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The Intermediate Luminosity Optical Transient SN 2010da: The

Progenitor, Eruption and Aftermath of a Peculiar Supergiant
High-mass X-ray Binary

V. A. Villar'?, E. Berger!, R. Chornock®, R. Margutti*, T. Laskar>®, P. J. Brown’, P. K.

Blanchard!?, 1. Czekala!, R. Lunnan®, M. T. Reynolds®

Abstract

We present optical spectroscopy, ultraviolet to infrared imaging and X-ray observations of
the intermediate luminosity optical transient (ILOT) SN 2010da in NGC300 (d = 1.86 Mpc)
spanning from —6 to +6 years relative to the time of outburst in 2010. Based on the light curve
and multi-epoch SEDs of SN 2010da, we conclude that the progenitor of SN 2010da is a &~ 10—12
Mg yellow supergiant possibly transitioning into a blue loop phase. During outburst, SN 2010da
had a peak absolute magnitude of My < —10.4 mag, dimmer than other ILOTs and supernova
impostors. We detect multi-component hydrogen Balmer, Paschen, and Ca II emission lines
in our high-resolution spectra, which indicate a dusty and complex circumstellar environment.
Since the 2010 eruption, the star has brightened by a factor of ~ 5 and remains highly variable
in the optical. Furthermore, we detect SN 2010da in archival Swift and Chandra observations as
an ultraluminous X-ray source (Lx ~ 6 x 103° erg s7!). We additionally attribute He II 4686A

and coronal Fe emission lines in addition to a steady X-ray luminosity of ~ 1

presence of a compact companion.

037 erg s™! to the
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1. Introduction

Between the luminosities of the brightest no-
vae (My = —10; Hachisu & Kato| [2014) and
the dimmest supernovae (My ~ —14;
, there is a dearth of well-studied op-
tical transients (see . In the last

decade, we have begun to fill in this gap with
a number of exotic events such as luminous red
novae (Kulkarni et al.|[2007), luminous blue vari-
able (LBV) outbursts and other “supernova im-
postors” (e.g. |[Van Dyk et al|2000; [Pastorello
et al|[2007; Berger et al|[2009; [Tartaglia et al.
2015). Additionally, there are expected events
which have not been definitively observed, such as
“failed” supernovae (Kochanek et al|2008)). Fol-
lowing Berger et al.| (2009), we will collectively re-
fer to these events as intermediate luminosity op-
tical transients (ILOTSs).

The link between ILOTs and their progenitors
remains elusive, especially for ILOTs surrounded
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by dense circumstellar media (CSM). Brighter
dusty ILOTSs, such as the great eruption of Eta
Carinae (Davidson & Humphreys| [1997) or SN
1954J (Van Dyk et al.|[2005), are attributed to
LBV outbursts; however, the progenitors of dim-
mer events are under debate with a larger pool
of viable origins. For example, theorized progeni-
tors of the famous dusty ILOTSs, such as NGC 300
0OT2008-1 and SN 2008S have ranged from mass

loss events of yellow hypergiants (Berger et al.
2009), to mass transfer from an extreme AGB

star to a main sequence companion
2010), to low luminosity electron-capture super-
novae (Thompson et al.[[2009; |Adams et al|2016).
Each of these interpretations shares the common
theme of marking an important point in the evo-
lution of relatively massive stars (= 9Mg).

Adding to the diversity of ILOTs is the possibil-
ity of optical transients within X-ray binary sys-
tems. High mass X-ray binaries (HMXBs) consist
of a massive star and a compact object (e.g. a neu-
tron star or a black hole) and produce X-rays as
material accretes onto the compact object through
a variety of channels (Lewin et al||1997; Reig|
. A relatively new subclass of HMXBs known
as obscured HMXBs are cloaked in a high density
of local material (Ngg ~ 10?2 —10%* cm~2;
[Rahouil 2007} Tomsick et al.[2009). While the pri-
mary stars of these systems are largely unknown,
several have been shown to be supergiants exhibit-
ing Ble] phenomena (Clark et al.|[1999; |Chaty &
[Filliatre|[2004; Kaplan et al.|2006). These systems
likely produce their dense circumstellar material
through either a continuous wind or periodic out-
bursts which have not yet been observed.

In this work we report data from a five-year,
multiwavelength (X-ray, ultraviolet, optical and
infrared) observational campaign of the dusty
ILOT SN 2010da which was discovered in the
nearby galaxy NGC 300 . We show
that SN 2010da exhibits many features shared
amongst dusty ILOTSs, such as striking Balmer
emission and optical variability on the order of
months, but it is the only ILOT to sit in an inter-
mediate range between extremely dusty red tran-
sients such as SN 2008S and the bluer, brighter
LBV outbursts. Additionally, SN 2010da is the
first ILOT to be a member of a high mass X-ray
binary which undergoes an ultraluminous X-ray
outburst (~ 10%° erg s=!). Previous work on

SN 2010da (Binder et al.|2011} [2016]) concluded
that the progenitor is a massive (2 25 Mg) lumi-
nous blue variable using limited HST photometry.
However, from our broadband photometry and
spectroscopy we infer that SN 2010da originated
from an intermediate mass (~ 10 — 12Mg), vari-
able yellow supergiant progenitor which is now
transitioning into a blue loop phase of its evo-
lution. We discuss these conflicting interpreta-
tions and the importance of comprehensive, multi-
wavelength coverage of ILOTs.

2. Observations

SN 2010da was discovered in NGC 300 on 2010
May 23.169 UT by with an un-
filtered magnitude of 16.0 + 0.2, corresponding
to M =~ —10.3 assuming a distance of 1.86 Mpc
(Rizzi et al|[2006) and a foreground extinction
of E(B-V)= 0.011 (Schlafly & Finkbeiner [2011).
We neglect addition extinction from NGC 300
based on our observed Swift colors (Section [3.1.2).
Throughout this paper, Epoch 0 will refer to the
discovery date, 2010 May 23. Prior to discovery,
NGC 300 was behind the Sun, although
reported an upper limit of < 15.5 mag
on May 6. Archival Spitzer data indicated that
the source began brightening in the infrared at
least 150 days before the optical discovery
. Multi-wavelength follow-up, spanning
from the radio to X-rays, revealed that despite its
supernova designation, SN 2010da was likely an
outburst of a massive star enshrouded by dust
(Elias-Rosa et al.,|[2010; |Chornock & Berger|/2010;
[Prieto et al||2010). This conclusion was reaf-
firmed by archival Spitzer /IRAC observations of
the dusty progenitor (Khan et al.|2010} Berger &
, but the lack of extinction in the
spectral energy distribution (SED) suggested that
some dust had been destroyed during the outburst
(Brown|2010; Bond 2010)). Early spectroscopic fol-
lowup revealed narrow emission features (FWHM
~ 1000 km s~!) with no signs of P-Cygni profiles
(Elias-Rosa et al[2010). Hydrogen Balmer, Fe II
and He I emission lines provided further support
for interaction with a dense CSM surrounding the
progenitor.

The transient was also detected in the X-rays
and UV with the Swift X-ray Telescope (XRT)
and Ultraviolet/Optical Telescope (UVOT), re-



spectively (Immler et al.|[2010; [Brown|[2010). Ad-
ditionally, 30 upper limits of F,, < 87 (4.9 GHz),
< 75 (8.5 GHz), and < 225 (22.5 GHz) uJy were
obtained with the Karl G. Jansky Very Large
Array (Chomiuk & Soderberg|[2010). Following
the event, we monitored SN 2010da in the near-
infrared (NIR) and optical using Gemini and Mag-
ellan. We report below our ground-based imaging
and spectroscopy, as well as an analysis of archival
Spitzer, Hubble, Swift and Chandra observations.

