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Abstract

The asymptotic behavior of the optical potential, describing elastic scatter-

ing of a charged particle α off a bound state of two charged, or one charged

and one neutral, particles at small momentum transfer ∆α or equivalently

at large intercluster distance ρα, is investigated within the framework of

the exact three-body theory. For the three-charged-particle Green func-

tion that occurs in the exact expression for the optical potential, a recently

derived expression, which is appropriate for the asymptotic region under

consideration, is used. We find that for arbitrary values of the energy pa-

rameter the non-static part of the optical potential behaves for ∆α → 0 as

C1∆α + o (∆α). From this we derive for the Fourier transform of its on-

shell restriction for ρα → ∞ the behavior −a/2ρ4α + o (1/ρ4α), i.e., dipole or

quadrupole terms do not occur in the coordinate-space asymptotics. This

result corroborates the standard one, which is obtained by perturbative

methods. The general, energy-dependent expression for the dynamic po-

larisability C1 is derived; on the energy shell it reduces to the conventional

polarisability a which is independent of the energy. We emphasize that the

present derivation is non-perturbative, i.e., it does not make use of adiabatic

or similar approximations, and is valid for energies below as well as above
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I. INTRODUCTION

The incorporation of the long-ranged Coulomb interaction in the theoretical descrip-

tion of reactions between charged composite particles constitutes a problem of long-

standing interest, due to its great importance in atomic and nuclear physics. As a proto-

type we consider the elastic scattering of a charged particle off a cluster composed of two

charged (or one charged and one neutral) particles.

Formally, such a reaction can be described in terms of a single-channel Lippmann-

Schwinger-type integral equation for the elastic scattering amplitude, in which the so-

called optical potential occurs (see, e.g., [1,2]). Although the latter is structurally too

complicated for practical purposes (besides being non-local, energy-dependent, and com-

plex above the threshold for the opening of the lowest inelastic channel, it contains the

three-body Green function which is actually the object whose calculation is attempted),

its very existence is of considerable significance for many purposes.

An alternative formulation is based on the exact three-particle equations [3], suit-

ably generalized to accommodate the long-ranged Coulomb potentials either in coor-

dinate [4], or in momentum space [5–9]. The latter approach leads to coupled multi-

channel Lippmann-Schwinger-type equations whose solution yield simultaneously all two-

fragment, i.e. the (in-)elastic and rearrangement, amplitudes (and with an additional

quadrature also the dissociation amplitudes). For three charged particles, the effective

potentials occurring therein are again too complicated to be used presently for practical

calculations (except with drastic approximations). But, if only two of the three parti-

cles are charged, some version [7] of these equations becomes manageable, and has in

fact already been applied successfully to the calculation of elastic scattering and breakup

observables in the proton-deuteron system [10,11].

Due to the differences in the physical pictures on which these two formulations are

based, the expressions for the optical potential and for the effective potential as used in

conventional applications of the three-body theory, differ appreciably (indeed, in ref. [12]

it has been shown that the former can be derived within the framework of the three-

body theory only under very special and unusual assumptions). It is therefore of general
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interest to gain insight into such properties of effective potentials, which do not depend on

the specific details of the formulation, and are therefore common to both of them. One

important example is the behavior for large separation of the colliding particles which

should be similar in both cases, in contrast to the short-range behavior which in general

will be rather different.

In the present investigation we concentrate on the optical potential. It is known to

simplify considerably when the distance between the colliding particles goes to infinity,

or equivalently when the momentum transfer goes to zero. In fact, its large-distance

behavior has been extracted long time ago by various perturbative methods below [13,14],

and recently also above [15] (cf. also [16,17]) the dissociation threshold. The result is well-

known: besides the static potential which comprises the multipole contributions arising

from the charge distribution of the composite particle, the first non-vanishing term of

longest range is the (local) polarisation potential (proportional to the inverse fourth power

of the distance between the two colliding bodies). But in none of these investigations the

reliability of the approximate, or the convergence of the perturbative, treatment has been

studied.

However, precise knowledge of the asymptotic behavior of the optical potential is of

great interest, for many reasons: not only does it constrain the construction of (the long-

range part of) model optical potentials for practical applications; but it also provides

answers to crucial questions like, e.g., what kind of effective-range expansion be adequate

or what rate of convergence of partial-wave sums is to be expected.

For these reasons, there have recently appeared several attempts to provide non-

perturbative derivations based on three-body theory, both in coordinate [18] and in mo-

mentum [19–23] space. Indeed, it was found that the above mentioned, approximately

derived long-range behavior could be recovered. However, not only are these investiga-

tions lacking the rigour, and often also the generality, desirable in view of the significance

of the result. What is much more restrictive is that these proofs could be established only

for energies below the three-body dissociation threshold.

In the present paper we give, based on the three-body integral equations approach in

momentum space, a non-perturbative derivation of the behavior of the optical potential
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as the momentum transfer goes to zero, which is valid both below and above the three-

body dissociation threshold, and which does not suffer from the shortcomings of the

previous attempts. Of course, this momentum-transfer behavior determines the large-

distance behavior in coordinate space. At the same time we deduce the general (energy-

dependent) form of the induced dipole polarisability. For this purpose, use is made of the

recently developed asymptotic form of the wave function for three charged particles in

the continuum or equivalently of the asymptotic expression for the three-charged-particle

Green function [24], that applies to just that region of the three-body configuration space

which is relevant in the present context.

The paper is organized as follows. In Sec. II we briefly recapitulate the formulation

of the optical potential for elastic scattering from the m-th bound state (either ground

or excited state) of the composite particle within the framework of the three-body the-

ory. When writing down explicitly its leading term in the limit of vanishing momentum

transfer, the above mentioned asymptotic expression for the three-charged-particle Green

function is introduced. The behavior of the optical potential as the momentum transfer

goes to zero is derived in Sec. III. There we also present the general expression of the

induced dipole polarisability. These results are then specialized to on-shell scattering,

both in momentum and in coordinate space. The Summary contains a discussion of our

achievements. Several auxiliary results are collected in the Appendices.

We mention that throughout we use natural units, i.e., h̄ = c = 1. Furthermore, unit

vectors will be denoted by a hat, i. e., â ≡ a/a.
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II. THE OPTICAL POTENTIAL

A. Definition of the optical potential

Consider three distinguishable particles with massesmν and charges eν , ν = 1, 2, 3. We

use Jacobi coordinates: pα (rα) is the relative momentum (coordinate) between particles

β and γ, and µα = mβmγ/(mβ + mγ) their reduced mass; qα (ρα) denotes the relative

momentum (coordinate) between particle α and the center of mass of the pair (βγ), the

corresponding reduced mass being defined as Mα = mα(mβ +mγ)/(mα +mβ +mγ).

The Hamiltonian of the three-body system is

H = H0 + V = H0 +
3
∑

ν=1

Vν , (1)

with H0 being the free three-body Hamiltonian, and

Vα = V S
α + V C

α (2)

the full interaction between particles β and γ, consisting of a short-range (V S
α ) and a

Coulombic part,

V C
α (rα) =

eβeγ
rα

. (3)

The three-body transition operator Uαα(z) which describes elastic and inelastic scat-

tering in channel α, satisfies the equation

Uαα(z) = V̄α + V̄αGα(z)Uαα(z). (4)

Herein,

V̄α =
∑

ν

δ̄ναVν = V̄ S
α + V̄ C

α =
∑

ν

δ̄ναV
S
ν +

∑

ν

δ̄ναV
C
ν (5)

is the channel interaction and

Gα(z) = (z −Hα)
−1 = (z −H0 − Vα)

−1 (6)

the channel Green function. The conventional notation δ̄να = 1 − δνα for the anti-

Kronecker symbol has been used.
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Let |ψαm〉 be the (normalized) bound state wave function (belonging to the binding

energy Êαm, which we assume to be non-degenerate) of the pair (βγ)m, where the index

m denotes the complete set of quantum numbers. The notation is to indicate that we

allow the pair to be either in the ground or in some excited state. The free motion of

particle α relative to the center of mass of (βγ)m is described by the plane wave |qα〉.

Then the quantity

Tαm,αm(q
′
α,qα;E) = 〈q′

α|Tαm,αm(E + i0)|qα〉, (7)

with

Tαm,αm(z) = 〈ψαm|Uαα(z)|ψαm〉, (8)

is on the energy shell, i.e., for

E = Eαm ≡ q̄2α/2Mα + Êαm, q′α = qα = q̄α, (9)

the physical amplitude amplitude for elastic scattering of particle α off the bound state

(βγ)m.

Equation (4) by itself does not yet lead to the desired Lippmann-Schwinger (LS)-type

equation for the effective-two-body elastic scattering operator Tαm,αm(z) since the spectral

decomposition of Gα(z) contains contributions not only from the m-th but also from all

the other bound states, and in particular also from the continuum states, in subsystem α.

This goal is achieved, e.g., by means of the Feshbach projection operator technique [25].

