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This paper addresses a conjecture in the work by Kadison and
Kastler [Kadison RV, Kastler D (1972) Am J Math 94:38–54] that
a von Neumann algebraM on a Hilbert spaceH should be unitarily
equivalent to each sufficiently close von Neumann algebra N, and,
moreover, the implementing unitary can be chosen to be close to
the identity operator. This conjecture is known to be true for amena-
ble von Neumann algebras, and in this paper, we describe classes of
nonamenable factors for which the conjecture is valid. These classes
are based on tensor products of the hyperfinite II1 factor with crossed
products of abelian algebras by suitably chosen discrete groups.
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In 1972, Kadison and Kastler (1) initiated the study of pertur-
bation theory of operator algebras. The setting was a Hilbert

space H and the collection of all von Neumann subalgebras of the
bounded operators BðHÞ onH, namely those *-closed subalgebras
of BðHÞ that contain the identity operator and are closed in the
strong operator topology. By applying the Hausdorff distance to
the unit balls of two von Neumann algebras, Kadison and Kastler
(1) equipped the collection of all von Neumann subalgebras with
a metric dð · ; · Þ. This metric can be described as the infimum of
numbers λ> 0, for which each element of either unit ball is within
a distance λ of an element of the other in the operator norm
on BðHÞ. Natural examples of close pairs of von Neumann
algebras arise by fixing a von Neumann algebra M ⊆BðHÞ and
considering a unitary u∈BðHÞ. It is easy to see that

d
�
M; uMu*

�
≤ 2ku− idHk;

and therefore, if u is chosen with ku− idHk being small, then
uMu* will be close toM. In this case, we refer to uMu* as a small
unitary perturbation of M. The work by Kadison and Kastler (1)
proposed that such a small unitary perturbation should be essen-
tially the only way of producing pairs of close von Neumann
algebras, leading to the following conjecture.

Conjecture 1 (Kadison–Kastler). For all «> 0, there exists δ> 0 with
the property that, if M;N ⊆BðHÞ are von Neumann algebras with
dðM;NÞ< δ, then there exists a unitary operator u on H with
uMu*=N and ku− idHk< «.
Initial progress on this conjecture focused on amenable von

Neumann algebras, which, due to the work of Connes (2), may
be characterized as inductive limits of finite dimensional von
Neumann algebras. For these algebras, this conjecture was estab-
lished in the late 1970s in the works by Christensen (3), Johnson
(4), and Raeburn and Taylor (5) [see Theorem 2 below]. In this
paper, we will describe our examples of nonamenable von Neu-
mann algebras that satisfy the conjecture. Full details and proofs
will be available elsewhere in a longer account.

Background
As the Kadison–Kastler conjecture predicts that close operator
algebras should be isomorphic, it is natural to ask whether they

necessarily share the same invariants and structural properties. This
was the primary focus of ref. 1, which examined the type de-
composition of close von Neumann algebras. The founda-
tional work of Murray and von Neumann (6) decomposes every
von Neumann algebra M uniquely into a direct sum MI ⊕MII1⊕
MII∞⊕MIII, where the summands have types I, II1, II∞, and III,
respectively. In particular, every von Neumann factor (those von
Neumann algebras that are maximally noncommutative in that
the centers consist only of scalar multiples of the identity oper-
ator) is of one of these types. Our work is concerned with factors
of type II1, and a formulation equivalent to the original definition
is that M should be infinite dimensional and possess a positive
linear functional τ of norm 1 satisfying τðabÞ= τðbaÞ for a; b∈M.
This functional is called a trace, and it is the counterpart of the
standard trace on the algebra of n× n matrices that averages
the diagonal entries. The main theorem of ref. 1 shows that, if M
and N are close von Neumann algebras, then the projections
onto the summands of each type are necessarily close. This work
also shows that algebras close to factors are again factors, and
therefore, any von Neumann algebra close to a II1 factor is again
a II1 factor (1), a result that we will use subsequently.
It is also natural to consider perturbation theory for other

