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Author Summary

Current iterations of the hygiene hypothesis suggest an adaptive role for helminth para-
sites in shaping the proper maturation of the immune system. However, aspects of this
hypothesis are based on assumptions that may not fully account for realities about human
helminth infections. Such realities include evidence of causal associations between hel-
minth infections and asthma or inflammatory bowel disease as well as the fact that hel-
minth infections remain widespread in the United States, especially among populations at
greatest risk for inflammatory and autoimmune diseases.

Introduction
Beginning in the late 20th century, there was an increase in the reported cases of inflammatory
and autoimmune diseases worldwide, such as asthma, inflammatory bowel disease (IBD), food
allergies, and multiple sclerosis (MS) [1]. This phenomenon has been linked to the acquisition
of a “westernized” lifestyle, declining family size, improved household amenities, higher per-
sonal cleanliness, and reduced cross infection within affluent communities [2]. From this
notion the “hygiene hypothesis” evolved, suggesting a reduction in microbial exposures, sec-
ondary to hygienic conditions, which impede the proper maturation of the immune system.
The hygiene hypothesis is accepted by many in the global scientific community and has
evolved to associate multiple variables as either protective or contributory in the development
of inflammatory diseases. Identified environmental factors that are incorporated into the
hygiene hypothesis include variations in microbial exposure, parasites, diet, medications, life-
style behaviors, sanitation, occupations, and pollutant exposures [1,3]. A branch of this
hypothesis points at parasitic helminths—which, according to some, are nearly eradicated
from high-income countries—as a key immune modulator necessary for proper immune devel-
opment. This movement goes so far as to propose redefining the role of certain helminths
within the human host from parasites to mutualists and to test their therapeutic potential in
humans and animal models [4].
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We argue here that parasitic helminth infections have not been demonstrated as necessary
for proper host immune maturation in either humans or in animal models. Several animal
studies and select human studies have demonstrated beneficial anti-inflammatory responses to
autoimmune and inflammatory diseases when treated with helminths. However, a number of
other studies have noted helminths can exacerbate and even induce inflammatory conditions.
Without significant evidence to support their therapeutic potential, we express concern over
the safety of administrating living parasites with known human morbidity. We instead suggest
directing future studies towards the identification and trial of key helminth-derived immuno-
modulatory molecules that might provide a safer and better mechanistically understood ther-
apy [5].

Global Impact
Over one billion people are infected with parasites globally, with an overrepresentation of
infections in people who live in extreme poverty [6]. Helminths, including hookworm (mostly
Necator americanus), whipworms (Trichuris trichiura), roundworms (Ascaris lumbricoides),
and schistosomes (mostly Schistosoma haematobium and Schistosoma mansoni) cause chronic,
debilitating diseases—which include iron deficiency anemia, asthma, vitamin deficiency,
abdominal pain, colitis, and dysentery—leading to growth failure and impaired cognitive
development [7]. Schistosomiasis is associated with ulcerative genital disease, infertility, and
increased transmission of human immunodeficiency virus [8]. According to the Global Burden
of Disease Study 2010, overall helminth infections account for more than 14 million disability
adjusted life years (DALYs), ranking these diseases among the greatest global health threats
[6]. Helminth infections simultaneously promote poverty within endemic communities
because of economic suppression from decreased education accruement, loss of workforce, and
cost of treatment [6,9,10].

Impact of Helminths on Host Inflammation and Atopy
Beyond the public health and economic impact of human helminth infections, there is a pro-
found level of global disability that arises from the pathologic sequelae of helminth infections
translating into widespread mucosal dysregulation and contributing to inflammatory diseases,
such as asthma and inflammatory bowel disease (Box 1) [11]. While there are limited clinical
studies reporting asthma and inflammatory bowel disease from rural, helminth-endemic areas,
we believe this is secondary to underreporting of disease because of limited diagnostic
resources. An Ecuadorian cohort of over 2,400 children in Esmeraldas province, where 28.6%
of children had at least one documented soil transmitted helminth, documented that 25.9% of
children had wheeze, 15.2% had skin test reactivity to an aeroallergen, and 17.7% had an epi-
sode of eczema, suggesting a significant presence of allergic disease within the community [12].

