
© 2016. Published by The Company of Biologists Ltd. 

Gene copy silencing and DNA methylation in natural and artificially produced allopolyploid fish 

 

Isa M. N. Matos1,2*, Maria M. Coelho1; Manfred Schartl2,3,4 

 

1Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade 

de Lisboa, Lisboa, Portugal 

2Department Physiological Chemistry, Biocenter, University of Würzburg, 97078 Würzburg, 

Germany 

3Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, 97078 Würzburg, 

Germany  

4Texas Institute for Advanced Study and Department of Biology, Texas A&M University, College 

Station, Texas 77843, USA 

 

*Corresponding author (immatos@fc.ul.pt)  

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

dv
an

ce
 a

rt
ic

le

 http://jeb.biologists.org/lookup/doi/10.1242/jeb.140418Access the most recent version at 
J Exp Biol Advance Online Articles. First posted online on 21 July 2016 as doi:10.1242/jeb.140418http://jeb.biologists.org/lookup/doi/10.1242/jeb.140418Access the most recent version at 

First posted online on 21 July 2016 as 10.1242/jeb.140418

http://jeb.biologists.org/lookup/doi/10.1242/jeb.140418
http://jeb.biologists.org/lookup/doi/10.1242/jeb.140418


Summary statement 

Hints to the mechanistic of gene expression regulation and the dynamics of genome-specific 

expression in vertebrate allopolyploids.  

 

Abstract 

 Allelic silencing is an important mechanism to cope with gene dosage changes in polyploidy 

organisms that is well known in allopolyploid plants. Only recently, it was shown in the 

allotriploid fish Squalius alburnoides that this process also occurs in vertebrates. However, it is 

still unknown if this silencing mechanism is common to other allopolyploid fish; and which 

mechanisms might be responsible for allelic silencing (AS).  We addressed these questions in a 

comparative study between Squalius alburnoides and another allopolyploid complex, the 

Amazon molly (Poecilia formosa). We examined the allelic expression patterns for three target 

genes in four somatic tissues of natural allo-anorthoploids and laboratory produced tri-genomic 

hybrids of S. alburnoides and P. formosa. Also, for both complexes, we evaluated the correlation 

between total DNA methylation level and the ploidy status and genomic composition of the 

individuals. We found that AS also occurs in other allopolyploid organisms besides the single one 

that was previously known. We found and discuss disparities within and between the two 

considered complexes concerning the pattern of allele specific expression and DNA methylation 

levels. Disparities might be due to intrinsic characteristics of each genome involved in the 

hybridization process. Our findings also support that long-term evolutionary processes have an 

effect onto the allele expression patterns and possibly also on DNA methylation levels. 
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Introduction 

In allopolyploid organisms ancestral homologous alleles that diversified during 

evolution, designated “homoeologs”, are brought together again in one individual. 

Consequently, a successful allopolyploidization process requires the reconciliation of two or 

more sets of diverged genomes in the same nucleus (Feldman et al., 2012). Importantly, the 

regulatory interactions between genomes must be stabilized as the increased ploidy level and 

increased heterozygosity lead to gene redundancy, altered gene dosage and altered 

relationships within and between loci (Feldman et al., 2012; Yoo et al, 2013). These features 

make allopolyploid plants and animals exciting objects for understanding the molecular 

mechanisms of gene regulation in an evolutionary context. 

However, studies of the different aspects of allopolyploidy are strongly biased towards 

plant models (Mable, 2003; Stöck and Lamatsch, 2013). A few years ago data on the mechanisms 

underlying gene expression regulation and the dynamics of genome-specific expression in 

vertebrate allopolyploids were almost absent. Pala et. al. (2008) reported for the first time a 

regulation mechanism of “functional diploidization” involving gene-copy silencing in an 

allopolyploid vertebrate, the S. alburnoides complex. S. alburnoides is a hybridogenetic fish that 

resulted from a cross of a Squalius pyrenaicus female (contributing the p genome) with an 

Anaecypris-like male (contributing the a genome) (Alves et al. 2001). It emerged between 1.4 

million years ago (MYA) (Cunha et al. 2004) and less than 0.7 MYA (Sousa-Santos et al. 2007b). 

In present days the complex comprises several ploidy levels and genomic compositions 

distributed across the Iberian Peninsula (Alves et al. 2001; Collares-Pereira et al., 2013). Taking 

advantage of the hybrid status of S. alburnoides, genome specific sequence differences were 

used to determine the contribution of each parental genome to the overall expression of loci 

individually analyzed in diploid and triploid hybrid individuals (Pala et al. 2008). Results showed 

that in most triploid S. alburnoides of paa genome composition, which is the most common form 

in Iberian southern river basins, for several loci and in different tissues the unpaired minority 

genome, the p haplome, was not contributing to the overall expression, while it was contributing 

to expression in other tissues. Also, the observed allelic expression patterns were different 

between genes and between different tissues for one and the same gene. This indicated a most 

extreme case of homoeolog expression bias (Grover et al., 2012) namely allele silencing (AS). 

Therefore, in S. alburnoides, the problem of keeping the balance of the expression regulatory 

networks in an uneven-numbered genomic context might have been solved by AS. These 

observations were in accordance with gene regulation phenomena already reported in polyploid 

plants, that showed patterns of differential expression according to organs (Adams et al., 2003) 
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and non-addictiveness of expression following gene copy rise (Auger et al., 2005; Wang et al., 

2006). 

However, it remained unclear whether the silencing mechanism reported for triploid S. 

alburnoides, which is very frequent among both natural and synthetized allopolyploid plants 

(Adams et al. 2003), is also a common mechanism in allopolyploid vertebrates. A further 

restriction for generalization is that the allotriploid S. alburnoides analyzed so far were all 

carriers of a duplicated genomic set from one parental species and an unpaired genomic set 

from another parental species: paa and ppa in southern populations, and cca and caa in 

northern populations, where S. pyrenaicus is absent and is replaced by Squalius carolitertii 

(contributing the c genome) (Pala et al., 2008; Pala et al., 2010). This situation did not allow to 

exclude monoallelic expression in those cases where the minority genome was not expressed. 