classes of operator algebras. In ref. 7, the work by Phillips ini-
tiated the study of these questions in the context of norm closed
self-adjoint algebras (C*-algebras) and examined the ideal lattices
of close algebras. A key difference in flavor between perturbation
theory for C*-algebras and the von Neumann algebra version
was exposed in two critical examples: ref. 8 gives examples of
arbitrarily close but nonisomorphic C*-algebras, whereas ref. 9
gives examples of close unitarily conjugate separable C*-algebras
for which it is not possible to choose a unitary witnessing this
conjugacy close to the identity. The counterexamples of ref. 8
are nonseparable, and therefore, the appropriate formulation of
Conjecture 1 for C*-algebras is that sufficiently close separable
C*-algebras acting on a separable Hilbert space should be spa-
tially isomorphic but without asking for control of the unitary
implementing a spatial isomorphism. Special cases of this con-
jecture were established for separable approximately finite di-
mensional C*-algebras (10, 11) and continuous trace algebras
(12) in the early 1980s, and a complete analog of the perturba-
tion results for amenable von Neumann algebras was recently
given in refs. 13 and 14, which establish the conjecture for
separable nuclear C*-algebras. There has also been significant
work on perturbation questions for nonself-adjoint algebras
(see ref. 15, for example).
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A related notion of near-containments also plays a substantial
role in our work. We say that M ⊆γ N if each element of the unit
ball of M is within a distance γ of an element of N (not required
to be in the unit ball of N). Analogous to Conjecture 1, one might
expect a sufficiently small near-inclusion of von Neumann alge-
bras to arise from a small unitary perturbation of a genuine in-
clusion. That is, for each e> 0, does there exist δ> 0 such that, if
M ⊆δ N is a near inclusion of von Neumann algebras on H, then
there is a unitary u on H with uMu*⊆ N and ku− idHk< e? The
work by Christensen (11) introduced this notion, with the two-
fold purpose of improving numerical estimates and extending
perturbation results beyond the amenable von Neumann algebra
setting. In particular, the work by Christensen (11) gave the fol-
lowing positive answer to the previous question when M is ame-
nable, but N is arbitrary. It is easy to use Theorem 2 to show
that, if dðM;NÞ< 1=101 andM is amenable, then there is a unitary
u∈ ðM ∪NÞ″ with uMu*=N and ku− idHk≤ 150dðM;NÞ.
Theorem 2 (Spatial Embedding Theorem). Let M and N be von
Neumann algebras on a Hilbert space H, and suppose that M is
amenable. If M ⊂ γN for a constant γ < 1=100, then there exists a uni-
tary u∈ ðM ∪ ​ NÞ′′ so that ku− idHk≤ 150γ, dðM; uMu*Þ≤ 100γ,
and uMu* ⊆ N.
Embedding theorems are also possible in the setting of

C*-algebras; given a sufficiently close near-inclusion of a sep-
arable nuclear C*-algebra A into a general C*-algebra B, ref. 16
establishes the existence of an embedding A↪B.
The other general context in which perturbation results have

been obtained is when we replace BðHÞ with a finite von Neumann
algebra. Given unital von Neumann subalgebras B1 and B2 of a
finite von Neumann algebra M with dðB1;B2Þ< 1=8, ref. 16 gives a
unitary u∈ ðB1 ∪B2Þ″ with uB1u*=B2 and ku− 1Mk≤ 7dðB1;B2Þ.
In our longer account of the work surveyed in this paper, we

keep track of the estimates involved at each step. Here, we
simplify matters by describing our results qualitatively.

Kadison–Kastler Stability and the Similarity Problem
The spatial embedding theorem does not depend on the par-
ticular *-representation of M on a Hilbert space. Our search for
positive answers to Conjecture 1 is guided by this result, leading
us to the following definition.

Definition 3. Let M be a von Neumann algebra. Say that M is
strongly Kadison-Kastler stable if, for every «> 0, there exists
δ> 0 such that for every faithful normal unital *-representation
π : M→BðHÞ and every von Neumann algebra N on H with
dðπðMÞ;NÞ< δ, there is a unitary operator u onH with uπðMÞu*=N
and ku− idHk< «.
We use this terminology, because it is the strongest of several

versions of the conjecture that one could consider. For example,
one could ask for spatial isomorphisms without requiring control
of ku− idHk or isomorphisms between close algebras that are not
necessarily spatial. Our methods also give examples of von
Neumann algebras satisfying these weaker forms of the conjec-
ture (Theorems 7 and 8). An ℓ∞-direct sum argument can be used
to show that Conjecture 1 is equivalent to the statement that all
von Neumann algebras are strongly Kadison-Kastler stable.
Conjecture 1 implies that the operation

M ↦ M′= fx∈BðHÞ : ∀y∈M; xy= yxg

of taking commutants of von Neumann algebras in BðHÞ is
continuous with respect to the Kadison–Kastler metric, and this
implication would extend to C*-algebras by an application of
Kaplansky’s density theorem. This question is equivalent to an-
other long-standing question: the similarity problem. In 1955, mo-
tivated by work by Dixmier and Day on uniformly bounded group

representations, in ref. 18 Kadison asked whether every bounded
representation of a C*-algebra on a Hilbert space is necessarily
similar to a *-representation. Using the equivalence of the simi-
larity and derivation problems in the work by Kirchberg (19), we
recently observed (20) that the similarity problem is equivalent
to the continuity of commutants. The arguments in ref. 21 also
give a local version of this equivalence: a C*-algebra A has the
similarity property if the operation of taking commutants is con-
tinuous at A, uniformly over all representations of A (ref. 20
gives the precise statement). The following consequence is of
particular relevance here (we restrict to II1 factors, where it suffi-
ces to consider normal representations in the similarity property;
see the proof of theorem 2.3 in ref. 22).

