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1. Typical approaches of restoring filtered GRACE signals  

Two types of error need to be corrected properly during the GRACE signal restoration process, i.e., the 

bias and leakage errors
1
. First, signal loss within a study area of interest due to a filtered averaging kernel 

(or basin function) that defines the area is termed the bias effect. Second, signal gain mostly from the 

surrounding region can contaminate the signal within the study basin, which is termed the leakage effect. 

In some literature, bias and leakage are not discriminated; both are termed the leakage effect. For a more 

precise discussion, we make a difference between the bias and leakage effects in this study following the 

study
1
. Typical approaches for correcting for the bias and leakage effects can be categorized as (1) 

approaches using water storage changes from LSMs, and (2) approaches depending less on water storage 

changes from LSMs. Approaches using water storage estimates from LSMs are the scaling factor and 

additive correction approaches. For the scaling factor approach, LSM output undergoes the same low-pass 

filtering as applied to GRACE data. The filtered and unfiltered water storage changes from LSMs are 

subsequently compared to generate scaling factors using the least square fit to restore filtered GRACE 

TWS changes
2
. The additive correction approach takes advantage of water storage changes from LSMs to 

compute bias and leakage separately, and therefore the filtered GRACE TWS changes can be restored by 

adding the bias and removing the leakage estimates
1,3

.  

It is challenging to perform signal restoration for aquifers using approaches that depend largely on LSM 

output, because most LSMs do not simulate GWS changes induced by groundwater pumping. Global 

hydrological models (GHMs) accommodate the impact of human activities on surface and subsurface 

water, e.g., WaterGap Global Hydrological Model (WGHM) and PCR-GLOBWB. However, these 

models cannot simulate lateral flow that would increase groundwater recharge in piedmont areas, and 

therefore overestimate GWD, e.g., the North China Plain
4
. Implementation of LSMs/GHMs often requires 

tremendous efforts in data collection and processing, greatly reducing their operability in groundwater 

resource management. Investigating and developing algorithms to restore filtered GRACE signals 

depending less on LSMs/GHMs are therefore extremely important to estimate GWD in aquifers. 
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Examples of such approaches include the multiplicative correction approach
5-7

 and unconstrained and 

constrained forward modeling
8,9

.  

The multiplicative correction approach, as was applied in Rodell et al.
10

, assumes that TWS or GWS 

changes are uniformly distributed within a study aquifer, and mass changes surrounding the basin are 

assumed to be zero or can be estimated by LSM output
1,11-13

. Seasonal amplitudes and long-term trends in 

TWS or GWS can be recovered using a multiplicative factor from a filtered normalized averaging kernel 

(or basin function) and/or depending partially on LSMs for correcting for the leakage effect. 

Unconstrained or constrained forward modeling that mimics the low-pass filtering and corrects for the 

signal loss through an iterative approach has been shown to be effective in reducing the leakage effect 

over the cryosphere, e.g., Antarctic
8
. There are two types of forward modeling techniques

9,14
. One is 

unconstrained forward modeling, as used in Chen et al.
9
 to estimate GWD in the NWIA, that performs 

iterative correction without using a priori knowledge about the spatial distribution of signal variations. 

The other one is constrained forward modeling that uses a priori information regarding the spatial 

distribution of water storage changes to constrain the recovered signals. Unconstrained forward modeling 

does not provide detailed spatial distribution of forward modeled GWD, and the leakage effect cannot be 

completely recovered for a specific region of interest. Constrained forward modeling was applied to 

simulate mass changes over Antarctic
8
, in which a uniform distribution of mass changes was allocated to 

their study regions. This simplification may hamper a further understanding of the utility of constrained 

forward modeling to recover signals.  

