop the (perhaps
cause, or stimulus, of matter, energy, or information and armore complex) nonlinear mathematical methods. However,
output, effect, or response of information, energy, or matter”.the “nonlinear” behavior of hydrologic systems had been
This definition by Dooge is much more comprehensive andknown for a long time (e.g. Izzard, 1966; Dooge, 1967b).
instructive. The nonlinear behavior of hydrologic systems is evident

With this system concept, the entire hydrologic cycle in various ways and at almost all spatial and temporal scales.
may be regarded as a hydrologic system, whose componenfEhe hydrologic cycle itself is an example of a system ex-
might include precipitation, interception, evaporation, tran- hibiting nonlinear behavior, with almost all of the individ-
spiration, infiltration, detention storage or retention storage,ual components themselves exhibiting nonlinear behavior as
surface runoff, interflow, and groundwater flow, and perhapswell. The climatic inputs and landscape characteristics are
other phases of the hydrologic cycle. Each component mayhanging in a highly nonlinear fashion, and so are the out-
be treated as a sub-system of the overall cycle, if it satisfieputs, often in unknown ways. The rainfall-runoff process is
the characteristics of a system set out in its definition. Thusnonlinear, almost regardless of the basin area, land uses, rain-
the various components of the hydrologic system can be refall intensity, and other influencing factors. In fact, the ef-
garded as hydrologic sub-systems. To analyze the total sydects of nonlinearity can be tremendous, especially when the
tem, the simpler sub-systems can be treated separately arsystem is sensitively dependent on initial conditions. This
the results combined according to the interactions betweemeans, even small changes in the inputs may result in large
the sub-systems (especially with the assumption of linearchanges in the outputs (and large changes in the inputs may
ity). Whether a particular component is to be treated as aurn out to cause only small changes in the outputs), a sit-
system or sub-system depends on the “objective of the inuation popularly termed as “chaos” in the nonlinear science
quiry” (Singh, 1988). literature (e.g. Lorenz, 1963).

In this “objective of the inquiry” context, Sivaku- With significant developments in computational power
mar (2008) suggests that hydrologic systems may be vieweduring the past three decades or so, and also with major ad-
from three different, but related, angles: process, scale, andances in measurement technology and mathematical con-
purpose of interest. Depending upon the angle at which thegepts, studies on the nonlinearity and related properties of
are viewed, hydrologic systems may be either simple or comhydrologic systems have started to gain attention. Nonlin-
plex; for example, the rainfall occurrence in a desert may beear stochastic methods (e.g. Kavvas, 2003), artificial neural
treated as an extremely simple process since there may heetworks (e.g. Govindaraju, 2000), data-based mechanistic
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models (e.g. Young and Beven, 1994), and nonlinear dynamPackard et al., 1980) for representing the dynamics of the
ics and chaos (e.g. Sivakumar, 2000) are some of the populaystem from an available single-variable time series. Given
nonlinear techniques that have found extensive applications single-variable serie(;, wherei =1, 2, ...,N, a multi-

in hydrology. This study discusses the utility of nonlinear dy- dimensional phase space can be reconstructed as (Takens,
namic techniques as a suitable methodology for studying thd 981):

complexity of hydrologic systems and, thus, for formulation

of a catchment classification framework. In particular, we ap-YJ' =X, Xjtr. Xja2es oo X jrm=1y0), @)

ply a popular nonlinear dynamic method, the correlation di'wherej —1,2,..,N — (m — 1)t; m is the dimension of the
mension method, to streamflow time series for classificatior\,ectoryj called embedding dimension: amds an appro-

purposes. priate delay time, which is an integer multiple of sampling
time. It must be noted that if time series of multiple variables
are available (e.g. relevant climate and hydrologic variables
4 Correlation dimension method influencing streamflow dynamics, such as rainfall, tempera-
) o ture, and infiltration), then such can be directly used for re-
During the past three decades or so, significant advances haygnstruction, which will be a more realistic representation of
been made in the field of nonlinear sciences to study complex, e system dynamics and, thus, will yield more reliable re-
systems. Numerous methods have been developed and agyis.
plied in \{arious fields, including physics, chemigtry, biology, A correct phase space reconstruction in a dimension
earth sciences, ecology, economics, engineering, medicingenerally allows interpretation of the system dynamics (if the
and psychology. Extensive details of the applications of nonariaple chosen to represent the system is appropriate) in the

