Hydrol. Earth Syst. Sci. Discuss., 8, 4427—4458, 2011 _"\Hydrology and
www.hydrol-earth-syst-sci-discuss.net/8/4427/2011/ Earth System
doi:10.5194/hessd-8-4427-2011 5 Sciences

© Author(s) 2011. CC Attribution 3.0 License. Discussions

This discussion paper is/has been under review for the journal Hydrology and Earth
System Sciences (HESS). Please refer to the corresponding final paper in HESS
if available.

Hydrologic system complexity and
nonlinear dynamic concepts for a
catchment classification framework

B. Sivakumar'? and V. P. Singh3

'School of Civil and Environmental Engineering, The University of New South Wales,

Sydney, Australia

Department of Land, Air and Water Resources, University of California, Davis, USA
3Department of Biological and Agricultural Engineering & Department of Civil & Environmental
Engineering, Texas A & M University, College Station, USA

Received: 12 April 2011 — Accepted: 15 April 2011 — Published: 2 May 2011
Correspondence to: B. Sivakumar (s.bellie @ unsw.edu.au)

Published by Copernicus Publications on behalf of the European Geosciences Union.

4427

Jadeq uoissnosiq | Jeded uoissnosiq | Jadedq uoissnosiqg | Jeded uoissnosiq

HESSD
8, 4427-4458, 2011

Hydrologic system
complexity and
nonlinear dynamic

B. Sivakumar and
V. P. Singh

(3 ““““““
: ““““““


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/4427/2011/hessd-8-4427-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/4427/2011/hessd-8-4427-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

Abstract

The absence of a generic modeling framework in hydrology has long been recognized.
With our current practice of developing more and more complex models for specific
individual situations, there is an increasing emphasis and urgency on this issue. There
have been some attempts to provide guidelines for a catchment classification frame-
work, but research in this area is still in a state of infancy. To move forward on this
classification framework, identification of an appropriate basis and development of a
suitable methodology for its representation are vital. The present study argues that hy-
drologic system complexity is an appropriate basis for this classification framework and
nonlinear dynamic concepts constitute a suitable methodology. Discussing the utility of
hydrologic data in describing the complexity of the underlying system, the study also
offers a three-step procedure for a classification framework: (1) detection of possible
patterns and determination of complexity levels of hydrologic systems; (2) classifica-
tion of hydrologic systems into groups and sub-groups based on patterns and com-
plexity; and (3) verification of the classification framework through establishing rela-
tionships between the data patterns/complexity and the catchment/process properties.
The framework is expected to lead to a much more effective and efficient procedure for
identifying the appropriate structure and complexity of models for hydrologic systems
and, thus, save significant time, data collection, and computational requirements.

1 Introduction

As in most other fields of science and engineering, growth in the field of hydrology
during the past century has been unprecedented, largely driven by the invention of
powerful computers, measurement devices, remote sensors, geographic information
systems (GIS), digital elevation models (DEM), and networking facilities. This growth
may be viewed in terms of: (1) the various sub-fields that have been created essen-
tially to “break down” hydrology into specific components for more focused and detailed
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studies (e.g. surface hydrology, subsurface hydrology, groundwater hydrology, forest
hydrology, mountain hydrology, urban hydrology, isotope hydrology, snow and glacier
hydrology, ecohydrology); and (2) the numerous scientific theories and mathematical
techniques that have been developed/applied for modeling and prediction of hydro-
logic systems and the associated processes (e.g. deterministic techniques, stochastic
methods, scaling and fractal theories, artificial neural networks, chaos theory, wavelets,
genetic algorithms).

Despite this growth, there remain many grand challenges in performing good hydro-
logic teaching, research, and practice. Among others, two major concerns are dom-
inating discussions and debates on current hydrologic studies: (1) hydrologic models
being developed are often more complex, having too many parameters and requiring
too much data, than perhaps needed; and (2) models are often developed for spe-
cific situations, and their extensions and generalizations to other situations are rather
difficult. In addition, our general lack of emphasis in studying the crucial connections
between the (model) theories and the actual system properties (e.g. data), our increas-
ing emphasis in applying specific (and often pre-selected) mathematical techniques
independently as opposed to the integration of techniques for modeling hydrologic sys-
tems, and our focus mainly on local-scale hydrologic problems rather than global-scale
hydrologic issues have also come under severe scrutiny (e.g. Beven, 2002; Kirchner,
2006; Sivakumar, 2008a, b). With general consensus on the occurrence of global
climate change and its potential impacts on water resources and the environment (in-
cluding more frequent and greater magnitudes of extreme events, such as floods and
droughts), the limitations of the “confines of traditional hydrology” and the need to go
beyond and perform cross-disciplinary research integrating hydrology with atmospheric
sciences, geomorphology, geochemistry, ecology, and other areas have also been in-
creasingly recognized (see, for example, Paola et al. (2006) and Wagener et al. (2010)
for some details).