2.1. Spitzer Infrared Imaging

We obtained publicly available Spitzer images
spanning from 2003 November 21 to 2016 March
19 (see Table for program IDs; [Lau et al.|[2016).
This data set extends several years before and af-
ter the event, but no data are available within a
four month window surrounding the optical dis-
covery. We used data from the InfraRed Array
Camera (IRAC) in the 3.6 and 4.5 pm bands
through both the original and “warm” Spitzer mis-
sions, and we use IRAC data in the 5.8 and 8.0 um
bands available prior to the 2010 eruption. Addi-
tionally, we used photometry from the Multiband
Imagine Photometer (MIPS) in the 24 pym band
prior to the discovery of the transient. We pro-
cessed the Spitzer data with the Mopex package,
which creates a mosaic of the dithered Spitzer im-
ages. For the IRAC images, we used a drizzling
parameter of 0.7 and an output pixel scale of 0.4”.
For the MIPS images, we used the same drizzling
parameter but with an output pixel scale of 1.8”.
Images of the field in the Spitzer bands are shown
in Figure [T}

We performed aperture photometry using
DS9’s Funtools. For the IRAC photometry, we
used an aperture of 3 native IRAC pixels (corre-
sponding to 3.66”) with an inner and outer back-
ground annulus radii of 3 (3.66”) and 7 (8.54”)
native pixels, respectively. These radii have calcu-
lated aperture correction factors for point sources
in the IRAC Instrument Handbook. For the MIPS
24 pm photometry we used an aperture size of 3.5”
with no background annulus, following the MIPS
Instrument Handbook. We calculated the flux
uncertainties following Equation 1 in Laskar et al.
(2011). The observations are summarized in Table
and the Spitzer /IRAC light curves at 3.6 and
4.5 pm are shown in Figure 2] Our photometric
results are consistent with those presented in [Lau

et al.| (2016)).

2.2. Ground-based Near-Infrared Imaging

We obtained near-infrared imaging observa-
tions with the FourStar Infrared Camera (Persson
et al.|2013) on the Magellan/Baade 6.5m telescope
at the Las Campanas Observatory in Chile on
three epochs: 2011 December 7 (J, H, K;), 2015
July 31 (H, K;) and 2015 August 18 (J, H, Kj).
We calibrated, aligned and co-added each of these
observations using the FSRED packageﬂ Each im-
age was calibrated using the 2MASS Point Source
Catalog, and the magnitude of the transient was
measured using aperture photometry. The results
are summarized in Table 2

2.3. Ground-based Optical Imaging

We obtained optical imaging observations with
the Low Dispersion Survey Spectrograph 3 (LDSS-
3, upgraded from LDSS-2 |Allington-Smith et al.
1994) and the Inamori-Magellan Areal Camera &
Spectrograph (IMACS; Dressler et al.[2006)) on the
Magellan Clay and Baade 6.5m telescopes at the
Las Campanas Observatory, respectively, in the
gri filters spanning from ~ 610 days before to
~ 1900 days after the optical discovery. In our
earliest IMACS I-band image (at Epoch —609),
we detect the object with 24.24+0.2 mag (see Fig-
ure . However, we do not detect a source at the
location of SN 2010da in pre-transient gri images
taken with the Magellan/Clay wide field imager
MegaCam (at Epoch —183; McLeod et al.|[2015)).
We use the MegaCam images in each filter as tem-
plates for image subtraction. For all other ground-
based optical imaging observations, we performed
image subtraction using the ISIS package (Alard
2000). We then performed aperture photometry
on the subtracted images and calibrated to south-
ern standard stars listed in [Smith et al.| (2007)).
The photometry is summarized in Table

2.4. HST Optical Imaging

SN 2010da was observed by the Hubble Space
Telescope Advanced Camera for Surveys (ACS)
on 2012 July 18 (Program 12450) and 2014 July 9
(Program 13515). The object was observed in the

Lhttp://instrumentation.obs.carnegiescience.edu/FourStar/
SOFTWARE/reduction.html
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Fig. 1.— Top rows: Spitzer images of the SN 2010da progenitor. The right panel of the middle row shows
a false color image combining the 3.6 (blue), 4.5 (green) and 5.8 (red) pum images. Bottom row: Archival
MegaCam and IMACS images. The progenitor is only detected in the IMACS I-band image.

F814W filter in both programs (2224 s and 2548
s exposure times, respectively) and in the F606W
filter with program 13515 (2400 s). We processed
the data using the standard PyDrizzle pipeline in
PyRAF which supplies geometric distortion correc-
tions to combine undersampled, dithered images

from HST. We scaled the pixel size by 0.8 for a
final pixel scale of 0.032”. We detected a source
coincident with the position of SN 2010da, and
using five objects detected in the field from the
2MASS Point Source Catalog, we determined a
position of o = 00"55™04.86°, § = —37°41/43.8"
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Downward facing triangles are 30 upper limits.



(J2000) with 0.3” uncertainty in both coordinates.
This is in good agreement (within lo) with pre-
vious results (Monard||2010; Binder et al. |[2011)).
With the high resolution of HST, SN 2010da ap-
pears isolated, and we used aperture photometry
to measure its magnitude. These magnitudes are
listed in Table [d and are in good agreement with
those reported by Binder et al.| (2016]).

2.5. Optical Spectroscopy

We obtained medium- and high-resolution spec-
tra of SN 2010da using: the Gemini South Multi-
Object Spectrograph (GMOSjDavies et al. 1997
located in the southern Gemini Observatory in
Chile; IMACS, the Magellan Inamori Kyocera
Echelle (MIKE; Bernstein et al.[2003) spectro-
graph on the 6.5m Magellan/Clay telescope; and
the Magellan Echellette Spectrograph (MagE;
Marshall et al. [2008) also mounted on the Mag-
ellan/Clay telescope. Table [5| summarizes these
observations. We used standard IRAF routines to
process the spectra and applied wavelength cal-
ibrations using HeNeAr arc lamps. The MIKE
spectra were processed using a custom pipeline
and calibrated using ThAr arc lamps. We used
our own IDL routines to apply flux calibrations
from observations of standard stars (archival in the
case of Gemini) and correct for telluric absorption.
We estimate the resolution of each spectrum (see
Table [5)) using their associated arc lamp spectra.
All spectra are corrected for air-to-vacuum and
heliocentric shifts.

2.6. Swift/UVOT Imaging

The Swift/UVOT data was processed using the
method of the Swift Optical/Ultraviolet Super-
nova Archive (SOUSA; Brown et al.|2014). We
combined pre-outburst observations from Decem-
ber 2006 and January 2007 into templates from
which the underlying host galaxy count rate was
measured. A 3" aperture was used with aper-
ture corrections based on an average PSF. A time-
dependent sensitivity correction was used (up-
dated in 2015) and AB zeropoints from |Breeveld
et al.| (2011). The photometry is summarized in
Table 6l

2.7. X-ray Spectral Imaging

We aggregated archival X-ray observations
from the Swift/XRT, the Chandra X-ray Observa-
tory and XMM-Newton. These X-ray observations
span from 2000 December 26 to 2014 November
17, including the outburst period. The source was
undetected with XMM-Newton, and we use the
30 upper limits obtained by Binder et al.| (2011]).

The XRT observations were made before, dur-
ing and after the 2010 outburst, and an X-ray
source coincident with SN 2010da is detected in
all three regimes. These observations are pub-
licly available from the Swift Archive (Evans et al.
2009), and the XRT photometry and spectra are
automatically generated through this database.

We used three archival Chandra observations
from 2010 September 24 (Obs. ID: 12238; PI:
Williams), 2014 June 16 (Obs. ID: 16028; PI:
Binder) and 2014 November 17 (Obs. ID: 16029;
PL: Binder). All observations were made using
the Advanced CCD Imaging Spectrometer (ACIS-
I) with similar exposure times (63.0 ks, 64.24 ks
and 61.27 ks, respectively). We analyzed the ob-
servations using CIAQO version 4.7 and CALDB ver-
sion 4.6.7 using standard extraction procedures.
We performed photometry with WAVDETECT using
an annular background region with an inner ra-
dius of 24.6” and a width of 4.9” centered on the
source. The results are summarized in Table [
We extracted spectra of the source using the built-
in function specextract.

3. The Multi-wavelength Properties of SN
2010da, its Progenitor, and its Progeny

3.1. Light Curve and Spectral Evolution
3.1.1.  The Progenitor

We are able to constrain the progenitor proper-
ties using the Spitzer (3.6, 4.5, 5.8, 8 and 24 pum)
and MegaCam/IMACS (gri) observations. We
note that the location of SN 2010da was observed
in the i’-band on both 2008 September 09 and 2009
November 25 by IMACS and MegaCam, respec-
tively. The MegaCam/IMACS observations are
summarized in Table The progenitor IMACS
detection and MegaCam upper limit are consis-
tent with a magnitude ~ 24.2. The gr upper lim-
its were both obtained with MegaCam on 2009
November 25. The location of SN 2010da was ob-



served five times by Spitzer before the transient,
ranging between 2003 November 21 and 2010 Jan-
uary 14. These observations are summarized in
Table [I] We find no significant change in the color
and brightness between the pre-eruption observa-
tions.

