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Abstract

Background: Actin stress fibers (SFs) are mechanosensitive structural elements that respond to forces to affect cell
morphology, migration, signal transduction and cell function. Cells are internally stressed so that SFs are extended beyond
their unloaded lengths, and SFs tend to self-adjust to an equilibrium level of extension. While there is much evidence that
cells reorganize their SFs in response to matrix deformations, it is unclear how cells and their SFs determine their specific
response to particular spatiotemporal changes in the matrix.

Methodology/Principal Findings: Bovine aortic endothelial cells were subjected to cyclic uniaxial stretch over a range of
frequencies to quantify the rate and extent of stress fiber alignment. At a frequency of 1 Hz, SFs predominantly oriented
perpendicular to stretch, while at 0.1 Hz the extent of SF alignment was markedly reduced and at 0.01 Hz there was no
alignment at all. The results were interpreted using a simple kinematic model of SF networks in which the dynamic response
depended on the rates of matrix stretching, SF turnover, and SF self-adjustment of extension. For these cells, the model
predicted a threshold frequency of 0.01 Hz below which SFs no longer respond to matrix stretch, and a saturation frequency
of 1 Hz above which no additional SF alignment would occur. The model also accurately described the dependence of SF
alignment on matrix stretch magnitude.

Conclusions: The dynamic stochastic model was capable of describing SF reorganization in response to diverse temporal
and spatial patterns of stretch. The model predicted that at high frequencies, SFs preferentially disassembled in the
direction of stretch and achieved a new equilibrium by accumulating in the direction of lowest stretch. At low stretch
frequencies, SFs self-adjusted to dissipate the effects of matrix stretch. Thus, SF turnover and self-adjustment are each
important mechanisms that cells use to maintain mechanical homeostasis.
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Introduction

Actin stress fibers (SFs) are bundles of actin filaments crosslinked

by a-actinin and myosin II in non-muscle cells. Large ventral SFs

are anchored to the substrate at each end via focal adhesions [1,2].

Consequently, myosin-generated contraction leads to the devel-

opment of isometric tension. This tension extends SFs beyond

their unloaded lengths [3,4]. In human aortic ECs, the level of SF

extension is maintained at a set-point value of approximately 1.10

[4]. SFs are dynamic structures and their continuous assembly and

disassembly is critical to cellular functions involving changes in cell

shape, including migration [5] and cell alignment [6]. It follows

then that SFs must be constantly self-adjusting in order to

maintain a set-point level of extension. Importantly, cyclic

mechanical stretching of the matrix can perturb SF extension,

leading to compensatory responses such as gradual alignment of

SFs perpendicular to the principal direction of stretch [7,8]. The

cellular response to cyclic stretch also depends on the pattern of

mechanical force applied in a manner that involves SF alignment

[9,10]. Thus, it is important to understand how cells respond to

different patterns of mechanical force to regulate SF organization

and cell function.

Mathematical models help to elucidate the complex relation-

ships between matrix deformation and SF dynamics. A model put

forth by De et al. [11,12] is based on the premise that cells

subjected to stretch seek to maintain constant either the local stress

or strain in the surrounding matrix by adjusting a force dipole that

characterizes the contractile force in highly polarized, elongated

cells. Their model proposes characteristic time constants that

describe the rate cells can self-adjust the magnitude and direction

of the force dipole in response to cyclic stretch. When the rate of

stretch is low, the model predicts that cells will readjust their

contractility, resulting in alignment of the cells parallel to the

direction of stretch. When the rate of stretch is sufficiently fast, the

cells cannot respond quickly enough and must orient away from

the direction of stretch to compensate. These predictions provide

valuable insight into how cells sense and respond to dynamic

stretch patterns, yet the physiological mechanism for cell

reorientation is unclear. We have developed a mathematical

model in which SF alignment perpendicular to the stretch
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direction occurs as a consequence of the accelerated disassembly of

SFs whose level of extension is perturbed from a set-point level

[13]. The organization of SFs in ECs subjected to cyclic uniaxial

and equibiaxial stretches were well described using this model.

Building upon our previous model, the present study evaluates the

respective roles of the rates of SF turnover and self-adjustment as

mechanisms to modulate the response of SF networks to different

frequencies and magnitudes of cyclic stretch. Experiments were

performed to quantify the frequency-dependence of stretch-

induced SF alignment. Our modeling results indicate that SF

self-adjustment determines the frequency dependency, while SF

turnover determines the maximum extent of the SF orientation

possible at high stretch frequencies.