Introduce the projector onto the target state and its orthogonal complement,

Pαm = |ψαm〉〈ψαm|, Qαm = 1− Pαm. (10)

Then

Gα(z) = PαmGα(z) +QαmGα(z)

= GP
α (z) +GQ

α (z), (11)

with

〈q′
α|GP

α (z)|qα〉 = |ψαm〉
δ(q′

α − qα)

z − q2α/2Mα − Êαm

〈ψαm|, (12)
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represents a splitting of the channel Green function into a term (12) which is separable

(with respect to the variables internal to subsystem α), and a remainder. Introducing the

decomposition (11) in (4) yields, e.g. through application of the AGS reduction procedure

[26],

Tαm,αm(z) = Vopt
αm,αm(z) + Vopt

αm,αm(z)
1

z −Q 2
α/2Mα + Êαm

Tαm,αm(z). (13)

For convenience we have introduced the relative momentum operatorQα whose eigenvalue

is qα. Equation (13) is the desired one-channel operator LS equation for the elastic

scattering amplitude. The plane wave matrix elements of potential operator

Vopt
αm,αm(q

′
α,qα; z) = 〈q′

α|〈ψαm|V̄α + V̄αQαm
1

z −Hα −QαmV̄αQαm
QαmV̄α|ψαm〉|qα〉

= 〈q′
α|〈ψαm|V̄α + V̄αG

Q(z)V̄α|ψαm〉|qα〉 (14)

are seen to coincide with the standard definition of the optical potential. Here, the identity

Qαm[z −Hα −QαmV̄αQαm]
−1Qαm = QαmG(z)Qαm =: GQ(z), (15)

G(z) = (z−H)−1 being the resolvent of the full Hamiltonian H , has been used. Of course,

this expression for the optical potential can also be derived directly from the Schrödinger

equation. Its relation to the effective potentials introduced in the three-body theory has

been described in [12].

The question of the solvability of an equation like (13) depends crucially on the singular

behavior of the effective potential Vopt
αm,αm(q

′
α,qα;E) in the limit that the momentum

transfer

∆α = q′
α − qα (16)

goes to zero. In leading order the latter is defined entirely by the Coulombic part V̄ C
α

of the channel interaction, i.e., it does depend neither on the short-ranged part V̄ S
α nor

on the internal interaction Vα. Of course, a given behavior of the optical potential for

∆α → 0 reflects itself in a corresponding asymptotic behavior in coordinate space.
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B. Explicit expression

In this section we establish the explicit expression of the optical potential which will

be used in the following investigation of its analytical behavior in the limit ∆α → 0.

Let us rewrite (14) as

Vopt
αm,αm(q

′
α,qα;E) = Vopt (1)

αm,αm(q
′
α,qα) + Vopt (2)

αm,αm(q
′
α,qα;E), (17)

with

Vopt (1)
αm,αm(q

′
α,qα) = 〈q′

α|〈ψαm|V̄α|ψαm〉|qα〉, (18)

Vopt (2)
αm,αm(q

′
α,qα;E) = 〈q′

α|〈ψαm|V̄αGQ(E + i0)V̄α|ψαm〉|qα〉. (19)

The first term (18) on the r.h.s. of (17), which is called the static potential, has for

∆α → 0 only the trivial Coulomb-type singular behavior

Vopt (1)
αm,αm(q

′
α,qα)

∆α→0≈ 〈q′
α|〈ψαm|V̄ C

α |ψαm〉|qα〉
∆α→0
=

4πeα(eβ + eγ)

∆2
α

+ · · · (20)

(the dots are to indicate terms ∼ ∆−1
α and ∼ ln∆α which may arise, e.g., if the target

state is not spherically symmetric). It can be taken care of in the LS equation (13) in the

usual manner (see, e.g., [9]).

Consequently the decisive question concerns the behavior of Vopt (2)
αm,αm(q

′
α,qα;E) in the

limit of zero momentum transfer. In lowest order perturbation theory, which in the present

language is equivalent to approximating in (19) the full three-body Green functionG(z) by

its lowest order approximation Gα(z), and by taking into account that only the Coulombic

part V̄ C
α of the channel potential contributes to the leading singular behavior, one has on

the energy shell the well-known result

Vopt (2)
αm,αm(q

′
α,qα;Eαm)

∆α→0≈ 〈q′
α|〈ψαm|V̄ C

α G
Q
α (Eαm + i0)V̄ C

α |ψαm〉|qα〉 ∆α→0∼ ∆α, (21)

or in coordinate space

Vopt (2)
αm,αm(ρα)

ρα→∞≈ − a

2ρ4α
, (22)
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for all energies. The factor a represents the polarizability of the composite particle.

However, it is of outstanding importance to know whether this fundamental result holds

also for the exact optical potential (19), i.e., even after all terms of the perturbation

expansion of G(z) are summed up. In fact, for energies below the three-body dissociation

threshold, i.e. for E < 0, it has been suggested in [18–23] that (21) remains true also

for the exact expression (19). It is the purpose of the present investigation to derive its

behavior for arbitrary E, that is in particular also for E > 0.

Let us write down the matrix element (19) explicitly in the coordinate-space represen-

tation,

Vopt (2)
αm,αm(q

′
α,qα;E) =

∑

ν

δ̄να
∑

µ

δ̄µα

∫

dρ′
α dr

′
α dρα drα e

−iq′

α·ρ
′

α

×ψ∗
αm(r

′
α)Vµ(ǫαµρ

′
α − λµr

′
α)G

Q(ρ′
α, r

′
α;ρα, rα;E + i0)

×Vν(ǫανρα − λνrα)ψαm(rα)e
−iqα·ρα . (23)

For convenience, we have introduced the antisymmetric symbol ǫβα = −ǫαβ , with ǫαβ = +1

for (α, β) being a cyclic ordering of (1, 2, 3), and the mass ratios λν = mν/(mβ +mγ), for

ν = β, γ.

To further evaluate expression (23), the spectral decomposition of the kernel ofGQ(E+

i0) must be inserted and then the integrations over rα,ρα, r
′
α and ρ

′
α must be carried

out. This requires in principle the knowledge of all the solutions of the full three-body

Schrödinger equation

{

E − Trα − Tρ
α
−

3
∑

ν=1

Vν

}

Ψ(+)(rα,ρα) = 0, (24)

whether they describe states with asymptotically two or three unbound particles. Only

the states corresponding to the discrete spectrum of H , i.e. three-body bound states, are

not needed since they do not contribute to a singular behavior of Vopt (2)
αm,αm in this limit (the

reason being simply that they yield only terms which are separable in the incoming and

outgoing momenta and thus do not depend on the momentum transfer at all). Here, Trα

is the kinetic energy operator for the relative motion of particles β and γ, and Tρ
α
the

one for the motion of particle α relative to the center of mass of the pair (βγ)m. They

are defined as
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Trα = −∆rα

2µα
, Tρ

α
= −

∆ρ
α

2Mα
. (25)

The solutions of (24) are not known, but also not really needed. For, we are interested

only in the behavior of Vopt (2)
αm,αm for ∆α → 0. Below it will be shown that in this limit the

leading, ∆α-dependent term is defined by the singularities resulting from the divergence

of the integrals in (23) over ρα for ρα → ∞, and over ρ
′
α for ρ′α → ∞. (Compare the

discussion for an analogous two-body problem in ref. [28]). The integrals over rα and r′α

do not induce a singular behavior. For, the wave functions ψαm(rα) and ψ
∗
αm(r

′
α) of the

incoming and outgoing bound pair (βγ)m, respectively, practically confine the region of

integration over the magnitudes of the subsystem-internal variables rα and r′α to values

rα, r
′
α ≤ κ−1

αm, where καm =
√

2µα|Êαm|. For this reason, when investigating the behavior

of the leading term of Vopt (2)
αm,αm in the limit ∆α → 0 it suffices to know the Green function

GQ(ρ′
α, r

′
α;ρα, rα;E + i0) in the asymptotic region

Ωα ∩ Ω′
α, (26)

with

Ωα : rα/ρα → 0, ρα → ∞, (27)

Ω′
α : r′α/ρ

′
α → 0, ρ′α → ∞. (28)

In Ωα the Hamiltonian H takes the form

H
Ωα−→ Has

α = Trα + Tρ
α
+ Vα(rα) + vCα (ρα), (29)

where

vCα (ρα) = lim
ρα→∞, rα/ρα→0

{Vβ(ǫαβρα − λβrα) + Vγ(ǫαγρα − λγrα)} =
eα (eβ + eγ)

ρα
(30)

is the Coulomb potential between the charge eα of particle α and the total charge (eβ+eγ)

of the particles β and γ concentrated in their center of mass. Because of this property

vCα (ρα) is termed ‘center-of-mass Coulomb potential for channel α’. Note that in the

region Ωα we could neglect in (30) the short-range interactions between particles α and

γ, and α and β, completely, and terms ∼ rα/ρ
2
α in the corresponding Coulombian parts.
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The well-known class of solutions of the asymptotic Schrödinger equation

{E −Has
α } Ψ

(+)as
q0
αm

(ρα, rα) = 0, (31)

belonging to the three-body energy E = q0α
2
/2Mα + Êαm, is given by

Ψ
(+)as
q0
αm

(ρα, rα) = ψαm(rα)ψ
(+)
q0
α
(ρα). (32)

They consist of a product of the bound state wave function of the pair (βγ)m introduced

above, which satisfies the two-body Schrödinger equation (we use the same symbols for

operators acting in the two- and in the three-particle space)

{

Êαm − Trα − Vα(rα)
}

ψαm(rα) = 0, (33)

and the ‘center-of-mass Coulomb scattering wave function’, satisfying

{

q0α
2

2Mα
− Tρ

α
− vCα (ρα)

}

ψ
(+)
q0
α
(ρα) = 0. (34)

The solution of (34) is explicitly known,

ψ
(+)
q0
α
(ρα) = eiq

0
α·ραN̄0

αF (−iη̄0α, 1; i(q0αρα − q0
α · ρα)), (35)

with

η̄0α =
eα(eβ + eγ)Mα

q0α
, N̄0

α = e−πη̄0α/2 Γ(1 + iη̄0α). (36)

Here, Γ(x) denotes the Gamma function, and F (a, b; x) the confluent hypergeometric

function [27]. Note that eventual bound state solutions of (34) for an attractive center-

of-mass Coulomb potential are of no interest in the present context since they would

correspond to a situation with all three particles being confined (see below).