To create a progenitor SED, we average the two
pre-eruption Spitzer observations in the 3.6 and
4.5 pm filters and compiled the other detections.
The SED of the progenitor is well fit by an unab-
sorbed blackbody spectrum with 7' = 1500 + 40
Kand R = 94+05 AU (x2 = 1.2 for d.f. =
3). These parameters correspond to a bolometric
luminosity of L = (1.92 + 0.26) x 10* Lg, sug-
gesting a ~ 15 Mg main sequence progenitor if
we assume solar metallicity (Meynet & Maeder
2000). The large radius and cool temperature of
this fit imply that the progenitor is surrounded
by dust. The progenitor SED is shown in Figure
along with several red supergiants (RSGs) and
the progenitor of a previous ILOT in NGC 300
(NGC 300 OT2008-1; Berger et al.|[2009). Also
shown is the SED of an obscured HMXB (IGR
J16207-5129; Tomsick et al.[2006]). The progenitor
SED peaks between the typically bluer obscured
HMXBs and the redder ILOTs such as NGC 300
0OT2008-1. The SEDs of RSGs seem to bridge this
gap, owing their SED variability to diverse geome-
tries (e.g. WOH G64 has notable IR excess pos-
sibly due to a dusty torus along the line of sight;
Ohnaka et al.[2008), although neither RSG fits the
observed SED.

3.1.2. The 2010 Outburst

SN 2010da was discovered at its brightest
known magnitude of mynfitered = 16.0 = 0.2. It is
unclear if SN 2010da was caught at its true peak
brightness, but the optical 15.5 mag upper limit
18 days prior and a slight rise in the Swift/UVOT
light curve hints that SN 2010da was discovered
near its peak luminosity. An increase in IR flux
is seen in the IRAC data as early as ~ 130 days
before the optical discovery. The full rise and fall
caught by Spitzer spans ~ 250 days, as shown in
Figure [2|

During the 2010 outburst, the SED of SN
2010da is well fit by two unabsorbed blackbod-
ies at ~ 0.2 — 1.7 pm: a hotter blackbody with
T =9440 £280 K and Ry, = 1.59 £0.14 AU
and a cooler blackbody with T; = 3230 £490 K

and Rc1 = 9.54+2.9 AU (x2 ~ 0.8 for d.f. = 6), as
shown in Figure[d] These black bodies have a com-
bined bolometric luminosity of L = (1.340.4)x 10°
Lo, about 60 times more luminous than the pro-
genitor. Nine days later, the SED is consistent
with similar blackbodies, although the larger one
has cooled (T2 = 2760+250 K, Rc 2 = 10.5£1.6
AU), while the hotter one remains at roughly
the same temperature (Tgpo = 9080 + 330 K,
Rp 2 =1.25+0.13 AU). The radius of the cooler,
larger blackbody component is consistent with
the estimated pre-eruption radius (R 2 ~ Rc1 ~
Rc ) but has a temperature that is twice as high
(Tc,2 = 2T¢c,). These relations are summarized
in Table[® This indicates that at least some dust
in the original shell survived the outburst and has
heated up.

The UVOT data trace the evolution of the hot-
ter blackbody detected in the initial outburst. The
blackbody radius decreases from about 1.7 to 0.55
AU over the ten days of observations while remain-
ing at a steady temperature of &~ 9200 K, as shown
in Figure[5] This is consistent with a receding pho-
tosphere of the initial outburst. We can use this
observation to constrain the radius of the progen-
itor/surviving star to < 0.55 AU, since we expect
the photosphere of the eruption to exceed the ra-
dius of the star at all times.

3.1.3. The Progeny

About 200 days after its discovery, SN 2010da
dips to m; =~ 23 mag in the optical but returns to
m; ~ 20 mag after 500 days. In the same time
frame, the IR flux declines by about one magni-
tude to mg¢ ~ 18.7 mag at 460 days. The optical
light curve then appears to settle into an aperiodic,
variable state that oscillates between m,; ~ 20
mag and m; = 22 mag every 500—1000 days.
The IR light curve remains roughly at its pre-
eruption brightness, but the color becomes much
bluer (from ms3g — mgs5 = 0.2 to &~ —0.2). Be-
ginning around ~ 1500 days after discovery, the
IR light curve begins to rise to magnitudes com-
parable to the initial outburst. We refer to the
surviving star as the progeny of SN 2010da.

The progeny’s optical/IR SED can be roughly
described by a single blackbody with variable ex-
cess flux in the optical. After 500 days, the NIR
and IR fluxes are fit by a blackbody with a ra-
dius of = 6 AU and a temperature of ~ 2000
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K. The derived radius is smaller than the pro-
genitor radius at ~ 10 AU, and the temperature
is higher than the blackbody temperature of the
pre-eruption SED (7' = 1500 K), consistent with
the color shift seen in the IR. The optical flux,
however, varies by =~ 2 mag even two years af-
ter the initial outburst. Fitting our NIR /IR mea-
surements to blackbodies, we track the bolomet-
ric luminosity of the system over time, as shown
in Figure [} The luminosity of the progeny and
its surrounding environment is about 2 — 5 times
larger than the progenitor of SN 2010da excluding
contribution from the UV /optical, which supplies
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Fig. 6.— Bolometric luminosity of SN 2010da as
derived from the NIR /IR flux as a function of time
(black). The colored lines at the bottom of the
plot indicate our photometric X-ray (green), op-
tical (blue), and infrared (red) coverage for ref-
erence. The progeny of SN 2010da system has a
consistently higher bolometric luminosity than its
progenitor.

~ 10 — 20% of the total luminosity.

We compare the SEDs taken more than 800
days after the initial outburst to a variety of SEDs
of massive stars in the LMC analyzed by |Bonanos
et al| (2009). We group these massive stars by
their spectroscopic classification reported by |Bo-
nanos et al.| (2009), and we construct “typical”
SED ranges for each class using the 10" and 90"
percentile magnitude of each filter within each
group. The SEDs for red, yellow and blue super-
giants (RSGs, YSGs, BSGs), luminous blue vari-
ables (LBVs) and Ble| stars compared to the SED
of the progeny of SN 2010da are shown in Figure

[ Here, we are defining Ble] stars as any star with

Ble] emission lines (e.g. Hydrogen Balmer, iron,
etc.), regardless of luminosity class. The progeny’s
SED most closely matches the SED of a typical
RSG. As a test, we also convert our SDSS band-
passes into Johnson magnitudes and search for the
nearest neighbor of the progeny SED within the
space of the magnitudes used by [Bonanos et al.
(2009); the nearest neighbor is [SP77]46-31-999,
an M2 Iab star. The fact that the SED of the



progeny most closely resembles that of a RSG
does not necessarily imply that the progenitor or
progeny is a RSG. In fact, the small radius we infer
from the Swift/UVOT data (< 0.5AU) rules out
most RSG candidates. Both broadband photome-
try and spectroscopy are necessary when classify-
ing obscured, massive stars.

3.2. Spectroscopic Properties of SN 2010da

Throughout our observations, spanning from 2
to 1881 days after the optical discovery, the spec-
tra of SN 2010da exhibit strong hydrogen Balmer
and Paschen, He I and II, Fe II and Ca II emis-
sion lines. Early spectra reveal P-Cygni profiles in
the Balmer, Paschen and helium lines, while later
spectra develop strong nebular emission lines. A
full list of these lines with a 30 detection in at least
one epoch and their properties is provided in Table
O The low-resolution spectra are shown in Figure
and the high-resolution spectra are shown in
Figure [0] The high-resolution spectra have been
normalized by fitting a low-order polynomial to
the smoothed spectra. The strong Balmer lines,
low excitation emission lines (especially Fe II), the
forbidden lines and the IR excess all indicate that
the progeny of SN 2010da exhibits Ble] phenom-
ena by the criteria enumerated in [Lamers et al.
1998| This classification scheme is purely observa-
tional but is linked to a complex CSM surrounding
the star (see Lamers et al.|[1998| Section 2.2). We
observe the development of high ionization emis-
sion lines of iron at later epochs and continuous
He II 4686A emission. Both of these observations
are due to the presence of a hard radiation field
(UV/X-ray emission) associated with the HMXB
nature of the object (see Section [4.3).