Materials and Methods

Constrained Mixture Model of SF Networks
Let us model the stress fibers in individual cells as a mixture of

coexisting, load-bearing fibers constrained to deform together as

the cell deforms [13]. Following the Rule of Mixtures approach

[14], each SF acts independently of the others. Given that well-

spread cells are generally very flat in areas other than the peri-

nuclear region and that SFs in non-muscle cells are typically

localized at the ventral surface [15], we assume a two-dimensional

SF network immediately adjacent to the matrix surface.

Each SF is anchored to the matrix at each end via focal adhesions,

with the distance between adhesions being the current length of the

SF (l). SFs are under tension due to myosin-generated isometric

contraction. We define the unloaded length of the SF (l0) as the length

of the SF if it were allowed to elastically retract to a state of zero

tension (e.g., by dislodging one or both focal adhesions) [3,16]. Lu et

al. [4] reported that the level of fiber prestretch (a0 = l/l0) in

endothelial cells is approximately 1.10 and has little intracellular and

intercellular variance. Consequently, we assume that all newly

assembled fibers are uniformly prestretched to a magnitude a0 = 1.10.

The newly assembled SFs are subject to deformation in response to

stretching of the extracellular matrix. For the current study, we will

consider cyclic matrix deformations that follow a sinusoidal pattern.

The smoothly changing matrix stretch pattern is approximated using

finite elasticity theory as a series of incremental stretches applied over

small time increments (Dt = 0.01 s). Each incremental stretch is

described by the right Cauchy-Green tensor (C) defined relative the

reference configuration, which in this case is the configuration at the

beginning of the time increment. In particular, C~FT F where

F~Lx=LX is the deformation gradient tensor. Note that any

temporal pattern of cyclic stretch can be simulated using this

approach by varying the magnitude of each step to match the rate of

stretch at a particular point in the cycle.

Following the Rule of Mixtures, let us assume the SF network

moves in registry with the matrix. Further, let us assume the fibers

are only subjected to normal matrix strains, which changes the

distance between focal adhesions, and hence, changes the lengths of

the associated stress fibers. The deformation gradient for the ith SF

at time t+Dt, relative to its configuration at time t, is Fi
n tð Þ tzDtð Þ,

which is associated with mapping the points from the previous

configuration n(t) to the new configuration n(t+Dt). The stretch ratio

of the ith SF, relative to the previous configuration is

ai
n tzDtð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MiFi

n tð Þ tzDtð ÞT Fi
n tð Þ tzDtð ÞMi

q
ð1Þ

where Mi is the unit vector in the direction of the ith SF in its

configuration at time t. Thus, the total stretch in the ith SF is at time

t+Dt is ai
n tð Þa

i
n tzDtð Þ.

Stochastic Description of SF Turnover and Self-
adjustment

SFs are constantly assembling and disassembling at rates

dependent on their mechanical loading. Releasing the prestretch

in SFs or excessively stretching SFs increases the rate of their

disassembly [4]. We have previously described the dynamics of SF

disassembly with a deterministic model using first-order reaction

kinetics in which the rate parameter for disassembly depended on

the deviation of SF stretch from the prestretch value [13]. The

deterministic approach was limited by the need to discretize both

the possible orientations and reference configurations for the fibers.

To relax these assumptions, let us employ a stochastic approach in

which the fate of each individual fiber is tracked over time.

First, let us consider the initial conditions. In a population of

unstretched ECs, there is no preferred direction for the stress fibers

[17]. Consequently, each cell is assumed to contain a distribution

of fiber orientations where each orientation is randomly chosen

from a uniform distribution between 0 and 180u. A nonuniform

distribution (e.g. a von Mises distribution) can be assigned to

represent more elongated cell phenotypes (e.g. fibroblasts) if

necessary.

Obviously, an individual SF exists until it disassembles. Let the

probability that an individual SF (existing at time t) will

disassemble at time t+Dt depend on the rate parameter ki,

P disassembled, tzDt assembled, tjð Þ~kiDt ð2Þ

where the rate parameter ki is dependent on the difference

between the current (ai) and set-point levels (a0) of stretch of the ith

SF:

ki~k0zk1 ai{a0

� ��
a0ð Þ

� �2 ð3Þ

The numerical integrations were performed using a time

increment Dt of 0.01 s. We found that decreasing Dt below

0.01 s did not significantly change the results of the simulations.

The total number (N) of SFs in the simulations was 1000. In test

cases, we found that increasing N reduced the noise in the circular

variance curves, but the system response was otherwise identical.