Proposition 4. Every strongly Kadison–Kastler-stable II1 factor sat-
isfies the similarity property.
The similarity problem is known to have positive answers for

von Neumann algebras of types I∞, II∞, and III (23), but it
remains open for finite algebras and particularly, factors of type
II1. Here, the only factors for which a positive answer is known are
those factors with Murray and von Neumann’s property gamma
(the factors with property gamma are those containing non-trivial
asymptotically centralizing sequences, and this property was in-
troduced in ref. 6 to distinguish the hyperfinite II1 factor from
the free group factors) (22). In particular, McDuff factors (those
factors M that absorb the hyperfinite II1 factor R tensorially,
meaning that M ≅ M⊗R) have the similarity property. Thus, to
produce new examples of strongly Kadison–Kastler-stable
factors, we work with II1 factors with property gamma.
The role played by the similarity property in obtaining exam-

ples of strongly Kadison-Kastler stable factors is encapsulated
in the following result, which dates back to ref. 17.

Proposition 5. Let A be a C*-algebra satisfying the similarity prop-
erty, and suppose that θ1; θ2 : A→BðHÞ are two *-representations
with kθ1 − θ2k sufficiently small. Then, there exists a unitary u on
H such that θ2 =AdðuÞ ∘ θ1. Furthermore, one can control
ku− idHk in terms of kθ1 − θ2k and quantitative estimates on how
well A satisfies the similarity property.
In the presence of the similarity property, if we can show that

two close von Neumann algebras M and N on H are *-isomorphic
through an isomorphism θ close to the inclusion map M↪BðHÞ,
then it will follow that θ is spatially implemented by a unitary close
to idH. Consequently, M will be strongly Kadison-Kastler stable.

Twisted Crossed Products
Our examples of strongly Kadison-Kastler stable factors arise
from the crossed product construction that goes back to Murray
and von Neumann. Consider a countable infinite discrete group
Γ acting by measure-preserving transformations on a probability
space ðX ; μÞ, and write α for the induced action of Γ on the
abelian von Neumann algebra L∞ðXÞ. A unitary-valued normal-
ized 2-cocycle is a function ω : Γ×Γ→UðL∞ðXÞÞ with ωðg; eÞ=
ωðe; gÞ= 1L∞ðXÞ for all g∈Γ, which satisfies the cocycle identity

αgðωðh; kÞÞωðgh; kÞ*ωðg; hkÞωðg; hÞ*= 1L∞ðXÞ;   g; h; k∈Γ:

Two such 2-cocycles ω1;ω2 are cohomologous if there exists
ν : Γ→UðL∞ðXÞÞ with νðeÞ= 1L∞ðXÞ and (Eq. 1) holds:

ω2ðg; hÞ=
�
αgðνðhÞÞνðghÞ*νðgÞ

�
ω1ðg; hÞ;   g; h∈Γ: [1]

Given a unitary-valued normalized 2-cocycle ω, the twisted
crossed product

L∞ðXÞ⋊α;ω Γ

is a von Neumann algebra generated by a copy of L∞ðX ; μÞ and
unitaries ðugÞg∈Γ, satisfying (Eq. 2):
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ugfu*g = αgðf Þ;   uguh =ωðg; hÞugh;     f ∈L∞ðXÞ; g; h∈Γ: [2]

Because the action is measure-preserving, we obtain a trace τ on
the twisted crossed product by extending (Eq. 3)

τ

 X
g∈Γ

fgug

!
=
Z

fedμ [3]

from the dense *-subalgebra of finite linear combinationsP
g∈Γfgug with fg ∈L∞ðX ; μÞ; therefore, the twisted crossed prod-

uct is of type II1. The two conditions (Eqs. 2 and 3) characterize
twisted crossed products, and we will use these conditions to
recognize factors close to a twisted crossed product as again of
this form, albeit via a possibly different 2-cocycle.
We will impose two additional conditions on the action Γ↷X

in addition to preserving a standard probability measure.

i) Essential freeness: For g ≠ e, the stabilizer fx∈X : g · x = xg
is required to be null. This requirement ensures that the copy
of L∞ðXÞ is a maximal abelian subalgebra of the twisted
crossed product L∞ðXÞ⋊α;ω Γ.

ii) Ergodicity: This condition requires any Γ-invariant subset to
be either null or conull. In the presence of freeness, the
twisted crossed product L∞ðXÞ⋊α;ω Γ is a factor if and only
if the action is ergodic.

Combining these assumptions, the twisted crossed products
L∞ðXÞ⋊α;ω Γ are always II1 factors.
We are now in position to state our main result. Recall that

SLnðZÞ denotes the group of n× n matrices with integer entries
and determinant equal to one.