So far, the molecular mechanism responsible for AS in the S. alburnoides complex is 

unknown. A reasonable explanation could be an epigenetic regulation. CpG methylation has long 

been recognized as a gene expression regulation mechanism, by which genes can be silenced by 

methylation and turned on by demethylation (Martienssen and Colot 2001). In allopolyploid 

plants, it is known that among the dramatic genome reconfigurations that can be induced by 

allopolyploidy, epigenetic changes can play a major role (Wang et al., 2014). However epigenetic 

research in (allo)polyploid animals is scarce (Xiao J, et al. 2013; Covelo-Soto et al., 2015). 

To answer these questions and contribute to a better understanding of gene 

expression regulation in a genomic context of raised ploidy and heterozygosity we performed a 

comparative study between S. alburnoides and another allopolyploid complex, the Amazon 

molly (P. formosa). P. formosa is an unisexual all-female species that originated from a 

hybridization event between Poecilia mexicana limantouri female (m genome) and a Poecilia 

latipinna male (l genome) (Lampert & Schartl, 2008), that occurs in the Atlantic drainages, from 

Rio Tuxpan, Mexico, to South Texas. It reproduces by gynogenesis, thus it depends on sperm 

from closely related gonochoristic (bisexual) species to trigger embryogenesis of their 

unreduced diploid eggs (Lampert & Schartl, 2008). Generally, paternal genes do not contribute 

to the next generation because the paternal pronucleus does not fuse with the unreduced 

diploid oocyte nucleus, and the paternal genetic material is expelled. Hence, the vast majority 

of P. formosa are diploid and genetically identical to their mothers. However, in rare cases the 

exclusion mechanism fails and paternal introgression occurs (Lampert & Schartl, 2008). In one 

scenario small parts of male genetic material are included as microchromosomes (Nanda et. al, 

2007). In other cases the sperm nucleus fuses with the oocyte nucleus resulting in triploid 
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offspring. Such triploids are found in the wild and are true natural allopolyploids having an mml 

genomotype. They are fertile and produce all triploid offspring. It has, however, been 

demonstrated that the formation of such persisting triploid clones is an extremely rare event 

(Lampert et al.2005, Schories et al. 2007). These allopolyploidizations were traced back to the 

evolutionary past of P. formosa and have to be considered as ancient events.  

This naturally occurring old triploid P. formosa (mml) are gynogenetically maintained 

in nature and in the laboratory. On the contrary, triploids that are obtained de novo from diploid 

P. formosa as rare introgression cases in laboratory broods (Nanda et al. 1995) do not give rise 

to stable gynogenetic lines. These de-novo triploids comprise different genomotypes depending 

on the parental species used for breeding, including three genome hybrids (TGH) with mls (P. 

formosa, ml, with introgressed genome from P. salvatoris, s) or mlb (P. formosa, ml, with 

introgressed genome from Black Molly, b) genomic composition (Lamatsch et al., 2010). Such 

individuals are of great advantage for studying AS in allopolyploids because they offer the 

opportunity to distinguish all three alleles and evaluate their expression contribution if 

diagnostic single nucleotide polymorphisms (SNPs) can be found. 

To also obtain TGHs of the S. alburnoides complex, advantage was taken from the 

existence of other Squalius species, Squalius aradensis (q genome), which was reported to 

naturally hybridize with S. alburnoides (Sousa-Santos et al., 2006). Thus triploid hybrids with pqa 

genomotype can be produced and studied.  

In this work we examined the allelic expression patterns in several somatic organs of diploid and 

allotriploid S. alburnoides and P. formosa with a particular analyses of TGHs. As a first step 

towards a mechanistic explanation we also evaluated the correlation between levels of DNA 

methylation and the ploidy status and genomic composition of S. alburnoides and P. formosa.  

We show that AS occurs both in S. alburnoides and in P. formosa. However we found 

disparities within and between the two allopolyploid complexes concerning the pattern of allele 

specific expression and DNA methylation levels. Our results point into that long-term 

evolutionary processes affect allele expression patterns and DNA methylation levels. 

 This study highlights that the relationships between polyploidy, hybridization, methylation 

and AS are far from linear, and underscores once more the need for further studies in this field. 
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Methods 

Fish Samples 

S. alburnoides (Steindachner, 1866) and S. pyrenaicus (Günther, 1868) were collected from the 

Almargem stream (29 S; 622495.24 m E; 4113964.49 m N (UTM)) and S. aradensis (Coelho, 

Bogutskaya, Rodrigues & Collares-Pereira, 1998) specimens were collected from Arade river 

basin (29 T; 545693 m E; 4133136 m N (UTM). Fish were captured by electrofishing and brought 

alive to the animal facility of the Faculdade de Ciências da Universidade de Lisboa. Fish were 

maintained in high-quality glass tanks (30 l capacity) equipped with filtration units, at 18ºC and 

in a cycle of 14 hours light, 10 hours dark. A pa S. alburnoides female and a S. aradensis male 

(previously genotyped) with an evident sexual maturation and ready for breeding were used to 

perform an experimental cross in order to obtain a progeny specifically with pqa genotypes. Eggs 

and sperm were collected from the selected individuals applying gentle pressure to the 

abdomen and immediately mixed in a petri dish with water. For 1 year, the progeny was reared 

constantly at 20ºC. Several Individuals were genotyped according to Sousa-Santos et al. (2005) 

in order to confirm the pqa genotype of the batch. 