Self-adjustment of SF Extension
Cells tend to maintain constant the level of pre-extension in SFs

following a perturbation in stretch [4]. Kumar et al. [18] measured

the gradual retraction of the severed ends of a SF subjected to laser

ablation and described the rate of retraction using a viscoelastic-

type function. Motivated by these results, let us describe the

gradual return of SF stretch ratio to the equilibrium level following

a perturbation as

ai~a0z ai{a0

� �
exp {t=tð Þ ð4Þ

where t is the characteristic time for fiber stretch to return to the

equilibrium value following a perturbation of magnitude ai{a0.

Cell Culture
Bovine aortic ECs (Lonza, Walkersville, MD) were cultured in

GIBCO DMEM (Invitrogen) supplemented with 10% fetal bovine

serum, 2 mM L-glutamine, 1 mM sodium pyruvate and 1 mM

penicillin/streptomycin as previously described [17]. Cell cultures

and stretch experiments were performed in a humidified 5% CO2-

95% air incubator at 37uC.

Stress Fiber Alignment Model
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Stretch Experiments
ECs were subjected to cyclic stretch using a custom-built device

capable of applying sinusoidally-varying stretch of different

magnitudes (0–20%), frequencies (0.01–1 Hz), and patterns (e.g.,

pure uniaxial and equibiaxial) within the central 16 cm2 region of

the culture chamber containing a silicone rubber membrane

(Specialty Manufacturing, Saginaw, MI) [9,17]. The central region

of the membrane was coated with 10 mg/ml fibronectin (Sigma)

overnight and washed with sterile PBS. ECs were cultured on this

surface at low densities (100 cells/mm2) to avoid cell-cell contact.

Quantification of SF Organization
Following a stretch experiment, the cells were rinsed with PBS

at 37uC, fixed in 4% paraformaldehyde in PBS for 10 min at room

temperature, and permeabilized with 0.5% Triton X-100 in PBS

for 15 min. Actin filaments were then labeled with Alexa 488

phalloidin (Invitrogen) for 45 min at 1:200 dilution in PBS. Images

were capture with a FN1 microscope (Nikon) equipped with a

DIGITAL ECLIPSE C1 plus scanning confocal head (Nikon)

illuminated with a 40-mW Argon ion laser (Nikon). The images

were post-processed using a custom-made algorithm in MATLAB

(the MathWorks, Natick, MA). The algorithm determines pixel

intensity gradients to quantify local orientations of SFs in each

image [9,13,17]. To characterize the dispersion in SF orientations,

we computed the circular variance by vectorially summing the

individual orientation vector components, normalizing the result

by the total number of vectors (NV) and subtracting the obtained

number from unity,

Circular Variance~

1{
1

NV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNV

j~1

sin2hj

 !2

z
XNV

j~1

cos2hj

 !2
vuut ð5Þ

where hj is the angle for vector j. The values range from zero to

unity, corresponding to perfectly aligned and totally uniform

distributions, respectively. For determining the circular variance of

a population of cells, the distribution in SF orientations was

computed by summing the distributions from individual cells, with

the histogram from each cell normalized so that each cell

contributed equally to the total distribution. A similar circular

variance was determined from the computed stress fiber

distributions in the simulated cases.

Results

Dependence of SF alignment on stretch frequency
Non-confluent bovine aortic ECs were subjected to 10% cyclic

sinusoidally-varying uniaxial stretch at 0.01, 0.1, and 1 Hz and the

resulting distributions in SF orientations were quantified. There

was a complete lack of stress fiber alignment at 0.01 Hz

(Figure 1A). At 0.1 and 1 Hz, the SFs oriented perpendicularly,

with the extent of alignment noticeably higher for 1 Hz (Figures 1B

and C).

Parameter estimation
Simulations were performed of 10% cyclic sinusoidally-varying

uniaxial stretch at 0.01, 0.1, and 1 Hz to describe the experimental

data. Specifically, the time evolution of circular variance was used

to estimate the model parameters (Figure 2). At 0.01 Hz, the

measured circular variances remained near 0.95. For 0.1 and

1 Hz, the circular variances gradually dropped during the first

2 hours of stretch before reaching a steady state. The data were

then used to extract the model parameters (t = 0.5 s,

k0 = 3.061024 s21 and k1 = 1.76104 s21). Simulations for 10%

cyclic uniaxial stretch at 0.01, 0.1 and 1 Hz illustrate that the

model describes the SF distributions (Figure 1) and the time

courses of alignment (Figure 2) for the experimental data

reasonably well, although the model predicted that alignment

occurs more quickly at 1 Hz than we observed experimentally. It is

worth noting that a model with elastic SFs (i.e. t R‘) is incapable

of fitting all three set of data. These results illustrate the significant

role of SF self-adjustment in stretch-induced SF alignment.