Theorem 6. Let ðX ; μÞ be a standard probability space, and suppose
that SLnðZÞ acts freely and ergodically by measure-preserving trans-
formations on ðX ; μÞ for n≥ 3. Then, the II1 factor (Eq. 4)

M =
�
L∞ðX ; μÞ⋊α SLnðZÞ

�
⊗R [4]

is strongly Kadison-Kaster stable.
The key property of the group SLnðZÞ used in the proof of

Theorem 6 is cohomological. By combining the results in the
works of Burger and Monod (24, 25) and Monod and Shalom
(26) with later results in the work by Monod (27), it follows
that the bounded cohomology groups

H2
b

�
SLnðZÞ;L∞

R ðX ; μÞ�
vanish for n≥ 3 [a key difficulty, which is overcome in ref. 27,
is that the module L∞

R ðX ; μÞ is a nonseparable Banach space].
In Theorem 6, the groups SLnðZÞ can be replaced by any discrete
group Γ, for which H2

b ðΓ;L∞
R ðX ; μÞÞ= 0; the works (24–27) also

establish a vanishing result for the bounded cohomology in
degree 2 of certain other irreducible higher-rank lattices.
The effect of the vanishing of this bounded cohomology
group is that the open mapping theorem gives a constant
K > 0 with the property that, for any two unitary 2-cocycles
ω1;ω2 : Γ×Γ → UðL∞ðXÞÞ with

sup
g;h∈Γ

��ω1ðg; hÞ−ω2ðg; hÞ
��< ffiffiffi

2
p

;

we can find ν : Γ→UðL∞ðXÞÞ such that Eq. 1 holds, and

sup
g∈Γ

��νðgÞ− 1L∞ðXÞ
��≤ K sup

g;h∈Γ

��ω1ðg; hÞ−ω2ðg; hÞ
��:

For the purpose of finding examples to which Theorem 6 applies,
it is useful to note that, for measure-preserving actions of SLnðZÞ

with n≥ 3 on nonatomic standard probability spaces ðX ; μÞ,
ergodicity implies freeness by ref. 28.
Examples of suitable actions of Γ= SLnðZÞ are given by Ber-

noulli shifts. Given a base probability space ðY ; νÞ (which could
be atomic but is not a singleton), form the infinite product space
X =∏g∈ΓY indexed by the group, and let μ be the product
measure on X. Then, Γ acts on X by shifting the indices:
h · ðxgÞg∈Γ = ðxhgÞg∈Γ. When Γ is infinite, it induces a free ergodic
probability measure-preserving action. By suitably varying the
base space ðY ; νÞ and using the results in the works by Bowen
(29) and Popa (30, 31), one obtains an uncountable family of
pairwise nonisomorphic factors of the form (Eq. 4) to which
Theorem 6 applies.
The role of the hyperfinite II1 factor R in Theorem 6 is to

ensure that the tensor product ðL∞ðX ; μÞ ⋊α SLnðZÞÞ ⊗ R has
the similarity property. Indeed, if one could construct a free
ergodic probability measure-preserving action α : SLnðZÞ↷ ðX ; μÞ
for n≥ 3 so that the resulting crossed product factor L∞ðX ; μÞ⋊α

SLnðZÞ has the similarity property, then this crossed product will
be strongly Kadison-Kastler stable. However, the only known
method for establishing the similarity property for a II1 factor is
to establish property gamma. By combining results from refs. 32
and 33, the presence of Kazhdan’s property (T) (34) for SLnðZÞ
(n≥ 3) provides an obstruction to property gamma for the
crossed product factors L∞ðX ; μÞ⋊α SLnðZÞ.
Outline of the Proof of Theorem 6
In the light of Proposition 5, to prove Theorem 6, it suffices to
show that, if N is close to a II1 factor M of the form (Eq. 4), then
there is a *-isomorphism of M onto N which is close to the in-
clusion of M into the containing BðHÞ. Our strategy involves
three main steps.

i) Because M takes the form M0 ⊗ R (where M0 =L∞ðXÞ⋊α Γ
and R is the hyperfinite II1 factor), we show that N is also
a McDuff factor and after a small unitary perturbation, that
the factorizations of M and N are compatible. To do this
work, we use the spatial embedding theorem to produce a
small unitary perturbation N1 of N, which contains R, and
then, we define N0 = ðR′∩N1Þ. One can check that dðM0;N0Þ
is small. To identify N1 as N0 ⊗ R, we need to show that N1 is
generated by N0 and R.

ii) To obtain an isomorphism between M0 and N0, we transfer
the crossed product structure of M0 to N0. Given a II1 factor
N0, which is sufficiently close to a crossed product factor
M0 =L∞ðXÞ⋊α Γ, it is possible to use Theorem 2 repeatedly
to find a copy of L∞ðXÞ inside N0 close to the copy in M0 and
unitaries vg ∈N0 normalizing L∞ðXÞ and inducing the same
action as the ug. We must then show that N0 is generated by
L∞ðXÞ and the unitaries vg. Once this is achieved, it follows
that N0 is a twisted crossed product