We also need the solution of the asymptotic Schrödinger equation (31) with all three

particles asymptotically in the continuum, i.e., the one which belongs to the three-body

energy E = q0α
2
/2Mα + k0α

2
/2µα. It will be called asymptotic continuum solution of the

Schrödinger equation in Ωα. This solution has been found in [24], and has the form

Ψ
(+)as
q0
αk

0
α
(ρα, rα) = ψ

(+)
k0
α(ρα

)(rα) e
iq0

α·ραeiη
0

β
ln(k0

β
ρα−ǫαβk

0

β
·ρ

α
)eiη

0
γ ln(k

0
γρα−ǫαγk

0
γ ·ρα

). (37)
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The Coulomb parameters are given as

η0β =
eαeγµβ

k0β
, η0γ =

eαeβµγ

k0γ
, (38)

and the momenta k0
β and k0

γ are defined as the usual linear combinations of k0
α and q0

α,

k0
ν = ǫανµαq

0
α/Mν − λνk

0
α, with ν = β, γ. (39)

The wave function ψ
(+)
k0
α(ρα

)(rα) is the continuum solution of the two-body-like Schrödinger

equation

{

k0α
2
(ρα)

2µα
− Trα − Vα(rα)

}

ψ
(+)
k0
α(ρα

)(rα) = 0, (40)

with

k0
α(ρα) = k0

α +
aα(ρ̂α)

ρα
, (41)

aα(ρ̂α) = −
∑

ν

δ̄ναη
0
νλν

ǫαν ρ̂α − k̂0
ν

1− ǫαν ρ̂α · k̂0
ν

, (42)

describing the relative motion of particles β and γ with local energy Eα(ρα) =

k0α
2
(ρα)/2µα. Thus it is, in fact, a three-body wave function, the influence of the presence

of the third particle α however being confined to a shift of the two-body relative momen-

tum of particles β and γ from its asymptotic (for ρα → ∞, i.e. particle α is infinitely far

apart) value k0
α to the local value k0

α(ρα). The latter depends explicitly on the distance

of particle α from the center of mass of the pair (βγ)m as a result of long-ranged three-

body correlations. Nevertheless, it is to be noted that, since ρα enters the Schrödinger

equation (40) only parametrically via the local energy, its solutions ψ
(+)
k0
α(ρα

)(rα) and the

genuine two-body bound state wave functions ψαm(rα), which are solutions of (33), are

eigenfunctions of the same Hamiltonian {Trα + Vα(rα)} to different eigenvalues, and are

therefore orthogonal.

Let us add two comments.

1) It has to be pointed out that (37) is valid in all of Ωα, except for the so-called

singular directions which are defined by the conditions ǫαβk̂
0
β · ρ̂α = 1 and ǫαγk̂

0
γ · ρ̂α = 1.

As was shown in [24], in this whole region Ψ
(+)as
q0
αk

0
α
(ρα, rα) (i) satisfies the asymptotic
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Schrödinger equation (31), or equivalently the three-body Schrödinger equation (24) in

Ωα, up to terms of the order O(1/ρ2α), viz.,

{E −Has
α } Ψ

(+)as
q0
αk

0
α
(ρα, rα) = O

(

1

ρ2α

)

, (43)

and (ii) represents the leading term in the asymptotic expansion in Ωα of the full wave

function Ψ
(+)
q0
αk

0
α
(ρα, rα), which belongs to three asymptotically free particles in the con-

tinuum with Jacobi momenta k0
α and q0

α, viz.,

Ψ
(+)
q0
αk

0
α
(ρα, rα) = Ψ

(+)as
q0
αk

0
α
(ρα, rα) +O

(

1

ρα

)

. (44)

The next-to-leading term in the expansion (44) satisfies (43) in the next orders. We

remark that the second term in (44), which is of the order O(1/ρα), includes rescattering

of the particles β and γ from particle α [4]. Its existence can easily be deduced within

the solvable model considered in [24] (which corresponds to Vα = 0, mα = ∞).

2) The asymptotic Schrödinger equation (31) admits also another (exact) solution,

belonging to the same energy E = q0α
2
/2Mα + k0α

2
/2µα as (37), viz.

Ψ̃
(+)as
q0
αk

0
α
(ρα, rα) = ψ

(+)
k0
α
(rα)ψ

(+)
q0
α
(ρα), (45)

where ψ
(+)
k0
α
(rα) is again continuum solution of the two-particle Schrödinger equation (40),

but to the energy k0α
2
/2µα. However, as shown in [24] this eigenfunction of the asymptotic

Hamiltonian Has
α is not the leading term in the asymptotic expansion in Ωα of the solution

of the original Schrödinger equation (24), that is, it does not satisfy a relation like (44).

Hence it is not to be used in the present context (as was done mistakenly in [18]).

Consequently, the asymptotic form of the spectral representation of the three-body

Green function GQ(z), which is valid in Ωα ∩ Ω′
α and is therefore appropriate for the

investigation of the singularity structure of Vopt (2)
αm,αm, has the form

GQ(ρ′
α, r

′
α;ρα, rα;E + i0)

Ωα∩Ω′

α−→ GQas(ρ′
α, r

′
α;ρα, rα;E + i0) =

∫

dq0
α

(2π)3







∑

n 6=m

ψαn(r
′
α)ψ

(+)
q0
α
(ρ′

α)ψ
(+)∗
q0
α

(ρα)ψ
∗
αn(rα)

[E + i0− q0α
2/2Mα − Êαn]

+
∫ dk0

α

(2π)3
Ψ

(+)as
q0
αk

0
α
(ρ′

α, r
′
α)Ψ

(+)as∗
q0
αk

0
α
(ρα, rα)

[E + i0− q0α
2/2Mα − k0α

2/2µα]







. (46)
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One last point concerns the fact that in the second term on the r.h.s. of (46) the

integrations over q0
α and k0

α extend also over the singular directions, i.e., directions such

that ǫαβk̂
0
β · ρ̂α = 1 and ǫαγk̂

0
γ · ρ̂α = 1 holds. But there, as mentioned above, the

asymptotic expansion (44) is not valid. Thus, in principle in the vicinity of these directions

the exact expression of the three-body wave function Ψ
(+)
q0
αk

0
α
(ρα, rα) must be used, which

is however unknown. Since the latter is normalized to δ(q0
α − q0′

α )δ(k
0
α − k0′

α ), it has

to be integrable everywhere, including the singular directions. The consequence is that

the contribution from the infinitely small regions containing the singular directions is

infinitely small [28]. Thus, when looking for the asymptotic behavior of Vopt (2)
αm,αm(q

′
α,qα;E)

for ∆α → 0, in the main order we can approximate the exact wave function Ψ
(+)
q0
αk

0
α
(ρα, rα)

by Ψ
(+)as
q0
αk

0
α
(ρα, rα) in the whole integration region, including the singular directions. Of

course, some care must be taken before using expression (37) in the singular directions

since, as follows from its definition (42), aα(ρ̂α) diverges there. One possible remedy

has been proposed in the Appendix of ref. [24]. It consists in writing aα(ρ̂α)/ρα ≈

i
∑

ν=β,γ ǫανλν∇ρ
α
lnF (−iην , 1; i(kνρα − ǫανkν · ρα)). The right-hand side has the virtue

of remaining regular when the singular directions are approached, while away from them

it coincides for ρα → ∞ in leading order with the right-hand side of (42).

Summarizing, higher order terms in the expansion (44) will not contribute to the

leading term of Vopt (2)
αm,αm(q

′
α,qα;E) in the limit ∆α → 0, because its behavior is defined

by the divergence of the integrals over ρ
′
α and ρα in (23) for ρ′α, ρα → ∞. And the

contribution from the infinitely small neighbourhoods of the singular directions is infinitely

small. Thus we can use the representation (46) everywhere.