2. Study region and data 

2.1 Northwest India Aquifer 

We use the three-state region (i.e., Punjab, Haryana & Delhi, and Rajasthan with a total area of 438,296 

km
2
) in the NWIA as a test-bed to compare different approaches for deriving GWS anomaly time series 
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from GRACE satellites (i.e., forward modeling, scaling factor, additive correction, and multiplicative 

correction), the same as Rodell et al.
10

. A comprehensive description of scaling factor, additive correction, 

and multiplicative correction approaches can be found in the reference
15

. India has the highest national 

groundwater extraction rate in the world, accounting for one fifth of the global total
16

. The NWIA is a 

vast agricultural region that relies heavily on groundwater withdrawals for its irrigation water supply
17

, 

and has been undergoing the highest GWD among aquifers globally due to irrigation either through 

GRACE satellite estimates
10

 or GHM modeling
4
. In this study, we focused on the three-state region that 

includes Punjab, Haryana & Delhi, and Rajasthan (Figure 1) with an area of 436,390 km
2
 examined in 

Rodell et al.
10

 and that was undergoing intense GWD reported by the India Ministry of Water Resources. 

The GWD in these states has already exceeded the unsafe groundwater development stage. 

The study region is intensively irrigated with conjunctive use of surface water and groundwater. There is 

~30% of the study region equipped for irrigation (Figure 1 (a)) according to AQUASTAT data of the 

Food and Agricultural Organization (FAO) of the United Nations, in which 74% of the equipped area is 

irrigated with groundwater (Figure 1 (b)) and the left with surface water. Land cover data in 2005 and 

2009 with a spatial resolution of 300 m from the European Space Agency GlobCover Portal indicate that 

the north and northeast of the three-state region were dominated by irrigated croplands (44% - 48% of the 

total study area, Figure S15). However, the west and southwest regions were dominated by mosaic 

vegetation/croplands (10% - 13%), bare areas (8% - 11%), and mosaic grassland/forest-shrubland (10%). 

Only 16% of Rajasthan state was irrigated. GWD may occur in irrigated areas but not all irrigated areas 

would exhibit GWD due to conjunctive use of surface and groundwater. Furthermore, areas without 

irrigation infrastructure (e.g., west Rajasthan) will not likely show GWD, which will be demonstrated 

using groundwater-level data and a GHM in the Results Section. 

2.2 Data 
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Data used in this study include GRACE SH coefficients (CSR RL05) 

(ftp://podaac.jpl.nasa.gov/allData/grace/L2/CSR/RL05/) and monthly soil moisture and snow water 

equivalent from three four LSMs (Noah, Mosaic, and VIC) in GLDAS-1 at a spatial resolution of 

0.25°×0.25° (Noah) or 1°×1° (Mosaic and VIC). Scaling factors from CLM4.0 provided by the JPL 

website (http://grace.jpl.nasa.gov/data/gracemonthlymassgridsland/) were also used to restore filtered 

GRACE signal by the scaling factor approach
2
. Monthly GWD and GWS changes at the spatial resolution 

of 0.5°×0.5° from PCR-GLOBWB for the period 2003-2010 were used for testing constrained forward 

modeling, and to create scaling factors for correcting for seasonal variations in GWS changes over this 

region. TWS, SWS, SMS, and GWS changes from the WaterGAP WGHM2.2 model
18

 for the period 

2003-2009 were obtained for use in checking the spatial pattern of GWD from PCR-GLOBWB and 

examining interannual variability in SWS. Descriptions about characteristics of LSMs and GHMs used in 

this study and  associated advantages and disadvantages are provided in Table S2. 

Groundwater levels (i.e., minus groundwater depth to the surface) in districts of the three-state region and 

its surroundings for the period 2005-2010 monitored by India’s Central Ground Water Board (CGWB) 

were obtained from the Groundwater Information System (http://gis2.nic.in/cgwb/Gemsdata.aspx) hosted 

by the National Informatics Centre. There are multiple groundwater-level monitoring sites for each 

district, but the exact coordinate information for each well is not available. Therefore, GWD rates from 

groundwater-level monitoring data were estimated at the district scale. For most sites, there are four 

groundwater-level measurements in each year.  

Groundwater-level measurements lower than 5% percentile or higher than 95% percentile of the 

frequency distribution of the measurements within a district in a year were precluded from the analysis to 

reduce outliers and part of the impact of confined aquifers. Around 2000 sites (the number of sites slightly 

varies with year) in the three-state region were finally used for GWD estimation. The averaged 

groundwater-level from the selected sites in a district for each year was computed to approximate the 
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annual groundwater-level for a district. Linear regression was subsequently performed for each district-

scale groundwater-level annual time series to derive the slope of groundwater-level variations. 