L∞ðXÞ ⋊ α;ωΓ;

where ω is a 2-cocycle measuring the failure of multiplicitiv-
ity of the map g↦ vg.

iii) In the previous step, each vg can be chosen close to the
corresponding ug, and therefore,

ωðg; hÞ = vgvhv*gh ≈ uguhu*gh = 1L∞ðXÞ;         g; h∈Γ:

Our cohomological assumption then ensures that ω is coho-
mologous to a trivial cocycle, which induces a *-isomorphism
between M0 and N0. Moreover, the fact that we ask for the
bounded cohomology group H2

bðΓ;L∞
R ðXÞÞ to vanish [and not

just for H2ðΓ;L∞
R ðXÞÞ to vanish] gives additional information:

one can find a surjective *-isomorphism θ : M0 →N0 such
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that kθðfugÞ− fugk is small for all f ∈L∞ðXÞ with k fk≤ 1 and all
g∈Γ. In general, there is no reason to expect kθðyÞ− yk to be
uniformly small for all y in the unit ball ofM0, but we are able to
use extra ingredients to achieve this result.

A common feature of the first two steps is the need to show
that, if we are given close von Neumann algebras, one of which
is generated by a certain collection of elements, then the second
can be generated by suitably chosen elements close to the orig-
inal generators. Because the set of generators of a von Neumann
algebra is not open in the norm topology, we approach this prob-
lem indirectly by changing representations to standard position
and working at the Hilbert space level. This problem is the
subject of the next two sections, and the techniques developed
are also used to ensure that θðyÞ is uniformly close to y across
the unit ball of M0 in step iii.
The steps above can be used to prove additional stability re-

sults; we give two examples. In Theorem 7, we use the fact that
free groups have cohomological dimension one, and therefore,
H2ðFr;L∞

R ðX ; μÞÞ= 0. This result enables us to untwist the cocycle
ω in step iii; however, because H2

bðFr;RÞ≠ 0, we cannot obtain any
information about how the resulting isomorphism behaves on the
canonical unitaries. In Theorem 8, cohomological methods do not
apply, and instead, we use the recent work by Popa and Vaes
(35) on the uniqueness (up to unitary conjugacy) of the Cartan
masa in a crossed product by a hyperbolic group. The results of
ref. 35 are valid for a more general class of groups, and Theorem
8 holds for this class.

Theorem 7. Suppose that Fr ↷ ðX ; μÞ is a free ergodic measure-
preserving action of a free group on a standard probability space.
Write M =L∞ðXÞ⋊α Fr . Then, there exists δ> 0 such that if
M⊆BðHÞ is a normal unital representation of M and N⊆BðHÞ
is a von Neumann algebra with dðM;NÞ< δ, then N ≅M. Addi-
tionally, if we assume that the action is not strongly ergodic (i.e.,
every sequence of asymptotically invariant subsets of X is approxi-
mately null or conull), then such an isomorphism N ≅M is nec-
essarily spatial.

Theorem 8. There exists δ> 0 with the following property. Suppose
that Γi ↷ ðXi; μiÞ for i= 1; 2 are two free ergodic probability measure-
preserving actions of hyperbolic groups on standard probability
spaces, and write Mi =L∞ðXiÞ⋊Γi. If dðM1;M2Þ< δ, then M1 ≅M2.

Changing Representations, Standard Position, and the Basic
Construction
The theory of normal representations of von Neumann algebras
is easy to describe; any two faithful normal representations of
a von Neumann algebra are unitarily equivalent after an am-
plification. Thus, given faithful unital normal representations
π1 : M→BðH1Þ and π2 : M→BðH2Þ, we can find a Hilbert space
K and a unitary isomorphism U : H1 ⊗ K→H2 ⊗ K such that
Uðπ1ðxÞ ⊗ idKÞ= ðπ2ðxÞ ⊗ idKÞU for all x∈M. In this way, rep-
resentations of a II1 factor M with separable predual on a sepa-
rable Hilbert space are classified up to unitary equivalence by
the coupling constant orM-dimension of the space. Suppose that
M⊆BðHÞ is a unital normal representation on a separable Hilbert
space. The commutant M′ is a type II factor, so is either type
II∞, where we define dimMðHÞ=∞, or type II1, in which case
we define dimMðHÞ= τM′ðeMξ Þ=τMðeM′

ξ Þ, where τM and τM′ are
the normalized traces on M and M′, ξ is a unit vector in H, eMξ
is the projection in M′ onto Mξ and eM′

ξ is the projection in M
onto M′ξ. This quantity is independent of the choice of ξ. In
Lemma 9, when M and N have separable preduals, we can always
reduce to the situation where they act on a separable Hilbert
space by cutting by a projection with range ðM ∪NÞ″ξ for
some ξ∈H, which lies in M′∩N′.

