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A large class of emerging actuation devices and materials exhibit strong hysteresis
characteristics during their routine operation. For example, when piezoceramic
actuators are operated under the influence of strong electric fields, it is known that
the resulting input—output behavior is hysteretic. Likewise, when shape memory alloys
are resistively heated to induce phase transformations, the input—output response at
the structural level is also known to be strongly hysteretic. This paper investigates the
mathematical issues that arise in identifying a class of hysteresis operators that have
been employed for modeling both piezoceramic actuation and shape memory alloy
actuation. Specifically, the identification of a class of distributed hysteresis operators
that arise in the control influence operator of a class of second order evolution
equations is investigated. In Part I of this paper we introduce distributed, hysteretic
control influence operators derived from smoothed Preisach operators and generalized
hysteresis operators derived from results of Krasnoselskii and Pokrovskii. For these
classes, the identification problem in which we seek to characterize the hysteretic
control influence operator can be expressed as an ouput least square minimization
over probability measures defined on a compact subset of a closed half-plane. In Part
II of this paper, consistent and convergent approximation methods for identification
of the measure characterizing the hysteresis are derived.
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1 INTRODUCTION

Research in active, or smart materials, for vibration attenuation,
shape control and micro-mechanical actuation is proceeding at a
rapid pace. As actuation devices based on the electro-mechanical
behavior of piezoceramics and the shape memory alloys have
become more widespread, it is now well-appreciated that this class
of actuation devices exhibits significant nonlinear response. For
example, although the piezoelectric effect is commonly modeled in
terms of a linear actuation device [3], it is shown in [11] that
hysteresis is routinely observed, and can be accomodated in control
design via compensation. The research of [16,14] makes it clear that
the response of shape memory alloys at the response scale of the
structure is profoundly nonlinear and hysteretic.

To help motivate the discussion of hysteresis modeling that
follows in the next section, we consider the results of experiments
measuring the structural response of a beam that undergoes
deformation under the stress induced in resistively heated shape
memory alloy wires. The experimental setup is rather simple. A thin
aluminum beam, 1/32inch in thickness, is cantilevered at one end as
depicted in Fig. 1. A “two-way” shape memory alloy wire is attached
to the rigid base supporting the cantilevered beam, and to an offset
attached to the tip of the free end of the beam. A thermocouple is
attached in the center of the length of the shape memory alloy wire,
and a strain gauge is attached on the surface of the beam, also at its
midpoint. It is clear that with this simple experiment, the tempera-
ture (input) to the shape memory alloy wire and the output strain
at the surface of the beam can be collected to characterize a
temperature-to-strain plant model. Figures 2 and 3 depict the results
of a series of experiments wherein the current that resisitively heats
the wire is varied. In Fig. 2 (Run A), the current in the wire is held
constant at 3A until a target temperature is achieved, then the
current is turned off. As is apparent from the experiment, the major
ascent loops and descent loops are strongly hysteretic. In Fig. 2 (Run B),
the same protocol in another experimental run is followed, except
that the current during activation is 2.5A. Not only is hysteresis
evident, by comparing the response strain-versus-temperature curves
to those depicted in Fig. 2, the family of hysteresis curves is
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FIGURE 1 Experimental setup.

dependent on the input current. This phenomenon is also evident in
Fig. 3, in which the current is varied from 1 to 3A during the
heating cycles.

It has been understood for quite some time that there are two
fundamental approaches to mathematically characterizing the input—
output behavior of complex dynamical systems. In one approach,
researchers model a given system as a collection, or even continuum,
of components for which ideal models can be derived from the
principles of physics. In the second method, the overall qualitative
behaviour of the system as a whole is observed, and some “best
representative” is selected from a class of models that exhibit
desired, empirically observed, properties. With respect to modeling
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FIGURE 2 Hysteresis in SMA experiments: (a) 3 A, (b) 2.5A.

hysteresis in active materials, for example, different researchers have
formulated constitutive models for shape memory alloys including
Liang and Rogers [16], Brinson [9], Barret [6] and Boyd and Lagoudas
[8]. The body of research in [16,9,6,8], regarded as a whole, falls
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FIGURE 3 Hysteresis in SMA experiments, varying current.

within the first category described above. On the other hand,
Hughes and Wen [11] have utilized the Preisach model in a system
theoretic sense to represent a static, hysteretic transducer that can be
used to derive compensators for controlling shape memory alloy
wires. The approach in this paper is also an example of the second,
or system theoretic, approach to modeling the response of dynamical
systems and is motivated strongly by the work of Hughes and Wen
[11]. In this paper we address several mathematical issues that arise
in modeling and identification of a class of nonlinear, hysteretic
control influence operators in second order evolution operators. We
derive two alternative classes of control influence hysteresis opera-
tors: (1) the smoothed Preisach operator and (2) the Krasnoselskii—
Pokrovskii operator. In Section 2 of this paper, we carefully contrast
the physical and mathematical properties of these two classes of
control influence operators with those of the classical Preisach
operator. We derive some of their continuity properties to lay the
foundation for proving the well-posedness of the second order
evolution equations presented in Section 3. In Section 4, we
introduce a class of error functionals to be used for identification,
and we investigate the continuity properties of the mapping from
spaces of probability measures characterizing the control influence
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operator to the observation error. We rigorously prove that the
identification problem is well posed over a larger class of operators
than can be represented by the Preisach model of hysteresis alone.
In the second part (Banks, Kurdila and Webb, CRSC Technical
Report CRSC-TR97-7, N.C. State Univ.) of this two-part paper, we
derive consistent and convergent approximation schemes for the
identification problem, and compare numerical predictions with
experimental results for a class of shape memory alloy actuated
structures.