linear dynamics and chaos concepts in hydrology are foundgrm of an m-dimensional magr, given by

in Sivakumar (2000) and in the broader field of geophysics
in Sivakumar (2004b). Yiir = fr¥;), &)
Popular among the methods developed within the con- . . -
text of nonlinear dynamic and chaos theories are correla!/e"€Y; andY ;7 are vectors of dimensiom, describing
tion dimension, Lyapunov exponent, false nearest neighborsthe state of the system at timgs(current state) angl + T
nonlinear prediction, surrogate data, and redundancy meth(—’fu'[ure state), 'respef:tlvely. .
For an m-dimensional phase space, the correlation func-

ods. Almost all of these methods involve data embedding,. o

and nearest neighbor search, identifying different yet reIateéIon C(r) is given by

properties of the underlying system dynamics. In this study, : 2

we employ the correlation dimension method for complexity = J\rll_r>noo N(N -1 Z H(r=[¥i=v,), ®)

determination of time series. b
Correlation dimension is a measure of the extent to which

the presence of a data point affects the position of theynere i1 is the Heaviside step function, witH (1) = 1 for

other points lying on the attractor in (a multi-dimensional) , _ o andH (u) = 0 foru <0, whereu =r — |¥; — Y|, r

phase space or coordinate system. The correlation dimensiqg the vector norm (radius of sphere) centered’eor Y. If

method uses the correlation integral (or function) for deter-ihe time series is characterized by an attractor, then and
mining the dimension of the attractor in the phase space and, 5ye related according to

hence, for distinguishing, broadly, between low-dimensional

and high-dimensional systems. The concept of the correla (") ~ ar’,

tion integral is that a time series arising from deterministic 7 — 0 (4)

dynamics will have a limited number of degrees of freedom "~ *°

equal to the smallest number of first-order differential equa-wherew is a constant and is the correlation exponent or the

tions that capture the most important features of the dynamslope of the Lod (r) versus Log plot. The slope is gener-

ics. Thus, when one constructs phase spaces of increasing dilly estimated by a least square fit of a straight line over a

mension, a point will be reached where the dimension equalsertain range of (i.e. scaling regime) or through estimation

the number of degrees of freedom, beyond which increasingf local slopes between r-values.

the phase space dimension will not have any significant effect The dimensionality of the time series is determined by

on correlation dimension. checking if there is a saturation ofwith increasingn; the
Many algorithms have been formulated for the estima-saturation value ob is defined as the correlation dimen-

tion of the correlation dimension of a time series. Among sion (@) of the attractor. In general, a low saturation value

these, the Grassberger—Procaccia algorithm (Grassberger anflv is considered as an indication of a low-dimensional sys-

Procaccia, 1983a) has been and continues to be the motm, while a high (or no) saturation value is considered as

widely used one, especially in hydrologic studies. The al-an indication of a high-dimensional system. The nearest in-

gorithm uses the concept of phase space reconstruction (e.teger above this saturation value is generally an indication

(i<i<j<N)
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of the number of variables dominantly governing the sys-
tem dynamics. Although the correlation dimension method is
widely used for distinguishing low-dimensional systems and
high-dimensional systems, additional categories of system
dimensionality (e.g. medium) can also be formed based on
correlation dimension values. This is attempted in the present
study to achieve better grouping of streamflow time series.

Itis relevant to note, at this point, that the reliability of the
Grassberger—Procaccia algorithm (or any other algorithm for
that matter) for correlation dimension estimation of real time
series (e.g. streamflow observations) has been under consid
erable debate, in view of the potential limitations that may
exist with the method and/or the data. Some of the relevant is-
sues are data size (e.g. Havstad and Ehlers, 1989), data nois
(e.g. Schreiber and Kantz, 1996), presence of zeros (e.g. Tso-
nis et al., 1994), temporal correlations and delay time selec-
tion for phase space reconstruction (e.g. Fraser and Swinney,
1986), even stochastic processes yielding low correlation digjg 1. Map of the western United States and locations of 117
mensions (e.g. Osborne and Provenzale, 1989), and othergyeamflow gaging stations. AZ — Arizona; CA — California; CO
As most of these issues are also highly relevant to hydrologic- Colorado; ID — Idaho; MT — Montana; NM — New Mexico; NV
time series, there have been criticisms on the correlation di~ Nevada; OR — Oregon; UT — Utah; WA — Washington; WY —
mension estimates reported for hydrologic time series as welWWyoming.
(e.g. Schertzer et al., 2002; Koutsoyiannis, 2006).