Parameter Sensitivity Analysis
To understand the effects of each model parameter on the

system response, we performed a sensitivity analysis. The effects of

varying k0 and k1 are illustrated in Figure 3A for simulations of

10% uniaxial stretch at 1 Hz. How quickly the system responds

depends on k0, so we show the response in terms of a scaled time

tk0. Indeed, for this scaled plot the curves for a given value of k1

and different values of k0 (1025 to 1024 s21) form a single curve.

For a given value of k0, increasing the value of k1 results in a

Figure 1. The extent of stress fiber alignment depends on the
frequency of cyclic uniaxial stretch. Representative images are
shown of sparsely seeded bovine aortic ECs that were subjected to 4 hr
of 10% cyclic uniaxial stretch at frequencies of 1 (A), 0.1 (B), and 0.01 Hz
(C), fixed, and stained for F-actin. The distributions of stress fiber
orientations were determined using an intensity gradient algorithm and
the results from multiple cells (n = 50 cells) are summarized as angular
histograms (direction of stretch is horizontal with respect to the page).
Simulations of SF reorganization in response to 4 hr of 10% cyclic
uniaxial stretch at frequencies of 1, 0.1 and 0.01 Hz were performed
using the optimized parameter values (k0 = 3.061024 s21,
k1 = 1.86104 s21, and t = 0.5 s) and the angular histograms are shown
for comparison to the experimental results. Bar, 50 mm.
doi:10.1371/journal.pone.0004853.g001

Stress Fiber Alignment Model
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decrease in the equilibrium value for circular variance. Thus k0

determines the rate of SF alignment, while k1 determines the

extent of SF alignment.

To illustrate the effects of the rate of SF self-adjustment, we

varied the value of the time constant t while the other two

parameters were fixed at their optimal values (Figure 3B). The

relationship between the steady-state circular variance and scaled

frequency (vt) were all described by a single curve for t values

ranging from 0.05 to 5 s. Below a threshold value of scaled

frequency of 0.005, SFs do not become significantly oriented in

response to cyclic stretch. Above a scaled frequency of ,0.5 the

circular variance at steady state reaches a minimum value. Thus

stretch-induced alignment is sensitive to stretch frequency over a

range of two orders of magnitude, with the actual values of the

threshold and saturation frequencies dependent on the value of t.

Model Predictions
In the absence of SF turnover and self-adjustment, the

instantaneous population-average fiber stretch (aavg) would be

expected to oscillate between the basal fiber stretch (a0 = 1.10) and

a maximal value (1.155) corresponding to the fully deformed state

of matrix stretch. When SF turnover and self-adjustment are

considered, then aavg changes over time (Figure 4A). For cyclic

uniaxial stretch at 1 Hz, aavg indeed oscillates between 1.10 and

1.155; however, within seconds, the maximum and minimum

values for aavg drop to 1.078 and 1.122 so that the time-averaged

value of aavg is equal to a0. This initial change in fiber stretch

occurs before any fibers disassemble and reassemble and is thus

completely attributable to SF self-adjustment, which causes the

time-average value of each individual fiber to approach a0 with a

characteristic time t. While the time-averaged fiber stretch

decreases almost immediately, the ratio of the maximum and

minimum fiber stretch (i.e. the amplitude of fiber stretch) only

slowly decreases. The slow decrease in the amplitude of fiber

stretch occurs as a result of the gradual redistribution of SFs into

orientations directed towards the direction of least perturbation in

normal matrix strain (i.e. perpendicular to the direction of cyclic

stretch). This alignment occurs because the fibers experiencing the

greatest amplitudes of stretch (i.e. the orientation of large matrix

normal strain) disassemble relatively quickly, leading to the

accumulation of fibers in the direction of smallest matrix normal

strain. By comparing the three curves in Figure 4A, it is clear that

the amplitude of fiber stretch depends on stretch frequency. This

frequency dependence occurs because the SFs dissipate more

strain when strain rates are relatively small. At 0.01 Hz, the SF

stretch does not vary despite the fact that the matrix is stretching.

Without asymmetry in SF stretch, there is no stimulus for SF

alignment (cf. Figure 2 for 0.01 Hz).