Lemma 9. Suppose that M and N are II1 factors acting on a sepa-
rable Hilbert space H with dðM;NÞ small. Let πM : M→BðKÞ be
a unital normal representation on another separable Hilbert space.
Then, there exists a unital normal representation πN : N→BðKÞ
with dðπMðMÞ; πNðNÞÞ≤OðdðM;NÞ1=2Þ.When M has the similarity
property, this estimate can be improved to dðπMðMÞ; πNðNÞÞ≤
OðdðM;NÞÞ.
Sketch Proof of Lemma 9
We can assume that dimMðHÞ=∞, because if not the case, we
can simultaneously amplify both M and N [that is, replace H by
H⊗ ℓ2ðNÞ, M by M⊗ idℓ2ðNÞ, and N by N⊗ idℓ2ðNÞ] to reach this
situation without changing the distance between M and N. If
dimπM ðMÞðKÞ=∞, then πM is unitarily equivalent to the initial
representation ofM onH, and we can use a unitary implementing
this equivalence to define πN . Otherwise, we can find a projection
e∈M′ such that x↦ xe is a unital normal representation of N on
eðHÞ, which is unitarily equivalent to πM . When M has the sim-
ilarity property, M′ and N′ are close, and therefore, e is close to
a projection f in N′. We can then find a unitary u close to idH
with ueu*= f . This gives us a normal unital representation of N on
eðHÞ by y↦ u*yue for y∈N, and uNu*e is close to Me on eðHÞ.
We define πN by conjugating the representation y↦ u*yuw by the
same unitary used to show that x↦ xe is equivalent to πM .
In the case that M does not have the similarity property, after

the initial amplification, it will not always be possible to approxi-
mate an arbitrary projection inM′ by a projection in N′. However,
using work on the derivation problem in the presence of a cyclic
vector, which dates back to the work in ref. 36, we can show that,
given e∈M′ such that M has a cyclic vector for eðHÞ, then it is
possible to find a nonzero subprojection p≤ e in M′, which is
close to N′. By choosing a projection in N′ close to p, we obtain
close representations of M and N on pðHÞ as above. At this point
in the argument, we are only able to obtain estimates of the form
O
�
dðM;NÞ1=2� in contrast with the OðdðM;NÞÞ estimate that one

obtains in the presence of the similarity property. Our methods
do not enable us to get a lower bound on dimMðpðHÞÞ, which
could be very small, but we can take a further subprojection of p
to ensure that dimMpðpðHÞÞ= dimπM ðMÞðKÞ=n for some n∈N.
In this way, we can make a suitable amplification of our repre-
sentations on pðHÞ such that the resulting representation of M is
unitarily equivalent to πM . This completes the proof of Lemma 9.
A II1 factor M is said to be in standard position on a Hilbert

space K if dimMðKÞ= 1. In this case, there exists a unit vector
ξ∈K such that the vector state h· ξ; ξi restricts to the traces on M
and M′. This vector has the properties that xξ= 0 for x∈M
implies that x= 0 (ξ is separating for M), and Mξ is dense in K (ξ
is cyclic for M). These properties also hold for M′. One defines
the modular conjugation operator JM with respect to ξ
by extending the map xξ↦ x*ξ for x∈M to a conjugate linear
isometry on K. The commutant M′ takes the form JMM   JM ,
and therefore, we have an anti-isomorphism x↦ JMxJM be-
tween M and M′.
By applying Lemma 9 to a pair of close II1 factors M and N on

H, we can find new close representations on a Hilbert space K,
where M is now in standard position. Our objective is to show
that N is also in standard position on K. To establish this result,
we first extend the work in ref. 21 (section 3) to show that N is
almost in standard position in the sense that dimNðKÞ≈ 1; it
follows that M′ and N′ are close on K (this result is automatic
when M has the similarity property). Now, given an amenable
subalgebra P⊆M, we have P⊂ γN and JMPJM ⊂ γN′ for some
small γ, and we can use the spatial embedding theorem (The-
orem 2) two times to replace N by a small unitary perturbation
such that P⊆N and JMPJM ⊆N′. In this way, we can apply
Lemma 10 to see that N is in standard position.
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Lemma 10. Suppose that M is a II1 factor in standard position on K
with respect to ξ∈K, and suppose that A⊆M is a maximal abelian
subalgebra (masa) in M. Suppose that N is another II1 factor on K
such that A⊆N, JMAJM ⊆N′, and dðM;NÞ is sufficiently small.
Then, ξ is a tracial vector for N and N′, and therefore, N is also in
standard position on K.