Numerous studies have addressed these issues and allay@inage areas range from as small as 22.73 (818 m?)
the concerns on the reliability of correlation dimension esti- (Station #11058500 in California) to as large as 35094 km
mates of hydrologic time series. Indeed, some studies havél3 550 mf) (Station #13317000 in Idaho); as many as two-
pointed out that many of the criticisms on dimension esti- thirds of the catchments are small- to medium-sized, i.e. less
mates are often unreliable and unfounded; see Sivakumahan 1000 kA (or approximately 400 ).
et al. (2002a) in response to Schertzer et al. (2002) regard- Streamflow data in the US are commonly expressed in
ing the issue of data size. These issues and concerns as wéfyater years”, which commence in October. The records
as clarifications and interpretations regarding correlation di-used in this study are those observed over a period of 52 yr,
mension estimates of hydrologic time series have alreadytarting in October 1951 and ending in September 2003, and
been extensively discussed in the literature (e.g. Sivakuma@re average monthly streamflow values. The magnitude of
2000; Sivakumar et al., 2002b). Therefore, further details arestreamflow varies greatly among the 117 stations (e.g. even
not reported herein, and the interested reader is directed tguring the same period) as well as within a station (e.g. at dif-
such studies. However, as the issue of data size is particularlferent periods). Notable observations of the flow variations
relevant for the 117 streamflow time series analyzed in this(during the 52-yr period of 1951-2002) are as follows:
study (with “only” 624 values in each series), we will briefly
discuss the reliability of our correlation dimension estimates
in Sect. 5.3. We will also briefly explain our selection of the
delay time for phase space reconstruction and its implica-
tions.

— the mean flows range from as low as 0.06sm!
(1.97 fé s71) at Station #11063500 in CA to as high as
322mPs 1 (115508 s 1) at Station #13317000 in ID;

— the standard deviation values range from as low as
0.11nPs 1 (3.92ffs1) at Station #11063500 to
as high as 373.5%s 1 (13193ffs 1) at Station

5 Data, analysis, and results #13317000;

— the coefficient of variation (CV) values (defined as the
standard deviation divided by the mean) range from as
low as 0.295 at Station #11367500 in CA to to as high
as 4.324 at Station #10258500 in CA,

5.1 Data

In this study, monthly streamflows from the western United
States (US) are studied, with data collected over an exten-
sive network of 117 gaging stations (see Fig. 1). The sta- — the maximum flow observed was 233§ar!
tions are spread over 11 states in the western US: Arizona  (82600ffs™1) at Station #13317000 (the mini-

(AZ), California (CA), Colorado (CO), Idaho (ID), Mon-
tana (MT), Nevada (NV), New Mexico (NM), Oregon (OR),
Utah (UT), Washington (WA), and Wyoming (WY). The

Hydrol. Earth Syst. Sci., 16, 41194131, 2012

mum flow at this station was 64%s~1 (2257 f£ s~1)),
while the flow was zero in 15 stations at one time or
another;
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— flows over 300 s~ (or about 10 000 fis 1) were ob-  The selection of the number of groups and the range of di-
served at 18 stations and flows less than G23m (or mension values for each group is somewhat arbitrary. Never-
about 108 s~1) were observed at 38 stations (23 sta- theless, they are certainly reasonable, especially in the con-
tions if those having zero flows are excluded); and text of the number of stations studied in the present study,

i . ) since too many groups (with only minor differences among
— five stations (Statlon #9448500, #9498500, #9508500them) or jUSt two groups (eg high-dimensional and low-

#12401500, and #14301000) had a maximum flow of yimensional) do not really serve the purpose of classification