The rate constant for fiber disassembly is proportional to the

deviation of fiber stretch from the equilibrium value a0.

Consequently, the rate of SF turnover is highest when the

Figure 2. Parameter estimation using the time courses of stress
fiber alignment. Circular variances of the stress fiber distributions
were plotted over the period indicated to show the time courses of
stress fiber alignment in response to 10% cyclic uniaxial stretch at
frequencies of 1 (red circles), 0.1 (blue triangles), and 0.01 Hz (black
squares). Results from simulations using the optimized parameter
values (k0 = 3.061024 s21, k1 = 1.86104 s21, and t = 0.5 s) are illustrated
for these conditions.
doi:10.1371/journal.pone.0004853.g002

Figure 3. Sensitivity of the system behavior to the values of the
model parameters. A: Simulations of 10% cyclic uniaxial stretch at
1 Hz were performed over a range of values for k0 values of 1024 (thick
lines) and 1025 s21 (thin lines), and k1 values of 103 (red lines), 104 (blue
lines), and 105 (black lines). Circular variance was plotted versus non-
dimensionalized time tk0 to illustrate that the rate of alignment scales
with k0, while the steady-state response depends on k1. B: The effects
stretch frequency on the steady-state average circular variance are
shown for of t values of 0.05 (triangles), 0.1 (squares), 0.5 (crossmarks), 1
(circles) and 5 s (diamonds), with k0 and k1 held constant at the
optimized values. Plotting circular variance versus non-dimensionalized
frequency illustrates that the values for the threshold and saturation
frequencies scale with t.
doi:10.1371/journal.pone.0004853.g003

Stress Fiber Alignment Model
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deviation of fiber stretch is highest, which is immediately after

initiating cyclic stretch (Figure 4B). For 1 Hz stretch, the initial

drop in time-averaged aavg results in a rapid decrease in SF

turnover rate. The turnover rate continues to decline over the next

2 hours as the amplitude of fiber stretch decreases due to the

gradual orientation of fibers perpendicular to the direction of

stretch. For 0.01 Hz stretch, the rate for SF turnover remains at

the basal level at all times, while an intermediate response is

observed at 0.1 Hz.

Effect of cyclic equibiaxial stretch
In contrast to cyclic uniaxial stretch, cyclic equibiaxial stretch of

ECs does not induce SF alignment [8,9]. Similarly, simulations of

cyclic equibiaxial stretch do not result in the preferred orientation

of SFs in any particular direction at any frequency (Figure 5A)

since there is no direction of minimum matrix normal strain. The

average fiber stretch is dependent on stretch frequency (Figure 5B),

resulting in smaller fiber stretch amplitudes at lower stretch

frequencies. Since SFs do not reduce their stretch by orienting

perpendicular to the direction of stretch, the amplitude of fiber

stretch remains elevated for stretch frequencies of 0.1 and 1 Hz

(Compare Figures 4A and 5B). Similarly, there is a sustained

elevation in SF turnover rates that is dependent on the frequency

of stretch (Figure 5C). Thus, while there is no difference in stress

fiber orientation, our model predicts that stress fibers will respond

differently to cyclic equibiaxial stretches at different frequencies.

Effect of uniaxial stretch magnitude
We have previously reported the relationship between SF

alignment and the magnitude of cyclic uniaxial stretch at 1 Hz

[17]. These experiments were simulated using the optimized

Figure 4. Predicted time evolutions of SF stretch and turnover
rate in response to different frequencies of uniaxial stretch. The
maximum and minimum values of the population-averaged fiber
stretch during a cycle (A) and the rate of SF turnover (B) are shown for
simulations of 10% cyclic uniaxial stretch at frequencies of 1 (red), 0.1
(blue) and 0.01 Hz (black) using the optimized parameter values.
doi:10.1371/journal.pone.0004853.g004

Figure 5. Predicted time evolutions of circular variance, SF
stretch and fiber turnover rate in response to different
frequencies of equibiaxial stretch. The circular variance (A), the
maximum and minimum values of the population-averaged fiber
stretch during a cycle (B), and the rate of stress fiber turnover (C) are
shown for simulations of 10% cyclic equibiaxial stretch at frequencies of
1 (red), 0.1 (blue) and 0.01 Hz (black) using the optimized parameter
values.
doi:10.1371/journal.pone.0004853.g005
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parameters estimated above (cf. Figure 2A). The model predicts a

similar relationship between the steady-state circular variance and

stretch magnitude as the experimental measurements (Figure 6). It

should be noted that the model would provide a significantly better

fit if the model parameters were optimized for this set of data. By

using the parameters optimized from the other data set (cf.