Poecilia mexicana limantouri (Jordan & Snyder, 1899), Poecilia latipinna (Lesueur, 1821),  

Poecilia salvatoris (Regan, 1907), Black Molly and Poecilia formosa (Girard, 1859) individuals 

were raised and maintained at standard conditions according to Kallman (1975), in a light cycle 

of 14 hours light, 10 hours dark. All fish were derived from laboratory stocks of the aquarium of 

the Biocenter at the University of Würzburg, Germany, that were originally established from fish 

collected in the wild, except for Black Molly, which is an ornamental variety of the P. mexicana/P. 

sphenops species complex. The strains used in this work are listed in Table S1. 

Ploidy determination 

Fin cells were stained with DAPI as described (Lamatsch et al., 2000). At least 10.000 cells were 

measured per sample. Chicken blood (2.5 pg of DNA per erythrocyte) was used as standard 

(Vinogradov 1998).  

    

DNA and RNA extraction 

Total genomic DNA was obtained from dissected livers and muscle with a standard 

phenol/chloroform/isoamyl alcohol (25/24/1) protocol (Blin & Stafford, 1976). DNA was 

quantified using Qubit® 2.0 Fluorometer (Live Technologies).  
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RNA was extracted from dissected livers, eyes, muscle and gills preserved in RNAlater® (Ambion) 

at -20ºC. Total RNA was extracted using the Tri-Reagent® (Ambion) following the suppliers’ 

instructions. Contaminant DNA was eliminated by the addition of TURBO™ DNase (Ambion) 

followed by purification with phenol/chloroform. Ethanol and glycogen were used to precipitate 

the RNA. RNA amount and quality evaluation was performed with Nanodrop 1000 (Thermo 

Scientific) and a 2100 Bioanalyser (Agilent Technologies). 

Sequence analysis and genome specific expression 

From the extracted RNA, first-strand cDNA was synthesized with RevertAid First Strand cDNA 

Synthesis Kit (Fermentas) with oligo dT primers.  

Primer sequences and amplification conditions for actb, rpl8 and gapdh with Squalius and 

Poecilia samples are given in Table S2.  

In S. alburnoides polymorphic sites (SNP’s) between P and A genomes for the three genes were 

already reported (Pala et. al., 2008; Matos et al., 2011). For the S. aradensis derived Q genome 

of the S. alburnoides complex and for all genomes present in allotriploid P. formosa SNP’s were 

identified in this study.  

PCR products were sequenced and sequences were aligned and compared with Sequencher 

ver.4 (Gene Codes Corporation). Within each of the fish complexes, polymorphic sites between 

the intervenient genomes were identified.  

cDNA samples from adult liver, eye, gill and muscle of S. alburnoides and P. formosa diploid and 

triploid natural hybrids and TGHs were used as templates for independent amplifications and 

direct sequencing of gene products of the three target genes (actb, rpl8 and gapdh). Through 

sequence comparison, on the basis of the identified polymorphic sites between the involved 

genomes p, a and q, or m, l, s and b, the contribution of each genome specific allele to the overall 

expression at each of the three target loci was determined.  

Global DNA methylation quantification 

The percentage of methylated DNA for the genomotypes of each one of the allopolyploid 

complexes was determined by colorimetric quantification of 5-methylcytosine (5-mC). 3 to 5 

specimens were sampled and analyzed independently for each genomotype. 100 ng of DNA of 

each individual were loaded into each well of the MethylFlashtm Methylated DNA Quantification 

Kit (Epigentek). The protocol and calculations were performed according to the manufacturer’s 

instructions.  
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Also, the observed mean methylation level for each genomotype in the hybrids (diploids and 

triploids) was compared to an expected methylation level, which was calculated by considering 

that each of the p, a and q genomes in the hybrids would be methylated at the same level as in 

the non-hybrid situation. The mean methylation level obtained for each parental diploid 

genomotype (pp, aa and qq) was used to calculate the expected methylation level for each 

hybrid genomotype ((pp/2)+(aa/2)+(qq/2) = additive expectation). Expected additive values for 

P. formosa were calculated accordingly.  

The mean observed methylation value (obs) for each hybrid genomotype was divided 

by its corresponding expected additive value (exp) (Table S3). 

Comparative sequence prospection for promoter homology and CpG islands 

occurrence 

Sequences for P. formosa, P. mexicana and P. latipinna rpl8 (ID: 103134768; ID: 106918910 and 

ID: 106964237 respectively), gapdh (ID: 103136734; ID: 106921370 and ID: 106955760 

respectively) and actb (ID: 103153440; ID: 106927995 and ID: 106956540 respectively) were 

obtained from GenBank. Ensemble84 Amazon molly gene annotations were used to identify 

exons, introns and UTRs. Putative promoter regions were defined as 2000bp 5’ of the first 

nucleotide of the first exon (adapted from Farré et al., 2007). 

For each gene, sequences were aligned and compared with in Bioedit (Hall, 1999) with ClustalW 

Multiple alignment. The putative promoter regions served as templates for the design of 

degenerated primer pairs that were used to amplify the homoeolog DNA regions in P. salvatoris 

and Black Molly liver DNA samples. Primer sequences and amplification conditions are given in 

Table S2.  

PCR products were sequenced and all sequences for each gene were aligned as previously.  

Several tools were employed to analyze the nucleotide sequence of the putative promoter 

regions of rpl8, gapdh and actb between mm, ll, bb and ss genomes. Identity matrixes were 

obtained with Bioedit.  Promoter 2.0 Prediction Server (Knudsen, 1999) and the Gene Promoter 

Miner (Lee et al., 2012) were used to predict RNA polymerase II (Pol.II) promoters in Poecilia 

DNA sequences. With the Sequence Manipulation Suite - CpG Islands Sequence Analysis option 

(Stothard P., 2000) the occurrence of CpG islands was prospected. Also, with DBCAT (Kuo et al., 

2011) the occurrence of CpG islands was investigated as also the number of CpG per 1Kb within 

the mm, ll, bb and ss sequences.  
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Results 

Analysis of allele specific gene expression in triploid S. alburnoides. 