In view of these concerns, many studies during the past decade or so have empha-
sized the need for simplification in modeling wherever possible as well as a common
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framework in hydrology (e.g. Grayson and Bloschl, 2000; McDonnell and Woods, 2004;
Sivapalan, 2005; Sivakumar, 2008a). Within this context, some attempts have also
been made towards a catchment classification framework (e.g. Sivakumar et al., 2007;
Wagener et al., 2007), with an aim to streamline catchments into different groups and
sub-groups on the basis of their salient characteristics (e.g. data and process complex-
ity) and to provide directions to model developers on the level of model complexity to
invoke. Nevertheless, these attempts are only preliminary and research in this direction
is still in a state of infancy. Indeed, there are even questions on the basic form of the
classification framework and on the components to be included (e.g. Wagener et al.,
2007). Therefore, identification of an appropriate basis for the classification framework
and development of a suitable methodology are crucial for moving forward in hydrology.

The present study attempts to offer some workable guidelines for an appropriate ba-
sis and a suitable methodology towards a classification framework in hydrology. The
study, in essence, argues that system complexity is an appropriate basis for the classi-
fication framework and nonlinear dynamic concepts constitute a suitable methodology
for assessing system complexity. The relevance of complexity and nonlinearity in hy-
drologic systems is highlighted, and the utility of nonlinear dynamic tools for pattern
recognition and complexity determination is demonstrated. Discussing the utility of
“data” in assessing “system” complexity, an effective procedure to use system com-
plexity and nonlinear dynamic concepts for formulation of a catchment classification
framework is also proposed.

The rest of this paper is organized as follows. Section 2 presents a brief account of
major attempts on classification in hydrology. Section 3 highlights the property of com-
plexity and its role in hydrologic systems. Section 4 discusses the nonlinear and chaos
properties of complex systems and their relevance in hydrology; two basic methods
for their identification are also described. Section 5 illustrates the utility of these meth-
ods for hydrologic time series. Section 6 proposes a procedure for the formulation of
a catchment classification framework. Conclusions and directions for further research
are presented in Sect. 7.
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2 Classification in hydrology: a brief history and scope

The realization of the need for a classification framework in hydrology is not entirely
new. It had indeed been discussed some time ago, and since then several studies have
also attempted to advance the idea (e.g. Haines et al., 1988; Chapman, 1989; Nathan
and McMahon, 1990; Burn and Boorman, 1992; McMahon and Finlayson, 1992; Olden
and Poff, 2003; Merz and Bldschl, 2004; Snelder et al., 2004, 2005; Isik and Singh,
2008). These studies have investigated different ways for developing such a frame-
work, including regionalization, river regimes, landscape and land use parameters,
similarity indices, and ecohydrologic factors factors, among others. Although useful in
their own ways, these studies and their different forms do not adequately account for
some inherent properties of hydrologic systems and processes (e.g. honlinearity and
chaos) and, thus, are largely insufficient for a generic classification framework. At the
least, a coherent effort to bring these disparate forms together for a workable classifica-
tion framework is missing. The urgency to formulate a generic classification framework
in hydrology is increasingly realized now, especially with our current practice of em-
ploying more and more sophisticated mathematical techniques and developing more
and more complex models for each and every individual hydrologic system/situation,
rather than the emphasis needed on addressing broader-scale hydrologic issues (e.g.
Sivakumar, 2008a).

The fundamental idea behind a classification framework in hydrology is to stream-
line hydrologic systems into groups and sub-groups to recognize salient characteristics
that are emblematic and to develop suitable methods/models. This classification and
subsequent modeling approach also serve as a middle-ground to the two extreme ap-
proaches: (1) treatment of all hydrologic systems in the same way, regardless of the
differences among them; and (2) treatment of each and every individual hydrologic
system in its own way, regardless of the similarities among them. Either of these ap-
proaches has enormous implications for modeling, including complexity of the models,
data and computer requirement, accuracy of results, and overall understanding of the
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systems. The classification framework, therefore, is aimed at providing an optimum
way of studying hydrologic systems, taking into account both minimization of costs
and maximization of benefits. In the end, it should help modelers identify suitable
catchments to apply their models to and also users to identify suitable models for their
catchments.

For its usefulness to be realized both at the global and at the regional/local levels, the
classification framework should be able to accommodate important general as well as
specific characteristics of hydrologic systems/processes. The framework must also be
simple enough and commonly agreeable to provide a “universal” language for commu-
nication and discussion in hydrology and water resources. The crucial questions now
are: (1) What form should the classification framework assume? (2) What components
need to be included? and (3) What is the appropriate methodology for its formulation?

Wagener et al. (2007) made a preliminary attempt to address these questions and
relevant issues. After reviewing the existing approaches to define hydrologic similar-
ity, which has often been invoked for classification purposes, they offered some gen-
eral guidelines for catchment classification that include the use of catchment structure,
hydroclimatic region, and catchment functional response, among others. They also
identified the following requirements for a classification framework: (1) mapping catch-
ment form/hydroclimatic conditions on catchment function across spatial and temporal
scales; (2) including partition, storage, and release of water in catchment functions;
(3) consideration of uncertainty in the metrics/variables used; and (4) basing on func-
tions characterized by streamflow to start with and subsequently expanding to other
more complex functions.