2 CLASSES OF INTEGRAL HYSTERESIS OPERATORS

In this section, we discuss three types of hysteresis operators that are
constructed via “parallel connection” or “superposition” of idealized,
elementary hysteresis operators. Mathematically, each of the differ-
ent hysteresis operators is obtained via integration over a class of
kernels that embody the elementary hysteresis operators, hence we
denote the class of operators as integral hysteresis operators. The
three types of integral hysteresis operators discussed in this paper are:

1. the classical Preisach operator,
2. the smoothed Preisach operator, and
3. the Krasnoselskii—Pokrovskii (KP) operator.

The latter two classes of operators are derived in this paper and are
generalizations of the classical Preisach operator. In the discussion
that follows, we will denote the kernels of the classical Preisach, the
smoothed Preisach and KP operators by k,, k, and Ks, respectively.
The symbol k, will be used to denote a generic hysteresis kernel, or
will refer to the collection of hysteresis kernels without distinguish-
ing its particular form. If we parameterize the kernel k;, of each
hysteresis operator by an element s € S, where S is some set of
allowable hysteresis parameters in R?, we can view each of the
elementary hysteresis operators as defining a mapping

ks(u,€) : C[0,T] x T — FI[0, T],

where u € C[0, T'] is the input, £ € T represents the initial condition
of the kernel, and F[0, T'] is the function space of outputs. Roughly
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speaking, the three elementary hysteresis operators discussed in this
paper differ in that they exhibit differing degrees of continuity.
Essentially, there are two types of continuity properties of the

kernels that are important in this paper. We can consider the
continuity of the mapping in time given by

1 [ks(u, £)](2)
and the continuity of the mapping in parameter space given by
s > [ks(u, )](2).

We will see in the following sections that the continuity properties
are as summarized in the following table:

Operator type t — [ky(u, OXP) is s+ [ky(u, O)) is
continuous continuous

Classical Preisach k;_ No No

Smoothed Preisach k; Yes No

KP Operator g Yes Yes

The property that the operator is continuous in time is important
from physical considerations. The parametric continuity of the
hysteresis operator is important for developing identification meth-
odologies that are well posed over a large class of densities or mea-
sures that characterize the hysteresis operator.

21 Preisach Model of Hysteresis

Simply put, hysteresis is a nonlinearity characterized by a multi-
valued mapping, specifically a function with multiple branches. An
enormous literature has accumulated over the past few years on
models of hysteresis, including the seminal work in [12], and the
more recent treatments in [22,18]. Invariably, a discussion of hys-
teresis draws analogy to the “prototypical” case depicted in Fig. 4.
This multivalued function is the delayed relay operator. For input
values u(r) that start at a sufficiently small value and increase
monotonically, the output response follows the ascent curve shown
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FIGURE 4 Ideal delayed relay operator.

in the figure. That is, the output response begins in a state of
“negative saturation” with output —1, and suddenly jumps to a state
of positive saturation with output +1 when the input u(¢) reaches s,.
Likewise, when the input begins at a level that is sufficiently large,
the output begins at a value of “positive saturation” equal to +1.
Upon monotonically decreasing the input u(¢), the output jumps to
the negative saturation value when the input reaches the switching
value of s;.

While this prototypical case is useful for illustrating that hysteresis
is characterized by multiple branches of output and switching points,
it is not extremely useful in practice. The model can be generalized,
however, so that a reasonable class of practical problems can be
treated. The generalization can be interpreted intuitively as the
“parallel” connection of a large collection of delayed relay operators.
Consider the case when only two delayed relay operators are
connected in parallel, as shown in Fig. 5. Clearly, the hysteresis loop
in this case is characterized by two jumps in its ascending branch,
and two jumps downward in its descending branch. The extension to
a finite but large number of parallel-connected delayed relay oper-
ators is depicted in Fig. 6.
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FIGURE 5 Parallel connection, two ideal relays.

In this discussion, we will utilize a generalization that incorporates
a distribution of weighted delayed relay operators. To this end, let
us define the set of pairs of thresholds that characterize all admis-

sible delayed relay operators

S={se R:s= (s1,52), 81 < 82}

(1)

Following the development in [22], we define the crossing times 7(¥)
associated with the input u and a pair of thresholds s=(s;,5;) € S

by

7(2) = {n € (0,4]: u(n) = 51 or u(n) = s52}.

2)



296 H.T. BANKS et al.

f(u)

I'——J—

FIGURE 6 Parallel connection, multiple ideal relays.

A single, delayed relay operator is defined by the relationship

) [ks(u,£))(0) if (1) =
[ks(u, O))() =4 -1 if 7(¢) # 0 and u(max(r(z))) = s1,
+1 if 7(f) # 0 and u(max(7(r))) = s2,

where the initial value of the kernel I%s, is given by

—1 if u(0) < s,
[ks(w, €))(0) =4 € if st <u(0) < s,
+1 if u(0) > 5.

®3)

“)

We should note that the argument £ € {—1,1} defines the initial
state of the delayed relay operator, and affects the output of the
delayed relay operator only if the input u(f) happens to have an
initial value in the open interval (si,s,). Let f be a Borel measurable
function mapping S — {—1,1} and let u € C[0, T]. We will denote
the set of all finite, signed Borel measures on S C R*> by M. For each
specific finite, signed Borel measure p in M, the Preisach operator

P, (u,f) is defined via

B N)(1 /[k(u,f(s 1(0) dps).