Figure 2), these results illustrate the ability of the model to predict

the effects of stretch magnitude on SF alignment.

Discussion

Cells in the body are continuously subjected to mechanical

strains and respond through both structural and biochemical

changes [19]. Often, stretching stimulates the activation of

intracellular signals and the subsequent induction of genes that

contribute to pathological situations such as atherosclerosis [20–

23]. When cells are subjected to cyclic stretch in vitro, the

activation of these pathophysiological signaling events is often

transient, indicating that cells are able to adjust to the cyclic

stretching in order to maintain biochemical homeostasis. The ECs

in straight, unbranched arteries are subjected to cyclic stretch, yet

maintain an anti-atherogenic phenotype [24], suggesting that the

ECs have found a way to adapt. ECs in these straight, unbranched

arteries are oriented perpendicular to the principal direction of

stretch, while ECs do not align at arterial branches, where

atherosclerosis typically occurs. Thus, cell alignment appears to

contribute to the ability of ECs to maintain homeostasis in their

dynamic mechanical environment. The present study quantifies

the contributions of two mechanisms by which ECs and their SFs

can adapt to cyclic stretch - SF reorientation and self-adjustment

of their extension.

Our mathematical model describes the time-dependent changes

in SF extension and orientation in terms of the rates of the

turnover of SFs and the re-establishment of SF extension. The

results of stretch experiments performed at different stretch

frequencies were used to estimate physiologically relevant values

for the model parameters. The model predicts that the extent of

SF alignment depends on the whether SFs can self-adjust their

level of extension faster than the SFs are stretched. Specifically,

there is a threshold frequency of ,0.01 Hz, below which SFs are

able to self-adjust in order to maintain SF stretch at a set-point

value. As the frequency of stretch increases from 0.01 to 1 Hz, the

cells become increasingly less capable of adjusting to matrix

stretch-induced changes in SF stretch. To compensate, SFs

become increasingly more likely to orient toward the direction of

least perturbation in stretch (i.e. perpendicular to the direction of

stretch). The model also predicts that there is an upper threshold

frequency of ,1 Hz stretch where near-maximal SF alignment

occurs.

There are few reports examining the effect of stretch frequency

on stretch-induced cell alignment. Wille et al. [25] examined the

effects of 10% cyclic uniaxial stretch at frequencies ranging from

0.25 to 1 Hz on the rate and extent of alignment of non-confluent

human aortic ECs and concluded that the results were insensitive

to stretch frequency. Liu et al. [26] tested the effects of stretch

frequencies ranging from 0.5 to 2 Hz in vascular smooth muscle

cells and reported a small, but significant, effect on cell alignment

in which the greatest alignment was observed at 0.5 Hz. More

recently, Jungbauer et al. [27] studied the effects of a wide range of

stretch frequencies (0.0001 to 20 Hz) and demonstrated that both

the rate and extent of fibroblast alignment was highly dependent

on the frequency of stretch. We and others have quantified SF

alignment in response to cyclic stretch [9,17,28]; however, the

present study is the first to quantify the effects of stretch frequency

on SF alignment. Quantitative data regarding stretch-induced SF

alignment is critical for the development and testing of

computational models of stretch-induced SF reorganization.

A stochastic model is well-suited to predict the dynamic changes

in a population of SFs. Our experiments indicate that the

population-average orientation of SFs in ECs is always perpen-

dicular to the direction of stretch; however, not all the SFs are

oriented in the same direction. The dispersion in SF orientation is

a consequence of the disproportionate disassembly of SF in

directions with higher normal matrix strains as well as the

randomized direction of SF reassembly. Specifically, the number

of SFs oriented in a particular direction is proportional to the

expected lifetime of SFs in that particular direction. The lifetime of

a SF is inversely related to the level of perturbation in SF stretch,

hence SF tend to orient away from the direction of stretch. For

equibiaxial stretch, the expected lifetime of a SF is the same in all

directions, so the distribution of SF orientation remains relatively

uniform (cf., Figure 5A). The model does predict that the

amplitude in SF stretch and the rate of SF turnover are each

proportional to the frequency of equibiaxial stretch (cf., Figs. 5B

and C). Since SF assembly is assumed to occur immediately after

disassembly, equibiaxial stretch does not lead to a change in the

total number of SFs.