Using the Shannon entropy, Krasovskaia (1995, 1997) developed a quantitative
methodology for river flow regime classification. The entropy-based methodology in-
volves: (1) classification of mean monthly flows into different types; (2) identification of
discriminating periods for different classes; (3) specification of instability index; (4) com-
putation of instability index value for each regime type; and (5) computation of insta-
bility index for all flow series. Another method for grouping river regimes, developed
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by Krasovskaia (1997), employs minimization of an entropy-based objective function.
This function uses a concept of information loss resulting from flow aggregation and
determining the difference between the series aggregated into one group.

Sivakumar et al. (2007) explored the utility of a simple nonlinear data reconstruction
approach, called phase space reconstruction, for assessing the complexity of hydro-
logic systems and, thus, for their classification. They used the “region of attraction
of trajectories” in the phase space to identify data as exhibiting “simple” or “interme-
diate” or “complex” behavior and, correpondingly, classify the system as potentially
low-, medium-, or high-dimensional. The utility of this reconstruction concept was first
demonstrated on two artificial time series possessing significantly different character-
istics and levels of complexity (purely random and low-dimensional deterministic), and
then tested on a host of river-related data representing different geographic regions,
climatic conditions, basin sizes, processes, and scales. The ability of the phase space
to reflect the river basin characteristics and the associated mechanisms, such as basin
size, smoothing, and scaling, was also observed. The “dimensionality” and “complex-
ity” ideas used by Sivakumar et al. (2007) were along the lines of the dominant pro-
cesses concept (DPC), which was originally introduced in the context of hydrologic
model simplification (Grayson and Bloschl, 2000) and subsequently suggested as a
potential means for formulation of a classification framework (e.g. Woods, 2002; Siva-
palan et al., 2003; Sivakumar, 2004a).

Following up on the ideas by Sivakumar et al. (2007), we attempt here to offer a
generic framework for catchment classification. In doing so, we resort to an inverse
approach, wherein the complexity of a given hydrologic system is assessed by study-
ing the outputs (i.e. data) from that system. The extent of “complexity” of the system
is considered to be reflected by the “variability” of observed data, which, in turn, is
assessed by its “dimensionality.” Nonlinear dynamic tools are used for studying data
dimensionality and system complexity.
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3 Complexity and hydrologic systems
3.1 Complexity: what do we mean by it?

Although words “complex” and “complexity” are widely used both in scientific theory
and in common practice, there is no general consensus on the definition. The difficulty
in arriving at a consensus definition comes from the fact that it is oftentimes subjective;
what is “complex” for one person may not be complex at all for another person, or
even when viewed by the same person from a different perspective or at a different
time. Nevertheless, one workable definition may be this: “consisting of interconnected
or interwoven parts.” With this definition, however, it is also important to clarify why
the nature of a complex system is inherently related to its parts, since simple systems
are also formed out of parts. Therefore, to explain the difference between “simple” and
“‘complex” systems, the terms “interconnected” or “interwoven” are somehow essential.

Qualitatively, to understand the behavior of a complex system, we must understand
not only the behavior of the parts but also how they act together to form the behavior of
the whole. This is because: (1) we cannot describe the whole without describing each
part; and (2) each part must be described also in relation to other parts. As a result,
complex systems are difficult to understand. This is relevant to another definition of
“‘complex”: “not easy to understand or analyze” These qualitative ideas about what a
complex system is can be made more quantitative. Articulating them in a clear way is
both essential and fruitful in pointing out the way toward progress in understanding the
universal properties of these systems.

For a quantitative description, the central issue again is defining quantitatively what
“complexity” means. In the context of classification of systems, such as the one ad-
dressed in this study, it may perhaps be even more useful to ask: (1) What do we mean
when we say that one system is more complex than another? and (2) Is there a way to
identify the complexity of one system and to compare it with the complexity of another
system? To develop a quantitative understanding of complexity, a variety of tools can
be used. These may include: statistical (e.g. coefficient of variation), nonlinear dynamic
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(e.g. dimension), information theoretic (e.g. entropy) or some other measure. In this
study, we discuss the nonlinear dynamic tools, which allow identification of complexity
of different systems and interpretations and distinctions on “more complex” and “less
complex” systems. In particular, we attempt to relate the complexity of the system (i.e.
variability of the data) to the number of variables dominantly governing the system; in
other words, the amount of information necessary to describe the system, so to speak
(see Sect. 4 for more details).

During the past few decades, numerous attempts have been made to define, qualify,
and quantify “complexity” and to apply complexity-based theories for studying natural
and physical systems, including their classification. Extensive details can be found in
Ferdinand (1974), Cornaccchio (1977), Nicolis and Prigogine (1989), Waldrop (1992),
Cilliers (1998), Buchanan (2000), Barabasi (2002), McMillan (2004), Johnson (2007),
and Erdi (2008), among others.