Sketch Proof of Lemma 10
The lemma is proved by using the unique trace preserving ex-
pectation EN

A from N onto A. It is easy to check that, because A
is maximal abelian in M, it is also maximal abelian in N, and
then, the form of EN

A is known: EN
A ðxÞ lies in the strong*-closed

convex hull of the set fuxu* : u∈UðAÞg of unitary conjugates
of x by A for x∈N. The assumption JMAJM ⊆N′ gives

huxu * ξ; ξi= hxJMuJMξ; JMuJMξi= hxξ; ξi;         u ∈ UðAÞ;

and therefore, hEN
A ðxÞξ; ξi= hxξ; ξi for all x∈N. Because EN

A ðxÞ∈
A⊆M and ξ is tracial for M, we have τM

�
EN
A ðxÞ

�
= hxξ; ξi. How-

ever, it is not hard to check that, because M and N are close, τM
and τN agree on A, and therefore, τN

�
EN
A ðxÞ

�
= hxξ; ξi for x∈N.

Because EN
A is τN -preserving, this shows that ξ is tracial for N.

To see that ξ is also tracial for N′, interchange the roles of
the algebras M and N and their commutants. Here, we use the
standard position of M to ensure that dðM′;N′Þ is small. This
completes the proof.
In fact, we immediately get additional information: in the

situation of Lemma 10, the inclusions A⊆M and A⊆N induce
the same basic construction. This construction, developed ex-
tensively in ref. 37, is the starting point for Jones’s theory of
subfactors, and it plays a key role in the perturbation results
for subalgebras of finite von Neumann algebras (30, 38). Given a
subalgebra A of M, write eA for the projection on K with range
Aξ. The basic construction of A⊆M is the von Neumann algebra
ðM ∪ feAgÞ″ obtained by adjoining eA to M, and it is denoted
hM; eAi. This algebra satisfies hM; eAi= ðJMAJMÞ′.
Corollary 11. With the same hypotheses as in Lemma 10, we have

hM; eAi= hN; eAi:

Proof of Corollary 11
We have JMAJM ⊆N′= JNNJN by hypothesis. Standard properties
of the basic construction from ref. 37 show that eA commutes
with A and JM , and therefore, JMAJM ⊆ JNN  JN ∩​ feAg′=
JNðN ∩ ​ feAg′ÞJN = JNAJN (using the fact that N ∩​ feAg′=A). As
a result,

JMAJM ⊆ JNAJN ⊆ JNNJN =N′:

Now, JMAJM is a masa inM′; moreover,M′ and N′ are close, and
it follows that JMAJM is also maximal abelian in JNNJN =N′.
Hence, JMAJM = JNAJN , and the result follows by taking
commutants. This completes the proof.
After we have reached this point of our argument, we can

replace A in Corollary 11 by an amenable subalgebra P⊆M with
P′∩ M ⊆P using a technical theorem in the work by Popa (39).
This replacement enables us to formulate versions of our main
results for suitable actions of discrete groups on the hyperfinite
II1 factor: any factor of the form ðR ⋊α SLnðZÞÞ⊗R for a prop-
erly outer action α and n≥ 3 is strongly Kadison-Kaster stable.

Using the Basic Construction to Prove Theorem 6
A considerable amount of information regarding an inclusion
A⊆M of finite von Neumann algebras is encoded in the basic
construction algebra hM; eAi. Of particular relevance here is the

result in the work by Popa (ref. 40, proposition 1.4.3), which
shows that a masa A in a II1 factor M is Cartan in the sense
of ref. 41 [i.e., the group of normalizers NMðAÞ=
fu∈UðMÞ : uAu * =Ag generates M as a von Neumann algebra]
if and only if A′∩ hM; eAi is generated by projections that are finite
in hM; eAi. As the spatial embedding theorem, Lemma 9, Lemma
10, and Corollary 11 combine to show that close inclusions
of masas into II1 factors can be adjusted by a small unitary
perturbation to give the same basic construction algebras (al-
beit possibly on a different Hilbert space), we obtain the
next result.

Proposition 12. Let A⊆M be a Cartan masa in a II1 factor acting
on a Hilbert space H. Any inclusion B⊆N with dðM;NÞ and
dðA;BÞ sufficiently small is also an inclusion of a Cartan masa
in a II1 factor.
Given a crossed product II1 factor M0 =L∞ðXÞ⋊Γ arising

from a free ergodic probability measure-preserving action
α : Γ↷ ðX ; μÞ and another factor N0 close to M0, the assumption
of freeness ensures that L∞ðXÞ is a maximal abelian subalgebra
of M0. In step ii of Theorem 6, we use the spatial embedding
theorem to assume that A=L∞ðXÞ⊆N0 and find unitary
normalizers fvggg∈Γ in N0 close to the canonical unitary nor-
malizers fuggg∈Γ inM0. The previous proposition shows that N0
is generated by all normalizers of A, but in fact, N0 is gener-
ated by A∪ fvg : g∈Γg as required for step ii of the proof of
Theorem 6. Once we convert to standard position so that
A⊆M0 and A⊆N0 induce the same basic construction, one
first notes that fugeAu*ggg∈Γ are pairwise orthogonal and sum to
1M0 = 1N0 . Because ug and vg are close, we must have
vgeAv*g ≈ ugeAu*g, but in fact, these projections are equal [be-
cause they both are in ZðA′∩ hM; eAiÞ]. The equation
1N =