The present model of SF reorientation in response to cyclic

matrix stretch shares some key features of a recent model proposed

by De et al. [11]. In their deterministic model, cells readjust their

contractile activity in an attempt to maintain either the local stress

or strain in the surrounding matrix at a set-point value while being

subjected to a periodic external stress [12]. At low frequencies of

cyclic stress, the cells are able to readjust their contractile activity

so as to maintain the mechanical state of the matrix at the set-point

value and the cells orient parallel to the direction of stress, while at

high frequencies the cells orient nearly perpendicular to the

applied stress since the contractile activity is too slow to

compensate. In the present stochastic model in which a periodic

stretch is applied, SFs attempt to maintain constant the level of

strain in the stress fibers, not in the surrounding matrix. At low

Figure 6. Comparison between measurements and model
predictions of effect of cyclic uniaxial stretch magnitude on
SF alignment. Simulations of 6 hr of cyclic uniaxial stretch at 1 Hz
were performed over stretch magnitudes of 0 (static control) to 10%
and the circular variances of the SF distributions were determined using
the optimized parameter values. Circular variances of experimentally
measured SF distributions (published in Kaunas et al. [17]) for cyclic
uniaxial stretch at 1 Hz of non-confluent bovine aortic ECs transfected
with Green Fluorescent Protein (circles) are shown for comparison.
doi:10.1371/journal.pone.0004853.g006
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stretch frequencies, the SFs are able to readjust their extension so

as to maintain stretch at the set-point level with the result that the

SFs do not orient in any direction. The contrasting results at low

frequencies is attributable to the difference in the boundary

conditions – De et al. [11] use traction boundary conditions, while

the present model uses displacement boundary conditions. When

the displacement is sufficiently slow, the cells essentially no longer

sense the changing boundary conditions, while a cell would be

expected to continue to sense a static or quasistatic stress. In the

case of cells subjected to cyclic stretch on elastomeric substrates

such as silicone rubber, we submit that the displacement boundary

condition is a more appropriate description of the mechanical

stimulus that the cells respond to. This is consistent with the

concept of ‘‘stress shielding’’ in which stress in tissues is primarily

borne by the matrix and is not transmitted to the resident cells

[29]. Traction boundary conditions are expected to be more

important in matrices with relatively low elastic moduli such as

collagen hydrogels [30]. Wei et al. [31] proposed a dynamic model

of cyclic stretch-induced SF orientation in which SF growth

depends on the rate of SF shortening. In their model, cells initially

devoid of SFs begin to assemble SFs under cyclic stretch

conditions; with the rate of SF growth being greatest in the

directions with least matrix shortening such as occurs during the

retraction phase of a matrix stretch cycle. Their model also

predicts that SF alignment depends on stretch magnitude and

frequency, although the extent of alignment does not saturate at

1 Hz. It would be interesting to experimentally test the hypothesis

that SF alignment is dependent on the rate of shortening by

applying stretch waveforms in which the rate of rise and rate of fall

of the matrix stretch unequal such that the rate of SF shortening is

changed without changing the cycle period length. We are

currently assembling a stretch device capable of generating such

stretch waveforms.

Two characteristic times describe the SF response to cyclic

stretch. The time constant for SF self-adjustment t determines the

sensitivity of SF to the frequency of stretch. When the

characteristic time for self-adjustment is shorter than the period

of a cycle of stretch, then the SFs can self-equilibrate to maintain

SF extension at the set-point level. In contrast, the amplitude of SF

extension follows that of the normal matrix strain when the period

of the stretch cycle is much shorter than t. The other characteristic

time is that for SF disassembly (1/ki), which depends on the level of

perturbation of fiber stretch from the set-point level. For cyclic

uniaxial stretch, the time constant for SF disassembly is much

greater perpendicular vs. parallel to the direction of matrix stretch,

leading to the accumulation of SFs in the perpendicular direction.

The asymmetry in the time constants for disassembly decreases at

low stretch frequencies since SF self-adjustment reduces the

perturbation in SF extension from the set-point level. Conse-

quently, the extent of SF alignment increases with frequency since

the rate of stretching is faster than the rate of SF self-adjustment.

Parameter sensitivity analysis illustrates the effect of each model

parameter on the system response. The rate and extent of SF

alignment are primarily dependent on the values of k0 and k1,

respectively. The rate of SF alignment in the present study is faster

than the rate we reported for confluent ECs [13], thus the value of

k0 is higher (361024 vs. 1025 s21). This is consistent with the

report that actin filament turnover is faster in non-confluent than

confluent cells [32]. In addition, the extent of alignment in the

present study is somewhat less than that for confluent ECs [13]. It

is possible that when cells are confluent, cell-cell junctions may act

to reinforce mutual alignment of neighboring cells and their SFs.