3.2 Complexity in hydrologic systems

Hydrologic phenomena arise as a result of interactions between climate inputs and
landscape characteristics that occur over a wide range of space and time scales. Due
to the tremendous heterogeneities in climatic inputs and landscape properties, such
phenomena may be highly variable and complex at all scales (although simplicity is
also possible). Consequently, they are not fully understood. In the absence of perfect
knowledge, a simplified way to represent them may be through the concept of “system.”
There are many different definitions of a system, but perhaps the simplest may be: “a
system is a set of connected parts that form a whole.” Chow (1964) defined a system as
an aggregate or assemblage of parts, being either objects or concepts, united by some
form of regular interaction or inter-dependence. Dooge (1967a), however, defined a
system as: “any structure, device, scheme, or procedure, real or abstract, that inter-
relates in a given time reference, an input, cause, or stimulus, of matter, energy, or
information and an output, effect, or response of information, energy, or matter.” This
definition by Dooge is much more comprehensive and instructive and it brings out,
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among others, the following important characteristics of the system: (1) a system can
consist of more than one component; (2) these components are separate, and they
may be inter-dependent; (3) these components are put together following some sort of
ascheme, i.e., a system is an ordered arrangement; (4) a system inter-relates input and
output, cause and effect, or stimulus and response; (5) a system does not require that
input and output be alike or have the same nature; and (6) a system can be composed
of a number of sub-systems, each of which can have a distinct input-output linkage.

With this system concept, the entire hydrologic cycle may be regarded as a hydro-
logic system, whose components might include precipitation, interception, evaporation,
transpiration, infiltration, detention storage or retention storage, surface runoff, inter-
flow, and ground water flow, and perhaps other phases of the hydrologic cycle. Each
component may be treated as a sub-system of the overall cycle, if it satisfies the char-
acteristics of a system set out in its definition. Thus, the various components of the
hydrologic system can be regarded as hydrologic sub-systems. To analyze the total
system, the simpler sub-systems can be treated separately and the results combined
according to the interactions between the sub-systems (especially with the assumption
of linearity). Whether a particular component is to be treated as a system or sub-
system depends on the “objective of the inquiry” (Singh, 1988).

In this “objective of the inquiry” context, Sivakumar (2008a) suggests that hydrologic
systems may be viewed from three different, but related, angles: process, scale, and
purpose of interest. Depending upon the angle at which they are viewed, hydrologic
systems may be either simple or complex; for example, the rainfall occurrence in a
desert may be treated as an extremely simple process since there may be no rainfall
at all, while the runoff process in a large river basin may be highly complex due to the
basin complexities and heterogeneities, in addition to rainfall variability. Consequently,
hydrologic modeling must also be viewed from these three angles; in other words, the
appropriate model to represent a given hydrologic system may also be either simple or
complex. The obvious question, however, is: how simple or how complex the models
should be? This issue is addressed in this study, since the basic purpose behind
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formulation of a catchment classification framework is the identification of the most
appropriate model (type and complexity) for a given catchment. Therefore, the present
study is, in a way, an inverse approach to study the classification framework.

Since complexity is a fundamental and central characteristic of hydrologic systems,
and is also a representation of their generality and specificity, it should form the basis
for a classification framework. The studies by Sivakumar (2004a) and Sivakumar et
al. (2007) offer clues as to the use of complexity (defined in terms of extent of data
variability) as a viable means for a classification framework.

4 Nonlinear dynamic concepts and relevance to hydrology
4.1 Nonlinearity in hydrologic systems

Much of the research in hydrologic systems, at least until recently, has been based
on the assumption of “linearity;” i.e., the relation between cause (e.g. input) and effect
(e.g. output) is linear or proportional. One of the important factors that contributed to, or
necessitated, this linear approach was the lack of computational power to develop the
(perhaps more complex) nonlinear mathematical methods. However, the “nonlinear”
behavior of hydrologic systems had been known for a long time (e.g. Minshall, 1960;
Izzard, 1966; Amorocho, 1967; Dooge, 1967b; Amorocho and Brandstetter, 1971).
The nonlinear behavior of hydrologic systems is evident in various ways and at al-
most all spatial and temporal scales. The hydrologic cycle itself is an example of
a system exhibiting nonlinear behavior, with almost all of the individual components
themselves exhibiting nonlinear behavior as well. The climatic inputs and landscape
characteristics are changing in a highly nonlinear fashion, and so are the outputs, of-
ten in unknown ways. The rainfall-runoff process is nonlinear, almost regardless of
the basin area, land uses, rainfall intensity, and other influencing factors. In fact, the
effects of nonlinearity can be tremendous, especially when the system is sensitively
dependent on initial conditions. This means, even small changes in the inputs may
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result in large changes in the outputs (and large changes in the inputs may turn out to
cause only small changes in the outputs), a situation popularly termed as “chaos” in
the nonlinear science literature (e.g. Lorenz, 1963; see also Gleick (1987) for details).