—1 —1 ..
over 300 s™! (about 1%2910ﬁ3 ) and %'Sgla MINI- of 117 time series. Further, the above grouping according to
mum flow of less than 3 (about 100fts™). correlation dimensions is also reasonable in the context of

All these observations clearly reflect the extreme variabil-Process/model complexity, since the influence of more than
ity in streamflow among the 117 stations. The variability S* dominant governing variables (i# 6.0) often leads to

in streamflow is due to, among others: (1) the different cli- N9 complexity in dynamics (requiring “complex” models),
matic regions in the western US; (2) the different drainageWhereas that of 3.or less vanab]es can c_o_nfldeqtly be consid-
basin characteristics associated with the streamflow station&r€d t0 lead to simpler dynamics (requiring “simple” mod-
and (3) the variations in hydroclimatic factors and land-use€'S), With other in between (medium-complexity dynamics,

changes over a period of time at any of these stations. requiring medium-complexity models). _
Further details on these 117 streamflow stations in the FOF discussion here, we present the results for two time

western US (as well as the numerous other ones in th&€res from each of these four groups. The stations repre-
conterminous US), including streamflow data retrieval, areS€Nting these time series are as foIIow;: (1) low-dimensional
available athttp:/nwis.waterdata.usgs.gov/nwighe reader  — Station #10032000 (WY) and Station #13317000 (ID);
is also directed to Sivakumar (2003) and Tootle and(?) medium-dimensional — Station #11315000 (CA) and
Piechota (2006) for some of the studies relevant to streamStation #11381500 (CA); (3) high-dimensional — Sta-

flow at these stations. tion #12093500 (WA) and Station #14185000 (OR); and
(4) unidentifiable — Station #8408500 (NM) and Station
5.2 Analysis and results #11124500 (CA).

Figure 2a—h presents the phase space diagrams for stream-
The correlation dimension analysis is performed on each oflow series from the above eight stations. The diagrams corre-
the above 117 streamflow time series. The phase space dépond to the reconstruction in two dimensions=£ 2) with
agrams and the correlation exponent plots (i.e. local slopalelay timer = 1, i.e. the projection of the attractor on the
versus log) are carefully interpreted to achieve appropriate plane{X;, X;+1}. The following general observations may
grouping of these time series. be made: (1) the plots on the first row exhibit reasonably

Both phase space diagrams and correlation dimensionvell-structured attractors in the phase space, suggesting that
plots show varying degrees of results among the 117 timeghe systems are likely less complex and low-dimensional,
series. The phase space diagrams exhibit attractors rangin@) the second row plots indicate slightly wider scattering
from reasonably well-structured ones (i.e. in a well-definedof the attractor, suggesting systems of medium complexity
region in the phase space) to totally “shapeless” ones (i.e. difand medium dimension; (3) the plots on the third row exhibit
ficult to identify any kind of structure), and others in between much wider scattering (especially with one or a few outliers),
these two extremes. Similarly, the correlation exponent plotssuggesting highly complex and high-dimensional systems;
show dimensionalities ranging from very low values of satu-and (4) the last two plots do not show any identifiable pat-
ration of v at one extreme (say less than 3) to unidentifiableterns, thus making it hard to include them in any of the above
ones at the other, and others in between. three groups.

Based on careful examination of phase space diagrams Figure 3a—h presents the correlation dimension results for
and correlation dimension results of all 117 streamflow se-the above eight streamflow series; the plots show the local
ries, we are able to identify four reasonably distinct groups.slopes (i.e. correlation exponemt, as a function of radius,
This identification is made based on the dimensionality ofr, for embedding dimensionss, from 1 to 20 (bottom to top
the attractor 4, i.e. saturation value of) as the primary curves). These plots allow an even better interpretation in re-
criterion, since the dimensionality results allow a slightly gards to the dimensionality and complexity of the underlying
better interpretation (qualitatively and quantitatively) com- systems: (1) the top row plots reveal saturation af a value
pared to phase space diagrams. However, we also place pdess than 3 (shown using a thick horizontal line; see below for
ticular emphasis on the consistency between dimensionalitjurther details about identification of this saturation), sug-
and attractor shape (phase space diagram) for each grougesting low-dimensional and less complex systems; (2) the
for a more reliable grouping. The four groups and the assosecond row plots yield slightly higher dimensions (but less
ciated dimensionalities are as follows: (1) low-dimensional,than 6), suggesting medium-dimensional and slightly more
with d < 3.0; (2) medium-dimensional, with 38d < 6.0; complex systems; (3) the plots on the third row do not in-
(3) high-dimensional, withi > 6.0; and (4) unidentifiable. dicate any saturation of, suggesting high-dimensional and
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Fig. 2. Phase space diagrarta) Station #10032000¢b) Station
#13317000(c) Station #1131500qg) Station #1138150Qe) Sta-
tion #12093500(f) Station #1418500Qg) Station #8408500; and
(h) Station #11124500.