Indeed, even in static cell culture we typically see localized co-

alignment of SFs in small groups of cells, which is no longer

apparent when considering larger populations of cells in the same

culture. In the presence of a directional cue (i.e. uniaxial stretch),

all cells tend to align in the same direction and the localized

reinforcement may augment the uniformity of the SF alignment

under confluent conditions.

The third model parameter, t, primarily determines the

frequency range over which circular variance transitions between

the maximum and minimum values (i.e., the threshold and

saturation values). We estimated a value of 0.5 s for t, which

described the measured transition of SF alignment from essentially

no alignment at 0.01 Hz to extensive alignment at 1 Hz.

Jungbauer et al. [27] did report a saturation frequency of 1 Hz

for stretch-induced cell alignment, as well as exponential behavior

similar to our own observations for SF alignment. We could not

further increase stretch frequency with our system to test the

prediction that 1 Hz is a saturation level of stretch frequency

above which no additional alignment is expected. The time

constant of 0.5 s is somewhat shorter than the value of ,6 s

obtained by Kumar et al. [18] from measured retraction rates of

severed SFs in bovine capillary ECs. For cyclic stretch, SF self-

adjustment occurs via SF lengthening during half the cycle and

shortening during the other half of the cycle. It is possible that self-

adjustment occurs at different rates depending on if the SF is

lengthening or shortening, in which case the value of 0.5 s from

the current study would represent an average of the two time

constants. Another potential explanation is that cells from different

vascular beds have different rates of self-adjustment. Arterial ECs

are subjected to high frequency stretch (,1–2 Hz), hence may

need to be more responsive to time-changing strains than capillary

ECs that experience much less frequent changes in matrix strain.

The current model is limited to describing a population of stress

fibers and does not consider other factors that may interact with

stress fibers during stretch-induced reorientation. Jungbauer et al.

[27] reported that fibroblasts initially decrease their level of

elongation during the first 10 minutes of cyclic stretch and then re-

extend in the direction perpendicular to stretch. Cell elongation

and stress fiber orientation are generally tightly coupled in highly

polarized cells such as fibroblasts and smooth muscle cells and

somewhat less so in more highly spread cells such as endothelial

cells. Stress fiber assembly has been reported to drive endothelial

cell elongation [33]. On the other hand, endothelial cell elongation

has been proposed to drive the orientation of stress fibers [34]. In

our model, new fibers are allowed to assemble in any direction

with equal probability. It is likely that fiber assembly depends to

some extent on cell shape, as well as the predominant orientations

of the existing stress fiber population. These factors are expected to

provide a virtual inertia for stretch-induced stress fiber reorienta-

tion, which may contribute to the ,15 minute delay before the

circular variance in stress fiber orientation began to decrease at a

rate similar to that predicted for cyclic stretch at 1 Hz (cf. Fig. 2).

SF assembly occurs immediately after a SF is disassembled in our

model; however, SF assembly is a gradual process that involves

actin polymerization and bundling, as well as focal adhesion

assembly. The rates of these processes are expected to also

influence the rate of stress fiber alignment. In future refinements of

the current model we will investigate the relationships amongst

stretch-induced changes in cell shape, SF and focal adhesion

formation, and SF reorientation.

In conclusion, mathematical modeling provides a valuable tool

for interpreting the strain rate-dependent SF reorganization

induced by matrix stretching. When the rate of stretch is fast

relative to the rate of SF self-adjustment, the SFs at non-

equilibrium stretch values disassemble at relatively faster rates and

gradually accumulate in directions of smallest perturbation from
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equilibrium. When the rate of stretch is slow, the SFs can self-

equilibrate to maintain their level of extension, thus diminishing

the mechanical signal for SF remodeling. While the current study

focused on the effects of cyclic stretch on ECs, the model can be

applied to SF reorganization in other cell types subjected to any

two-dimensional matrix stretch pattern. We wish to emphasize

that the present results only provide guidance toward the

development of more realistic mathematical descriptions of SF

remodeling. The phenomenological description of the self-

adjustment of SF mechanical equilibrium needs to be supported

with mechanistic details, such as the kinetics of actin-myosin

crossbridging and a-actinin binding [2]. Nonetheless, the present

results demonstrate the significance of SF self-adjustment in

regulating mechanosensitivity, providing a mechanism for cells to

cope with deformations of the tissues they reside upon.
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