In S. alburnoides individuals we analyzed the qualitative pattern of allele specific contribution 

for three genes, actb, rpl8, and gapdh, in liver, muscle, eye and gill of naturally occurring 

allotriploids (paa genomotype) and laboratory produced TGH’s (pqa genomotype).  

Several informative SNP’s between p and a alleles, for actb, rpl8, and gapdh were previously 

reported (Pala et al. 2008; Matos et al. 2011) and used for this study. When q sequences were 

inspected and compared to p and a sequences, diagnostic SNP’s between them were also 

identified  

The sequencing of reversed transcribed PCR products of these three genes from all four organs 

once again confirmed that in paa individuals, p allelic silencing is occurring (Table 1). Consistent 

with previous reports, monoallelic expression of the single p allele was not detected. 

On the other hand, in the TGH hybrids containing the q genome, sequencing of the reversed 

transcribed PCR products of all three genes, revealed no indication of silencing in any of the 4 

analyzed tissues. The observed qualitative pattern of the allele usage in the TGH individuals was 

consistently tri-allelic (Table 1). 

Allele specific expression in triploid P. formosa. 

For naturally occurring P. formosa allotriploids (mml) and laboratory produced TGH’s (mlb and 

mls) the qualitative pattern of allelic specific contribution in actb, rpl8 and gapdh in the liver, 

muscle, eye and gill was inspected (Table 2). Contrary to what was observed in S. alburnoides, 

in natural triploid P. formosa (mml) no evidence for allelic silencing was obtained.  

We then looked at the laboratory generated TGH’s, either with mlb or mls genomic composition 

(Table 2). For both types of TGH we clearly detected allele specific silencing. Moreover, in mls 

TGH’s for gapdh and rpl8, even monoallelic gene expression (silencing of two alleles) was 

detected. 

Global DNA methylation in S. alburnoides of different ploidy levels and genomic 

composition. 

Allele specific silencing can be due to an epigenetic mechanism. Therefore we determined the 

total amount of 5-mC in total DNA extracts from livers and muscle of natural allodiploid (pa), 

allotriploid (paa) and laboratory produced TGH (pqa) S. alburnoides, as well as from the parental 

non-hybrids - aa, pp and qq (Fig. 1A and 1B). In both liver and muscle samples, there was a 
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significantly higher amount of 5-mC in aa’s than in all other diploids. We found also that both 

natural triploids (paa) and the TGH triploids (pqa) have a similarly high level of 5-mC as the aa’s, 

and again significantly higher (t-test for independent samples P>0,05) than the pp, qq and pa 

diploids. 

Global DNA methylation in P. formosa of different ploidy levels and genomic 

composition. 

For P. formosa we determined the global 5-mC levels in natural allodiploids (ml), allotriploids 

(mml), TGH’s (mls and mlb) and in all the parental diploids (mm, ll, bb and ss) (Fig. 1C and 1D). 

For all Poecilia genomotypes the pattern of 5-mC was consistent between the two analyzed 

tissues. In both liver and muscle, higher levels of 5-mC were found in the natural diploid and 

triploid hybrids, while all diploid parental genomotypes (mm, ll, bb and ss) and the laboratory 

produced TGH (mlb and mls) displayed a similar low methylation level. 

Additivity of global DNA methylation in S. alburnoides and P. formosa 

allopolyploid complexes 

For each hybrid genomotype we performed a simple relative comparison (ratio) between the 

mean observed methylation value and an expected methylation level in case of additivity (obs/ 

exp) for a hybrid situation (Table S3). Results show that the genomotypes of both allopolyploid 

complexes can be separated in two distinct groups. One group is composed of pa, paa, pqa, mlb 

and mls genomotypes, with obs<exp, and a second one composed of ml and mml genomotypes, 

with obs>exp (Fig. 2). 

Promoter and CpG islands prospection in Poecilia target genes. 

We used available genomic sequences of P. mexicana, P. latipinna and P. formosa as 

templates to isolate and characterize the homoeologous sequences in P. salvatoris and B. molly. 

The selected target zones were the 2000bp 5’ of the first nucleotide of the first exon of rpl8, 

gapdh and actb. We could amplify between 1100 to 1429 bp for P. salvatoris and B. molly within 

these template regions. For each gene, we found as expected for comparisons between species 

and/or strains, a high percentage (98% to 99% in actb, 93% to 99% in gapdh, and 97% to 99% in 

rpl8) of positive identity between mm, ll, bb and ss sequences (identity matrix results in Table 

S4).  

Within the selected sections for mm ll, bb and ss we could predict for gapdh and for actb 

a highly likely promoter region - gapdh: from -592 bp to -294 bp of the first nucleotide of the 

first exon and actb: from -611 bp to -296 bp of the first nucleotide of the first exon. Concerning 
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CpG island, for none of the individual genomes at any of the three genes any CpG islands were 

predicted with the DBCAT within the defined target zone, but with the Sequence Manipulation 

Suite a CpG island was found within the defined target zone for rpl8 and actb – rpl8: from -498 

bp to -283 bp of the first nucleotide of the first exon and actb: from -1411 bp to -1204 bp of the 

first nucleotide of the first exon.  Also, we quantify the number of CpG sites per 1Kb within the 

mm, ll, bb and ss sequences (Table S5), but no substantial differences were found between the 

genomotypes for each gene.   