Recommended specific yield values for each type of geological formations in India were obtained from 

the report
19

. Fractions of geological formations for each state were obtained from the report
20

. The 

specific yield for a state was therefore taken as the area-weighting specific yield according to the fractions 

of each geological formation in a state and its associated specific yield values. By multiplying water-level 

time series for a district with the specific yield of the state associated with the district, the ground-based 

GWD rate can be derived and taken as reference for evaluating GWD from GRACE using different 

approaches.  

3. Surface water storage changes from WGHM2.2 standard version 

To examine if there is interannual variability in surface water storage (including reservoir storage changes, 

river storage changes, and lake and wetland storage changes) and soil moisture, we further looked at SWS 

and SMS changes from WGHM2.2 which comprehensively considers SWS, SMS, GWS changes and 

human impact on water storage changes. WaterGAP
21

 consists of both the WGHM model
22

 and five water 

use models for the following sectors: irrigation
23

 and livestock, household, manufacturing and cooling of 

thermal power plants
24

. WGHM computes time series of rapid-surface and subsurface runoff, 

groundwater recharge and river discharge as well as water storage variations in canopy, snow, soil, 

groundwater, lakes, man-made reservoirs, wetlands and rivers as a function of climate, soil, land cover, 

relief and observed river discharge. Location and size of lakes, reservoirs, and wetlands are defined using 

the global lakes and wetland database (GLWD)
25

, with an addition of more than 6000 man-made 

reservoirs
22

. Groundwater storage is affected by diffuse groundwater recharge via the soil, which is 

modeled as a function of total runoff, relief, soil texture, hydrogeology and the existence of permafrost or 

glaciers. Focused groundwater recharge from rivers, lakes, and wetlands is not simulated in WGHM. This 

type of recharge may be important, in particular in semi-arid and arid regions. 
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Sectorial water uses for irrigation livestock, households, manufacturing and cooling of thermal power 

plants are computed using separate models. The irrigation model GIM
23

 computes consumptive water use, 

i.e., the part of the withdrawn water that evaporates during use. For all other sectors, both water 

withdrawal and consumptive water use are quantified by the water use models. Taking into account 

information on the water source, and making assumptions about irrigation water use efficiencies and 

return flows, the sub-model GWSWUSE computes net abstractions from groundwater and from surface 

water
26

. Net abstractions are computed as the difference between water withdrawals from the specific 

source and the return flows from water use to the source. Net abstractions are negative if abstractions 

(withdrawals) are less than return flows, which can only occur in the case of irrigation from surface water. 

In this comparison, we assume that WGHM water storage changes represent reality because the WGHM 

model comprehensively considers water storage changes in surface water, soil layers, and aquifers, and 

especially accommodates human impacts on SWS and GWS changes.  

SWS and SMS changes from WGHM2.2 clearly show that there is no measurable interannual variability 

in the two components of TWS. However, GWS shows a steady decreasing trend since 2003 onwards 

(Figure S17a). This further demonstrates that interannual variability in SWS and SMS is not significant 

and therefore TWS changes from GRACE and LSM/GHM are primarily controlled by GWS changes 

induced by groundwater abstractions for irrigation.   

4. Comparison of different approaches for deriving GWS changes for Jan 2003-Dec 2012 

Similar results were also found for the period Jan 2003-Dec 2012 that the multiplicative and the scaling 

factor approaches generated the highest (-2.4±0.2 cm/a) and lowest (-0.7±0.1 cm/a) GWS change rates, 

respectively. The forward modeling approach-based GWS rate (-1.9±0.1 cm/a) followed that from the 

multiplicative factor approach. Again, the additive correction approach provided the GWS change rate (-

1.2±0.2 cm/a) slightly higher than that from the scaling factor approach (-0.7±0.1 cm/a). The relatively 

lower estimates of secular changes in GWS from the additive correction can be attributed to the bias and 
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leakage corrections using TWS estimates from the GLDAS-1 Noah model. Noah does not account for 

appreciable changes in GWS over this region, resulting in a dampened signal for bias computation and 

therefore relatively lower seasonal amplitudes and secular changes in GWS. As is also indicated by 

Landerer and Swenson
2
, applying a single scaling factor would not properly correct for the seasonal 

amplitudes and secular changes in TWS at the same time. Therefore, results from the scaling factor and 

multiplicative approaches provide the extreme estimates (the highest and lowest) of both seasonal 

amplitudes and secular changes as shown in our study. The forward modeling-based GWS anomalies 

appear to be more reasonable based on groundwater-level monitoring data. 
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Figure S1 Specific yield over the three-state region and its surroundings. Map was created using 

ArcGIS (http://www.esri.com/software/arcgis/arcgis-for-desktop). 