With significant developments in computational power during the past three decades
or so, and also with major advances in measurement technology and mathematical
concepts, studies on the nonlinearity and related properties of hydrologic systems have
started to gain attention. Nonlinear stochastic methods (e.g. Kavvas, 2003), artificial
neural networks (e.g. Govindaraju, 2000), data-based mechanistic models (e.g. Young
and Beven, 1994), and nonlinear dynamics and chaos (e.g. Sivakumar, 2000) are some
of the popular nonlinear techniques that have found extensive applications in hydrology.
This study discusses the utility of nonlinear dynamic techniques as a suitable method-
ology for studying the complexity of hydrologic systems and, thus, for formulation of the
catchment classification framework.

It must be pointed out, at this point, that there is still some confusion on the def-
inition of “nonlinearity” in hydrology, and perhaps in many other fields as well. This
is highlighted, for example, by Sivapalan et al. (2002), who discuss two definitions of
nonlinearity that appear in the hydrologic literature. One is with respect to the dynamic
property, such as the rainfall-runoff response of a catchment, where nonlinearity refers
to a nonlinear dependence of the storm response on the magnitude of the rainfall in-
puts (e.g. Wang et al., 1981). The other definition is with respect to the dependence
of a catchment statistical property, such as the mean annual flood, on the area of the
catchment (e.g. Goodrich et al., 1997). The present study does not make any attempt
to discuss the confusion behind the use of the term “nonlinearity” in hydrology. How-
ever, the ideas presented herein are mainly concerned with the dynamic property of
hydrologic processes.

4.2 Nonlinear dynamics and chaos: some basics

During the past three decades or so, significant advances have been made in the
field of nonlinear sciences to study complex systems. Numerous methods have been
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developed and applied in various fields, including physics, chemistry, biology, earth
sciences, ecology, economics, engineering, medicine, and psychology. Popular books
on nonlinear dynamic and chaos theories and their applications are those by Tsonis
(1992), Strogatz (1994), Abarbanel (1996), and Kantz and Schreiber (1997), among
others. For a more general and non-mathematical description of nonlinear dynamic
and chaos concepts, the reader is referred to Gleick (1987) and, to some extent, Go-
erner (1994). Reviews of applications of nonlinear dynamics and chaos concepts in
hydrology and geophysics at large are found in Sivakumar (2000, 2004b, 2009).
Popular among the methods developed within the context of nonlinear dynamic and
chaos theories are phase space reconstruction, correlation dimension, Lyapunov expo-
nent, false nearest neighbors, nonlinear prediction, surrogate data, close returns plot,
and redundancy methods. All of these methods involve data embedding and nearest
neighbor search, identifying different yet related properties of the underlying system
dynamics. In the following, we briefly present the phase space reconstruction and
correlation dimension methods for pattern recognition and complexity determination of
time series. In Sect. 5, we illustrate the utility of these methods for hydrologic time
series and also discuss their superior performance over widely used linear tools.

4.2.1 Phase space reconstruction

Phase space is a useful tool to represent the evolution of a system in time (or in space).
It is essentially a graph or a coordinate diagram, whose coordinates represent the
variables necessary to describe the state of the system completely at any moment;
in other words, the variables that enter the mathematical formulation of the system
(e.g. Packard et al., 1980). The trajectories of the phase space diagram describe
the evolution of the system from some initial state, which is assumed to be known,
and hence represent the history of the system. The “region of attraction” of these
trajectories in the phase space provides important qualitative information on the “extent
of complexity” of the system, which can be verified quantitatively using other methods,
such as those based on the concept of dimensionality (see below).
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For a dynamic system with known partial differential equations (PDEs), the system
can be studied by discretizing the PDEs, and the set of variables at all grid points
constitutes a phase space. One difficulty in constructing the phase space for such a
system is that the (initial) values of many of the variables may not be known. However,
a time series of a single variable of the system may be available, which may allow the
attractor (a geometric object that characterizes the long-term behavior of a system in
the phase space) to be reconstructed. The idea behind such a reconstruction is that
a (nonlinear) system, such as a hydrologic system, is characterized by self-interaction,
so that a time series of a single variable can carry the information about the dynamics
of the entire multi-variable system.

It must be pointed out that the assumption of only a single-variable time series for
phase space reconstruction was made in due consideration to: (1) the general avail-
ability of such a time series for a system (e.g. streamflow in a catchment); and (2) the
difficulties in observing data of multiple variables, for various reasons. There is no
restriction, however, on the use of multi-variable time series for such a reconstruc-
tion, if available (see, for instance, Cao et al. (1998) for details on multi-variable data
reconstruction); in this case, the reconstruction is normally termed as state space re-
construction. Therefore, in a way, phase space is one, and a simplified, version of state
space.

Many methods are available for phase space reconstruction from an available time
series. Among these, the method of delays (e.g. Takens, 1981) is the most widely used
one. According to this method, given a single-variable series, X;, where i =1, 2, ..., N,
a multi-dimensional phase space can be reconstructed as:

sz(X/’Xj+T’Xj+27 ..... Xj+(m—1)‘r) (1)

where j =1, 2, ..., N—-(m—1)T; m is the dimension of the vector Yj, called embedding
dimension; and 7 is an appropriate delay time (an integer multiple of sampling time). A
correct phase space reconstruction in a dimension m generally allows interpretation of
the system dynamics (if the variable chosen to represent the system is appropriate) in
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the form of an m-dimensional map fr, given by:
Yiir=f(Y)) ()

where Y ; and Y, are vectors of dimension m, describing the state of the system at
times j (current state) and j + T (future state), respectively.