As discussed above, in Ωα the potentials Vβ and Vγ occurring in (23) can in the main

order in 1/ρα be approximated by their Coulombic parts V C
β and V C

γ . The same holds

true in Ω′
α. Thus, in the limit ∆α → 0 one gets for the leading, ∆α-dependent part Vopt (as)

αm,αm

of the optical potential term Vopt (2)
αm,αm:

Vopt (2)
αm,αm(q

′
α,qα;E)

∆α→0≈ Vopt (as)
αm,αm(q′

α,qα;E)

=
∑

µ,ν

δ̄ναδ̄µα

∫

ρ′α≥A
dρ′

α dr
′
α

∫

ρα≥A
dρα drα
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×
∫

dq0
α

(2π)3
e−iq′

α·ρ
′

αψ∗
αm(r

′
α)V

C
µ (ǫαµρ

′
α − λµr

′
α)

×






∑

n 6=m

ψαn(r
′
α)ψ

(+)
q0
α
(ρ′

α)ψ
(+)∗
q0
α

(ρα)ψ
∗
αn(rα)

[E + i0− q0α
2/2Mα − Êαn]

+
∫

dk0
α

(2π)3
Ψ

(+)as
q0
αk

0
α
(ρ′

α, r
′
α)Ψ

(+)as∗
q0
αk

0
α
(ρα, rα)

[E + i0− q0α
2/2Mα − k0α

2/2µα]







×V C
ν (ǫανρα − λνrα)ψαm(rα)e

iqα·ρα . (47)

The radius A, which defines the lower limits in the integrals over the magnitudes of ρ′
α

and ρα, has to be chosen so large that A ≫ 1/καm, with καm defined previously. This

condition ensures that we are allowed to use the asymptotic expansion (44) and to replace

the full two-body potentials by their Coulombic parts. These approximations have already

been introduced in (47).
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III. BEHAVIOR OF THE OPTICAL POTENTIAL IN THE LIMIT OF

VANISHING MOMENTUM TRANSFER

In this section we will make use of techniques and results developed for an analogous

problem in two-particle scattering in [28]. In Ωα we can use the asymptotic expansion

V C
ν (ǫανρα − λνrα) =

eν̃eα
ρα

+ ǫανλν
eν̃eα
ρ2α

(ρ̂α · rα) +O

(

r2α
ρ3α

)

, with ν 6= ν̃ = β, γ. (48)

For the following it proves useful to apply the familiar screening to the Coulomb po-

tentials which we choose to be of exponential type in coordinate space, i.e., V C
α (rα) →

V C
α (rα)e

−δrα , δ > 0. The zero-screening limit δ → +0 will then be taken at the end.

Substitute (37) and (48) into (47). The orthogonality of the bound state wave function

ψαm(rα) to all the other bound state wave functions ψαn(rα) for n 6= m and to the scatter-

ing wave functions ψ
(+)
k0
α(ρα

)(rα) causes the vanishing of the contribution of the first term

of the expansion (48). Thus one obtains in leading order for ∆α → 0:

Vopt (as)
αm,αm(q′

α,qα;E)
∆α→0≈ lim

δ→+0

∫

dq0
α

(2π)3

∫

ρ′α≥A
dρ′

α

∫

ρα≥A
dρα

e−i(q′

α−q0
α)·ρ

′

α

ρ′2
α

e−δρ′α

×






ψ̃
(+)
q0
α
(ρ′

α)
∑

n 6=m

Dmn(ρ̂
′
α)Dnm(ρ̂α)

[E + i0− q0α
2/2Mα − Êαn]

ψ̃
(+)∗
q0
α

(ρα)

+
∫

dk0
α

(2π)3
∏

ν=β,γ

eiη
0
ν ln(k0νρ

′

α−k0
ν ·ρ

′

α
)
∏

σ=β,γ

e−iη0σ ln(k0σρα−k0
σ·ρα

)

×
Dmk0

α(ρ
′

α
)(ρ̂

′
α)Dk0

α(ρα
)m(ρ̂α)

[E + i0− q0α
2/2Mα − k0α

2/2µα]

}

e−δρα
ei(qα−q0

α)·ρα

ρ2α
, (49)

where we have introduced

Dnm(ρ̂α) = ǫαβeα(λβeγ − λγeβ)
∫

drαψ
∗
αn(rα)(ρ̂α · rα)ψαm(rα), (50)

Dk0
α(ρα

)m(ρ̂α) = ǫαβeα(λβeγ − λγeβ)
∫

drαψ
(+)∗
k0
α(ρα

)(rα)(ρ̂α · rα)ψαm(rα), (51)

Dmn(ρ̂α) = D∗
nm(ρ̂α), Dmk0

α(ρα
)(ρ̂α) = D∗

k0
α(ρα

)m(ρ̂α). (52)

For convenience, the plane wave has been extracted in (49) from the center-of-mass

Coulomb wave function (35), by writing ψ
(+)
q0
α
(ρα) = eiq

0
α·ραψ̃

(+)
q0
α
(ρα).

Inspection of (49) reveals that the integrals over ρ′α and ρα will diverge for ρ′α, ρα → ∞

if and only if (q′
α − q0

α)
2 → −δ2 and (qα − q0

α)
2 → −δ2, respectively. These divergences

will give rise to singularites in the integrand of the final q0
α-integration at the positions
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(q′
α − q0

α)
2 + δ2 = 0 and (qα − q0

α)
2 + δ2 = 0. (53)

For δ → +0 we get from (53) for the positions of the singularities

q0
α = q′

α, q0
α = qα. (54)

Proceeding then in close analogy to [28], it will be shown below that the coincidence of

these singularities when integrating over q0
α gives rise to a singularity of Vopt (as)

αm,αm in the

limit ∆α → 0 of the form

Vopt (as)
αm,αm(q′

α,qα;E)
∆α→0∼ ∆α =

√

q′α
2 + q2α − 2q′αqαz

q′α→qα∼
√
1− z, z = q̂′

α · q̂α. (55)

That is, Vopt (as)
αm,αm has a singularity in the forward direction at z = 1 in the z-plane which

defines the behavior of the leading term in the limit z → 1, or equivalently ∆α → 0.

From (54) we can conclude that in the limit ∆α → 0 the main contribution to the

integral over q0
α comes from the neighbourhood

q0
α ≈ qα ≈ q′

α. (56)

In [28] this has been proved in the case of two-body scattering, but it holds also for the

three-body case considered here. For, the additional integration over k0
α appearing in

the intermediate three-body continuum state contribution in (49) does not influence this

conclusion. Thus the leading singular behavior of Vopt (as)
αm,αm is defined by the divergence of

the integrals over ρα, over ρ
′
α, and over q0

α.

A. Contribution from two-fragment intermediate states

Let us first consider that part of (49) which is due to the contribution from all sub-

system bound states n 6= m in the intermediate state,

Vopt (as)
αm,αm (b)(q

′
α,qα;E)

∆α→0≈ lim
δ→+0

∫

dq0
α

(2π)3

∫

ρ′α≥A
dρ′

α

∫

ρα≥A
dρα

e−iq′

α·ρ
′

α

ρ′2
α

e−δρ′αψ
(+)
q0
α
(ρ′

α)

×
∑

n 6=m

Dmn(ρ̂
′
α)Dnm(ρ̂α)

[q2αn/2Mα + i0 − q0α
2/2Mα]

ψ
(+)∗
q0
α

(ρα)e
−δρα

eiqα·ρα

ρ2α
. (57)
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Since the behavior of Vopt (as)
αm,αm (b) for ∆α → 0 is determined by momenta characterized by

(56), the propagator

dn(q
0
α) =

[

E + i0− q0α
2
/2Mα − Êαn

]−1
(58)

can be taken out from under the integral over q0
α at the point q0α = qα, provided it is not

singular there. Let us write (58) as

dn(q
0
α) = 2Mα/

[

q2αn − q0α
2
+ i0

]

, (59)

with (recall (9))

q2αn = 2Mα(E − Êαn) = q̄2α + 2Mα(Êαm − Êαn), n 6= m. (60)

If q0
α = qα, then for on-shell scattering, i.e. for qα = q̄α, dn(qα) is always finite. However,

for off-shell scattering (qα 6= q̄α), dn(qα) has for E− Êαn > 0 a pole at qα = qαn. This pole

occurs both for E > 0 and for E < 0, i.e. for energies above and below the dissociation

threshold.

Summarizing, for q0α = qα 6= qαn, dn(q
0
α) is not singular and can therefore be taken out

from under the integral over q0
α at the momentum q0α = qα when trying to extract the

behavior of Vopt (as)
αm,αm in the limit ∆α → 0 in leading order [28]. Clearly this is no longer

allowed at the point qα = qαn where the propagator dn(qα) has a pole.