Discussion 

In this work we intended to answer three fundamental questions concerning the mechanism 

underlying gene expression regulation and the dynamics of genome-specific expression in 

vertebrate allopolyploids. First, we wanted to explore if the silencing mechanism reported for 

natural triploid S. alburnoides was common to another allopolyploid vertebrate. Second, we 

wanted to investigate if in an allotriploid condition with increased heterozygosity, one of the 

three alleles is consistently silent, converting triploids into functional diploids. Third, it was our 

goal to have a first hint on a possible mechanisms responsible for allele silencing. Specifically, 

we wanted to evaluate CpG methylation as a candidate mechanism, but other possibilities have 

been tackled. 

Allele specific silencing in P. formosa 

In tri-genomic hybrid (TGH) P. formosa triploids of mlb and mls genomic composition AS was 

obvious and quite frequent.  This shows for the first time that AS is indeed not a unique 

phenomenon in the S. alburnoides complex, but is more widespread. This is in line with earlier 

findings that the variation in pigmentation phenotypes between TGH of P. formosa individuals 

may be the consequence of differential contribution of genomes to overall expression (Lamatsch 

et al., 2010; Lamatsch et al., 2011).   

The failure then to detect AS also in the naturally occurring triploid of the mml genomic 

constitution was somehow unexpected as the naturally occurring triploid P. formosa were 

proposed earlier as good candidates where a comparable gene-copy silencing phenomenon like 

in S. alburnoides could occur (Pala et al. 2008). Comparison of expression levels at several 

allozyme loci between diploid and triploid P. formosa revealed them to be indistinguishable 

quantitatively (Turner at al. 1983), which could be consequence of AS.  

Our failure to detect AS in the naturally occurring P. formosa could have the following reasons: 

i) AS is not random and it is always one of the “m” alleles that is silenced. This phenomenon 
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would escape our observation since our sequencing chromatograms did not allow for 

quantitation of peak heights at SNP positions.  

ii) AS does not occur on a full genomic scale and the three selected genes are not subjected to 

this phenomenon. However, if there would be genome wide occurrence of AS in triploid P. 

formosa, our study would most likely have been sufficient to detect it. Considering a 

parsimonious null hypothesis of random inactivation of one of the genomes (neither haplome 

nor tissue dependent), for each gene and per tissue 2,7 instances of AS occurrences would be 

expected (n=9). We analyzed the allele expression pattern in 4 tissues, so in total per gene, 

approximately 11 (2,7+2,7+2,7+2,7) “l” allele silencing occurrences should be seen in our 

evaluation if this phenomenon would exist. If AS is not random and affects only a subset of genes 

or cell types  more genes and other organs need to be investigated in the future, at best using 

transcriptome wide approaches as recently described by Garcia et al. (2014).   

iii) AS does not occur at all in the mml genomotypes. Although this is a valid assumption in this 

context, as we did not find AS in naturally occurring allotriploid P. formosa, we cannot promptly 

discard that it does not occur at all. In fact, the occurrence of variegated skin phenotypes 

presented by some individuals is a strong contra indicator of this third hypothesis.      

The difference between the natural occurring mml and the TGH P. formosa triploids may be 

explained by different magnitudes of “genomic shock”. “Genomic shock” refers to a series of 

genomic perturbations at both genetic and epigenetic levels, and has been described in many 

plant allopolyploid systems (Wang et al., 2014). Within its most frequent consequences are 

deviations from expected expression levels and allele specific expression patterns. Also in plants 

it has been found that hybridization usually has a greater impact on gene silencing than genome 

doubling (Chelaifa et al., 2010; Buggs et al., 2014). Despite both P. formosa types having the 

same ploidy level, the increased diversity of genomes in the TGHs may lead to a higher level of 

“genomic shock”. Compared with natural allotriploids, where only two distinct genomes have to 

be managed, the interactions and simultaneous regulation of three different genomic sets may 

pose additional challenges with different outcomes. In addition, it has to be considered that 

some intergenomic combinations are not well tolerated and can lead to hybrid incompatibilities 

and dysgenesis (Bomblies and Weigel 2007; Ishikawa and Kinoshita 2009; Walia et al. 2009; 

Malone and Hannon 2009). So, immediate allele specific expression adjustments in the TGH P. 

formosa may be a necessity to allow for the viability of these organisms. 
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Absence of AS in TGHs of Squalius.  

Contrary to what was observed in the naturally occurring allotriploid S. alburnoides, in THG 

individuals in none of the analyzed tissues AS was observed. It has been previously shown (Pala 

et al., 2010) that the patterns of gene expression in triploid S. alburnoides depends on the 

genomic contexts brought about by different parental contributions. For instance, the presence 

of c or p genomes in allopolyploid S. alburnoides biotypes results in substantial difference in 

genome specific allele usage in either paa or caa genomic contexts (Pala et al., 2010).  Because 

the effect of the q genome to the overall gene expression in natural occurring S. alburnoides of 

qaa and qqa genomotypes, has never been assessed, the absence of AS in the TGH fish with one 

q haplome is difficult to assess, and the effects of the presence of the q genome difficult to infer. 

However, we can at least say that the absence of AS in TGH S. alburnoides supports the previous 

conclusion that different genome combinations lead to different mechanisms how to cope with 

genomic shock.  On the other hand, the absence of AS in TGH Squalius is not readily explained 

by the simple reasoning presented for AS occurrence in the TGH P. formosa, where we relate 

the higher genomic shock with the need for AS. This demonstrates the complexity of the 

phenomenon where two different deviations from normal come together, namely ploidy change 

and hybridization. 

Despite our inability to show AS in the TGH S. alburnoides, its occurrence cannot be totally 

discarded, basing on the same considerations presented for the naturally occurring P. formosa. 

So, to fully enlighten also this matter, applying a transcriptome wide approach also to S. 

alburnoides would be desirable.  