4.2.2 Correlation dimension method

One of the purposes behind determining the dimension of a time series is that dimen-
sionality furnishes information on the number of variables dominantly governing the
evolution of the corresponding dynamic system. Dimension analysis also reveals the
extent to which the variations in the time series are concentrated on a subset of the
space of all possible variations. In the context of identification of the nature of govern-
ing mechanisms and, thus, the potential complexity level of the system, the central idea
behind the application of the dimension approach is that systems whose dynamics are
governed by stochastic dynamic processes are thought to have an infinite (or at least
very high) value for the dimension, whereas a finite and small value of the dimension
is considered to be an indication of the presence of nonlinear deterministic chaotic
dynamic processes.

Correlation dimension is a measure of the extent to which the presence of a
data point affects the position of the other points lying on the attractor in (a multi-
dimensional) phase space or coordinate system. The correlation dimension method
uses the correlation integral (or function) for determining the dimension of the attrac-
tor in the phase space and, hence, for distinguishing between low-dimensional and
high-dimensional systems. The concept of the correlation integral is that a time series
arising from deterministic dynamics will have a limited number of degrees of freedom
equal to the smallest number of first-order differential equations that capture the most
important features of the dynamics. Thus, when one constructs phase spaces of in-
creasing dimension, a point will be reached where the dimension equals the number
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of degrees of freedom, beyond which increasing the phase space dimension will not
have any significant effect on correlation dimension.

Many algorithms have been formulated for the estimation of the correlation dimen-
sion of a time series. Among these, the Grassberger-Procaccia algorithm (Grassberger
and Procaccia, 1983) has been and continues to be the most widely used one, espe-
cially in hydrologic studies. The algorithm uses the concept of phase space reconstruc-
tion for representing the dynamics of the system from an available single-variable time
series, as presented in Eq. (1). For an m-dimensional phase space, the correlation
function C(r) is given by

, 2
(1<i<j<N)

where H is the Heaviside step function, with H(v) =1 for v >0, and H(uv) =0 for u <0,
where u=r—|Y; - ], r is the vector norm (radius of sphere) centeredon Y; or Y ;. If
the time series is characterized by an attractor, then C(r) and r are related according
to:

C(Or) ~ar’ (4)
N — oo

where a is a constant and v is the correlation exponent or the slope of the Log C(r)
versus Log r plot. The slope is generally estimated by a least square fit of a straight
line over a certain range of r (i.e. scaling regime) or through estimation of local slopes
between r values.

The distinction between low-dimensional and high-dimensional systems can be
made using the v versus m plot. If v saturates after a certain m and the saturation
value is low, then the system is generally considered to exhibit low-dimensional and
chaotic behavior. The saturation value of v is defined as the correlation dimension
(d) of the attractor, and the nearest integer above this value is generally an indication
of the number of variables dominantly governing the system dynamics. On the other
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hand, if v increases without bound with increase in m, the system under investigation
is generally considered to exhibit high-dimensional and stochastic behavior.

5 Identification of complexity of hydrologic time series

In the context of identification of system properties and behaviors, it is customary to
use some basic linear tools, such as the autocorrelation function and power spectrum.
The autocorrelation function is a normalized measure of the linear correlation among
successive values in a time series. The power spectrum is particularly useful for char-
acterizing the regularities/irregularities in observed signals.

While the autocorrelation function and power spectrum yield reliable results in identi-
fication of system properties in certain situations, they are inadequate in certain others.
For instance, while they provide convincing distinctions between random and periodic
(or quasi-periodic) systems, they are not reliable for distinguishing between random
and chaotic signals. A clear demonstration of this limitation of linear tools and the su-
periority of nonlinear tools has been presented in Sivakumar et al. (2007). For the sake
of brevity, we highlight here only some important results, and the reader is directed to
the original article for further details.

Sivakumar et al. (2007) analyzed two synthetic time series that are “similar” in ap-
pearance and “complex and random” in nature but possess totally different character-
istics: one generated using a pseudo random number function and the other obtained
from a deterministic nonlinear two-dimensional map. They observed that the auto-
correlation function and power spectrum failed to distinguish the properties of the two
systems, and the failure was not just in “visual” or “qualitative” terms but also in quan-
titative terms: for instance, for both series, the time lag at which the autocorrelation
function first crossed the zero line was equal to one (especially no exponential dacay
for the chaotic series) and the power spectral exponent was equal to zero (indicating
randomness in the underlying dynamics of both). However, the phase space recon-
struction and correlation dimension methods were able to distinguish between the two
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time series. In the phase space reconstruction, for the stochastic series, the points (of
trajectories) were scattered all over the phase space (i.e. absence of attractor), a clear
indication of a “complex” and “random” nature of the underlying dynamics and poten-
tially of a high-dimensional system; the projection for the chaotic series yielded a very
clear attractor (in a well-defined region), indicating a “simple” and “deterministic” (yet
non-repeating) nature of the underlying dynamics and potentially of a low-dimensional
system. In the correlation dimension method, there was no saturation of the correla-
tion exponent for the stochastic series, suggesting a high-dimensional system; for the
chaotic series, correlation exponent saturated at a value of 1.22 (correlation dimen-
sion = 1.22), indicating a two-dimensional system.