10 
 
 

-15

-14

-13

-12

-11

-10
G

ro
u

n
d

w
a

te
r

ta
b

le
(m

)

2005 2006 2007 2008 2009 2010

ID=1

Site name: Chirya

District name: Bhiwani

State: Haryana

-15

-10

-5

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=2

Site name: Bohal

District name: Bhiwani

State: Haryana
-15

-10

-5

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=3

Site name: Firozepur Jhirka

District name: Gurgaon

State: Haryana

-10

-5

0

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=4

Site name: Pillukhera

District name: Jind

State: Haryana

-25

-20

-15

-10

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=5

Site name: Guhna

District name: Kaithal

State: Haryana

-25

-20

-15

-10

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=6

Site name: Pundri

District name: Kaithal

State: Haryana

-25

-20

-15

-10

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=7

Site name: Salwan-B

District name: Kaithal

State: Haryana
-15

-10

-5

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=8

Site name: Ablu

District name: Bathinda

State: Punjab

-15

-10

-5

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=9

Site name: Dhapali1

District name: Bathinda

State: Punjab
-20

-15

-10

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=10

Site name: Kot Shamir

District name: Bathinda

State: Punjab
-20

-15

-10

G
r o

u
n

d
w

a
te

r
ta

b
le

( m
)

2005 2006 2007 2008 2009 2010

ID=11

Site name: Rampura

District name: Bathinda

State: Punjab
-10

-5

0

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=12

Site name: Dhilwan Kalan

District name: Faridkot

State: Punjab

-10

-5

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=13

Site name: Rahon

District name: Nawanshahr

State: Punjab

-20

-15

-10

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=14

Site name: Badbar

District name: Sangrur

State: Punjab

-70

-65

-60

-55

-50

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=15

Site name: Bamboo

District name: Churu

State: Rajasthan

-10

-5

0

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=16

Site name: Piperan

District name: Ganganagar

State: Rajasthan

-20

-15

-10

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=17

Site name: Satipura

District name: Hanumangarh

State: Rajasthan

-20

-15

-10

-5

0

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=18

Site name: Manohar Thana1

District name: Jhalawar

State: Rajasthan

-20

-15

-10

-5

0

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=19

Site name: Bari Dhani

District name: Jodhpur

State: Rajasthan

-30

-25

-20

G
ro

u
n

d
w

a
te

r
ta

b
le

(m
)

2005 2006 2007 2008 2009 2010

ID=20

Site name: Daulatpura

District name: Nagaur

State: Rajasthan

 

Figure S2 Groundwater-level measurements for 20 selected sites in the three-state region. Coordinates of the 20 sites shown in open 

circles in Figure 1 (c) were derived from Google Maps according to the site name, district name, and state. Map was created using 

SigmaPlot (http://www.sigmaplot.com/).  
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Figure S3 Evaluation of unconstrained forward modeling using (a) a hypothetic uniformly 

distributed GWD rate with a spatial mean of -50 mm/a, (b) forward modeled GWDs rate 

distribution after 500 iterations, (c) GWDa derived from (a) after low-pass filtering, and (d) 

filtered GWDs derived from (b) after low-pass filtering. Map was created using ArcGIS 

(http://www.esri.com/software/arcgis/arcgis-for-desktop). 
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Figure S4 Evaluation of unconstrained forward modeling using (a) a hypothetic randomly 

distributed GWD rate with a spatial mean of -50 mm/a, (b) forward modeled GWDs rate 

distribution after 500 iterations, (c) GWDa derived from (a) after low-pass filtering, and (d) 

filtered GWDs derived from (b) after low-pass filtering. Map was created using ArcGIS 