3.2.1.  Hydrogen Balmer Lines

The Balmer lines exhibit some of the most dras-
tic changes of the spectrum over the span of our
observations. Their equivalent widths roughly fol-
low the optical/IR flux variations and appear to
be significantly increasing in the most recent ob-
servations. A time sequence of the Balmer lines is
shown in Figure

The spectra are marked by large Ha luminos-
ity, contributing up to ~ 30% of the r-band flux
at later times. Following the initial outburst, Ha
is well described by a Lorentzian profile with a full
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width at half maximum of ~ 560 km s~!. The full-
width at continuum intensity is ~ 3600 km s~'.
The Ha flux immediately following the discovery
is ~ 6.6 x 10713 erg s7! em™2A~! and approxi-
mately halves 40 days later. As the object cools,
the continuum flux decreases while the Ha flux re-
mains relatively constant at ~ (2 —3) x 1071 erg
st em™? . At the same time, Fy, /Fu, increases
from = 4 to ~ 8 in the first 40 days. This is far
greater than the expected value of Fyi, /Fu, ~ 2.8
for Case B recombination at ~ 10* K, the approx-
imate temperature of the hotter blackbody com-
ponent in the SED during outburst. While dust
extinction may account for this excess, the contin-
uum is unabsorbed. An alternative possibility is
that a high-density CSM affects the Balmer decre-
ment via a self absorption and collisions (Drake &
Ulrich/|[1980). Using the static slab model at 10%
K from [Drake & Ulrich| (1980), we find that the
observed Fy,, /Fu, ratio roughly corresponds to a
density of n, ~ 1019 — 102 ecm~3. At these densi-
ties, i, /Fu, is suppressed to ~ 0.3, Fu;/Fu, to
~ 0.2, and Fy, /Fu, to =~ 0.15. The observed line
fluxes roughly match these predictions during the
initial outburst. At 40 days later, the Fy, /Fh,
ratio remains consistent with n, ~ 1019 — 1012
cm 3.

In our high-resolution MIKE spectrum taken
14 days after discovery, the Ha line includes mul-
tiple components. We fit the Ha profile with
three Gaussian components: a narrow component
(FWHM =~ 70 km s7!), an intermediate compo-
nent (FWHM = 500 km s™!) and a broad compo-
nent (FWHM = 1060 km s™!) with y2 ~ 1.9 (see
Figure . Multi-component (specifically three-
component) lines are common in dusty ILOTs
(Berger et al.||2009; [Van Dyk & Matheson| 2012}
Tartaglia et al.|2015; Turatto et al,|[1993). The
narrow component is broader than the other de-
tected narrow emission lines (e.g. other Balmer
lines with FWHM ~ 40 — 60 km s~1!) possibly due
to electron scattering. These narrow components
are consistent with a pre-existing wind, possibly
from an earlier red supergiant phase. As with SNe
IIn emission lines, the intermediate component is
ascribed to the shockwave-CSM interaction (see
Chevalier & Fransson||{1994)), although the veloc-
ity is nearly an order of magnitude slower than in
SNe. The intermediate component is significantly
red-shifted (by ~ 140 km s~!) relative to the nar-
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row component. The apparent redshift may be an
artifact of electron-scattering through high opti-
cal depths and is often seen in other dusty ILOTs,
giants, Wolf-Rayet stars and other stars experienc-
ing significant mass loss (Humphreys et al.|[2011}
Hillier| |1991)). The broadest component is only
identified in Hay, which may be due to lower signal-
to-noise in the other lines or additional scattering.
The central wavelength of this component is con-
sistent with that of the intermediate component,
also suggesting a common physical origin.

At later times, the Ha emission line can be de-
scribed as roughly Gaussian or Lorentzian with
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an extended red wing and a FWHM ~ 300 — 600
km s~!. This red wing is especially apparent in
the high-resolution MagE spectrum at 516 days.
The FWHM of the late-time Ha emission is con-
sistent with the intermediate component of the Ha
line during the initial eruption, while the narrow
component remains unresolved in all other spec-
tra. This suggests that the late-time emission is
powered by a persistent wind or mass loss consis-
tent with that of a blue or yellow supergiant.
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3.2.2. Ca II Lines

Narrow [Ca II] lines (FWHM <50 km s~1) are
detected in our highest resolution (MIKE) spec-
trum 15 days after discovery and possibly again
in the MagE spectrum (Figure [12). Similar for-
bidden calcium emission was observed in NGC 300
OT2008-1 (Berger et al.|[2009) and SN 2008S
ticella et al.|[2009), as well as in several warm hy-
pergiants (Humphreys et al/[2013), and its pres-
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ence is typically associated with a dusty environ-
ment. Because collisional de-excitation normally
drives calcium to its ground state, the [Ca II]
doublet is associated with cooler, low density re-
gions. Forbidden calcium lines are additionally
suppressed by UV radiation due to the low ioniza-
tion potential of calcium. Highly ionized iron and
He II lines indicate a strong UV radiation field.
We can conclude from this fact and the narrow
line shape that the [Ca II] forbidden lines are from
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excited calcium located in the outer CSM, likely
in the original dust shell at ~ 10 AU.

The presence of the calcium triplet also sup-
ports the existence of a cool, low density cir-
cumstellar environment (Polidan & Peters||1976]).
However, the calcium triplet is significantly blended
with hydrogen Paschen emission, so we cannot
make a definitive statement about the line shape
or strength. The Ca H & K doublet, typically as-
sociated with the calcium triplet, are also blended
with Hn and an iron line.
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3.2.3. Fe Lines

We detect strong Fe I emission lines in all spec-
tra. The Fe II features roughly match the hydro-
gen Balmer series in shape, FWHM and line offset,
indicating that these features also arise from ma-
terial within the ejecta and CSM. Fe II emission
is seen in NGC300 OT2008-1 and M85 OT2006-1
(Berger et al.[2009; Bond et al.[2009)), although
the lines seen in SN 2010da are notably stronger.

In addition to Fe II, we detect emission from
high ionization, forbidden iron lines, including [Fe
VII], [Fe X] and [Fe XI] in the last two epochs
of spectroscopy (Epochs 1819 and 1881; see Fig-
ure . These forbidden iron lines are not typi-
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cally seen in ILOTs due to their weakly ionizing
radiation. High ionization iron lines are occasion-
ally found in SNe IIn such as SN 1997eg (Hoffman
and SN 2005ip (Smith et al|[2009)
due to shock heating of the surrounding CSM. Un-
like SNe IIn, the iron lines seen in SN 2010da do
not arise from continual shock heating over hun-
dreds of days. Instead, these lines arise in regions
of diffuse gas surrounding the progeny which are
heated to temperatures of about 2 x 10% K, the ap-
proximate ionization temperature for lines such as
[Fe XII] and [Fe XIV] (Corliss & Sugar|[1982), by
X-rays from the compact companion (see Section
4.3).

3.2.4. He Lines

He I and II emission lines are seen through-
out our observations, as shown in Figure The
widths (FWHM ~ 200 — 400 km s~!) and pro-
files of the He I lines largely follow the Balmer
series with a double-peaked structure in our high-
resolution spectra. We additionally detect single-
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peaked He II 4686A emission during each epoch.
The low-resolution spectra are unable to resolve
the He II 4686A line, but our MIKE spectrum re-
veals a FWHM = 270 km s—'. He II 4686A has a
relatively high ionization potential and is sensitive
to the EUV flux of the system. For this reason, it
is often linked to the accretion onto a compact ob-
ject (Lewin et al.[1997). The continual presence of
He IT 4686A emission in each of our observations
is due to the compact companion and indicates
consistent mass transfer onto this compact object.

3.2.5. Additional Absorption and Emission Fea-
tures

Hydrogen Paschen emission lines extending to
approximately Pa30 are observed within the first
15 days of the outburst. The high-resolution
MIKE spectrum reveals double-peaked emission
with narrow and broad components, similar to the
Balmer lines. These profiles are not resolved in
our lower-resolution spectra. Within the first 40
days, the ratio F(Ps)/(Hg) decreases from ~ 0.2
to = 0.08. The latter value is roughly consistent
with that expected from Case B recombination
(= 0.07), although the effect of high electron den-
sity on this line is unclear.

At early times, we detect O I at 7774A and



—— Epoch 15 (MIKE)
—— Epoch 516 (MagE)

1.6 (caty 7201

0.87 1
—600—400—-200 0 200 400 600
Velocity [km/s]

Fig. 12— Narrow, [Ca II] lines detected in our
high-resolution spectra. The local continuum has
been normalized to one by fitting a first order poly-
nomial.