(5)
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Under these assumptions, it is shown in [22] that
P,:Cl0,T] x B(S,{~1,1}) = Ly(0,T)NC,0,T), (6)

where B(S, {—1,1}) is the set of all Borel measurable mappings from
S into {—1,1}, and C,[0,T) is the set of all right-continuous func-
tions on [0, T').

While the continuity properties of the map

t > [ky(u,€)](2)

are discussed in detail in [22], it is important in the derivation of the
convergent approximation schemes considered in the second part of
this paper to establish the continuity of the map

s (s, ©)1(0)-

The following lemma provides a motivation for consideration of the
more general hysteresis kernels presented in Sections 2.2 and 2.3:

LEMMA 2.1 Let k, be the delayed relay operator defined in Egs. (1)—
(4). Then there exist u € C[0,T], £&{—1,1} and t € [0, T] such that the
map

§ = []%s(ua E)](t)
is not continuous.

Proof The proof of this lemma follows by constructing an example.
Consider the saw-tooth input function depicted in Fig. 12. This
function is simply a piecewise linear spline that oscillates between
the values of s; and s,, with period 2. The corresponding output of
the delayed relay operator shown in Fig. 13 is piecewise constant.
Now consider a sequence of pairs of switching times {sx};-, where

Sk = (S],Sz + l/k).

This family of delayed relay operators is depicted with the
dashed lines in Fig. 14. The output of this family of delayed relay
operators has the generic form depicted in Fig. 15. Clearly, we have
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that
sk — s = (s1,82) as k — oo,

but

ey (u, ))(2) — ey, (0, )(8)] =2 fork =1,2,...

when 2<t<3, 4<t<5, etc... This provides the desired counter-
example to continuity.

Up to this point, we have only considered time-dependent, real-
valued hysteresis operators. In this paper, we treat a class of dis-
tributed, hysteretic control influence operators. These Hilbert-space
valued operators have the “separable” form

Bu(u,f)=P,(u,f) g wherege V* (7

and V™" is the topological dual of a Hilbert space V to be defined in
the governing system equations. It is not difflcult to argue that this
form of governing equation is representative of the actuation force
applied by a resistively heated shape memory alloy wire embedded
in a rod that undergoes pure bending [13]. To establish the well-
posedness of the second order evolution equations presented in
Section 3, we must briefly consider some simple regularity properties
of B,. In the remainder of this paper, we will denote by A the set of
measures A CM that are absolutely continuous with respect to
Lebesgue measure over S C R%.

ProOPOSITION 2.1 Ifu € C[0,T], f€ B(S,{—1,1}) and p € A, then
Bﬂ(u,f) € Ly((0,T), V™). (8)

Proof To prove this proposition, we consider the value

| Sl s s £ (5))])(2) dpa(s) - g (v)]

vl

I1Bu(u./))(2)]

y+ = Sup
veV

at a specific time ¢. We know this value exists, because if the mea-
sure 4 is absolutely continuous with respect to Lebesgue measure,
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then the Preisach operator is in fact a map
Pu(f):Cl0,T] — C[0,T] 9)

as noted in [22]. Thus, in this case the value of the map Bﬂ(u, f) has
the V* norm

1By, NIy = 1P N(O1lg]

from which it follows that

1Bues iz ) < max {11PuG NI - T+ g

v

2. (10)

This completes the proof.

In fact, the control influence operator B, is well defined on the
larger class M of finite Borel measures.

PrROPOSITION 2.2 Ifu€e C[0,T), f€ B(S,{—1,1}) and p € M, then

B%(u,f) € LZ((()’ T)’ V*)' (11)

Proof This proof follows from the proof of Proposition 2.1, and
the fact that if 4 € M then P, (u, f) € Lo(0, T) N C,[0, T).

2.2 Smoothed Preisach Operators

The Preisach model summarized in the last section has been studied
in [12,22,18], and utilized in identification and control in [11].
Various generalizations of the Preisach model have also been
studied. For example, [18] presents time-varying Preisach models, as
well as vector-valued Preisach models. The discussions in [22,12]
introduce convexifications and set-valued versions of the classical
Preisach operator. In this section, we derive a different general-
ization of the Preisach operator that is appealing from physical
considerations. In applications to shape memory alloys, the onset
and progress of hysteresis is slow. While the Preisach model is
attractive in its simplicity, it is questionable whether it is appropriate
to model this class of physical hysteresis in terms of jump discontinu-
ities. At this point, it is important to recall (see (9)) that the output
of the Preisach operator can be made continuous in time by
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restricting attention to the narrow class of measures that can be
represented via a probability density as opposed to a probability
distribution. On the other hand, for approximation reasons, we
would like to consider identification procedures over a larger class
of measures, including discrete measures. Thus, in this section we
introduce smoothed versions of the Preisach operator. In addition to
being of interest for physical reasoms, this class of operators also
serves as a conceptual bridge to the more general KP operators
discussed in Section 2.3.