(http://www.esri.com/software/arcgis/arcgis-for-desktop). 
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Figure S5 Evaluation of unconstrained forward modeling using (a) a hypothetic uniformly 

distributed GWD rate with a spatial mean of -50 mm/a for the right-half three-state region but 

randomly distributed GWD rates with a spatial mean of ~-50 mm/a for the other part, (b) forward 

modeled GWDs rate distribution after 500 iterations, (c) GWDa derived from (a) after low-pass 

filtering, and (d) filtered GWDs derived from (b) after low-pass filtering. Map was created using 

ArcGIS (http://www.esri.com/software/arcgis/arcgis-for-desktop).  
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Figure S6 Evaluation of unconstrained forward modeling using (a) a hypothetic uniformly 

distributed GWD rate with a spatial mean of -50 mm/a for the lower-half three-state region but 

randomly distributed GWD rates with a spatial mean of ~-50 mm/a for the other part, (b) forward 

modeled GWDs rate distribution after 500 iterations, (c) GWDa derived from (a) after low-pass 

filtering, and (d) filtered GWDs derived from (b) after low-pass filtering. Map was created using 

ArcGIS (http://www.esri.com/software/arcgis/arcgis-for-desktop).  
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Figure S7 Evaluation of unconstrained forward modeling using (a) a hypothetic uniformly 

distributed GWD rate with a spatial mean of -50 mm/a for the a circular area of the three-state 

region but randomly distributed GWD rates with a spatial mean of ~-50 mm/a for the other part, 

(b) forward modeled GWDs rate distribution after 500 iterations, (c) GWDa derived from (a) 

after low-pass filtering, and (d) filtered GWDs derived from (b) after low-pass filtering. Map was 

created using ArcGIS (http://www.esri.com/software/arcgis/arcgis-for-desktop).  
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Figure S8 Evaluation of locally constrained forward modeling using (a) a hypothetic uniform 

distributed GWD rate with a spatial mean of -50 mm/a, (b) forward modeled GWDs rate 

distribution after 500 iterations, (c) GWDa derived from (a) after low-pass filtering, and (d) 

filtered GWDs derived from (b) after low-pass filtering. Map was created using ArcGIS 

(http://www.esri.com/software/arcgis/arcgis-for-desktop). 
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Figure S9 Evaluation of locally constrained forward modeling using (a) a hypothetic randomly 

distributed GWD rate with a spatial mean of -50 mm/a, (b) forward modeled GWDs rate 

distribution after 500 iterations, (c) GWDa derived from (a) after low-pass filtering, and (d) 

filtered GWDs derived from (b) after low-pass filtering. Map was created using ArcGIS 

(http://www.esri.com/software/arcgis/arcgis-for-desktop). 
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Figure S10 Evaluation of the locally constrained forward modeling using (a) a hypothetic 

uniformly distributed GWD rate with a spatial mean of -50 mm/a for the right-half three-state 

region but randomly distributed GWD rates with a spatial mean of ~-50 mm/a for the other part, 

(b) forward modeled GWDs rate distribution after 500 iterations, (c) GWDa derived from (a) 

after low-pass filtering, and (d) filtered GWDs derived from (b) after low-pass filtering. Map was 

created using ArcGIS (http://www.esri.com/software/arcgis/arcgis-for-desktop).  
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Figure S11 Evaluation of the locally constrained forward modeling using (a) a hypothetic 

uniformly distributed GWD rate with a spatial mean of -50 mm/a for the lower-half three-state 

region but randomly distributed GWD rates with a spatial mean of ~-50 mm/a for the other part, 

(b) forward modeled GWDs rate distribution after 500 iterations, (c) GWDa derived from (a) 

after low-pass filtering, and (d) filtered GWDs derived from (b) after low-pass filtering. Map was 

created using ArcGIS (http://www.esri.com/software/arcgis/arcgis-for-desktop).  
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Figure S12 Evaluation of the locally constrained forward modeling using (a) a hypothetic 

uniformly distributed GWD rate with a spatial mean of -50 mm/a for a circular area of the three-

state region but randomly distributed GWD rates with a spatial mean of ~-50 mm/a for the other 

part, (b) forward modeled GWDs rate distribution after 500 iterations, (c) GWDa derived from (a) 

after low-pass filtering, and (d) filtered GWDs derived from (b) after low-pass filtering. Map was 

created using ArcGIS (http://www.esri.com/software/arcgis/arcgis-for-desktop).  
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Figure S13 Relative frequency distributions of GWD rates for subplots (a), (b), and (d) in Figure 