Asthma
Ascariasis (A. lumbricoides infection) is a risk factor for the development of asthma phenotypes
in endemic regions [13]. It has been well documented since the early 20th century that Ascaris
larvae migrate through the lungs during the parasite life cycle, resulting in Loeffler’s pneumoni-
tis, a clinical disease that resembles asthma in humans [11,14]. Pneumonitis secondary to acute
Ascaris larvae migration is particularly evident in areas where prevalence is low or periodic.
For instance, in Saudi Arabia, ascariasis was previously an important cause of seasonal pneu-
monitis with eosinophilia, in which patients present with cough, dyspnea, and substernal chest
pain [15].
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In humans, elevation of Ascaris-specific immunoglobulin E (IgE), which could indicate
either recent or remote Ascaris infection, has been shown to be an independent risk factor for
asthma phenotypes and is associated with increased asthma disease severity, emergency center
evaluation, and crossreactivity to bystander antigens, such as house dust mites [16–18]. Specifi-
cally, bronchial hyperreactivity—including increased airway resistance and decreased forced
expiratory volume in one second (FEV1) and FEV1/forced vital capacity (FVC) ratio—has
been demonstrated in children with elevated Ascaris-specific IgE [19,20]. While elevation of
Ascaris-specific IgE provides a consistent link between ascariasis and asthma phenotypes, con-
flicting evidence exists for patients with detectable Ascaris eggs in the stool. In a study by
Palmer et al. conducted in eight rural counties in China, a positive stool exam for Ascaris was
associated with an increased risk of asthma, indicating that current intestinal ascariasis may
also predispose patients to develop an asthma phenotype. Furthermore, patients who had a
positive stool exam for Ascaris eggs also had increased sensitization to bystander aeroallergens
[21]. However, other studies have demonstrated no enhanced risk of asthma in patients with
detectable Ascaris eggs within the stool at the time of evaluation [18]. Furthermore, several
studies have concluded that A. lumbricoides is not associated with heightened atopic signs and
symptoms, such as allergen skin test reactivity and allergic dermatitis, as previously described
[22,23]. Studies using anthelminthic treatment in patients with asthma have been met with
conflicting results as well. A prospective study of albendazole or praziquantel in a schistosomi-
asis-endemic area of Brazil did not show any respiratory benefit in children with asthma but
led to overall worsening of asthma severity after repeated anthelminthic administration [24].
Conversely, the use of anthelminthic therapy, albendazole, in a cohort of asthmatic patients in
an Ascaris-endemic region of Venezuela resulted in reductions in inhaled maintenance and res-
cue therapy as well as a reduction in asthma exacerbations [25]. In the setting of conflicting
human studies, mouse models of ascariasis have been developed to evaluate the association
between ascariasis and asthma.

A. suum-infected mouse models—a similar species to A. lumbricoides and a human patho-
gen—are currently being used to uncover the mechanism by which Ascaris is linked to pneu-
monitis and asthma phenotypes [26]. In a recent study by Nogueira et al., repetitive infection
with A. suum was found to cause chronic lung parenchyma damage, including inflammatory
infiltration consisting of neutrophils and eosinophils, thickened intralveolar septa, and evi-
dence of tissue remodeling mimicking the pathologic changes noted in asthma. Functionally,

Box 1. Proinflammatory Disease Effects of Human Helminths

Asthma and Loeffler’s pneumonitis
• Ascaris lumbricoides

• Toxocara canis

• Toxocara cati

Inflammatory bowel disease: enteritis and colitis
• Schistosoma mansoni

• Trichuris trichiura

• Strongyloides stercoralis
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the A. suum-infected mice have reduced dynamic airway compliance as well as FEV1 and FVC
consistent with an asthma phenotype [27]. Additionally, A. suum-infected mice have expan-
sion of type 2 innate lymphoid cells (ILC2) and tissue-resident Th2 cells in the lungs. Prolifera-
tion of these cell lines are thought to reduce helminth worm burden upon reinfection.
However, after helminth infection, the presence of ILC2 and Th2 cells in the lungs promote
massive airway type II inflammation when challenged with intratracheal house dust mite, a
common allergen. This suggests that helminth infection may sensitize the mice to other envi-
ronmental allergens [28]. Furthermore, after antigen challenge, recruitment of antigen-acti-
vated CD4+ T cells and eosinophils expressing high levels of cell surface marker CD44 to the
lungs has been shown to play a critical role in the regulation of pulmonary inflammation and
asthma. Similarly, administration of A. suum extract intranasally promotes eosinophil and
CD4+ T cell accumulation in the lungs as well as an increase in airway resistance after metha-
choline challenge in a CD44-, hyaluronic acid–dependent mechanism in a mouse model [29].