To construct the continuous Preisach operator, we first define a
smoothed delayed relay operator as depicted in Fig. 7, each of
whose ascending and descending branches are continuous. Let r(x)
be a continuous monotone ridge function, as depicted in Fig. 8. As
illustrated in Figs. 9 and 10, the constant o characterizes the rise
time of the ridge function. We represent the continuous, delayed
relay operator in terms of two, shifted images of a single ridge
function as depicted in Fig. 11. Unlike the conventional definition,
we identify the ascending and descending branches of the model
using a selector function /4 defined by

h:{-1,1}x8 — R, (12)
h:(=1,(s1,82)) — 52, (13)
h:(+1,(s1,82)) — 51. (14)
f(u)
A
> u

FIGURE 7 Smoothed ideal relay operator.
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FIGURE 10 Continuous ridge function, long rise time.
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FIGURE 13 Piecewise continuous output function, s = (s, 53).
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For any continuous input u € C[0, T'] and any pair (s1,5;) € S with
so > 51, we can define the crossing times as

7:(£) = {C € (0,1]: u(¢) = 51 or u(¢) = 52 + a}. (15)

Now we can define the initial value of the delayed relay operator

[ies (1, €)1(0) = r(u(0) — h(&,5)). (16)
For all >0, we define

) r(u(t) — h(€,5)), 7(t) =0,
[ks(u, §))(1) = { r(u(t) —s1),  7(t) # 0 and u(max(ry(1))) =52 + ,
r(u(f) —s2),  75(f) # 0 and u(max(7s(2))) =s1.
(17)

It is important to note that the smoothed Preisach operator, unlike
the conventional Preisach operator, can be defined on the closure S
of S in R%. Careful inspection of Egs. (2) and (3) shows that it does
not make sense to define the classical Preisach operator for s;=s,.
The smoothed, delayed relay operator defined above has several
useful measurability and continuity properties.

THEOREM 2.1 Let k; be the delayed relay operator defined in Egs.
(12)—(17). For each s € S and ¢ € {—1,1}, we have

ky(-,€) : C0,T] — C[0,T]. (18)

Proof The proof of statement (18) is immediate if s;=s, and
relatively direct in the case sy >s,. If u € C[0, T], it is a continuous
function on a compact set, and consequently, it is uniformly contin-
uous. For any fixed s=(sq,s,) € S, the function u can only oscillate
through s; and s+« a finite number of times. Hence, k,(u,£) is
piecewise comprised of a finite collection of the continuous functions
ru(f) — s1) and r(u(r) — s,). By construction, ky(u,£) is continuous at
the finite number of times it passes from one branch to another, and
is therefore continuous on [0, T'].
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It is counterintuitive, but despite the “smooth” appearance of the
ridge functions comprising the delayed relay k;, the mapping
[ks(u, €)](2) is not continuous as we vary s € S in parameter space.

LEMMA 2.2 Let ky be the delayed relay operator defined in Egs. (16)
and (17). Then there exist u € C[0,T], £ € {—1,1} and t € [0, T] such
that the map

s+ [ks(u,€))(0)

is not continuous.

Proof As in the proof of Lemma 2.1, this result follows from a
simple counterexample. Consider a saw-tooth input function as
depicted in Fig. 16. This function is a piecewise linear spline that
oscillates between the values of s; and s,+a. It is a period 2
function. Consider the family of smoothed delayed relay operators
depicted using the dashed lines in Fig. 17. Each smoothed delayed
relay operator is characterized by the shifts

sk = (51,52 4 1/k).

(s;+1K) +a |
S,+

(s,+ 1/k)

sz

FIGURE 16 Continuous input function.
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Clearly, we have that
Sk — 8= (s1,82) ask — oo
but there exists a t =" € (2,3) and an € > 0 such that
[k, €))(2) = [y (0, €)](1)| =2 fork>1and t € (£ —¢,1* + ).

This can be readily seen from the construction of outputs for kg and
ks, depicted in Figs. 18 and 19. This completes the proof.

As in the previous section, we formulate the control influence
operator by defining the continuous version of the Preisach operator
to be

Puw N0 = [ e SO dus)
s
The control influence operator is defined using Eq. (7)

Eﬂ(u’f) = ﬁu(u»f) -8 (19)
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H T ) S

FIGURE 18 Continuous output function, s = (s, $2).

where g € V*. As in the case of the classical Preisach operator, we
will need the following result to guarantee the well-posedness of the
governing evolution equations.

ProPOSITION 2.3 If ue C[0,T], f€ B(S,{—1,1}) and the control
influence operator Eu is defined using Eqs. (12)—(17), then
B,(u,f) € Ly((0,T), V") (20)

for any p € M.

Proof The proof is identical to the arguments for Propositions 2.1
and 2.2.
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FIGURE 19 Continuous output function, s = (s, 52 + 1/k).

2.3 The Krasnoselskii—Pokrovskii Operator

We have seen that the kernel of the smoothed Preisach operator ks
defines a continuous mapping

£ [y, €))(0),

whereas the kernel of the Preisach operator is only piecewise
continuous in time. Because of the time-continuous nature of the
physical phenomenon to be modeled, hysteresis at the structural
scale, the smoothed Preisach operator is more suitable for the class
of problems of interest. Still, neither the classical nor smoothed
Preisach kernels are continuous functions as we vary the parameters
characterizing the prototypical relays. This property is of critical
importance in deriving convergent approximation schemes for the
identification problem for the larger class of measures convenient
for practical application.
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In this section, we introduce another generalization of hysteretic
control influence operators by incorporating Krasnoselskii and
Pokrovskii’s notion of generalized plays. As opposed to considering
the KP operators in the full generality discussed in [12], we present a
class of KP operators that appear as “natural extensions” of the
smoothed Preisach operators discussed in the last section. As
depicted in Fig. 11, let r(x) be a Lipschitz continuous ridge function
and denote its s; and s, translates by

rs, = r(x —s1),

rs, = r(x — 7).

As opposed to the smoothed relay operator described in Section 2.2,
the functions r,, and r,, define the envelope of admissible paths. The
construction of the KP operator for any input u € C[0, T'] proceeds
in two steps:

(i) define the KP operator for piecewise monotone (specifically,
piecewise continuous) functions, and

(ii) extend the definition by continuity of the dense set of piecewise
continuous functions to all of CJ[0, T].