However, despite new and promising tools are constantly emerging (Shen et al., 2012 and 2013), 

assessing allele-specific gene expression on a large scale is still a technically challenging problem 

(Garcia et. al., 2014), even more in species with scarce genomic resources, and as in this case, 

higher levels of ploidy than diploid. 

Differences in global DNA methylation between genomotypes  

DNA methylation modifications associated with ploidy changes have been studied extensively in 

plants (Diez et al., 2014). It has been shown that normal function and structure of newly formed 

polyploid genomes are intimately related with this epigenetic process (Matzke et al., 1999; 

Salmon et al., 2005; Chen and Ni, 2006; Wang et al., 2014). Also, it is known that methylation 

impacts directly on gene transcription, (Wang et al., 2014; Sehrish et al., 2014). In general it is 

assumed that methylated DNA sequences are transcriptionally inactive (Wang et al., 2014). So, 
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one goal of this study was to relate AS occurrence in these fish to the degree of total DNA 

methylation.  

We determined the total amount of DNA methylation in two tissue types (liver and muscle) for 

all the available genomotypes involved in both allopolyploid complexes. If the AS phenomenon 

was 5-mC mediated, our hypothesis was that the total methylation level would be higher in 

those triploid individuals where AS occurs. However, the pattern of global methylation in both 

the S. alburnoides and P. formosa allopolyploid complexes does not fit this initial expectations 

nor does it help to clarify the different AS patterns between S. alburnoides and P. formosa. For 

instance, AS occurs in P. formosa TGH where we identified low levels of methylation compared 

to naturally occurring diploids and triploids in which AS was not detected. Also, TGH S. 

alburnoides, where no AS was detected, presented similar high levels of methylation as the 

naturally occurring triploid S. alburnoides (paa genomotype) where AS have been encountered. 

So, global methylation levels seems to be not reflecting the AS status. This is in line with findings 

in Arabidopsis where for most of a pool of 77 analyzed genes, expression did not directly 

correlate with the methylation level (Shen et al., 2012). On the other hand, in Trogopogon it was 

shown that by DNA methylation one homeolog can be completely silenced (Sehrish et al., 2014). 

We further observed that the levels of DNA methylation were non-linearly related to the ploidy 

level in each tested allopolyploid series. Higher ploidy level did not consistently correspond to 

higher or lower levels of DNA methylation in both of these allopolyploid complexes. Additionally, 

our results do not show a linear correspondence between higher levels of heterozygosity and 

higher or lower levels of DNA methylation.  

Similar results have been found in an analysis of genomic DNA methylation in several annual 

herbaceous and woody perennial plants of several ploidy levels (Li et. al., 2011). Also in a study 

that investigated DNA methylation changes associated with ploidy in Salmo trutta no evidence 

of genome wide methylation differences between diploid and triploid specimens was found 

(Covelo-Soto et al, 2015). On the other hand, in Cyprinus carpio x Carassius auratus hybrids it 

was found that hypermethylation was more prominent in the allotetraploids than in the diploid 

parental individuals (Xiao et al, 2013). 

We have determined global methylation levels, but with this broad approach, underlying 

mechanisms of methylation as effectors at the single loci scale are diluted. In this sense, 

investigating differences in 5-mC of promoters of genes presenting AS would be interesting. 

Promoters’ methylation is canonically associated with stable, long-term transcriptional 

silencing, and one of the reasons is because a transcription factor (TF) is physically prevented to 
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bind to their specific transcription factor binding site (TFBS) if the TFBS is methylated (Zhu et al., 

2003; Defossez and Stancheva, 2011). A differential methylation status of CpG sites at the 

promoter and/or at its surroundings between the different alleles of a gene may lead to 

differential allelic expression (Kerkel et al., 2008; Sehrish et al., 2014). However, the three target 

genes focused in this work (rpl8, gapdh and actb) are housekeeping genes (HK). HK genes are 

expressed virtually in all tissues and across developmental stages and are in general exempted 

from complex transcriptional programs as the ones governing for example genes involved in 

responses to external stimuli or in cell differentiation (Farré et al., 2007). In principle, HK genes 

are by default activated so, the CpG sites around or on the proximal promoter, should be 

unmethylated. Also, contrary to what has been widely reported in other vertebrate organisms, 

it was found that in Zebrafish, methylation and expression were most strongly correlated with 

regions 10000 bp upstream and downstream from genes (McGaughey et al., 2014) and not at 

the proximal promoter sites. So, in the present case, for the specific gene targets on hands, a 

locus specific approach did not offer much promise and it was not pursued. 

 

Other mechanisms than DNA methylation may intervene or be responsible for 

allele expression bias 

In any case, other mechanisms than DNA methylation may intervene or be responsible for allele 

expression bias and AS. For example, a miRNA-linked mechanism has been already pointed as a 

good candidate in S. alburnoides complex (Inácio et al., 2012) and should be similarly 

investigated soon for P. formosa complex. 

 In another angle, from the analysis of the putative promoter regions of rpl8, gapdh and actb of 

Poecilia parental genomotypes we found a high percentage of positive identity between the 

sequences. This is an expected result for comparisons within species and/or strains. However, 

as there is no perfect homology (less than 100% identity), we could think that in the cells of the 

TGH individuals three different sequences are working simultaneously as promoter of each 

gene. On the other hand, each of these different sequences can work more or less effectively as 

the docking site for Polymerases and transcription factors originated from homoeolog genes. 

So, other mechanism that may intervene or be responsible for allele expression bias and AS is 

the strength of the promoter.  A promoter can be classified from strong to week according to its 

affinity for RNA polymerase and TFs (Li J and Zhang, 2014). So, the strength of the promoter 

depends from how closely the promoter sequence resembles the ideal consensus sequences for 

the docking of polymerase and TFs (Li J and Zhang, 2014). For example, in Escherichia coli it was 
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observed that that several non-consensus bases could have a positive effect on the promoter 

strength while certain consensus bases have minimum effect (Kiryu et al., 2005). Also, it was 

demonstrated in yeasts that variations in the binding sites of TFs between 3 different strains 

were responsible for up to 50% of the expression differences observed (Tirosh et al., 2008). 