While conflicting data is present within the literature, it is evident that ascariasis adversely
affects the integrity of the lungs and host inflammatory and immune responses, causing
increased airway resistance similar to asthma. Given that ascariasis is one of the most common
affliction of children and adults living in poverty, affecting more than 800 million people, pre-
sumably millions of these individuals are potentially at risk of developing significant pulmo-
nary morbidity secondary to ascariasis [6]. Thus, further studies to elucidate the mechanism
involved in ascariasis and asthma are warranted.

Inflammatory Bowel Disease
Trichuriasis (a disease infecting over 400 million people that results from infection by the
human whipworm [T. trichiura]) and intestinal schistosomiasis (a disease infecting over 250
million people that results from infection by S.mansoni) are major causes of pathology of the
small and large intestine [6,30]. T. trichiura attaches to the colon, where it can induce acute
and chronic colitis, Trichuris dysentery syndrome (TDS), and rectal prolapse, especially in
heavy infections [31,32]. Long standing trichuriasis, like with IBD, leads to growth suppression
and cognitive impairments [33,34]. These sequelae can resolve after treatment, sometimes
resulting in catch-up growth [35].

As opposed to the Th2-mediated expulsion of T.muris seen in resistant mouse strains,
mouse models of chronic trichuriasis result in massive crypt hyperplasia because of intra-epi-
thelial lymphocytosis in the large intestines, hypothesized to be driven by a parasite-derived
interferon gamma (IFN-γ) homologue [36,37]. MUC5AC mucin, which is normally expressed
in mucosa of the intestines and airway, was shown to be up-regulated in both T.muris infec-
tions and human ulcerative colitis, and blocking of ectopic MUC5AC expression was identified
as a likely contributor in the effectiveness of oral tacrolimus therapy in patients with refractory
ulcerative colitis [38,39]. Furthermore, recent studies have shown that T.muris-infected
colonic tissue histologically resembles established mouse models of IBD, with a defective epi-
thelial barrier and a dominant Th1 immune infiltrate, leading to impaired intestinal mucosa
homeostasis [40]. Resistin-like molecule (RELMβ)—a protein that is secreted from goblet cells
after local tissue damage triggers a proinflammatory cytokine milieu, including IFN-γ and
tumor necrosis factor-alpha (TNF-α)—is thought to be driving the Th1 immune infiltration,
leading to the chronic colonic pathology in both trichuriasis and IBD [41,42]. Expanding on
their comparative analysis of Trichuris-induced colitis and IBD, in 2013, Levision and col-
leagues identified through quantitative trait loci mapping several key overlapping genes
expressed during human Crohn’s disease and Trichuris-induced colitis [43]. Interleukin 18
(IL-18), a key immune regulator of intestinal homeostasis, was shown to be overexpressed in
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the human large intestine during both Crohn’s disease and in T.muris-infected mice [44–46].
Importantly, IL-18 production in T.muris-infected mice showed direct suppression of critical
Th2 cytokines, IL-4 and IL-13, necessary for worm expulsion [44]. More recently, Nowarski
and colleagues showed that overexpression of IL-18 led to significant mucosal barrier dysfunc-
tion, including epithelial goblet cell hyposecretion of protective mucins and other essential pro-
teins for barrier integrity [47]. The clinical, immunological, and histological homology, as well
as genetic susceptibility, between Trichuris-induced colitis and both Crohn’s disease and ulcer-
ative colitis warrants further investigation of Trichuris-induced colitis as an environmental
driver of IBD worldwide. There is a need to conduct further epidemiological studies in order to
determine the attributable risk of colitis in low- and middle-income countries to trichuriasis.

Counterpoint: Immunomodulation
Despite the severe negative consequences of parasitic infections that are highlighted above,
some studies have presented a counterview of generalized human helminth infections as poten-
tially protective against the development of autoimmune and inflammatory diseases. This pro-
tection is hypothesized to be due to their known immunomodulatory properties within a host.
Helminths can maintain host evasion for years through an array of mechanisms that down-
regulate host innate and adaptive responses. These include immunomodulatory proteins that
contain host-related glycans and lipids that direct cytokine mimicry and interference, nonpro-
tein signature molecules that result in immunosuppressive host cytokine release, and direct
interference of antigen presentation. The presence of T regulatory cells (Treg) along with
immune modulatory cytokines IL-10, TGF-β, and, at basal levels, IL-18, promote helminth sur-
vival while simultaneously quelling the host inflammatory response [44,48]. One example of
helminth-induced immunosuppression is the rodent parasiteHeligmosomoides polygyrus
bakeri, which is hypothesized to recruit Tregs to control colitis, in part through secretion of IL-
10. Additional studies have shown other, phylogenetically distinct helminthic species—includ-
ingHymenolepis diminuta (cestode), S.mansoni (trematode), and Litomosoides sigmodontis
(nematode)—are capable of reducing inflammation in the gut, predominately through IL-10
secretion[49].