[Fe VII| 5159 [Fe VII] 5276 [Fe VII 5721 [Fe VII] 6087
— — — —
10 | | |
ar | | |
3.5 h h h
3.0 I I {1t I
] ] ]
2.5 1 1 F | 1
1 1 1
o Al e d
F DY | [ | [ 72,
= fi .— L . N R
S
= [FeIX] 4359 [Fe IX] 4585 [Fe X] 6375 [Fe XI] 7892
C@ T I T T I T T T T I T
g 40 X X X
= ar 1 1 1
o 85 | | 1
Z, 30 I I I
] ] ]
2.5 1 1 1
I
20 .
15
1.0 WALEET N
n 1 L it 1 L
500 0 500 500 0 500 500 0 500 500 0 500
Velocity [km/s]
Fig. 13.— Evolution of the coronal iron lines.

Spectra taken on days 2, 15, 40, 516, 1819 and
1881 are shown in light blue, purple, red, orange,
green, and black, respectively. The local contin-
uum has been normalized to one by fitting a first
order polynomial.

8446A in emission. The O I 8446A line shows the
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order polynomial.

same double-peaked profile as the Balmer series,
while O I 7774A maintains a P-Cygni profile un-
til 40 days after the initial eruption. After 1800
days, O 1 7774A becomes undetectable while O I
8446A strengthens. The expected ratio between
these lines is F(O I 8446A)/F(O 1 7774A) = 0.6,
implying that O I 7774A should be detectable.
The independent strengthening of O I 8446A can
be attributed to LyS emission which is outside
of our observed spectral range. Ly photons
pump O I from the ground state to an unstable
state whose decay produces O I 8446A emission
(Mathew et al.[2012). This is consistent with the
increased Balmer emission and UV flux at later
times. In addition to O I, we detect [O I] and [O
IT1] features. Unfortunately, the [O ITI] 4363A fea-
ture appears blended with either [Fe IX] or an Fe
IT emission line, making it difficult to use the [O
III] ratios to calculate the electron temperature.

Unresolved Na I D lines are observed in the two
latest epochs (517 and 1817 days) as emission and
absorption respectively. The variability of these
lines indicates that they are associated with the
CSM rather than interstellar medium.



3.3.

We model the X-ray emission from SN 2010da
and its progeny using XSPEC version 12.8.2n (Ar-
naud|1996). We use the Cash statistic, a derivative
of the Poisson likelihood, as our fit statistic. To
test our fits, we use the XSPEC built-in command
goodness to perform 10* Monte Carlo simulations
of the spectral data. For each simulation, the pro-
gram calculates the Cramér von Mises (CVM) test
statistic, which is shown to be a good fit statistic
for the data derived from a Poisson distribution
(Spinelli & Stephens|[1997)). If about 50% of these
simulations have a CVM statistic less than that of
our model, the best-fit model is a good represen-
tation of the data. A percentage much lower than
50% implies that our model is over parametrized,
and a percentage much greater than 50% implies
that our model is inconsistent with the data. All
reported errors correspond to lo error bars (the
68% confidence interval).

We combine all of the Swift/XRT 0.5 — 8 keV
data taken within 40 days of the outburst and fit
it to a power law with Galactic absorption (tbabs
* pow) with Ngyw = 4 x 102 em™2. We find
that additional absorption over-parametrizes the
model (goodness = 15%), but an excess column
density as large as Ny ~ 5 x 10?! cm™2 is consis-
tent with the data. Our best fit model is described
by I' = —0.05751} with an unabsorbed 0.3 — 10.0
keV flux of 9.621'8:2; x10710 erg s71 cm ™2 (assum-
ing Ng = 0). This corresponds to a luminosity of
3.987035 % 1078 erg s~!. Similarly, we fit the first
Chandra observation (Epoch 123) to an absorbed
power law. We find the best fit model is described
by T' = 0.26753) with an unabsorbed 0.3 — 8.0
keV luminosity of 1.9570 17 x 1037 erg s71. We
find an absorption upper limit beyond the Galac-
tic column of Ny < 4x 102! em™2. The estimated
column density and the photon index are degen-
erate such that a higher column density implies a
softer power law.

X-ray Spectral Modeling

Due to limited statistics, we are unable to fit
a spectrum to the second Chandra observation
(Epoch 1453). In the third Chandra observation
(Epoch 1638), there is a significant decrease in
counts between ~ 2 — 3 keV. We are unable to fit
this spectrum to a single power law or blackbody
component and instead combine a power law with
either a soft Bremsstrahlung (bremss) or black-
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Fig. 15.— The latest X-ray spectrum of SN
2010da from Chandra Observation 16029, normal-
ized by the detector’s effective area. Shown are
four models with a Bremsstrahlung and power law
component. We fix the photon index, I', to -1.0
(red), 0.0 (yellow) and 41.0 (blue) and compare to
the best fit model with I' = —2.3. We are unable
to recover the bimodal structure of the spectrum
with softer power laws.

body disk (diskbb) model, with no statistical pref-
erence for either model based on the CVM statis-
tic. For both models we obtain a similar power law
with index I' = 72.24_'81?, for the Bremsstrahlung
model and T' = —2.370} for the disk model. The
Bremmstralung component has a temperature of
0.6703 keV, while the disk model has an inner-
disk temperature of 0.33700% keV. While these
fits were performed by fixing the hydrogen col-
umn density to the Galactic value, fixing Ny to
values as high as 4 x 10?! cm~2 also gives rea-
sonable (although statistically less favorable) fits
with softer power laws. This hard power law dif-
fers from the recent results of Binder et al.| (2016]),
who find I = 0. Specifically, we are unable to rec-
oncile the double peak in the spectrum with softer
power laws (see Figure [I5). The extremely hard
power law in our models indicates that additional
and detailed modelling is necessary to explain this
unusual Chandra spectrum. All X-ray spectra and
models are shown in Figure
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3.4. The X-ray and UV Light Curves

Using archival observations of SN 2010da (Sec-
tion , we are able to construct the X-ray and
UV light curves of SN 2010da. The full X-ray
light curve is shown in Figure We build the
Swift/XRT light curve by converting the light
curve produced automatically by the UK Swift
Science Data Center from a count rate to a flux us-
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ing the conversion factor found for the XRT spec-
trum. This light curve was dynamically binned
using a rate factor of 10 and a bin factor of 5.

Binder et al.| (2011 estimate a 3¢ upper limit
on the unabsorbed 0.3 — 10 keV luminosity of
the progenitor to be ~ 3 x 1036 erg s~! using
archival XMM-Newton data. However, about 1300
days before the optical outburst, we find a weak
Swift /XRT detection at 2.6c with a luminosity of
1.8"_"8:; x 1037 erg s7!, indicating X-ray variability
even before the 2010 optical outburst.

During the transient, the X-ray luminosity in-
creases to a peak of = 6 x 1039 erg s~!, making SN
2010da an ultraluminous X-ray source well above
the Eddington limit of a 1.4 Mg neutron star. (We
note that this luminosity is larger than the lumi-
nosity reported from the spectral fit in Section |3.3
and |Binder et al.|2011, because the spectral fit av-
eraged the luminosity over 40 days following the
initial outburst.) In the week following discovery,
the X-ray luminosity fluctuates between 2 x 103
erg s~ and 6 x 10%° erg s~! before decaying with
an e-folding time of =~ 3.5 days. This decay rate
is slightly longer that of the UVOT light curves
(= 10 days, shown in Figure and is much
shorter than the decay rates found in the erup-

tions of n Car (= 200 days, from w
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2011). About 1450 days after the transient, we
find an X-ray luminosity of ~ 2.4 x 1036 erg s=!
which increases to ~ 5.9 x 1037 erg s~! at about
1640 days. This increase in X-ray luminosity oc-
curs at roughly the same time as the increase in
optical /IR luminosity.

4. Discussion

Taken together, the X-ray, optical and IR light
curves and spectra consistently describe an HMXB
undergoing an episode of active accretion which is
fueled by persistent eruptions of the primary star,
with SN 2010da representing the largest observed
eruption in nearly a decade of observations. The
optical and IR light curves are powered by mass
loss of the supergiant. This mass accretes onto
the compact object, giving rise to X-ray emission.
The X-rays in turn excite the high ionization He IT
and coronal iron lines seen in the optical spectra.
In this section, we summarize the properties of
the progenitor and the surviving progeny of the
2010 eruption, and we discuss potential compact
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companions.