Fig. 3. Correlation dimension — Local slopega) Station
#10032000(b) Station #1331700dr) Station #1131500q¢) Sta-
tion #11381500;(e) Station #12093500(f) Station #14185000;
(g) Station #8408500; an(h) Station #11124500.

highly complex systems; and (4) the results for the last twoagain, the difficulty increases at higher embedding dimen-
series do not show any clear indication regarding the dimensions (and higher attractor dimensions). Therefore, it is often
sion value or group (as they show neither saturation wbr helpful, and necessary, to use as many ways as possible to be
high-dimensionality) and, therefore, are considered “unidensnore confident of the scaling region identification and cor-
tifiable”. relation exponent estimation. Further details on the effects
At this point, a few remarks about the identification of the of noise on the correlation dimension estimate, in particular
scaling region and estimation of the correlation exponent areeference to hydrologic data (rainfall), are presented in, for
in order. As mentioned earlier, the scaling region can be idenexample, Sivakumar et al. (1999b), and the interested reader
tified in the following ways: (1) identifying the long “straight is directed to such.
line” portion in the LogC (r) versus Log plot (i.e. correla- In view of the above, we use not only the local slope versus
tion function versus radius); and (2) the “horizontal line” in Logr for identification and estimation (shown in Fig. 3) but
the local slope versus Lagplot. It is important to note that also the Log” (r) versus Log plot (figures not shown) and
a “perfect straight line” or a “perfect horizontal line” in these the changes in the individual values of the calculated slopes
plots may be found when the data are completely clean, but imgainst changing. Since the (local) slopes may sometimes
often very hard to find when the data are noisy, as is the casehange dramatically between successive values ekpe-
with streamflow (and other hydrologic) data; the higher thecially at small r-values (see Fig. 3), we also estimate the
embedding dimension (or attractor dimension), the harder islopes averaged over a range of values @5 values at a
is to find the scaling region. Also, when the data are noisy,time), in a moving average manner. The dimensions we arrive
the slopes are hard to find at small r-values, and there it are based on looking at all these combinations and making
normally a shift in the r-values that yield the best results; the best estimate.
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Fig. 4. Grouping of streamflow stations according to cor-
relation dimension d) estimates: low-dimensionald (< 3.0);
medium-dimensional (3.8 d < 6.0); high-dimensionald > 6.0);
and unidentifiabled not identifiable).

Figure 4 presents the grouping of the 117 streamflow time
series in the western US, according to the above dimension-
ality (and phase space) criterion. The grouping show some
kind of “homogeneity” in the dimensionality and complexity
of streamflow dynamics within certain regions. For instance:
(1) streamflow dynamics in the far northwest (i.e. west-
ern parts of WA and OR) are generally high-dimensional;
(2) the dimensionality of streamflows in the far south and
southwest (southern CA, southern AZ, southern NM) is
generally unidentifiable; (3) the complexity of streamflow
dynamics in the west (northern CA and NV) is generally
medium-dimensional; and (4) low-dimensional complexity
is generally observed for streamflows in Wyoming. However,
this “homogeneity” is not true for every region, and there
are indeed strong exceptions. For example: (1) both low-
dimensional and medium-dimensional complexity of stream-
flow dynamics are observed in some other regions, especially
in the east and north (including CO, ID, MT, and some parts
of WA); and (2) streamflow dynamic complexity in some re-
gions is rather very mixed, ranging from low-dimensional to
medium-dimensional to unidentifiable (UT and, to some ex-
tent, northern NM).
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5.3 Discussion