Thus, if qα 6= qαn, we have in leading order

Vopt (as)
αm,αm (b)(q

′
α,qα;E)

∆α→0≈
∑

n 6=m

2Mα

q2αn − q2α
lim
δ→+0

∫

ρ′α≥A
dρ′

α

∫

ρα≥A
dρα

e−iq′

α·ρ
′

α

ρ′2
α

e−δρ′αDmn(ρ̂
′
α)

×Dnm(ρ̂α)e
−δρα

eiqα·ρα

ρ2α

∫

dq0
α

(2π)3

{

ψ
(+)
q0
α
(ρ′

α)ψ
(+)∗
q0
α

(ρα)
}

. (61)

We can use the completeness relation

∫

dq0
α

(2π)3

{

ψ
(+)
q0
α
(ρ′

α)ψ
(+)∗
q0
α

(ρα)
}

= δ(ρ′
α − ρα)−

∑

κ

ψκ(ρ
′
α)ψ

∗
κ(ρα), (62)

for the solutions of (34). Of course, if the center-of-mass Coulomb potential vCα (ρα)

is repulsive, the sum over all bound states κ with wave functions ψκ(ρα) is missing.

Introducing (62) into (61) we obtain
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Vopt (as)
αm,αm (b)(q

′
α,qα;E)

∆α→0≈
∑

n 6=m

2Mα

q2αn − q2α

∫

ρα≥A
dρα

e−i∆α·ρα

ρ4α
|Dnm(ρ̂α)|2. (63)

To arrive at this expression we have already taken into account that, owing to the presence

of the factor ρ−4
α in the integrand, the integral in (63) converges, so that the limit δ → +0

and the integration over ρα could be interchanged.

In fact, the result (63) is valid both for repulsive and attractive center-of-mass Coulomb

potentials. For, when deriving it for the latter case, one only has to bear in mind that the

bound state part in (62), when inserted in (61), gives rise to terms in which the integrals

over ρα and ρ
′
α do not diverge for ρα, ρ

′
α → ∞, due to the exponential decay of the bound

state wave functions, and thus lead to nonsingular expressions. Furthermore, each of these

terms is separable with respect to qα and q′
α; thus they can not contribute at all to the

momentum-transfer dependence of Vopt (as)
αm,αm (b) in the limit ∆α → 0.

In the case qα = qαn, the propagator dn(q
0
α) can not be taken out from under the

integral over q0
α at the point q0α = qα. This implies that at the discrete points qα =

qαn, n 6= m, which are accessible in off-shell scattering only, the limit ∆α → 0 in Vopt (as)
αm,αm (b)

requires special considerations. This investigation is deferred to Appendix A where it is

shown that at these discrete momenta Vopt (as)
αm,αm (b) remains regular in the limit ∆α → 0.

It is now an easy task to extract the behavior of (63) for ∆α → 0. To this end we

write (50) in the form

Dnm(ρ̂α) = ρ̂α ·Dnm =
i

ρα
lim
p→0

(Dnm ·∇p)e
−ip·ρ

α, (64)

with

Dnm = ǫαβeα(λβeγ − λγeβ)
∫

drαψ
∗
αn(rα)rαψαm(rα), (65)

and use the symmetry property (52). Then

Vopt (as)
αm,αm (b)(q

′
α,qα;E)

∆α→0≈
∑

n 6=m

2Mα

q2αn − q2α
lim

p,p′→0
(Dmn ·∇p′)(Dnm ·∇p)J(u), (66)

the integral J(u) being defined as

J(u) =
∫

ρα≥A
dρα

eiρα
·u

ρ6α
=

4π

u

∫ ∞

A
dρα

sin uρα
ρ5α

, (67)
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with u = p′ − ∆α − p. This integral is evaluated in Appendix B. Substituting its

asymptotic form (B.3) for u→ 0 (i.e. p′,p, and ∆α going to zero) into (66) leads to

Vopt (as)
αm,αm (b)(q

′
α,qα;E)

∆α→0
= C(b)

m ∆α + o (∆α), (68)

with

C(b)
m = −π

2

2

∑

n 6=m

Mα

q2αn − q2α

[

|Dnm|2 + |∆̂α ·Dnm|2
]

. (69)

We mention that the action of ∇p′ and ∇p onto the term ∼ u2 in the asymptotic form

(B.3) for J(u) yields in the limit p,p′ → 0 also a ∆α-independent term. The latter

was, however, omitted in (68) since Vopt (as)
αm,αm (b) was defined as the leading, ∆α-dependent

contribution from the intermediate two-fragment states to the nontrivial part Vopt (2)
αm,αm of

the optical potential in the limit ∆α → 0.

For on-shell scattering (q′α = qα = q̄α) we have

(q2αn − q2α)/2Mα = Êαm − Êαn, n 6= m, (70)

and hence (69) becomes

C(b)
m = −π

2

4

∑

n 6=m

1

Êαm − Êαn

[

|Dnm|2 + |∆̂α ·Dnm|2
]

. (71)

Thus, Vopt (as)
αm,αm (b) as given by (68) and (71), depends only on the momentum transfer ∆α,

and not on the incoming or outgoing momentum qα and q′
α separately, or on the energy.

Consequently, on the energy shell we can write (63) as

Vopt (as)
αm,αm (b)(q

′
α,qα;Eαm + i0) ≡ Vopt (as)

αm,αm (b)(∆α)

∆α→0≈
∫

ρα≥A
dραe

−i∆α·ραVopt (as)
αm,αm (b)(ρα), (72)

where

Vopt (as)
αm,αm (b)(ρα) =





∑

n 6=m

|Dnm(ρ̂α)|2
Êαm − Êαn





1

ρ4α
(73)

describes the asymptotics of Vopt (as)
αm,αm (b) in the coordinate space. It is a local potential,

representing the contribution to the polarisation potential from all the intermediate two-

fragment states.
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B. Contribution from intermediate three-particle continuum states

We now proceed to investigate the contribution Vopt (as)
αm,αm (c) of the intermediate three-

particle continuum states to the optical potential, which is given by the integral part in

the wavy brackets of (49), in the limit ∆α → 0:

Vopt (as)
αm,αm (c)(q

′
α,qα;E)

∆α→0≈ lim
δ→+0

∫

dq0
α

(2π)3

∫

ρ′α≥A
dρ′

α

∫

ρα≥A
dρα

e−i(q′

α−q0
α)·ρ

′

α

ρ′2
α

e−δρ′α

×e−δρα
ei(qα−q0

α)·ρα

ρ2α
L(q0

α;ρα,ρ
′
α), (74)

with

L(q0
α;ρα,ρ

′
α) =

∫

dk0
α

(2π)3
∏

ν=β,γ

eiη
0
ν ln(k0νρ

′

α−k0
ν ·ρ

′

α
)
∏

σ=β,γ

e−iη0σ ln(k0σρα−k0
σ ·ρα

)

×
Dmk0

α(ρ
′

α
)(ρ̂

′
α)Dk0

α(ρα
)m(ρ̂α)

[E + i0− q0α
2/2Mα − k0α

2/2µα]
. (75)

Consider the integration over q0
α in (74). Since, as discussed above, the behavior

of Vopt (as)
αm,αm for ∆α → 0 is defined by momenta characterized by the restriction (56), the

function L(q0
α;ρα,ρ

′
α) can be taken out from under the integral over q0

α at the momentum

q0
α = qα provided it is nonsingular there. A singularity of L in the q0

α-plane, which may

be of concern to us in the present context, can be generated in (75) only by the pole of

the propagator

dk0α(q
0
α) =

[

E + i0− q0α
2
/2Mα − k0α

2
/2µα

]−1
(76)

k0α−plane. In fact, this pole induces in the function L(q0
α;ρα,ρ

′
α) a singularity in the

q0α-plane at q0α =
√
2MαE (the positive square root is singled out by the infinitely small

imaginary part +i0 in the propagator). It is an end point singularity which results from

the coincidence of the propagator pole with the lower limit zero of the integration over

k0α.

Hence one has to distinguish two cases.

(i) qα 6=
√
2MαE, i.e., the function L(q0

α;ρα,ρ
′
α) is regular at the momentum q0

α = qα

(this is obvious since the propagator pole at k0α =
√

2µα(E − q2α/2Mα) 6= 0 does not

coincide with the lower limit k0α = 0 of the integration in (75)). As a consequence,
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L(q0
α;ρα,ρ

′
α) can be taken out from under the integral over q0

α at q0
α = qα when looking

for the behavior of Vopt (as)
αm,αm (c) in the limit ∆α → 0. This holds true a fortiori for the

propagator dk0α(q
0
α) in (75). For q0α = qα, the latter can be written as (recall (9))

dk0α(qα) =
[

q̄2α/2Mα − q2α/2Mα − k0α
2
/2µα + Êαm + i0

]−1
. (77)

Note that on the energy shell, i.e., for qα = q̄α, expression (77) simplifies to

dk0α(qα) = −
[

|Êαm|+ k0α
2
/2µα

]−1
< 0, (78)

that is, the propagator dk0α(q
0
α) is nonsingular at q

0
α = qα = q̄α for all k0α.