4.1. The Progenitor of SN 2010da

Ignoring any contribution from a compact com-
panion or accretion disk, our blackbody fit of the
progenitor SED (with a temperature of 1500 K
and a radius of 9.6 AU) reveals a stellar bolomet-
ric luminosity of about 2 x 10* L. This lumi-
nosity is consistent with a 15 My main sequence
star (Meynet & Maeder|2000) or a supergiant with
a 10—12 Mg ZAMS mass (Ekstrom et al.[[2012).
The low temperature suggests that this blackbody
is not the photosphere of the progenitor. Instead,
we interpret this SED as a dusty shell surrounding
the star.

To further investigate progenitor candidates,
we model the dusty environment of the progeni-
tor and its SED using the radiative transfer code
DUSTY (Ivezic et al.|[1999). DUSTY is able to model
the density profiles of spherically symmetric, ra-
diatively driven winds, requiring as input the cen-
tral source SED, the dust composition, the opti-
cal depth and the inner dust temperature. Since
we do not see silicate features around 8 pm in
our pre-eruption Spitzer observations, we choose a
pure graphite environment (Drake & Ulrich/|{1980)).
The carbon-rich dust is consistent with the stabil-
ity of the dust shell at a relatively high temper-
ature (=~ 1500 K), which has a higher sublima-
tion temperature than silicate (Kobayashi et al.
2011). We assume that the shell has a thickness of
Rout/Rin = 2 and use a power law density model
which falls off as p oc r—2, typical of a wind. We
additionally assume that the central source is a
blackbody, and we leave its temperature as a free
parameter. The final luminosity of the model is
calculated using the normalized flux and radius
computed by DUSTY. The UVOT observations dur-
ing the 2010 outburst constrain the progenitor ra-
dius to be =~ 120 Ry. This limits the progenitor
temperature to 7' 2 6200 K. We are additionally
unable to find satisfactory fits (x2 < 2) of the
progenitor SED for temperatures above = 18,000
K. The temperature of a 15 Mg main sequence
star is about 30,000 K, meaning that we can rule
out such a progenitor. Due to the low luminosity,
we can also rule out an LBV progenitor, which
was previously suggested by others (Binder et al.
2016). The only remaining viable option at this
luminosity is an evolved yellow or blue supergiant



progenitor.

We can additionally use the DUSTY models to
estimate the mass loss rate of the progenitor. Fol-
lowing [Kochanek et al.| (2012]), the mass loss is
approximately equal to:

kv
87TUwRin

where the opacity is k1 ~ 120 cm? g~ !, we assume

a wind velocity v, ~ 40 km s~! (the approximate
line width of the narrow Balmer/He lines from the
high resolution MIKE spectrum), and R;, is the
inner radius of the dusty shell as calculated by
DUSTY. For the range of plausible models, the esti-
mated mass loss rates are (4 —5) x 1077 Mg, yr— L.
This is in agreement with typical mass loss rates
of RSGs of this luminosity, significantly smaller
than in super-AGB stars (Mauron & Josselin|2011}
Poelarends et al.|[2008)) and greater than in BSGs
(Martins et al.|[2015). However, asymmetry and
inhomogeneity (e.g. clumpiness) in the CSM can
greatly affect our estimated optical depth. A more
extensive review of these effects can be found in
Kochanek et al.|(2012).

4.2. The Progeny of SN 2010da and Its

Environment

Our extensive photometric and spectroscopic
datasets indicate that the source of SN 2010da is
still active and underwent a dramatic transition
to a bluer and hotter SED with a smaller radius
of = 6 AU after the 2010 eruption. Additionally,
the progeny is significantly more luminous than
the progenitor by a factor of ~ 2 — 5. Although
it is possible that the bolometric luminosity of the
progenitor was larger than we predict with a signif-
icant fraction of light contributed at longer wave-
lengths from cool dust which was heated during
the transient, it is most likely that the ongoing
mass ejections and their interaction with a com-
pact companion/CSM are injecting additional en-
ergy into the system.

In addition to being brighter, the source is
also undergoing significant variability in the op-
tical of ~ 1 — 2 mags within a few hundred days.
The variability and bolometric magnitude of the
progeny (Mp, &~ —7) are reminiscent of super-
giant long-period variables (Wood et al.|[1983)), al-
though these do not typically show B[e]-like emis-
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sion lines in their spectra nor are they often sur-
rounded by a thick CSM.

To constrain the progeny properties, we use
DUSTY to model the SEDs around 560 and 1880
days. Again using the constraint from the UVOT
light curve, we find that the progeny is hotter than
~ 8900 K. Additionally, at temperatures higher
than ~ 25000 K, the estimated radius becomes
atypically small for a supergiant (i.e. < 15 Rg),
although we can find acceptable fits beyond this
temperature. To reiterate, we have previously
ruled out a main sequence star as the progenitor
of SN 2010da, meaning that the progeny must also
be an evolved supergiant. These temperature and
luminosity constraints are shown in an HR dia-
gram in Figure We can again calculate the
mass loss rates at these different epochs, this time
assuming that a new wind of v,, ~ 200 km s~! has
formed. We find a mass loss rate of M ~ 3 x 1077
Mg yr~! at 560 days and a slightly larger rate of
M ~6x10"7 Mg yr~! at 1880 days. These num-
bers are consistent with the mass loss rate before
the outburst.

The low luminosity, Ble] features and bluer
SED are all consistent with a RSG transitioning
into a blue loop phase of its evolution (Langer &
Heger||1997)). Additionally, the widths and shapes
of the multi-component emission lines are consis-
tent with a newly formed wind interacting with
existing mass loss seen in the early stages of a blue-
loop phase of a RSG (Chita et al.|2009)). The blue
loop occurs when RSGs evolve off the Hayashi-line
towards the BSG regime as their envelope struc-
ture shifts from convective to radiative. During
this transition, the envelope of the RSG will spin
up and the radius will drastically decrease (Heger
& Langer||1998). During this evolution, the star
can reach its critical rotation rate and develop a
slow equatorial outflow, leading to Ble]-like emis-
sion lines.

The environment surrounding the progeni-
tor/progeny is extremely complex, as indicated
by the varying estimated electron densities from
the Balmer decrement and the existence of for-
bidden calcium and iron lines. Like many su-
pergiants, SN 2010da might be surrounded by
a clumpy wind, which can explain the low- and
high-density regions necessary to excite the var-
ious emission lines detected in our spectra. The
progenitor’s dust shell at ~ 10 AU seems to have
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Fig. 19.— Stellar evolutionary tracks of 10 Mg, 12 Mg and 15 Mg RSG models with (green) and without
(black) rotation from [Ekstrom et al.| (2012) compared to the estimated temperatures and luminosities of

progenitor (red) and progeny (blue) of SN 2010da.

For comparison, we also show the progenitors of NGC 300

0OT2008-1 (Prieto|[2008)), SN 2008S (Prieto et al.|2008]), several supernovae and three well-studied LBVs: S
Doradus, P Cygni, and HR Carinae (Humphreys et al.|[2011)).

been at least partially destroyed by the initial
transient based on the strong initial UV and X-
ray detections. However, the continued infrared
excess and SED shape suggests that either some
of this dust survived or new dust has since formed
at &~ 6 AU. The surrounding CSM is carbon rich
and irradiated by X-ray/UV emission from the
compact binary companion, meaning some dust
must be continuously destroyed and formed. Dur-
ing periods of eruptions and enhanced accretion,
the UV emission excites coronal iron lines in the
CSM, which we observe in the most recent optical
spectra taken at 1819 and 1881 days.

4.3. SN 2010da as a High Mass X-ray Bi-

nary

Based on the strong X-ray luminosity (~ 1037
erg s~ 1) detected well before and after the optical
transient, the strong He IT 4686A emission, the
coronal iron lines, and the hard X-ray spectrum,
we conclude that SN 2010da is in a supergiant X-
ray binary system exhibiting Ble] phenomena. A
similar conclusion was reached by |Binder et al.
(2011) and |[Lau et al.| (2016). However, it is diffi-
cult to make a definitive statement about the na-
ture of the compact object itself. The ultralumi-
nous X-ray transient is far above the Eddington
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limit of a 1.4 M neutron star, but the hard spec-
trum (I" ~ 0) and the high X-ray luminosity are
consistent with other SGXBs with neutron star
companions, such as Vela X-1 (Wang|2014; Binder
et al.[[2011} Lewin et al.|[1997). It is possible to
explain the super-Eddington luminosity of the ini-
tial outburst by invoking beaming along the line
of sight or large magnetic fields (Mushtukov et al.
2015). In fact, a ULX powered by a neutron star
was recently discovered with an X-ray luminosity
greater than the peak luminosity of SN 2010da
(Bachetti et al.||2014]).