2, with showing statistics including mean, median, and standard deviation for each subplot. Map 

was created using SigmaPlot (http://www.sigmaplot.com/).  
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Figure S14 GWD derived from groundwater storage changes from WaterGAP Global 

Hydrological Model (WGHM2.2 Standard Version) for the period 2003-2009. Map was created 

using ArcGIS (http://www.esri.com/software/arcgis/arcgis-for-desktop). 
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Figure S15 Land use of the three-state region for 2005 and 2009, respectively, from the 

European Space Agency GlobCover Portal (http://due.esrin.esa.int/globcover/). Map was created 

using ArcGIS (http://www.esri.com/software/arcgis/arcgis-for-desktop). 

http://due.esrin.esa.int/globcover/
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Figure S16 Evaluation of the locally constrained forward modeling using (a) synthetic GWD 

rates (mm/a) from PCR-GLOBWB for the period 2003-2010, (b) forward modeled GWDs rate 

distribution after 500 iterations, (c) GWDa derived from (a) after low-pass filtering, and (d) 

filtered GWDs derived from (b) after low-pass filtering. Map was created using ArcGIS 

(http://www.esri.com/software/arcgis/arcgis-for-desktop).  
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Figure S17 (a) TWS, SWS, SMS, and GWS from WaterGAP WGHM model2.2, and (b) SWS 

components including reservoir, lake, wetland, and river storage changes from WGHM. Map 

was created using SigmaPlot (http://www.sigmaplot.com/). 
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Figure S18 (a) GWD rates from original GRACE TWS changes without filtering minus GLDAS 

SMS changes for the period 2003-2010; (b) GWDs rates from regionally constrained forward 

modeling after 500 iterations using the spatial pattern of GWD rates from PCR-GLOBWB for 

the same period, (c) filtered GRACE GWD rates, i.e., GWDa, and (d) filtered GWDs derived 

from (b) after low-pass filtering. Map was created using ArcGIS 

(http://www.esri.com/software/arcgis/arcgis-for-desktop). 
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Figure S19 A schematic showing (a) GWD estimation from GRACE satellites and (b) signal 

restoration for filtered GWD from synthetic data as a case using unconstrained and constrained 

forward modeling. Map was created using MS Office Visio (https://products.office.com/en-

us/visio/flowchart-software). 
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Table S1 Statistics of original, recovered and filtered signals (mm/a) from both unconstrained and 

(globally and locally) constrained forward modeling after 500 iterations for five configurations of 

hypothetical data for the three-state region of India 

Hypothetical configuration of original data 
Uniform 

(1) 

Random 

(2) 

Right-half 

(3) 

Lower-half 

(4) 

Circle 

(5) 
PCR 

Hypothetical/ 

synthetic data 
Spatial mean -50 -50.4 -48.2 -51.0 -49.1 -67.4 

Unconstrained 

Recovered spatial mean -39.0 -38.6 -37.8 -39.8 -38.3 -64.3 

Filtered original data -23.4 -23.3 -22.7 -23.9 -23.0 -47.5 

Correlation between 

recovered and original signals 
0.22 0.04 0.13 0.13 0.12 0.64 

Hypothetical/ 

synthetic data 
Spatial mean -50 -50.4 -49.5 -49.6 -48.6 -67.4 

Globally 

(locally) 

constrained 

Recovered spatial mean -50 -50.3 -49.5 -49.6 -48.6 
-68.4  

(-121.8) 

Filtered original data -23.4 -23.3 -23.0 -23.1 -22.8 
-47.5 

(-47.4) 

Correlation between 

recovered and original signals 
0.99 0.36 0.48 0.48 0.45 

0.77 

(0.28) 
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Table S2 Comparison of basic model configuration of LSMs and GHMs and its outputs used in this study 
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