(ii) qα =
√
2MαE, which can happen only off the energy shell for E > 0. In this case

L(q0
α;ρα,ρ

′
α) cannot be taken out from under the integral over q0

α in (74) at the point

q0
α = qα because it is singular there. A closer examination, which is deferred to Appendix

A, reveals that in the limit ∆α → 0, Vopt (as)
αm,αm (c) is O(∆α) if the Coulomb potential V C

α is

repulsive, and that it remains regular for an attractive Coulomb potential V C
α . In other

words, the leading singular behavior is unaltered as compared to case (i).

Summarizing, in order to isolate the leading singular part of Vopt (as)
αm,αm (c) for qα 6=

√
2MαE, we can take in (74) the propagator dk0α(q

0
α), as well as all other q0α-depending

factors none of which becomes singular there, out from under the integral over q0
α at the

point q0α = qα. This gives

Vopt (as)
αm,αm (c)(q

′
α,qα;E)

∆α→0≈ lim
δ→+0

∫

dk0
α

(2π)3

∫

ρ′α≥A
dρ′

α

∫

ρα≥A
dρα

e−iq′

α·ρ
′

α

ρ′2
α

e−δρ′α

×
∏

ν=β,γ

(

k̄0νρ
′
α − k̄0

ν · ρ′
α

k̄0νρα − k̄0
ν · ρα

)iη̄0ν

e−δρα
eiqα·ρα

ρ2α

×
Dmk0

α(ρ
′

α
)(ρ̂

′
α)Dk0

α(ρα
)m(ρ̂α)

[E + i0− q2α/2Mα − k0α
2/2µα]

∫

dq0
α

(2π)3
eiq

0
α·(ρ

′

α
−ρ

α
)

= lim
δ→+0

∫

dk0
α

(2π)3

∫

ρα≥A
dρα

e−i∆α·ρα

ρ4α
e−2δρα

×
Dmk0

α(ρα
)(ρ̂α)Dk0

α(ρα
)m(ρ̂α)

[E + i0− q2α/2Mα − k0α
2/2µα]

, (79)

where k̄0
ν is given by the relation (39), but with qα instead of q0

α. Similarly, η̄0ν is defined

as in (38), but with k̄0
ν instead of k0

ν .

We remark that the fact that the leading term of (74) for ∆α → 0 is defined by that

part of the integration region where ρ
′
α = ρα, was derived for an analogous two-body
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problem in [28]. As is apparent, the additional integration over k0
α, which is present in

the three-body case under consideration, does not invalidate that result.

Next we observe that, since the behavior of Vopt (as)
αm,αm (c) for ∆α → 0 is defined by

the behavior of the integrand in (79) for ρα → ∞, we can approximate Dk0
α(ρα

)m(ρ̂α) by

Dk0
αm

(ρ̂α), i.e. by the same expression (51) but with the local momentum k0
α(ρα) replaced

by its asymptotic value k0
α which is attained in this limit. In fact, taking into account

(51), (40) and (41) one sees that

Dk0
α(ρα

)m(ρ̂α) = Dk0
αm(ρ̂α) +O

(

1

ρα

)

. (80)

An analogous expansion applies to Dmk0
α(ρα

)(ρ̂α). It is important to realize that (80)

is valid for any k0α > 0: for arbitrary positive-definite k0α always such a large A can be

found that for all ρα ≥ A the second term in (80) is infinitely small compared to the first

one. This obviously does no longer hold true for k0α = 0, as follows from the definition

(41) of the local momentum. But the whole integral is not influenced by the behavior

of the integrand in an infinitesimal vicinity of k0α = 0 if the latter does not possess a

nonintegrable singularity there. This is verified in Appendix A for qα 6=
√
2MαE. Thus

we are justified in using the approximation (80) in the whole region of integration over

k0
α including the origin, thereby neglecting the terms of the order O(1/ρα).

Introducing (80) in (79) yields in the leading order

Vopt (as)
αm,αm (c)(q

′
α,qα;E)

∆α→0≈
∫

ρα≥A
dρα

e−i∆α·ρα

ρ4α

∫

dk0
α

(2π)3
|Dk0

αm(ρ̂α)|2
[E + i0 − q2α/2Mα − k0α

2/2µα]
(81)

(again, because of the convergence factor ρ−4
α the limit δ → +0 could be performed before

integrating over ρα).

Let us write, in analogy to (64),

Dk0
αm(ρ̂α) =

i

ρα
lim
p→0

(Dk0
αm ·∇p)e

−ip·ρ
α, (82)

with

Dk0
αm = ǫαβeα(λβeγ − λγeβ)

∫

drαψ
(+)∗
k0
α

(rα)rαψαm(rα), (83)

and similarly for Dmk0
α
(ρ̂α) and Dmk0

α
(cf. (52)). Then we obtain from (81)
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Vopt (as)
αm,αm (c)(q

′
α,qα;E)

∆α→0≈ lim
p,p′→0

∫

dk0
α

(2π)3
(Dmk0

α
·∇p′)(Dk0

αm
·∇p)J(u)

[E + i0− q2α/2Mα − k0α
2/2µα]

. (84)

The integral J(u) is given by (67). Making use of its asymptotic form (B.3) for u → 0 we

find

Vopt (as)
αm,αm (c)(q

′
α,qα;E)

∆α→0
= C(c)

m ∆α + o (∆α), (85)

with

C(c)
m = −π

2

4

∫ dk0
α

(2π)3

[

|Dk0
αm

|2 + |∆̂α ·Dk0
αm

|2
]

[E + i0− q2α/2Mα − k0α
2/2µα]

. (86)

As in (68), we omitted also in (85) a ∆α-independent term. We point out that from

the discussion in the Appendix A follows that the result (85) with (86) is valid also for

qα =
√
2MαE where, in contrast to appearance, C(c)

m in (86) is not singular.

For on-shell scattering (q′α = qα = q̄α), taking into account (78) the expression (86)

simplifies to

C(c)
m =

π2

4

∫

dk0
α

(2π)3

[

|Dk0
αm|2 + |∆̂α ·Dk0

αm|2
]

[

|Êαm|+ k0α
2/2µα

] . (87)

That is, in the leading order Vopt (as)
αm,αm (c) depends neither on the incoming nor the outgoing

momenta qα and q′
α alone but only on the momentum transfer ∆α. It is also independent

of the energy. Hence we can write (81) as

Vopt (as)
αm,αm (c)(q

′
α,qα;Eαm + i0) ≡ Vopt (as)

αm,αm (c)(∆α)

∆α→0≈
∫

ρα≥A
dραe

−i∆α·ραVopt (as)
αm,αm (c)(ρα), (88)

where the local potential

Vopt (as)
αm,αm (c)(ρα) =

{

∫

dk0
α

(2π)3
|Dk0

αm
(ρ̂α)|2

[|Êαm|+ k0α
2/2µα]

}

1

ρ4α
(89)

describes the coordinate-space asymptotics of Vopt (as)
αm,αm (c). It is the contribution to the

polarisation potential from the intermediate three-body continuum states.

Summing up the contribution (68) with (69) from the intermediate two-fragment states

and the contribution (85) with (86) from the intermediate three-particle continuum states,

we thus have off the energy shell the final result
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Vopt (as)
αm,αm(q′

α,qα;E)
∆α→0
= C1∆α + o (∆α), (90)

with

C1 = C(b)
m + C(c)

m

= −π
2

4







∑

n 6=m

[

|Dnm|2 + |∆̂α ·Dnm|2
]

[E + i0− q2α/2Mα − Êαn]
+
∫

dk0
α

(2π)3

[

|Dk0
αm|2 + |∆̂α ·Dk0

αm|2
]

[E + i0 − q2α/2Mα − k0α
2/2µα]







. (91)

Consequently, for off-shell scattering we have found for the asymptotic behavior of the

total optical potential (17), i.e. including the contribution from the static potential (for

a spherically symmetric target state m), in the limit ∆α → 0 the result

Vopt
αm,αm(q

′
α,qα;E)

∆α→0
=

4πeα(eβ + eγ)

∆2
α

+ C1∆α + o (∆α), (92)

with the energy- and momentum-dependent factor C1 = C1(qα, E) given by (91). It

should be noted that the strength factor C1 of the leading term decreases with increasing

energy.

Equation (92) with (91) constitutes our first main result. It implies the exact compen-

sation in the (non-static part of the) optical potential of the singular terms proportional

to ∆−1
α and ln∆α, in contrast to their appearence (as discussed in [20] for negative en-

ergies) in the effective potentials which occur in the effective-two-body formulation of

the three-charged particle theory. We emphasize that this compensation was proved here

both on and off the energy shell, and for arbitrary total three-body energy E < 0 and

E > 0. It generalizes the cancellation proofs, given in [18–23] for energies below the

dissociation threshold, to positive energies. In addition, at negative three-particle energy

our derivation avoids the various inconsistencies existing there.