SN 2010da also exhibits B[e] phenomena, con-
sistent with a Ble] X-ray binary. Such binaries
typically undergo two types of transients: dimmer
(Lx ~ 1036737 erg s71), shorter (7 ~ days) Type
I outbursts which are associated with the orbital
period of the binary, and brighter (Lx > 1037 erg
s~1), longer (7 2 weeks) Type II outbursts which
are possibly associated with the disruption of the
Ble] disk (Reigf[2011). The disk-disruption the-
ory has undergone recent criticism following the
discovery of several disks that have remained in-
tact after a Type II outburst (Reig & Fabregat
2015). The duration (~ 50 days) and hard spec-
tral index (I' ~ 0) of the progeny of SN 2010da
are consistent with a Type II outburst (Reig &
Nespoli| [2013). However, the X-ray luminosity
during the transient (Lx =~ 6 x 103 erg s71) is
much more luminous than typical Type II out-
bursts (Lx =~ 1037 — 1038 erg s—1). Because little
is known about the physical origin of Type II out-
bursts, we cannot definitely say if SN 2010da is
an unusual Type II outburst or a new type of X-
ray transient associated with eruptive stellar mass
loss.
4.4. Comparison to Other Dusty ILOTs
and Impostors

Although the canonical model of dusty ILOTs
are massive LBVs ejecting dense shells of mass, it
has become clear in recent years that these events
arise from a variety of progenitors (Berger et al.
2009; Smith et al.|2011; Kochanek et al.||2012).
Most of the well-studied ILOTs and their pro-
genitors lie in one of two observational classes.
The first class is made up of objects with blue
and luminous progenitors, such as LBVs or yel-
low hypergiants (e.g. SN 2009ip, SN 1954J).
ILOTs in the “blue” class survive their tran-
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sients and can undergo multiple eruptions. Ob-
jects in this class include rare n Carinae analogs
such as the recent UGC 2773-OT (Smith et al.
2016) and several ILOTs associated with yellow
hypergiants undergoing LBV-like outbursts, like
SN Hunt 248 (Mauerhan et al|[2015) and PSN
J09132750+7627410 (Tartaglia et al.|[2016]). The
second class of ILOTs is made up of objects with
red and extremely cool (T ~ 100s K) progenitor
SEDs. These ILOTSs appear to be terminal explo-
sions which are potentially electron capture SNe
from massive AGB stars (e.g. SN 2008S, NGC 300
0T2008-1), although other theories exist to ex-
plain these events (Smith et al.[2011; Kochanek
et al.|[2012; |Adams et al.[2016)).

Does the system hosting SN 2010da fit into one
of these two classes? We directly compare the pro-
genitor, transient and progeny associated with SN
2010da to two red dusty ILOTs (SN 2008S and
NGC 300 OT2008-1) and two blue ILOTs thought
to be LBVs (SN 1954J, or Variable 12 in NGC
2403, and SN 2009ip).

SN 2008S and NGC 300 OT2008-1 had peak ab-
solute magnitudes of My ~ —14 and My ~ —12,
respectively. These two objects exhibited similar
properties and have since faded beyond their ini-
tial progenitor luminosities in the IR (Adams et al.
2016)). SN 2008S and NGC 300 OT2008-1 had pro-
genitors whose SEDs were consistent with cool cir-
cumstellar dust (T =~ 300 — 500 K) and large radii
(R = 150 — 350 AU) (Prieto|2008; Khan et al.
2010). These temperatures are about four times
cooler than the progenitor of SN 2010da (= 1500
K), and their estimated radii are about 10 times
larger. The luminosities of these progenitors were
~ 2 — 3 times higher than the progenitor of SN
2010da. On the opposite end of the ILOT spec-
trum lie the blue ILOTs: SN 1954J, a massive star
in NGC 2403 which underwent an LBV-like erup-
tion and remains active today, and SN 2009ip, an
LBV in NGC 7259 which likely exploded in 2012
(Smith et al.[2010; [Margutti et al.|2013; |Mauerhan
et al.|2013)). Prior to 1949, the progenitor of SN
1954J had a blue magnitude of M, ~ —6.6 (as-
suming a distance modulus of 27.6; [Smith et al.
2001). Similarly, the progenitor of SN 2009ip was
extremely bright (Mpe ~ —10) and variable by
as much as one magnitude before its 2009 out-
burst. Both progenitors of these blue ILOTs are
notably brighter and bluer than the progenitor of



SN 2010da. The progenitor SED of SN 2010da sits
between these two classes, as shown in Figure 20]

These objects show similar diversity during
their transient light curves. Within the first
month of discovery, the red ILOTs (SN 2008S
and NGC300 OT2008-1) experienced a similar
decay rate of ~ 0.03 mag d=! (Berger et al.2009)
— much more slowly than SN 2010da, which de-
cayed at ~ 0.1 mag d~'. Although NGC 300
0OT2008-1’s light curve steepens at later times (to
~ 0.06 mag d~1), it does not exceed the decline
rate of SN 2010da. In contrast, the decline rate of
SN 2009ip’s 2009 outburst within the first month
(=~ 0.2 mag d~!) is faster than that of SN 2010da
(Smith et al.|2010). In the case of SN 2009ip,
such a fast decline rate was attributed by [Smith
et al.| 2010 to the ejection of an optically thick
shell, which is not ruled out as a possibility for SN
2010da.

Spectroscopically, SN 2010da shares features
with both the red and blue ILOT classes. For ex-
ample, the red ILOTs and SN 2010da share sim-
ilar narrow Balmer and forbidden calcium lines,
with Ha reaching a maximum width of ~ 1200
km s~!. Like NGC 300 OT2008-1, we detect He I
emission in SN 2010da, but we additionally detect
He IT due to the X-ray/UV-enriched environment
from the compact companion. Most notably un-
like NGC 300 OT2008-1, our high resolution spec-
trum reveals Balmer lines which are weakly asym-
metric and lacking any absorption; high-resolution
spectra of NGC300 OT2008-1 reveal Ha emis-
sion with clear absorption slightly blueward of rest
wavelength (Berger et al.|2009; Bond et al.|[2009).
Similarly, the blue ILOTSs are also dominated by
hydrogen Balmer and Fe II emission (typical of
hot LBVs) with FWHM =~ 550 km s~! (Smith
et al.||2010; [Margutti et al|2013). Unlike SN
2010da, there was no [Ca II] emission detected
in SN 2009ip, although [Ca II] emission has been
detected in eruptions of cool LBVs such as UGC
2773-OT (Smith et al.[[2010). Late time spectra of
SN 1954J reveal broad Ha emission with ~ 700 km
s~!, broader than what is observed in the progeny
of SN 2010da.

One of the most notable differences between
SN 2010da/the red ILOTs and the blue ILOTSs
is the fate of their progeny. The blue ILOTs un-
derwent clearly non-terminal eruptions (excluding
the 2012 explosion of SN 2009ip; [Margutti et al.
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2013; Mauerhan et al|/2013]). Specifically, recent
photometry shows that the progeny of SN 1954J
has since faded by ~ 2 mag in the optical and is
now consistent with a blackbody with temperature
of =~ 6500 K. This has been interpreted as an n Car
analog which is now shrouded in a dusty nebula
similar to  Car’s Homunculus (Smith et al.[[2001;
Van Dyk et al[[2005). The most recent SED of
SN 1954J is much bluer than that of SN 2010da
and suggests a notably higher bolometric luminos-
ity (= 10° Lg). Based on luminosity and the
SED, SN 2010da is unlikely to be an LBV out-
burst. In contrast, the progenies of SN 2008S and
NGC 300 OT2008-1 have faded past their progeni-
tors in the IR, leading some authors to argue that
they were electron-capture supernovae from super
AGB stars (Botticella et al.[2009; ' Thompson et al.
2009; | Adams et al.[2016]). The clear re-brightening
of the progeny of SN 2010da several hundred days
after the 2010 eruption illustrates that it is not a
member of this red class of transients, but its sim-
ilarities might point to a related progenitor which
is entering the last phase of its life.