For the purposes of this paper, the following definition of the KP
kernel k; will be sufficient. First, for any monotone function #(¢),
define the monotone output operator by (see Figs. 20, 21)

M@ O](1) = {max{&, r(a(f) — s2)} if @ is nondecreasing, o)

min{&, r(#(¢t) — s;)} if @ is nonincreasing.

Now suppose that # is piecewise monotone. Specifically, let
i€ C[0,TIN Sy [0, T], where S ;[0, T] is the set of piecewise linear
splines with j knots. We extend the definition of the KP kernel in
this case by setting Mo=¢ and defining the kernel inductively on
each sub-interval (see Figs. 22,23)

N | M@ Mi)](0), t € [tr-1, te,
(@ 00 = { Me = M@ MDD, k=1 &

For computational purposes, this definition is sufficient. The exten-
sion of this definition for all u € C[0, T'] follows from an extension
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3 i

FIGURE 20 KP hysteretic kernel function, output, monotone.
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FIGURE 21 KP hysteretic kernel function, input, monotone.
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FIGURE 23 KP hysteretic kernel function, input, piecewise monotone.

by continuity argument as discussed in [22] or [12]. The following
theorem summarizes the continuity properties of the hysteresis
operator generated by the KP kernel:

THEOREM 2.2 Let K, be the KP kernel defined in Eqs. (21) and (22).

1. For each s € S and & € {—1,1} we have that

ks(- &) : C[0, T] — C[0, T). (23)
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2. For eachu € C[0,T), £ € {—1,1} and t € [0, T} the map

s [155(u, £)](2) (24)

is continuous from S to R'.
3. If the control influence operator B,, is defined via

mmﬁzmmﬁgslmmmwmwmg, (25)

where g € V™ and p € M, then

B(uf) € Lo((0, T), V). (26)

Proof The proof of the continuity of the KP kernel operator as a
function of time, as stated in Eq. (23) above, follows by observing
that the generalization of the smoothed Preisach operator introduced
in Egs. (21) and (22) is but a special case of Krasnoselskii and
Pokrovskii’s definition of generalized play [12]. The curves defining
the envelope of output response are, in this case, simply shifts of a
single ridge function r(x). The result in Eq. (23) follows from this
observation and Theorem 2.2 of [22], page 67.

To prove that the KP kernel operator is continuous in parameter
space, as noted in Eq. (24), we first note that as y, — y € R!, we have

r(x—y) —r(x—yx)| — 0

uniformly for x € R". This uniform continuity follows directly from the
fact that r(-) is Lipschitz continuous on R'. Thus, given s;=
(S1% S26) — $ = (51, 82) in S we have that for any € >0, we can find K >0
such that

[r(x —s;) —r(x —sw)| <e fork>K, xe€ R'andi=1,2. (27)

The continuity in (24) now follows from Proposition 2.5 of [22],
page 70.

The proof of statement (26) follows from (23) and arguments
similar to those for Propositions 2.1 and 2.2.
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3 SECOND ORDER EVOLUTION EQUATIONS

Based on the experimental setup and initial observations described
in the introduction, in this section we will derive governing equa-
tions in weak form that incorporate a hysteretic control influence
operator. Let 7 and H be real Hilbert spaces that form a Gelfand
triple. That is,

Ve Hx H*— V™"

Each of the embeddings V' — H and H* < V* is dense and contin-
uous. The pivot space H is identified with its dual space H* by the
Riesz-mapping. It is well-known that by the construction of the
Gelfand triple [23], the duality pairing on V™ x V, denoted by (-, )y~ p,
is the extension by continuity of the inner product on H from V x H to
V* x H. Following [3], we define two parameter dependent operators
A(q) and Ay(gq) that represent the damping and stiffness operators,
respectively. The parameters ¢ are assumed to lie in a compact metric
space Q. In operator form, the equations governing the dynamics of
the system discussed in the introduction have the form

Ww(t) + Ai(q)w(e) + Ao(q)w(r) = [Bu(w, N](H) in V7, (28)

where B,, denotes one of the operators B,,, Eu or B, of Section 2. More
precisely, we assume that the parameter-dependent, bounded linear
operators A;(q): V— V*,i=0,1 are defined in terms of bilinear forms
a;(q)(:,-) defined on ¥ x V, where the action 4,(¢q)¢ is defined by

(4i(q)p) (W) = ai(¢,v), Y eV.

The operator equation in the dual space V* can be written in the usual
fashion in terms of bilinear forms on ¥ x ¥ and duality products as

(W(0) M)y y + ar(q) (0(2),m) + ao(q) (w(2), m) = ([Bu(u, NI(1): M)y y
(29)

forallne V.
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We obtain a well-posed, second order evolution equation by
requiring that the initial conditions satisfy

w(0) = wy € V, (30)
Ww(0) =w, € H (31)

and that the symmetric bilinear form ay(g)(-,-) that induces the
stiffness operator satisfies the usual conditions of boundedness

lao(q) (u, V)| < cillullylvlly Vu,veV (32)
and V-ellipticity

ao(g) (u, 1) 2 callull}, (33)

for constants ¢y, ¢, that are independent of the parameters ¢ € Q. In
addition, the bilinear form a;(g)(-,-) that induces the damping
operator satisfies the conditions of boundedness

|a1(q) (w, V)t < eslull [Vl for all u,v € V (34)

and a Garding inequality

a1(q)(u, u) + callullyy 2 esllully (35)

for constants cs, ¢4 € R' and ¢s > 0 that are independent of the param-
eters g € Q. The following regularity result is a straightforward
consequence of the properties of the hysteretic control influence
operators B, ( f, u), e.g., see Theorem 2.1 and Remark 2.1 of [3].