Helminths as Causes of Atopy and Asthma in High Income
Countries
We are left with two seemingly contradictory sets of findings regarding the role of helminth
parasites in human inflammatory disease and atopy. A recent Lancet Infectious Diseases review
questioning helminth therapy versus elimination by Wammes and colleagues highlights this
question by identifying the discrepancy between findings in murine models and human studies
[5]. Even several large-scale randomized human trials on the effects of helminths on allergic
diseases show contradictory results [5].

Adding to the confusion of these findings is an erroneous assumption on which a compo-
nent of the hygiene hypothesis is sometimes based: namely, that helminth infections have
largely disappeared in high-income countries. A 2011 systematic review by Starr and Mont-
gomery identified a now 30-year gap since the last high-quality epidemiological study on soil-
transmitted helminths (hookworm, A. lumbricoides, T. trichiura, and Strongyloides stercoralis)
in the United States [50]. In combination with 13 other high-quality studies, the review notes
that helminths afflicted more than 50% of people in the southern US and Appalachia as
recently as 1982 [50]. They conclude that the current prevalence of disease in the US remains
unclear and that there is a need for new studies [50]. Without more recent studies on soil-
transmitted helminths, human toxocariasis—a zoonotic helminth infection from dogs and cats
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caused by Toxocara canis and Toxocara cati respectively—is considered to be the most com-
mon helminth infection in the US [51,52]. According to the Centers for Disease Control and
Prevention (CDC), more than 20% of African Americans living in poverty—a group that is
considered at highest risk for asthma and other atopic diseases—are seropositive for Toxocara
infection [53]. Indeed, there are several important studies that show Toxocara spp. elicit Loef-
fler’s type pathology during their larval migrations through the human lungs, causing an
asthma phenotype [11,54,55]. A large population-based study conducted in the US demon-
strated that patients with seropositivity to Toxocara had decreased FEV1 when additional pop-
ulation-based factors such as age, sex, and body mass index were controlled [56]. Thus, rather
than protect against asthma, helminths today may represent an environmental cause of inflam-
matory disease in the US [51,57].

Iatrogenic Helminth Infections: A Good or a Bad Idea?
Given the contradictory findings highlighted above, it is not surprising that the iatrogenic
administration of helminths—labeled as a safe, efficacious treatment strategy for inflammatory
and autoimmune diseases—has met with mostly mixed or negative results.

For asthma or allergic rhinitis, there appears to be no benefit from administration of para-
sitic helminths. Specifically for asthma, in a randomized control trial, no benefit of hookworm
larval administration was observed [58]. Additionally, three randomized trials, one using T.
suis eggs [59] and the other two using hookworm [58,60], failed to show any therapeutic bene-
fit against grass pollen–induced allergic rhinitis, allergic rhinoconjunctivitis, or asthma. In fact,
in two of these three trials, patients suffered from gastrointestinal symptoms as a result of the
helminth infection. An additional Cochrane review evaluating the efficacy of helminth therapy
for allergic rhinitis management found that participants receiving helminth therapy showed no
improvement in rhinitis symptoms or number of well days but did have increased adverse
events, including local pruritus and gastrointestinal symptoms such as abdominal pain, flatu-
lence, and diarrhea [61].