If we consider on-shell scattering then, as follows from (68), (71), (85) and (87), Vopt (as)
αm,αm

depends on the momenta only in the form of the momentum transfer ∆α, and no longer

on the energy, i.e.,

Vopt (as)
αm,αm(q′

α,qα;Eαm) ≡ Vopt (as)
αm,αm(∆α). (93)

Consequently, the inverse Fourier transform of Vopt (as)
αm,αm(∆α) is a local, energy-independent

potential describing the asymptotic behavior of the (non-static part of the) optical po-

tential in coordinate space. From (73) and (89) we read off
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Vopt (as)
αm,αm(ρα)

ρα→∞
= − a

2ρ4α
+ o

(

1

ρ4α

)

, (94)

with

a = 2
∑

n 6=m

|Dnm(ρ̂α)|2
|Êαm| − |Êαn|

+ 2
∫

dk0
α

(2π)3
|Dk0

αm(ρ̂α)|2

|Êαm|+ k0α
2/2µα

. (95)

As can be seen, the strength factor governing the coordinate-space behavior is just the

static dipole polarisability as known from the perturbative approaches. That is, no re-

mormalization of a arises from summing up all the higher order terms in the perturbation

expansion of the full three-particle Green function G(z). Furthermore, all dependence on

the incoming energy has disappeared (in contrast to the approximate result of ref. [17],

but in agreement with the result obtained in [15] within the adiabatic approach).

For the coordinate-space behavior of the total optical potential, i.e. the inverse Fourier

transform of (17), we derive on the energy shell for spherically symmetric targets

Vopt
αm,αm(ρα)

ρα−→∞
=

eα(eβ + eγ)

ρα
− a

2ρ4α
+ o

(

1

ρ4α

)

. (96)

Equation (96) with (95) is our second main result. It states that in the asymptotic

expansion of the energy-shell restriction of the optical potential for large intercluster

separation there occurs as the first nonvanishing term after the center-of-mass Coulomb

interaction, which arises from the multipole expansion of the folded Coulomb channel

interaction, the local (induced) polarisation potential −a/2ρ4α. This result extends the

one derived in [18–23] for E < 0, to arbitrary energies.

Simultaneously we derived the exact expression for the static dipole polarisability a.

To our best knowledge this is the first derivation of a within the framework of a genuinly

three-body, non-perturbative, non-adiabatic approach. In this context we point out that

the same expression for a was derived in [18] for E < 0. However, in that derivation a

spectral decomposition of the three-body Green function in Ωα ∩ Ω′
α was used, which is

inadequate since it does not take into account the long-ranged three-body correlations

described in [24]. The latter necessarily lead to the appearence of the wave functions

ψ
(+)
kα(ρα

)(rα) instead of ψ
(+)
kα

(rα). Though, this inconsistency in [18] did not influence the

final result. Nevertheless, we feel that it is important to present a consistent three-body

derivation of the dipole polarisability.
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IV. SUMMARY

We have investigated the singularity structure in momentum space of the optical po-

tential responsible for the elastic scattering of a charged particle α off a bound state of

two charged (or one charged and one neutral) particles, on the basis of the rigourous

three-body scattering theory. Without having recourse to perturbative or other approx-

imate methods we have shown that (for spherically symmetric bound states) the op-

tical potential behaves, in the limit that the momentum transfer ∆α goes to zero, as

C0∆
−2
α +C1∆α+ o (∆α), for both negative and positive energies. That is, terms ∼ ∆−1

α or

∼ ln∆α cancel exactly. The factors appearing in this expansion have the familiar physical

interpretation: C0 is the product of the total charges of the colliding fragments, and C1

is the general, energy- and momentum-dependent expression for the polarisability of the

composite particle.

For on-shell scattering we find that this momentum-transfer behavior entails in co-

ordinate space a local tail of the optical potential of the form C0/ρα − a/2ρ4α + o (ρ−4
α ),

where ρα denotes the distance of the elementary from the center of mass of the composite

particle. The polarisability a derived here coincides with the expression as extracted in

perturbative or similar approximate approaches. These results imply that

(i) the exact cancellation of terms ∼ ρ−2
α and ∼ ρ−3

α takes place for energies below and

above the dissociation threshold,

(ii) no renormalization of the polarisability a due to summing up the infinite perturbation

series occurs, and

(iii) the strength factor a which governs the long-distance behavior in coordinate space is

independent of the incident energy (in contrast to its off-shell analog C1 which determines

the strength of the corresponding singularity in momentum space).

† Permanent address: Institute for Nuclear Physics, Tashkent, Usbekistan

∗ Supported by the Deutsche Forschungsgemeinschaft, Project no. 436 USB-113-1-0
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APPENDIX A:

In this Appendix we first investigate the behavior in the limit ∆α ≡ |q′
α − qα| → 0 of

the contribution of the n-th intermediate bound state in expression (57), to be denoted

by Vopt (as)
αm,αm (n), at the discrete point qα = qαn. To simplify the considerations we replace

the Coulomb scattering wave functions ψ
(+)∗
q0
α

(ρα) and ψ
(+)
q0
α
(ρ′

α) by their leading terms for

large distances, namely by the planes waves e−iq0
α·ρα and eiq

0
α·ρ

′

α , respectively. We also

omit the functions Dnm(ρ̂α) and Dmn(ρ̂
′
α). By doing so the question of the integrability or

non-integrability of the singularities under considerations is not influenced. We therefore

consider

Vopt (as)
αm,αm (n)(q

′
α,qα;E)

∆α→0∼ 2Mα lim
δ→+0

∫

dq0
α

(2π)3

∫

ρ′α≥A
dρ′

α

∫

ρα≥A
dρα

ei(q
0
α−q′

α)·ρ
′

α

ρ′2
α

×e−δρ′α
1

[q2αn + i0− q0α
2]
e−δρα

−ei(q0
α−qα)·ρα

ρ2α

∆α→0∼ lim
δ→+0

∫

dq0
α

(2π)3
1

√

(q0
α − q′

α)
2 + δ2

1

[q2αn + i0− q0α
2]

× 1
√

(q0
α − qα)2 + δ2

. (A.1)

The integrals over ρα and ρ′α from 0 to A added in the second line are certainly less

singular than the original expression; hence they do not alter our conclusion. We use the

integral representation

1√
ζ
=

1

2π

∮

dβ
1√
β

1

β + ζ
=

1

π

∫ ∞

0
dβ

1√
β

1

β + ζ
, (A.2)

where
∮

means the integral along a closed contour around the point β = −ζ ; in the

integral from 0 to ∞ of the second representation we must have arg β = 0. This leads to

Vopt (as)
αm,αm (n)(q

′
α,qα;E)

∆α→0∼ lim
δ→+0

∫ ∞

0
dβ

1√
β

∫ ∞

0
dα

1√
α
J(β, α;q′

α,qα, qαn), (A.3)

with

J(β, α;q′
α,qα, qαn) =

∫

dq0
α

(2π)3
1

[β + (q0
α − q′

α)
2 + δ2]

1

[q2αn + i0− q0α
2]

1

[α + (q0
α − qα)2 + δ2]

. (A.4)

This integral is explicitly known [29],
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J(β, α;q′
α,qα, qαn) = − 1

8π

1√
c2 − ab

ln

[

c +
√
c2 − ab

c−
√
c2 − ab

]

, (A.5)

with

ab = [∆2
α + (

√
α+

√

β)2][q2α + (
√
α− iqαn)

2][q
′2
α + (

√

β − iqαn)
2], (A.6)

c = −iqαn[∆2
α + (

√
α +

√

β)2] +
√

β[q2α + α− q2αn] +
√
α[q

′2
α + β − q2αn]. (A.7)

Because of the presence of the parameters α and β, the regularisation parameter δ is

no longer needed. We therefore have already put δ equal to zero in (A.5) - (A.7). For

qα = q′α = qαn, (A.6) and (A.7) simplify to

ab =
√
α
√

β[∆2
α + (

√
α+

√

β)2][
√
α− 2iqαn][

√

β − 2iqαn], (A.8)

c = −iqαn[∆2
α + (

√
α+

√

β)2] +
√

αβ[
√
α +

√

β]. (A.9)

Substitution of α = ∆2
αv and β = ∆2

αt in (A.8) and (A.9) shows that in the limit

∆α → 0

ab ∼ ∆4
α, c ∼ ∆2

α, i.e.,
√
c2 − ab ∼ ∆2

α. (A.10)

Introducing (A.5) into (A.3), changing to the new variables v and t, and taking into

account (A.10), it is immediately seen that the main term of Vopt (as)
αm,αm (n) is independent of

∆α in the limit ∆α → 0 at the discrete point qα = qαn, i.e., it is regular there. Hence the

same holds true also for the sum over all intermediate bound state contributions Vopt (as)
αm,αm (b).

The other problem concerns the behavior of the intermediate three-body continuum

part (74) if qα = qα1, where qα1 =
√
2MαE. In that case we are not a priori allowed to

take out the propagator dk0α(q
0
α) from under the integral over q0

α at the point q0α = qα.