THEOREM 3.1 Suppose that u € C[0,T] and f€ B(S,{-1,1}). For
each (q,p) € Q x M there is a unique solution w(q,u) to (29)—(31)
such that

we C((0,T),V) C Ly(0,T), V),
we C((0,T),H)NLy((0,T), V),
we Ly((0,T), V™).
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4 ERROR FUNCTIONALS AND CONTINUITY

Equation (29) (or equivalently, Eq. (28)) constitutes the equation
governing the input/output behavior of the dynamical system. For
purposes of identifying the parameters that characterize the system,
we must choose a reasonable measurement, or observation, error
functional. Of course, to a large degree, our choice of error func-
tional will be dictated by the actual measurements available to us in
the laboratory. Generally speaking, pointwise time and spatial
measurements are perhaps the most common class of measurements
that are available in an experimental configuration. Distributed or
averaged measurements of displacement, stress or strain are becom-
ing available with the increase in popularity of distributed sensors
such as piezoceramics [15] and fiber optics [19,20]. Increased use of
laser scanning techniques and vision-based image capturing tech-
niques offer additional possibilities. Frequently, one considers an
output error functional having the form

N Na .
T ) =33 w(as ) (1) = il +3 D il ) (0) = il (36)
i=1 i=1

In this case J(gq, ) is a measure of the error between the displace-
ment w(q,u) and velocity w(g,u) predicted by our model and
measurements of surface displacement w and velocity w on the
structure. A more general error criterion for selecting a model
including output least squares functionals can be expressed as

Haop) = / 7 w(g, 1) (1), (g, 1) (1)) d(2) (37)

where v is a Borel Stieltjes measure.

For the sake of brevity, we will consider this form in the
remainder of this paper. The interested reader is referred to [4] for a
rather detailed discussion of the treatment of discrete-measurement
functionals. While we need not define the precise form of the cost
functions, the following two standing assumptions will be crucial in
the discussion that follows.



IDENTIFICATION OF SMART ACTUATORS 317

(J1) The kernel function j is piecewise continuous from ¢ — j(z, @, )
for all (¢,) € V x H,

(J2) The kernel function j is lower-semicontinuous on ¥V x H,
uniformly in ¢ € [0, T].

It is clear that this class of cost functionals includes numerous
common choices of output error measures. For example, the
common quadratic measure of output error

T
Had = [ {1C0tam0 - 5, + 31Ca0(a. )0 ~ i, | o

has this form when C, € L(V, Z,), C, € L(H, Z,) where Z,,Z, are
Banach spaces representing measured quantities. Moreover, it is
possible to interpret the discrete time cost functional (36) in terms of
the general output error expression, if we take the measure v to be a
finite counting measure (i.e., a finite sum of Dirac measures).

Of course, when we study the continuity properties of the map
from p— J(g,p), it is necessary to choose a topology for the
measures y in the domain of J. To present the continuity properties
that follow, let us recall the general form of the control influence
operators

1B, (. )](1) = /S e (£ (D)) (1) da(s) - 2, (38)

where g € V™. They are defined in terms of a finite Borel measure p
defined on the Preisach plane

S={(s1,%) € R%: 5 < s2}

or its closure S. In fact, we will see in Part II of this paper that in
practice it is sufficient to limit our considerations to compact subsets
Sa C S in the integration in Eq. (38). We then have the form

(B (. /)](1) = /S Ve, £(9)))(1) dia(s) - &,

where g € V*. Consequently, we will investigate two classes of
measures for the study of the continuity properties presented in this
section. We will denote by P(S) the set of all Borel probability



318 H.T. BANKS et al.

measures on the locally compact, separable metric space S. We
endow P(S) with the topology of weak converge of measures, or
convergence in distribution. That is, a sequence {u}re; C P(S)
converges to p € P(S) if and only if

/8 Fdu — /S fdu (39)

for all fin the bounded, continuous, real-valued functions Cy(S) on
S. From a functional analytic viewpoint, we can regard this as weak”
convergence since P(S) C [Cy(S)]*. In an analogous fashion, we define
P(Sa) to be the set of all probability measures over a compact set
SA=8SN{se R s=(s51,%),s <5 << 5} where s, § are finite.
It is well-known that P(Sa) is a compact, metrizable space (see
Section 3 of [1] as well as [7,10]).

With this framework in mind, we can establish our first continuity
result. In this case, we consider only the properties of the cost as a
function of the measure p; the dependence of the error functional on
parameters g appearing in the operators defining the evolution
equations has been treated previously in [2].

THEOREM 4.1 Suppose that the cost functional J(q, ) is defined in
Eq. (37), the solution w(q,u) is defined in Eq. (29), the control
influence operator EN is defined in terms of the classical Preisach
operator in Egs. (5), (7), and the kernel j of the cost functional
satisfies hypothesis (J1) and (J2). Then for each fixed q € Q, the map

p—J(q, 1) (40)
is weak™ lower-semicontinuous from AUP(S) to R'.

Proof By the definition of lower-semicontinuity, we must show that
if {pk}re; is @ sequence of measures that are absolutely continuous
with respect to Lebesgue measure and

we — po  weak* in [Cyp(S)]", (41)
then

(g, po) < liminf J(g, u).
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Since all of the measures {ui},., are absolutely continuous with
respect to Lebesgue measure, we know (see [22]) that

P, (u,f)eCl0,T] Vk=1,...,00.
From (8) of Proposition 2.1 we have that
B, (u,f) € Ly((0,T),V*) fork=1,...,00.