For IBD and celiac disease, therapy has focused on using the pig whipworm T. suis or the
human hookworm Necator americanus. Regarding the former, two open-label studies by Sum-
mers et al. showed that T. suis therapy for the treatment of IBD correlated to a remission rate
of around 70%, helping ignite the excitement of helminth therapy in human beings [62,63]. In
the follow-up placebo-controlled, double-blind, randomized trial, there was an improvement
in ulcerative colitis disease severity but no significant improvement in the rates of remissions
[64]. Two subsequent Phase 2 clinical trials in the US, with 250 patients (TRUST-1, trial identi-
fier NCT01576471), and Europe, with 240 patients (FALK, trial identifier NCT01279577),
using T. suis eggs for moderate-to-severe Crohn’s disease were terminated in 2013 because of a
lack of efficacy, which was determined by both a measure of disease activity index and remis-
sion rates [65,66]. A 2014 Cochrane review that evaluated the safety and efficacy of T. suis ther-
apy to induce inflammatory bowel disease remission found insufficient evidence, secondary to
small studies and low-quality evidence, to support the use of helminth therapy [67]. Although
these trials do not show significant short or long-term adverse events to T. suis therapy, when
given up to 7,500 ova, there are continued concerns of safety. Of particular concern is aberrant
migration, which is well known to occur with many helminth species when in unnatural hosts
[68]. Additionally, zoonotic helminths have been noted for their propensity to be particularly
inflammatory when in humans [69]. These concerns, along with limited efficacy, have influ-
enced investigators to explore human helminth-derived molecules and N. americanus, which
has a well-defined natural lifecycle within humans [68,70]. For Crohn’s disease, after 45 weeks
of N. americanus infection, one study showed no statistically significant decrease in disease
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activity index among patients [71]. A second study using N. americanus larvae for the treat-
ment of 20 patients with celiac disease showed a reduction in IFN-γ and IL-17 inflammatory
cytokines in duodenal biopsies but no improvements in clinical symptoms among those with
hookworm treatment [72]. More recently, in a preliminary study, combination therapy of N.
americanus and gluten microchallenge showed improved gluten tolerance in eight celiac dis-
ease patients in an open-label, nonplacebo controlled study (66). It was further suggested that
hookworm challenge infections might exert such effects by reversing microbial dysbiosis [73].
Although the authors of the celiac study acknowledge that conclusions from the study are pre-
liminary because of the sample size and lack of controls, they argue that further investigation
into combination therapy should be considered [74].

Helminth therapy has been tried as a treatment for MS after the observation was made that
12 patients with MS and concomitant natural intestinal helminth infection in Argentina had a
reduction in the number of relapses and lower MRI activity in comparison to uninfected MS
patients [75]. Building on this promising finding, a Phase 1 clinical trial of T. suis egg was
administered to 5 MS patients during a three-month period and showed a mild reduction in
the number of new gadolinium-enhancing lesions, but there were no changes in neurological
symptoms, nor was there a placebo-controlled comparison [76].

The failed therapeutic potential of helminth treatment in humans has been surprising to some
scientists. As highlighted above, there have been several animal studies that demonstrate an
immunosuppressive role of helminths. Further, human epidemiological studies have suggested a
protective role for helminths against autoimmune and inflammatory conditions. However, many
of these studies identified delayed or diminished development of allergic or autoimmune
responses when helminth treatment was used prophylactically, with few studies that demonstrate
a clear therapeutic advantage in already established conditions [77]. Furthermore, nearly all of
the animal studies used helminth doses significantly higher than would be viewed as safe in
humans, which perhaps explains why successful trials in humans were limited [78].

Conclusion
The rationale for iatrogenic administration of helminths to treat inflammatory diseases has
occasionally been based on specious assumptions. Significantly, the assumptions that hel-
minths infections are negligible in the US and other Western nations and that helminths have
intrinsic anti-inflammatory properties in humans. We do not argue that helminths evolved
with an extraordinary ability to manipulate host immune responses, but their role in relation
to humans is not one of symbiosis, as is seen with the bacterial microbiome, but is one of clear
parasitism. Given the known risks of live helminth inoculations, research highlighting hel-
minth immunomodulatory properties should direct future research towards identifying hel-
minth-derived molecules of therapeutic potential. This approach is likely to result in a more
viable therapeutic window. Further, it’s important not to diminish the role of helminths in
inciting and exacerbating inflammatory diseases globally, including in wealthy countries such
as the US.

A recently emerged attractive alternative hypothesis to explain the rise of inflammatory dis-
eases is a “biome depletion” theory. This suggests inflammatory disease may be due to a loss of
species diversity or alteration of composition of the commensal microbiome within the human
body [79]. Interestingly, differences in microbiota composition and diversity between adults
who live in high-income versus low- and middle-income communities have been described
[80].

The immense conflicting data regarding the benefits versus harms of live helminths as a
therapeutic modality to date warrants further questioning of the utility of additional human
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clinical trials. Therefore, directing future research and trials towards helminth-derived immu-
nomodulatory molecules allows for safer and better-described therapies that could alleviate the
suffering from autoimmune conditions without the commensurate risk of a parasite infection.
Indeed, the aim of experimental animal models should be to develop novel treatments that
mimic the effects of helminths without requiring the presence of parasites in the host.

There is overwhelming evidence that demonstrates the clinical and economic ramifications
of helminths in endemic settings [81]. Therefore, prioritizing helminth elimination efforts
globally through mass drug administration and developing new control tools, such as anthel-
minthic vaccines, remains paramount [81].
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