Sivakumar et al. (2007) also analyzed several river-related time series to test the
utility of phase space reconstruction concept and its superiority over linear tools. For
illustration here, we present the results obtained for two such series, i.e., daily river
flow datasets from the USA: (1) the Mississippi River flow at St. Louis, Missouri; and
(2) the Kentucky River flow near Winchester, Kentucky. Table 1 presents some impor-
tant statistics of these time series.

Figure 1 shows the time series (top) and autocorrelation functions (bottom) for these
datasets. Both flow series look “complex” and “random,” with peaks and dips. The au-
tocorrelation functions are also very similar, albeit positively showing persistence and
seasonality properties in both. These results do not provide any clues as to whether
the underlying dynamic properties are low-dimensional or high-dimensional (or deter-
ministic or stochastic), and, thus, do not offer any help in any type of classification
for modeling purposes. As a result, selection of the appropriate type and structure of
models for these two series, as well as data collection, are difficult.

On the other hand, the phase space diagrams (Fig. 2, top) and correlation dimension
results (Fig. 2, bottom) reveal similarities as well as differences between the two series.
They reveal certain order and determinism in the underlying dynamics of both time se-
ries, i.e. clear attractor structures in well-defined regions in the phase space and low
correlation dimensions; they also provide crucial information on the extent of complexity
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of each, i.e. the first series has more order and determinism with just three dominant
governing variables in the underlying dynamics (dimension = 2.32) when compared to
five in the other (dimension = 4.22). These results are particularly useful for classifying
these time series in terms of their nature (deterministic or stochastic) as well their ex-
tent of complexity (low-dimensional or high-dimensional). In view of this, these results
are also helpful in the selection of the appropriate type and structure of models and,
consequently, in determining data requirements.

These observations and numerous others on nonlinear dynamic analysis of hydro-
logic time series (see Sivakumar (2000, 2004b, 2009) for reviews) provide a reliable
means for classification of hydrologic systems, and, thus, are used as an important
basis for the classification framework proposed below.

6 Catchment classification framework: a proposal

With hydrologic system complexity as a basis and nonlinear dynamic tools as a
methodology, a three-step procedure is proposed here for a classification framework:

1. Detection of possible patterns in data and determination of complexity levels of
hydrologic systems;

2. Classification of hydrologic systems into groups and sub-groups based on data
patterns and system complexity; and

3. Verification of the classification framework through: (a) establishing relation-
ships between the data patterns/complexity and the actual catchment/process
properties; and (b) studying the outputs simulated from existing hydrologic
models and varying their complexities.
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An outline of these steps is shown in Fig. 3, and their details are presented next.
6.1 Detection of data patterns and determination of level of complexity

The possible patterns and the level of complexity of hydrologic data (systems) can
be studied by applying a variety of methods. These methods can include both linear
and nonlinear ones, so as to capture as many of the salient features of the system as
possible. The linear methods may include: autocorrelation function, power spectrum,
statistical moment scaling method, to detect seasonality, cyclicity, and scale properties,
among others. The nonlinear methods may include: phase space reconstruction, cor-
relation dimension, close returns plot, and local prediction, to detect system evolution,
dimensionality, complexity, and predictability, among others. Furthermore, although
each of these methods provides its own information, the results can also be easily ver-
ified through those from the others. For instance, the complexity of system evolution
assessed from the phase space diagram (attractor) can be easily verified using the
dimensionality determined using the correlation dimension method.

6.2 Classification framework based on patterns and complexity

The results from the above analysis (Step 1) offer important information on many of
the system (data) properties and underlying dynamics. These include patterns, order,
dimensionality, number of dominant governing variables, type and optimum complexity
of model, type and amount of data required, and prediction accuracy and horizon. All
this information need to be analyzed, cross-verified, and interpreted to streamline the
hydrologic systems into different groups and sub-groups, as appropriate, possessing
emblematic features of their own. Both qualitative and quantitative analyses can be
performed for this purpose, including visual inspection of patterns, statistical analysis
of dimensions, and assessment of model complexity and data requirements.

It is premature, at this stage, to provide definitive guidelines on the exact structure
of the classification framework and on the specific number of groups and sub-groups.
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As Wagener et al. (2007) pointed out, there may be several possibilities and differ-
ent components, including hydroclimate, catchment heterogeneity, process function,
and scale. However, any of the properties identified in Step (1) (e.g. dimensionality),
and their combinations, can serve as an important component to formulate this frame-
work. For example, considering dimensionality, the systems may potentially be treated
broadly as high-dimensional, medium-dimensional, and low-dimensional, and then fur-
ther grouped as medium-high and low-medium, thus clearly emphasizing the complex-
ity. Since the structure of this framework and its effectiveness to classify hydrologic
systems can be verified via catchment/process properties as well as through simula-
tion of outputs from existing hydrologic models by varying their complexities (Step 3;
see Sect. 6.3), appropriate checks and balances are possible. Therefore, if necessary,
the framework can be modified for improvement.