Hence, for each k=1,...,00, there is a unique solution to the
second order evolution equation

(e (0)) + @1 (9) (0 (2), ) + a0(9) (W, (1), 1) = (B, (, (1), m)

subject to the initial conditions
Wiy (0) = wo, Wiy (0) = wy.

Here (and below) we denote (-, )y~ by (-, ).
There is likewise a unique solution to the evolution equation

(0 (1)) + a1(q) (W (1), 1) + 0(q) (Wuo (1)) = ([Byg (0, ))(2), )

subject to the initial conditions
Wi (0) = wo, Wy (0) = w,

where o is the limit in Eq. (41). If we define the error in approxi-
mation to be

er(t) = wy, (1) — wyy (1), (42)
it is clear that the error e,(¢) satisfies the equation

(x(t),m) + a1 (q)(éx(£),m) + ao(q)(ex(2), m)
= ([By, (u, ))(2) = [Byy(u, )](2),m) (43)

subject to the initial conditions
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It is also true that the error ex(¢) satisfies all of the regularity results
in Theorem 3.1. In particular, we know that

éc € C((0,T), H) N Ly((0,T), V).

Thus, we can choose n=¢é(f) € V in Eq. (43) to obtain the
equation

(@(0), &(0) + a1(q) (éx (1)), k() + ao(g)(ex (1), é(1))
= ([By (1, NI1) — (B (. N)(2), (1))

It is important to note that under weaker assumptions (either on the
damping operator or on other problem data) on the governing
equations, we will not know a priori that ¢, € L,((0,T), V). In that
case, it would be necessary to follow a slightly modified approach as in
[3] or [21]. However, in the case at hand, we can conclude directly that

3.5 (1) + ar(@)(@x(0), () + 5o (an(a)exl),ex(s))

= ([Eﬂk (u’f)](t) - [Buo (u’f)](t)’ ék(t))' (45)
Integrating once in time, we find that Eq. (45) becomes
0
= [|éx(0) 1% + a0 () (ex(0), €x(0))

= (B /) - B N () dr. (46)

lle (o)l + 2/ ar(q)(éx(7), éx(7)) d7 + ao(q)(ex(1), ex(2))

To simplify these equations, we use the estimate

By (1, NN(T) = [Byy (, S)1(7), €6(7)) e
< By (1, N)(T) = [Byo (s NI (Tl

and employ the standard inequality (for a > 0)

el By <l e V3Ll < 5 {5l 1+ 200 .
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With the use of these inequalities, Eq. (46) can be written

“ék(t)”%{ +2 /0’ ai1(q)(éx (1), éx (7)) dr + ao(ex (1), ex (1))
<2 [ 1Bl 117) Bl Nl 0
< 5o [ 118 11(7) = B NI a7

t
+ 20 [ @l dr.
0

Since we assume that the damping bilinear form satisfies a Garding
inequality (35) and that aq is V-elliptic, we can write

(ol +2es [ eI dr + cller)I
<2a [ et ar+ 260 [ ex(r)lfyar
+ o [ B 1)) = B NI dr. (@)
From Theorem 2.5, page 108 of [22], we know that

Ak(7) = (1B (s 1))(T) = (B 1))(T)l - — 0 (48)

as k — oo for each 7 € [0, ]. Choosing a = ¢s/2 in (47), we obtain
2 ! 2 2
lex (D17 + 05/0 lex()lly d7 + eallex (D)1l
t 1 t
< 2C4/ “ék(T)”iIdT-i-c—/ Ag(r)dr. (49)
0 5J0

Ignoring the second and third terms on the left of this inequality, we
may use (48) and the usual Gronwall arguments to obtain that
lléx(t)|lg — 0 as k— oo, uniformly in ¢ € [0, T']. That is, é — 0 in
C([0, T}, H) as k— oo. Using this along with (49) again, we further-
more obtain éx — 0 in Ly((0,T),V) and ¢, —0 in C(0,T),V) as
k — oo.
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From the lower-semicontinuity of j, we have
Tt Wy (0, V0, (1)) < liming (e, wy, (1), W (1))

uniformly in ¢ € [0, T'].
By integrating over time, and using Fatou’s Lemma, we obtain

J(g; po) < liminf J(g, ).

This completes the proof.

This theorem shows that measures over the Preisach plane S that
are absolutely continuous with respect to Lebesgue measure over S
have at least enough continuity to consider standard techniques,
such as in [4,5], to establish the well-posedness of the underlying
identification problem. Unfortunately, the subset of measures that
are absolutely continuous with respect to Lebesgue measure are not
compact in [Cp(S)]*. Thus, to consider an identification procedure
that is well-defined, we can modify our class of candidate measures.
An obvious choice would be to take a compact subset of [Cy(S)],
including some measures that are not absolutely continuous with
respect to Lebesgue measure. But in this case, we may not be able to
conclude that

|By (u, £)(7) = By, £)(7)]y» — 0

for each 7 €[0,T] where l}u is induced via the classical Preisach
operator. Essentially, the difficulty is that it is possible to find a
sequence of measures {u;} such that

pk — po  in [Cp(S))"
but for which there exists ¢ € [0, T'] such that we do not have

Pﬂk(u’f)(t) - Pﬂo(“?f)(t)'

For example, consider the input function

u(t) = (1 - %T) sin ¢.
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Obviously, this function falls within the envelope 1 — ¢/(27) and sin ¢
and is depicted in Fig. 24. For this example, we also suppose that the
initial condition of all of the relays in the Preisach plane are
represented by a function f € B(S, {—1, 1}) that corresponds to the
virgin state depicted in Fig. 25. At an instant in time ¢y € ((37)/2, 27),
it is easy to see that the Preisach plane has the “geometry” depicted in
Fig. 26. For convenience, choose a bounded subset S C S as shown in
Fig. 26, and choose the weak™ convergent sequence of Dirac measures
i = 65, where

s = (—1/4—-1/k,1/2).
Clearly, we have that px — &5, where
so=(—1/4,1/2)

and the convergence is weak™ convergence of measures.
We note that f(sy)=—1 for k>4 and f(so)=-—1 for all k.
Moreover, we have that

é[éx(u,f)](to)duk(S) = [k, (u, f(5%))](t0) for all k > 1,

- u(t) = (1-/2m)sin t

FIGURE 24 Resultant input function.
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S2

A

f(s) § -1

)81

FIGURE 25 Initial, virgin, state in Preisach plane.