The above classification of streamflow based on complexity
and nonlinear dynamic concepts, with dimensionality (and
other relevant properties) as a criterion, is both useful and
interesting. In particular, the dimension estimates and the
grouping of streamflow time series (Fig. 4) clearly show
that: (1) the dimensionality concept captures the complex-
ity of streamflow dynamics at individual stations indepen-
dently and then allows classification regardless of the prox-
imity of catchments, without resorting to a “regionalization”
approach and the assumptions involved therein; and (2) a
“regionalization” approach, even for monthly streamflows,
is not necessarily the right way to classification, despite the
close proximity of some catchments. In other words, the di-
mension estimates reflect that “near” does not mean “similar”
and, consequently, that extrapolation (and interpolation) may
not always work even when using data from nearby catch-
ments. This observation has important implications for pre-
dictions in ungaged basins (PUBSs), especially when they in-
volve extrapolation/interpolation schemes.

Notwithstanding that the dimensionality concept and the
proposed classification are useful, it is still somewhat pre-
mature to offer definitive conclusions and guidelines. Some
reasons for this and also possible ways to address them are
as follows. We are currently studying these issues, and will
report the details in the future.

— Despite the consideration of a study area as large as the
western United States and streamflow time series from
as many as 117 stations, the extent of area covered and

number of time series analyzed are still considerably
smaller when compared to the numerous combinations
that may be encountered with respect to catchments
(e.g. climatic conditions, catchment properties, stream-
flow characteristics). Therefore, it is important to study
a significantly large number of catchments and stream-
flow time series. In the specific context of the western
United States, it would be important to study many more
catchments, especially in the following parts: western
and southern Arizona, western California, eastern Col-
orado, eastern and southern ldaho, almost entire Mon-
tana, almost entire Nevada, western and southern New
Mexico, eastern Oregon, northwest and southeast Utah,
eastern Washington, and eastern Wyoming.

In the present study, only monthly streamflow time se-

ries are analyzed. Since the dimensionality and com-
plexity of streamflow (and other hydrologic) processes

could change with respect to temporal scale (e.g. Re-
gonda et al., 2004; see also Sivakumar et al., 2001), it
is crucial to study streamflow data observed at least at a
few other scales (e.g. daily, annual) to verify the dimen-

sion estimates and classification. However, as Sivaku-
mar (2008) suggests, and as mentioned earlier, “scale”
is a vital component in the definition of a “system”.
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Other vital components are “process” and “purpose ofseries is long and representative enough (in terms of period

interest”. For instance, one often requires different mod-of coverage and sampling time) to capture the essential dy-

els for average events and extreme events (e.g. droughtsamics of the system evolution. For instance, studies have
and floods); see Sivakumar (2005b) for a discussionshown that even a few hundred data (about 300 or so) would
on this, especially on the role of thresholds. In most be sufficient for dimension estimate (e.g. Sivakumar, 2005a)
cases, study of monthly streamflow dynamics is moreif the period of coverage is long enough for the sampling
appropriate for medium-term to long-term water plan- time studied (e.g. Sivakumar et al., 2002b). The dimension
ning and management (including environmental flow estimates obtained for the 117 streamflow time series in the
requirements), rather than flood forecasting, which re-present study only offer further support to this. With “only”
quires data at daily and even much finer timescales624 values in each streamflow series, the correlation dimen-

Therefore, a classification framework may (or may not) sion method still yields dimension values ranging from very

be limited by how a system is defined. low to very high (including non-saturation o, clearly re-

— The correlation dimension method is only one among aflectir_1g the varigbility of the datq and con_1p|exity of t_he un-
number of nonlinear dynamic-based methods availabl de'rlylng'dynamlcs and aIsp defying the WlQer-percelyed re-
for estimating dimensionality and assessing complexitﬁaﬁlonsmp between d_atg size and embedding d|mensu_)n. The

: . rimary reason for this is that the streamflow data studied are
Of. systems, despite the fact that it has been the mos ong enough (52 yr at monthly scale) to adequately represent
widely used. Two other methods are the false neares[he dynamic changes that occur in the respective catchments.