P
g∈ΓvgeAv*g can then be used to see that finite linear

combinations
P

g∈Γvgfg (for fg ∈A) are dense in N0.
A similar argument, working at the Hilbert space level, is

used in step i to show that, if M is a McDuff factor of the form
M0 ⊗ R and N is close to M and contains R, then N is generated
by the commuting subalgebras R′∩N and R.
The fact that

P
g∈ΓugeAu*g = 1M0 = 1N0 in ZðA′∩ hM0; eAiÞ is

also vital in step iii of the proof of Theorem 6. At this point, using
our earlier results, we have a crossed product M0 =L∞ðXÞ⋊α Γ
acting in standard position on H with respect to ξ and an iso-
morphic copy N0 ofM0 onH with A=L∞ðXÞ⊆N0 and JM0AJM0 =
JN0AJN0 ⊆N′0. The isomorphism θ : M0 →N0 is obtained from
step ii using the vanishing of the bounded cohomology group
H2

b ðΓ;L∞
R ðXÞÞ, and so it satisfies θðf Þ= f for f ∈A and that

kθðugÞ− ugk is small for all g∈Γ. Because Lemma 10 shows
that M0 and N0 are both in standard position on H, the iso-
morphism θ is spatially implemented on H by W, where W is
given by extending the map W ðxξÞ= θðxÞξ for x∈M0. Since
θðf Þ= f for f ∈ A, it follows that W ∈A′, and similarly, the
assumption that θðM0Þ=N0 ⊆ ðJM0AJM0 Þ′= ðJN0AJN0Þ′ ensures
that W ∈ ðJM0AJM0Þ′= hM0; eAi. That is, W ∈A′∩ hM0; eAi.
Write Pg = ugeAu*g . It is a standard fact that ðA′∩ hM0; eAiÞPg =

APg for each g∈Γ, and so W decomposes as W =
P

g∈ΓwgPg for
some unitary operators wg ∈ A. For each g∈Γ, the condition that
θðugÞ≈ ug translates to αgðweÞ≈wg, and therefore (using the cen-
trality of Pg), W ≈W1 =

P
g∈ΓαgðweÞPg. However, JM0weJM0Pg =

αgðweÞPg, and therefore, W1 ∈ JM0AJM0 ⊆ ðM0 ∪N0Þ′. Thus, θ=
AdðW Þ=AdðW*

1 W Þ has kθ− idM0kcb ≤ 2kW −W1k, giving us
uniform control on kθðxÞ− xk across the unit ball of M0.

Concluding Remarks and Open Questions
We end with some questions and possible future directions.
It is not hard to use Lemma 10 to show that, for each K > 0,

there exists δ> 0 with the property that, if M;N ⊂BðHÞ are II1
factors with dðM;NÞ< δ and dimMðHÞ≤K , then dimNðHÞ=
dimMðHÞ. However, we have not been able to show that
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sufficiently close II1 factors necessarily have the same cou-
pling constant in general. One consequence of a positive answer
to this question would be that, in Theorem 7, the isomorphism
would automatically be spatial without the assumption of a
non-strongly ergodic action.

Question 1.Does there exist δ> 0 such that whenever M;N ⊂BðHÞ
are II1 factors with dðM;NÞ< δ, then dimMðHÞ= dimNðHÞ?
In Theorem 8, we use uniqueness results for Cartan masas

from the work in ref. 35 to obtain an isomorphism. In contrast
with Theorems 6 and 7, this method relies on imposing struc-
tural hypotheses on both M and N. Furthermore, there are
hyperbolic groups Γ for which Theorem 8 applies, but our co-
homological methods do not. Such factors provide a suitable
test case for future developments.

Question 2. Let M =L∞ðXÞ⋊α Γ be a crossed product factor such
that L∞ðXÞ is the unique Cartan masa up to unitary conjugacy but
the comparison map

H2
b

�
Γ;L∞

R ðXÞ�→H2�Γ;L∞
R ðXÞ�

is not zero [i.e., there are nontrivial bounded 2-cocycles, which are
not trivial in H2ðΓ;L∞

R ðXÞÞ]. Does there exist δ> 0 such that any II1
factor N with dðM;NÞ< δ is isomorphic to M?
Is it possible to use the methods in the work in ref. 42 to

find stability results for factors that are completely close [i.e.,
dcbðM;NÞ= sup  dðMnðMÞ;MnðNÞÞ is small]?
Finally, what is the analogous statement to Theorem 6 in the

category of C*-algebras? A major difficulty here is that the known
embedding theorem for separable nuclear C*-algebras from ref. 16
is not as strong as Theorem 2, because it does not guarantee that the
resulting embedding is spatial. Because of the counterexamples
in ref. 8, it cannot give uniform control on the embedding.
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