S2

(-1,1) T (1,1)

(-1/4, 3/4)

(-3/4, 3/4) [ks(uvf)](to )='1

(-1/4,-1/4)

Ko (uHte)=+1

('1 "1)

FIGURE 26 Preisach plane geometry at 1= t,.
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while

/g Lyt £)](00) dpto(s) = [ (1 £(50))] (10)-

But by construction of u, we find [ks, (u, f(sx))](t0) = +1 for all k
and [k, (4, f(s0))](20) = —1. We have consequently constructed an
example in which u; — po but we do not have

Pﬂk(u’f)(t()) - Pm(u,f)(to).

Indeed, this nonconvergence statement actually holds in a neighbor-
hood (2y— ¢, to+€) of t,.

However, we can derive a lower-semicontinuity result for the KP
integral hysteresis operators introduced in Section 2.3

THEOREM 4.2 Suppose that the cost functional J(q, 1) is defined in
Eq. (37), the solution w(q,u) is defined in Eq. (29), the control
influence operator B,, is defined in terms of the KP kernel operator in
Egs. (21), (22), and the kernel j of the cost functional satisfies
hypotheses (J1) and (J2). Then for each fixed q € Q, the map

p—J(g, 1) (50)
is weak* lower-semicontinuous from [Cy(S)]* to R'.

Proof The proof of this theorem is similar to that of Theorem 4.1,
and we only outline the result. We must show that if p;— pg in
[Ci(S)I" then J(q, o) < liminfy J(q, ux). But by Proposition 4.1,
B, (u, f) € Ly((0, T), V") for each k. Following the proof of Theorem
4.1, we can deduce that (recall (49))

t
eI + s /0 eI dr + eallec(d) 2
t
< ¢4 / lew(r)IE dr
0

+ [ N 1) = B NI
¢s5 Jo
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In the proof of Theorem 4.1, we employed the absolute continuity
of the measures u; and po to obtain the desired convergence. Here,
however, we have

|[Bue (1, /)N(7) = (B (u, S)](7)

e — 0

as k — oo by the definition of weak™ convergence in [Cy(S)]* and the
fact that the KP kernel operator is a continuous map from S to R'
as noted in Eq. (24) of Theorem 2.2. The remainder of the proof is
identical to that in Theorem 4.1.

The advantage of using the KP integral hysteresis operators is
now obvious; they induce the required semicontinuity results in the
control influence operators B,. In addition, these continuity results
hold on compact subsets P(Sa) of [C5(Sa)]*. The following theorem
is the primary contribution of this paper; it states that the
identification problem associated with characterizing the hysteretic
control influence operator is well-posed for the KP class of kernels
and a wide class of measures.

THEOREM 4.3 Suppose that the kernel j of the functional J(q, 1)
satisfies the hypotheses (J1) and (J2), B, is the control influence
operator induced by the KP kernel operator defined in Egs. (21) and
(22), and w(q, ) is the solution of the second order governing evolution
equations given in Eq. (29). If Sa is a compact subset of S, then there
is a probability measure py € P(Sa) that solves the hysteretic control
influence operator identification problem

Jgomo) = inf J(g,p).
HEP(Sa)

Proof We have already shown in Theorem (4.2) that the map

p—J(g, 1)

is weak® lower-semicontinuous from [Cy(S)]* to R'. But P(S,a) is
a compact subset of [C5(Sa)]*. The desired result then follows since
a lower-semicontinuous function on a compact set attains its mini-
mum [17].
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This result plays a fundamental role in convergence and approx-
imation results related to the identification of hysteretic control
influence operators. First, it guarantees existence of a solution to the
identification problem over a very general class of measures. More
importantly for computational purposes, from Theorem 3.3 of [1] we
have that the set of finite linear combinations of Dirac delta
measures p,=8, corresponding to {s € Sa: s rational} is dense in
P(Sa). Thus any desired measure po € P(Sp) can be readily
approximated by measures that are extremely simple to use in
computations.

5 CONCLUSIONS AND FUTURE RESEARCH

To provide a rich foundation for modeling and identification of
hysteresis in actuation devices, this paper has introduced two
generalizations of the classical Preisach model of hysteresis. The
continuous Preisach model yields a continuous output hysteresis,
even for measures that are not absolutely continuous with respect to
Lebesgue measure. Moreover, the KP hysteretic control influence
operator yields both a time-continuous and a parametrically contin-
uous integral hysteresis operator. Continuity and semicontinuity
results are established for the integral hysteresis operators derived in
this paper. It is shown that the output least squares identification
problem for the measure p characterizing the hysteresis operator is
well-posed for a large collection of measures, including discrete
measures. The continuity, compactness and well-posedness results
derived in this paper form the foundation of convergent approxima-
tion schemes discussed in Part II of this paper. Numerical approx-
imation methods and experimental results for a class of shape
memory alloys will also be presented in those discussions.
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