To investigate this case consider the definition (75) of L(q0
α;ρα,ρ

′
α). Since in the limit

∆α → 0 the leading, ∆α-dependent term is defined by ρα ≈ ρ
′
α, the exponential Coulomb

distorsion factors cancel. That is, it suffices to consider

L(q0
α;ρα,ρ

′
α) ≈

∫

dk0
α

(2π)3
Dmk0

α(ρ
′

α
)(ρ̂

′
α)Dk0

α(ρα
)m(ρ̂α)

[E + i0− q0α
2/2Mα − k0α

2/2µα]
. (A.11)

If we perform the k0
α-integration, the pole of dk0α(q

0
α) can give rise to a singularity

of L(q0
α;ρα,ρ

′
α) in the q0α-plane at q0α = qα1. It is an end point singularity which arises
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from the coincidence of the propagator pole at k0α =
√

µα(q2α1 − q0α
2)/Mα with the lower

limit k0α = 0 of integration over k0α. Since the leading, ∆α-dependent term of Vopt (as)
αm,αm (c)

in the limit ∆α → 0 is generated by the coincidence of the singularities of the integrand

in the integral (74) over q0
α at the point q0

α = qα = q
′

α, the appearence of an additional

singularity, namely in the the function L, will influence the leading term of Vopt (as)
αm,αm (c).

To investigate the analytic behavior of L(q0
α;ρα,ρ

′
α) for q0α − qα1 → 0, consider the

integrand in (A.11). The denominator has a zero that can cause the singularity under

consideration. The behavior for k0α → 0 of the numerator (cf. (51)) is defined by the wave

function ψ
(+)
k0
α(ρα

)(rα) which we write as

ψ
(+)
k0
α(ρα

)(rα) = exp

[

aα(ρ̂α)

ρα
·∇k0

α

]

ψ
(+)
k0
α
(rα)

≈ ψ
(+)
k0
α
(rα) +

aα(ρ̂α) ·∇k0
α

ρα
ψ

(+)
k0
α
(rα) +O

(

1

ρ2α

)

. (A.12)

The threshold behavior for k0α → 0 of the scattering wave function ψ
(+)
k0
α
(rα) in the potential

Vα = V S
α + V C

α is entirely given by the corresponding behavior of the Coulomb scattering

wave function ψ
(+)
C,k0

α
(rα). This follows from the wellknown fact that the threshold behavior

of the radial wave functions for two charged particles is the same for all the partial waves

and is defined by the factor [30]

| Nα |=
[

2πη0α
e2πη0α − 1

] 1

2

. (A.13)

Therefore, the behavior of the full wave function ψ
(+)
k0
α
(rα) for k

0
α → 0 is governed by the

same factor, and the one of the numerator in (A.11) by | Nα |2.

Hence we have to distinguish two cases.

1. The Coulomb potential V C
α is repulsive, i.e., η0α > 0. Then for k0α → 0 one has

| Nα |2 ≈ 2πη0αe
−2πη0α → 0. The exponential smallness of the numerator for k0α → 0

compensates any zero of the denominator at the point k0α = 0. In other words, the pole of

the propagator in (A.11) at k0α =
√

µα(q
2
α1 − q0α

2)/Mα does not generate a singularity of

L(q0
α;ρα,ρ

′
α) at the point q0α = qα1. Thus, when extracting the leading term of Vopt (as)

αm,αm (c)

for ∆α → 0, the function L(q0
α;ρα,ρ

′
α) can be taken out from under the integral over q0

α

at the point q0
α = qα, as in the case qα 6= qα1. The consequence is that the behavior of

the optical potential is the same for all qα including qα = qα1, namely ∼ O(∆α).
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2. The Coulomb potential V C
α is attractive, i.e., η0α < 0. In this case, | Nα |2≈2πη0α →

∞ for k0α → 0, and hence all terms in the expansion (A.12) become singular. This

difficulty can be overcome as follows. According [24] the wave function Ψ
(+)as
q0
αk

0
α
(ρα, rα),

as given by (37), is asymptotic solution of the three-particle Schrödinger equation in

the region Ωα, i.e., it satisfies this equation up to terms O(1/ρ2α) (cf. (43)). From the

derivation given there it is, however, easily seen that for k0α = 0, taking into account the

local momentum k0
α(ρα) in the asymptotic solution Ψ

(+)as
q0
αk

0
α
(ρα, rα) instead of its asymptotic

value k0
α = 0, gives corrections ∼ O(1/ρ2α) to the Schrödinger equation in Ωα. Therefore,

in a small vicinity of k0α = 0 the asymptotic solution Ψ
(+)as
q0
αk

0
α
(ρα, rα) may be replaced by the

function ψ
(+)
k0
α
(rα) e

iq0
α·ραeiη

0

β
ln(k0

β
ρα−ǫαβk

0

β
·ρ

α
)eiη

0
γ ln(k

0
γρα−ǫαγk

0
γ ·ρα

), i.e., by (37) but with k0
α

substituting k0
α(ρα) in ψ

(+)
k0
α(ρα

)(rα). Hence for arbitrary k
0
α we may rewrite the asymptotic

solution Ψ
(+)as
q0
αk

0
α
(ρα, rα) in the form (37) with

k0
α(ρα) = k0

α + χ(k0α)
aα(ρ̂α)

ρα
, (A.14)

where χ(k0α) is a characteristic function, which equals one everywhere except for a small

neighbourhood of k0α = 0, and goes smoothly to zero when k0α approaches zero. Thus,

taking into account the factor k0α
2
from the phase volume, the behavior of the numerator

in (A.11) in the limit k0α → 0 is governed by k0α
2| Nα |2 ∼ k0α.

Let us write L(q0
α;ρα,ρ

′
α) as the sum L = Lε + L̃ε, where Lε denotes the integral

over k0
α over the interior of a small sphere with radius ε. L̃ε contains the remaining

integral. Since the latter does not contain the origin k0α = 0, L̃ε(q
0
α;ρα,ρ

′
α) is regular at

q0α = qα1 = qα and can therefore be taken out from under the integral over q0
α in (74) at

the point q0
α = qα. The consequence is that at the momentum qα = qα1, its contribution

to the optical potential V C
α is ∼ O(∆α), i.e. of the same order as for qα 6= qα1.

However, Lε(q
0
α;ρα,ρ

′
α) is singular at q

0
α = qα1. When performing the k0

α-integration,

the pole of dk0α(q
0
α) gives rise to a behavior Lε(q

0
α;ρα,ρ

′
α) ∼ ln(q0α

2
+ i0− q2α1) in

the q0α-plane. In order to arrive at this result we singled out from the product

Dmk0
α(ρ

′

α
)(ρ̂

′
α)Dk0

α(ρα
)m(ρ̂α) the factor | Nα |2 which is singular at k0α = 0, and ig-

nored the rest since it remains finite. Denote by Vopt (as)
αm,αm (ε)(q

′
α,qα;E) that part of

Vopt (as)
αm,αm (c)(q

′
α,qα;E) which contains Lε(q

0
α;ρα,ρ

′
α) instead of L(q0

α;ρα,ρ
′
α) (cf. (74)).
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Substituting ln(q0α
2
+ i0− q2α1) for Lε(q

0
α;ρα,ρ

′
α), and integrating over ρα and ρ

′
α, gives

Vopt (as)
αm,αm (ε)(q

′
α,qα;E)

∆α→0∼ lim
δ→+0

∫

dq0
α

(2π)3
ln (q2α1 + i0− q0α

2
)

√

(q0
α − q′

α)
2 + δ2

√

(q0
α − qα)2 + δ2

. (A.15)

When writing down this expression we already took into account that the behavior of

Vopt (as)
αm,αm (ε)(q

′
α,qα;E) for ∆α → 0 is defined by the region ρα≈ρ

′
α where the product of

the Coulomb distortion factors equals one. The integration region over q0
α in (A.15)

supposedly consists only of the neighbourhood of q0
α ≈ qα ≈ q′

α. Comparing with (A.1)

(putting there qαn equal to qα1) we conclude that expression (A.15) is less singular at

∆α → 0 than (A.1). Hence, in the case of an attractive Coulomb potential V C
α , for

qα = qα1 the contribution Vopt (as)
αm,αm (ε)(q

′
α,qα;E), and thus also Vopt (as)

αm,αm (c)(q
′
α,qα;E), is

finite in the limit ∆α → 0.
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APPENDIX B:

In this Appendix we evaluate the integral (67) and extract its asymptotic behavior

for u → 0. Substituting the new variable v = uρα and making use of eqs. 3.761(2) and

8.352(3) of [31] we obtain

J(u) = 2πiu3[Γ(−4, iuA)− Γ(−4,−iuA)] =

=
iπu3

12
[Γ(0, iuA)− Γ(0,−iuA)]−

3
∑

m=0

m!

(iuA)m+1

(

eiuA + (−1)me−iuA
)

, (B.1)

where Γ(µ, x) is the incomplete Gamma function [31]. With the help of eqs. 3.761(2),

8.230(1) and 8.232(1) of [31] one finds

Γ(0, iuA)− Γ(0,−iuA) = 2i si(uA) = −iπ +
∞
∑

m=0

(−1)m+1(uA)2m−1

(2m− 1)(2m− 1)!
, (B.2)

where si(x) is the sine-integral. Substitution of (B.2) into (B.1) leads to the following

asymptotic behavior of J(u) for u→ 0:

J(u)
u→0
=

4π

3A3
− 2π

3A
u2 +

π2

12
u3 +O(u4). (B.3)
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