Additionally, it is also known from a more recent work that nucleotides in different regions of 

promoter sequence have different effects on promoter strength (Li J and Zhang, 2014). So, we 

hypothesize that the conspicuous AS that we encounter in the P. formosa TGH may be due to 

different promoter strengths resultant from the different nucleotidic sequences detected. To 

support this assumptions, a similar analysis for the S. alburnoides complex should be done, and 

results should show higher levels of identity between the promoter sequences of the parental 

genomotypes. However, while for P. formosa complex large scale annotated genomic data is 

available, for the S. alburnoides complex no reference genome was yet produced, so we could 

not perform on S. alburnoides complex the same analysis.  

 “Old vs de novo” allopolyploids and the effects of long-term evolutionary 

processes. 

The analyzed laboratory bred triploid P. formosa individuals with mml genomotype derived by 

gynogenesis from natural triploids. In these individuals, the original hybridization (m x l) and 

polyploidization (ml+m) events have occurred long time ago, and are merely clonally propagated 

at each generation (Lampert and Schartl, 2008). Therefore we consider them as naturally 

occurred “old triploids”.  We also analyzed tri-genomic hybrid P. formosa triploids of mlb and 

mls genomic composition that were experimentally produced through specific crosses between 

Poecilia strains and species (Lampert et al., 2007; Lamatsch et al., 2010).  We can consider this 

individuals as “de novo” allotriploids, as both increase in ploidy and hybridity happens at the 

moment of production of each of this TGH individuals.  

Inversely to what was observed in the old P. formosa triploids, in the “de novo” triploids AS was 

quite frequent and evident.  We hypothesize that AS may be an immediate mechanism to cope 

with the genomic shock. In fact, so far whenever AS was detected in vertebrates was in 

individuals that could be considered “de novo” triploids. In S. alburnoides the reproductive 

complex is maintained through an intricate network of genetic exchanges and continuous de 

novo hybridizations. Hence, allopolyploidy is established “de novo” at the moment of each 

individual conception.   

In laboratory produced TGH allotriploid medakas (Oryzias latipes) it was found that allele 

suppression, despite not abundant, consistently occurred (Garcia et al., 2014).  
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These examples support a hypothesis that AS may be an immediate mechanism to cope with 

genomic shock. Consecutively, refined mechanisms operate leading to a stable regulation of the 

three haplomes. However, we have not found AS in the TGH S. alburnoides, which are also “de 

novo” allotriploids. This may indicate that AS is not an ubiquitous mechanism to cope with an 

abrupt increase of ploidy and heterozygosity in fish. 

Several studies on allopolyploid plants also revealed differences between “old” and “young” 

polyploids. The degree of non-additive expression was lower in recent allopolyploids compared 

to “older” allopolyploid cotton and coffee genotypes. These results suggested that non-additive 

expression, due or related to AS, may increase over time, via selection and modulation of 

regulatory networks (Flagel LE, Wendel JF, 2010). In another study, results showed that in F1 

hybrids and early allopolyploid Tragopogon miscellus plants there was activation of 

allele/homeolog expression in all tissues, eliminating the tissue specific expression patterns 

observed in the parental diploids (Buggs et al., 2011). Tissue specific expression patterns were 

then reestablished as generations succeeded (Buggs et al., 2011). 

In this context also the differences in DNA methylation levels which we observed can be 

interpreted. Comparing allotriploids of different evolutionary age we observed a tendency 

towards higher DNA methylation levels than expected from additivity in the old hybrids while 

the opposite tendency is observed in the genomotypes of “de novo” hybrids.  

In the S. alburnoides complex, we found other evidence that long-term evolutionary processes 

may influence DNA methylation levels. We observed that the percentage of methylated DNA is 

much higher in the aa genomotype than for the other two parental genomotypes (pp and qq). 

This may indicate that in individuals of the aa genomotype more genes or alleles are down 

regulated or inactivated. This increased DNA methylation levels may be related to the fact that 

both pp and qq genomotypes exist as independent species (S. pyrenaicus and S aradensis 

respectively), having their own separate evolutionary path, while an independent species with 

aa genomotype does not exist. aa genomotype individuals, called “diploid nuclear non-hybrid 

males of the S. alburnoides complex” (Alves et al., 2001), perpetuate only inside the complex by 

mating with triploid hybrid females (paa or qaa) (Fig.S1). In each aa individual that arises, the 

nuclear hybrid status is lost and epigenetic changes are probable to occur. 

In summary, our results imply that DNA methylation may play some role in the evolution of 

these vertebrate allopolyploids, probably somehow providing genome stability and reducing the 

degree of incompatibility that arises from multiple incongruous genomes within the same 
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nucleus. Nevertheless, as is plants, the mechanisms by which all this happens at whole genomic 

level (and also at specific sites) seems to be diverse and is still obscure. 

Conclusions 

With this work we showed that in vertebrates, AS also occurs in other allopolyploid situations 

besides the previously studied naturally occurring triploid S. alburnoides.  In P. formosa AS was 

observed quite frequently in two distinct TGH genomic configurations.  

We assume that AS is the result of genomic stress, induced by the presence of distinct genomes 

in the same nucleus. Of note, we found several disparities within and between the two 

complexes concerning the pattern of allele specific expression and DNA methylation levels. 

These differences might be due to the intrinsic characteristics of each genome involved in the 

hybridization process. Expression silencing or downregulation can result from the interaction 

between divergent regulatory hierarchies (Riddle & Birchler, 2003) and differential capacity of 

interaction between proteins or complexes (Comai, 2000; Adams & Wendel, 2004). However, 

our results also point out that AS is not a ubiquitous mechanism to handle an abrupt ploidy and 

heterozygosity increase in fish.  