Qf)llgri:f;c:rgl\llggrrllttrr:)r;y(reﬁgt.hlézQgeg; 2;2;&3%2 :23 S;g There are questions regarding the selection of an appro-
! oA . pri lay ti for ph [ -
caccia, 1983b). Therefore, it would be particularly use- priate delay time) for phase space reconstruction and cor

ful to emplov these methods to verifyv. and possiblv con relation dimension estimation, since a smafhay result in
u ploy thes ) > 10V |.fy, POSSIDly temporal correlations between the values in the reconstructed
firm, the correlation dimension estimates. As linear ap-

roach nd nonlinear roach fen complem vector while a larger may result in completely indepen-
P 0?10 tehs a dct)h feat ;}p? otac esﬂo € cdo tﬁe hergent ones. Various methods/guidelines have been proposed
each other, and the fact that streamflow (and other YYor ¢ selection to have the best separation of neighboring

?:;I;?'Czopgissseseozm.r?Xh'b'(t)r?(ltgté'ggirnfsndsgglg'strajectories, including autocorrelation function (e.g. Holzfuss
! _propert (depending up . i and Mayer-Kress, 1986), mutual information (e.g. Fraser and
etc.), it would also be helpful to apply linear techniques

to study the complexity and perhaps find better ways toSwinney, 1986), and correlation integral (Liebert and Schus-
classify the streamflow time series. In this regard cou-ter' 1.989)'. F_eegardless of the method used anq the value of
plingfintegration of nonlinear and Iiﬁear techniques’ may obtained, itis also Qot clear how such a value is actuglly rel-
also be possible evant to thg dynamics that take place in the gnderlyl_ng sys-
' tem; see Sivakumar et al. (2007) for relevant issues in using
At this point, it is also important to discuss the reliability the autocorrelation function method feiselection, even for
of the correlation dimension estimates obtained for the 117%he case of a well-known artificial low-dimensional chaotic
streamflow time series analyzed in this study. As mentionedsystem, the Henon map (Henon, 1963). For instance, use of
earlier, there have been criticisms on the dimension estimatethe autocorrelation function method and selection of the lag
reported for hydrologic time series, especially in light of the time at which the autocorrelation function first crosses the
potential limitations that may exist with the method/data (e.g.zero line yieldz-values ranging from 2 to 40 among all the
data size, data noise, presence of zeros, temporal correlation)17 streamflow series. Thesevalues do not seem to indi-
Here, we address two issues that are particularly relevant tgate any consistent relevance to seasonality or other catch-
the streamflow time series analyzed and methodology usethent dynamics; for instance,= 40 indicates a delay time
in this study: data size (“only” 624 values) and temporal cor- of over three yearst(= 3 is obtained in a few cases). Sim-
relation (delay timer = 1 for phase space reconstruction). ilar problems have also been encountered in dealing with
One of the most common criticisms on the use of cor-other hydrologic data, whether at the monthly scale or at
relation dimension method (especially the Grassberger-ether temporal scales; see Sivakumar et al. (2006) for some
Procaccia algorithm) for hydrologic (and other real) time details in regards to rainfall data from California. Consider-
series is that it significantly underestimates the dimensioring these issues and associated complications, in the present
when the data size is small (e.g. Nerenberg and Essex, 1998tudy, r is chosen equal to the sampling (ize= 1 month)
Schertzer et al., 2002). Many studies have already addressddr phase space reconstruction of each of the 117 streamflow
this issue through various means (e.g. Lorenz, 1991; Sivakutime series. We believe such a selection is reasonable, espe-
mar et al., 2002a). These studies essentially point out thaftcially since there are no significant correlations at lag time
(1) the data size is not a function of embedding (or attrac-equal to 1; in most cases, the correlation at lag time one is
tor) dimension; and (2) it is not appropriate to simply look about 0.4—-0.6, which is relatively small for streamflow (it is
at the data length alone (in terms of the sheer number of vallikely that significant correlations occur for daily flows, espe-
ues) and that it is far more important to assess if the timecially for large catchments). Extensive details on the issue of
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T selection are already available in the hydrologic literaturecertainly helps in identifying the appropriate structure and
(e.g. Sangoyomi et al., 1996; Sivakumar et al., 1999a) andcomplexity of models. It is important to further verify, and
therefore, are not reported herein. confirm, the present results through other methods (both non-
linear and linear) that can be supplementary and complemen-
tary. Verification also needs to be done through: (a) estab-
6 Conclusions and further research lishing relationships between the data patterns/complexity