6.3 Verification of classification framework

This step evaluates the effectiveness of the above classification framework in two ways,
as discussed next:

(a) Establishing relationships with catchment/process properties: This can be done
with due consideration of numerous properties of catchments and processes. How-
ever, oftentimes only a few of these catchment/process properties are dominant, as
has been illustrated through many case studies in Grayson and Bloschl (2000). Based
on our knowledge and experience with catchments and processes, the following prop-
erties may be considered important. As for catchments, general climatic conditions
(e.g. humid, semi-arid, arid), catchment area, channel length, soil type, land use, and
time of concentration can be studied. As for processes, rainfall (e.g. type, amount, in-
tensity) and streamflow (e.g. magnitude, runoff coefficient) properties can be the main
focus. The established relationships can also offer crucial information on the properties
that may not be dominant in specific catchments. This information may help to modify
or further simplify the classification framework, through elimination of these properties
in the original framework.

4447

HESSD
8, 44274458, 2011

Hydrologic system
complexity and
nonlinear dynamic

B. Sivakumar and
V. P. Singh

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/4427/2011/hessd-8-4427-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/4427/2011/hessd-8-4427-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

(b) Studying the outputs simulated from hydrologic models and varying their com-
plexities: Since identification of the optimum complexity of model for catchments is one
of the main goals of the classification framework, simulating the hydrologic outputs for
different complexity levels of a selected hydrologic model(s) for the catchment(s) of
interest and studying their properties is a reliable means to verify/confirm the effective-
ness of the classification framework. The results obtained for the observed data and,
hence, the classification groups and sub-groups may also offer some guidelines. To
this end, varying complexity levels of some selected hydrologic models (physics-based
or other) that are commonly used, such as the HEC-HMS and MIKE-SHE, can be used
to simulate hydrologic outputs (e.g. streamflow). Important properties of these outputs
can be studied and compared with those of the observed data. This will help iden-
tify the appropriate model complexities for the catchments and also how they match
against the classification groups and sub-groups. Analysis can also be carried out to
assess the effects of structural and data uncertainties. These will particularly be useful
for modelers to identify suitable catchments to apply the models to and for users to
identify models that would be appropriate for catchments.

7 Conclusions and further research

Hydrologic models play a crucial role in the assessment of water resources availability
and decisions on water planning and management. Consequently, hydrologic mod-
eling has become an important research endeavor, particularly facilitated by recent
technological and methodological advances. Although numerous hydrologic models
have been developed (often with increasing structural complexity and mathematical
sophistication), identifying which model is appropriate for which catchment remains a
fundamental problem. To this end, the need for a classification framework that stream-
lines catchments into different groups and sub-groups for a more effective and efficient
model selection is increasingly realized. However, an appropriate basis and a suitable
methodology for such a framework are still elusive.
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This study offers one possible way to view the classification problem in hydrology
through an inverse approach; i.e., going backward from system outputs. It argues that
hydrologic system complexity forms an appropriate basis for the classification frame-
work and nonlinear dynamic concepts constitute a suitable methodology for assessing
system complexity. Discussing the relevance of complexity and nonlinearity in hydro-
logic systems and also the utility of nonlinear dynamic tools for pattern recognition and
complexity determination, the study presents a three-step procedure for formulation of
a catchment classification framework.

The proposed classification framework will lead to a far more effective and efficient
procedure for identifying the appropriate structure and complexity of model for a given
hydrologic system and to a far better practice in hydrologic modeling and prediction.
It will help modelers identify appropriate catchments to apply the models to and users
to identify appropriate models for catchments. It will help towards a more reliable as-
sessment of the type, quantity, and quality of data requirements. This information will
potentially yield significant savings in time, data, and computational requirements for
hydrologic modeling. The framework will also provide a common language for commu-
nication and discussion among water researchers and managers and will significantly
improve teaching, research, and practice in the field of water.

Finally, to assess its usefulness and effectiveness, the proposed framework needs
to be tested on a wide variety of catchments and hydrologic data representing different
climatic conditions, catchment characteristics, land use properties, and types of data,
among others. As a starting point, efforts are underway to study a large network of
catchments in the United States (western US), Australia, and India. Details of such
studies will be reported elsewhere.
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Table 1. Statistics of daily river flow time series.

Statistic Mississippi River Kentucky River

Number of data 10226 10958

Mean (m®s™) 5309.9 151.9

Maximum (m>s™") 24100 2806

Minimum (m®s™") 980 329

Number of zeros 0 0
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Fig. 1. Time series (top) and autocorrelation function (bottom) of daily river flow from the
Mississippi River, Missouri, USA (left) and the Kentucky River, Kentucky, USA (right).
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Fig. 3. Outline of steps for formulation of a catchment classification framework.
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