Also, our findings support the notion that long-term evolutionary processes have an effect on 

the allele/homeolog expression patterns and possibly also on DNA methylation levels. 

Our study highlights the complexity of allopolyploidy at the gene expression regulation level, 

and that attempts to find a common global mechanism or explanation that fits all allotriploid 

conditions might fail as that might not exist.  
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Tables 

Table 1- Allelic expression pattern of actb, rpl8 and gapdh in liver, eye, gill and muscle of S. alburnoides. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species 
Ploidy 

level 
n Genotype 

liver eye gill muscle 

actb rpl8 gapdh actb rpl8 gapdh actb rpl8 gapdh actb rpl8 gapdh 

                

S. alburnoides 2n 2 pa p+a p+a p+a p+a p+a p+a p+a p+a p+a p+a p+a p+a 

                

S. alburnoides 3n 5 paa p+a p+a p+a p+a p+a p+a p+a p+a p+a p+a p+a p+a 

S. alburnoides 3n 1 paa a p+a p+a p+a p+a p+a p+a p+a p+a p+a p+a p+a 

S. alburnoides 3n 1 paa a p+a p+a p+a a p+a p+a p+a p+a p+a p+a p+a 

                

S. alburnoides 3n 6 pqa p+q+a p+q+a p+q+a p+q+a p+q+a p+q+a p+q+a p+q+a p+q+a p+q+a p+q+a p+q+a 

                

Allelic silencing (AS) highlighted in red 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

dv
an

ce
 a

rt
ic

le
Jo

ur
na

l o
f E

xp
er

im
en

ta
l B

io
lo

gy
 •

 A
dv

an
ce

 a
rt

ic
le



Table 2- Allelic expression pattern of actb, rpl8 and gapdh in liver, eye, gill and muscle of P. formosa. 

Species Ploidy level n Genotype liver eye gill muscle 

actb rpl8 gapdh actb rpl8 gapdh actb rpl8 gapdh actb rpl8 gapdh 

                

P. formosa 2n 2 ml m+l m+l m+l m+l m+l m+l m+l m+l m+l m+l m+l m+l 

P. formosa 3n 9 mml m+l m+l m+l m+l m+l m+l m+l m+l m+l m+l m+l m+l 

                

P. formosa 3n 1 mls m+l+(s) _ s _ _ s m+l+(s) _ _ m+l+(s) _ _ 

P. formosa 3n 1 mls l+s m+l+(s) s m+l+(s) m+l+(s) _ m+s _ s l+s m+l+(s) s 

P. formosa 3n 1 mls m/s+l m/s+l m+l m/s+l m/s+l m/s+l m/s+l m/s+l m/s m/s+l m/s+l m/s+l 

P. formosa 3n 1 mls m+l+(s) m/s+l l+s+(m) m+l+(s) m/s+l l+s m+l+(s) m/s+l m+l+s m+l+(s) m/s+l m+l+s 

P. formosa 3n 1 mls m+l+(s) m/s m+s m+l+(s) m/s m+s m+l+(s) m/s m+s m+l+(s) m/s m+l+s 

P. formosa 3n 1 mls m+s m/s m+s m+s m/s m+s m+s m/s m+s m+s m m+s 

P. formosa 3n 1 mls m+l+(s) m/s m+s m+l+(s) nd m+s m+l+(s) m/s m+s m+l+(s) m m+s 

P. formosa 3n 1 mls m+l+(s) m/s+l m+l+s m+l+(s) m/s+l m/b+l m+l+(s) m/s+l m+l+(s) m+l/s m/s+l m+l+s 

P. formosa 3n 1 mlb _ _ _ _ _ _ m/b+l m/b _ _ _ _ 

P. formosa 3n 1 mlb m/b+l m/b m/b m/b+l m/b+l m/b m/b+l m/b+l m/b+l m/b+l m/b m/b+l 

P. formosa 3n 1 mlb m/b+l m/b+l m/b+l m/b+l m/b+l m/b+l m/b+l m/b+l m/b+l m/b+l m/b m/b 

P. formosa 3n 1 mlb m/b+l _ _ m/b+l m/b+l _ m/b+l m/b+l _ m/b+l _ _ 

P. formosa 3n 1 mlb m/b+l m/b+l m+l+(b) m/b+l m/b+l m/b+l m/b+l m/b+l m+l+(b) m/b+l m/b+l m+l+(b) 

P. formosa 3n 1 mlb m/b+l m/b+l m+l+(b) m/b+l m/b+l m/b+l m/b+l m/b+l m+l+(b) m/b+l m/b+l m+l+(b) 

                

Allelic silencing (AS) highlighted in red.  /-to be read as "either or";  ()-presence or absence of the allele not unequivocally determined; _-allele expression pattern not assessed  
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Figures 

 

 

 

 

Figure 1. Levels of global DNA methylation within the S. alburnoides and P. formosa 

allopolyploid complexes. Global DNA methylation in A) liver and B) muscle tissue of several S. 

alburnoides complex intervenient genomotypes. Global DNA methylation in C) liver and D) 

muscle tissue of the P. formosa complex intervenient genomotypes. L stands for liver while M 

stands for muscle. 
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Figure 2.  Additivity of global DNA methylation in S. alburnoides and P. formosa allopolyploid 

complexes. Ratio between the mean observed methylation value and an expected methylation 

level in case of additivity (obs/ exp), both in muscle and liver tissues. pa, paa, pqa, mlb and mls 

genomotypes present observed 5mC levels<expected 5mC levels while ml and mml 

genomotypes have observed 5mC levels>expected 5mC levels. Dashed red line indicates the 

position where observed 5mC level=expected 5mC level. 
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