and the actual catchment/process properties; and (b) study-
Hydrologic models play a crucial role in the assessment ofing the outputs simulated from existing hydrologic models
water resources availability and decisions on water planningand varying their complexities. The effectiveness of any such
and management. Consequently, hydrologic modeling haslassification also needs to be tested on a wide variety of
become an important research endeavor, particularly facili-catchments and hydrologic data representing different cli-
tated by recent technological and methodological advancesnatic conditions, catchment characteristics, land use prop-
Although numerous hydrologic models have been developecrties, and types of data, among others. Detailed studies in
(often with increasing structural complexity and mathemat-these directions are underway, and the results will be reported
ical sophistication), identifying which model is appropriate in future publications.
for which catchment remains a fundamental problem. To this  Finally, it is important to remember that classification
end, the need for a classification framework that streamline®f catchments is not the “be-all and end-all” of research
catchments into different groups and sub-groups for a moren catchments, but rather only a means towards achieving
effective and efficient model selection is increasingly real-broader goals of planning and management of our water re-
ized. However, an appropriate basis and a suitable methodokources, environment, ecosystems, and other relevant earth
ogy for such a framework are still elusive. systems and resources. Nevertheless, catchment classifica-
This study offers one possible way to view the classifi- tion certainly allows us to study catchments more effec-
cation problem in hydrology through an inverse approach;tively and efficiently and develop more appropriate strate-
i.e., going backward from system outputs. It argues that hy-gies, in terms of simplification in models/model develop-
drologic system complexity forms an appropriate basis forment, generalization in our modeling approach, and improve-
the classification framework and nonlinear dynamic con-mentin communication both within the hydrologic commu-
cepts constitute a suitable methodology for assessing sysiity and across disciplines, as much as possible. Needless to
tem complexity. Discussing the relevance of complexity say, catchment classification needs to be tuned towards the
and nonlinearity in hydrologic systems and also the util- broader goals, which are carefully identified and properly
ity of nonlinear dynamic tools for complexity determina- defined, in order for us to assess whether catchment clas-
tion and system identification, the study employs a non-sification is necessary and to evaluate whether a proposed
linear dynamic method for classification of streamflow in classification framework is successful. The present study has
the western United States. Applying the correlation dimen-highlighted some of the issues associated with these, in-
sion method (a dimensionality-based method having its ba€luding the need to define a “system” with the necessary
sis in data reconstruction and nearest neighbor concepts) tangles to view it from (e.g. process, scale, purpose). The
monthly streamflow time series from 117 stations in the west-study of monthly streamflow dynamics in the present study
ern US, the study classifies these time series into four disis tuned towards identification of models for medium-term to
tinct groups: low-dimensional, medium-dimensional, high- long-term water planning and management (including envi-
dimensional, and unidentifiable. The dimension estimates foronmental flow requirements), rather than flood forecasting,
the 117 streamflow time series show some “homogeneity’which requires data at daily and even much finer timescales.
in the complexity of streamflow dynamics within certain re- Although an accurate assessment of the classification pro-
gions of the western US. However, there are also strong exposed in this study still requires some good distance to travel,
ceptions to this within some other regions. These results nothe dimensionality concept certainly has potential, including
only indicate the utility of the dimensionality concept for inidentifying where a “regionalization” approach is more ef-
classification but also suggest that a “regionalization” ap-fective, where it is not, and where and why the transitions oc-
proach may not always be the right way to classification. Ascur. We hope that future studies will further help realize the
“regionalization” is arguably one of the most important as- true potential of the correlation dimension concept, and other
pects of extrapolation/interpolation of hydrologic data and, nonlinear dynamic concepts, for formulation of a catchment
hence, for predictions in ungaged basins (PUBS), the presertlassification framework.
results have important implications to advance our studies on
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