Thus, SN 2010da is unlike many of the pre-
viously studied ILOTs. First, the transient is
not energetic enough to be a true LBV outburst.
We can roughly estimate the energy radiatively
emitted from SN 2010da as ~ Lpcakt1.5, Where
Lpcak is the peak luminosity and ;.5 is the time
it takes the transient to dim by 1.5 magnitudes
(see [Smith et al.|[2011). We estimate t15 < 30
days based on the upper limit reported by [Monard
(2010), and we estimate the peak luminosity to be
Lpeak = 4.5 x 103 erg s7. The total radiative
energy is thus < 10%6 erg. This is less energetic
than the typical LBV outburst (=~ 10%" erg; |Smith
et al.[2011)). SN 2010da is also less energetic that
the red SN 2008S-like ILOTs, which radiate about
Lpcaxtis = 5 x 1047 erg. Additionally, SN 2008S-
like events are either terminal or produce progeny
that are notably dimmer than their progenitors
(Adams et al.|2016)); the progeny is currently more
luminous than its progenitor by a factor of ~ 5.

5. Summary and Conclusions

We presented comprehensive, multi-wavelength
observations (X-ray, UV, optical and IR) of the
dusty ILOT SN 2010da, extending thousands of
days before and after the outburst. These observa-
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tions allowed us to study the progenitor, outburst
and progeny in great detail. Due to its low lumi-
nosity and red SED, SN 2010da seems inconsistent
with an LBV outburst as interpreted by
. From our dataset, we conclude
that SN 2010da was the eruption of a massive
star (~ 10 — 12 Mg) exhibiting Ble] phenomena.
The high-resolution spectra exhibit double-peaked
Balmer and Paschen emission lines with narrow
components consistent with a pre-existing RSG
wind and a newly formed supergiant wind. This
suggests that the star responsible for SN 2010da
may be a YSG transitioning onto a blue loop. The
optical variability and iron/calcium emission indi-
cate a complicated CSM which is repeatedly dis-
turbed by mass loss of the primary star.

The supergiant responsible for SN 2010da is
likely the primary star of a HMXB. The system
shows consistently high X-ray luminosity (Lx =
10%7 erg s71), and during the 2010 event, the sys-
tem underwent an ultraluminous X-ray outburst
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(Ly = 6 x 103 erg s7!). Late time emission of
coronal iron lines are fueled by a hot, X-ray- and
UV-rich region near this binary. While we can-
not make a definitive statement about the nature
of the compact object, dedicated and deep X-ray
observations may shed light on its nature.

SN 2010da is unique in the heterogeneous class
of ILOTs. Its progenitor was dimmer and bluer
than the AGB-like progenitors of dusty ILOTs
NGC 300 OT2008-1 and SN 2008S; however, it is
notably dimmer and redder than LBVs and yellow
hypergiants experiencing similar outbursts. Also
unlike other dusty ILOTs and supernova impos-
tors, the progeny of SN 2010da is more luminous
than its progenitor in both the IR and optical. The
progeny is still undergoing significant outbursts,
and continued followup is crucial in understand-
ing the elusive nature of this object.

Like many ILOTs, SN 2010da marks an impor-
tant point in stellar evolution of increased activity
and mass loss. SN 2010da highlights the diversity



of dusty ILOTs and the need for multi-wavelength
photometric and high-resolution spectral followup
to understand these objects. It is no doubt that
future facilities such as LSST will populate the
intermediate luminosity gap which currently ex-
ists. Extensive spectroscopic followup of current
events will allow us to identify archetypes, like SN
2010da, of classes which will arise from these sur-
veys.
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Table 1: Spitzer Photometry

Instrument AOR PI Date (UT)  Epoch (Days) Filter AB Magnitude
IRAC 6069760 Helou 2003-Nov-21 —2375 3.6 18.77 £ 0.10
IRAC 6069760 Helou 2003-Nov-21 —2375 4.5 18.55 + 0.07
IRAC 6069760 Helou 2003-Nov-21 —2375 5.8 19.10 £ 0.52
IRAC 6069760 Helou 2003-Nov-21 —2375 8 19.51 + 0.76
MIPS 22611456 Kennicutt  2007-Jul-16 —1042 24 > 17.00
IRAC 22517504 Kennicutt 2007-Dec-29 —876 3.6 18.79 £+ 0.07
IRAC 22517504 Kennicutt 2007-Dec-29 —876 4.5 18.67 + 0.05
IRAC 22517504 Kennicutt 2007-Dec-29 —876 5.8 19.50 £ 0.51
IRAC 22517504 Kennicutt 2007-Dec-29 —876 8 >17.45
IRAC 31527680 Freedman  2009-Dec-21 —153 3.6 18.39 £+ 0.07
IRAC 31527424  Freedman  2010-Jan-13 —130 3.6 17.84 + 0.04
IRAC 31528448 Freedman  2010-Jul-27 65 3.6 17.87 £ 0.04
IRAC 31528192 Freedman 2010-Aug-16 85 3.6 18.11 4+ 0.05
IRAC 31527936 Freedman 2010-Aug-31 100 3.6 18.36 + 0.07
IRAC 42195968 Kochanek 2011-Aug-29 463 3.6 18.68 & 0.09
IRAC 42195968 Kochanek 2011-Aug-29 463 4.5 18.85 4+ 0.08
IRAC 42502912  Kasliwal 2012-Jan-14 601 3.6 18.66 4+ 0.08
IRAC 42195712 Kochanek 2012-Aug-10 810 3.6 18.41 + 0.07
IRAC 42195712 Kochanek 2012-Aug-10 810 4.5 18.58 £ 0.07
IRAC 50572032 Kasliwal 2014-Mar-13 1390 3.6 18.41 4+ 0.07
IRAC 50572032  Kasliwal  2014-Mar-13 1390 4.5 18.65 &+ 0.07
IRAC 50573056  Kasliwal = 2014-Sep-05 1566 3.6 18.16 £+ 0.05
IRAC 50573056  Kasliwal = 2014-Sep-05 1566 4.5 18.23 £+ 0.05
IRAC 50572544  Kasliwal 2014-Oct-03 1594 3.6 18.21 £+ 0.06
IRAC 50572544  Kasliwal 2014-Oct-03 1594 4.5 18.28 £ 0.05
IRAC 50044672 Fox 2014-Oct-14 1605 3.6 18.26 £ 0.06
IRAC 50044672 Fox 2014-Oct-14 1605 4.5 18.34 + 0.04
IRAC 53022208 Kochanek 2015-Feb-09 1723 3.6 18.33 £+ 0.06
IRAC 52691712  Kasliwal 2015-Sep-22 1948 3.6 17.91 4+ 0.05
IRAC 52691712  Kasliwal 2015-Sep-22 1948 4.5 18.03 £ 0.03
IRAC 52691968  Kasliwal  2015-Sep-29 1955 3.6 17.90 & 0.04
IRAC 52691968  Kasliwal = 2015-Sep-29 1955 4.5 18.03 £ 0.03
IRAC 52692224  Kasliwal 2015-Oct-12 1968 3.6 17.89 + 0.05
IRAC 52692224  Kasliwal 2015-Oct-12 1968 4.5 17.99 4+ 0.03
IRAC 52692480  Kasliwal 2016-Feb-22 2101 3.6 18.09 £ 0.06
IRAC 52692480 Kasliwal 2016-Feb-22 2101 4.5 18.18 4+ 0.04
IRAC 52692736  Kasliwal  2016-Feb-29 2108 3.6 18.13 £ 0.05
IRAC 52692736  Kasliwal 2016-Feb-29 2108 4.5 18.19 4+ 0.04
IRAC 52692992  Kasliwal  2016-Mar-19 2127 3.6 18.23 4+ 0.06
IRAC 52692992  Kasliwal  2016-Mar-19 2127 4.5 18.22 £+ 0.05
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Table 2: Magellan/ FourStar Photometry
Date (UT) Epoch Filter AB Magnitude

2011-Dec-07 563 J 14.47 + 0.09

2011-Dec-07 563 H 14.17 £ 0.11

2011-Dec-07 563 K, 14.21 £ 0.12

2015-Jul-31 1895 J 14.23 £ 0.02

2015-Jul-31 1895 H 13.76 = 0.03
H

@

2015-Jul-31 1895 K 13.57 £ 0.02
2015-Aug-18 1913 13.97 £ 0.01
2015-Aug-18 1913 K 13.63 £ 0.02

»

")

Table 3: Ground-based Optical Photometry
Date (UT) Epoch (days) Instrument Filter AB Magnitude

2008-Sep-09 —609 IMACS i’ 24.19 +£ 0.20
2009-Nov-25 —179 MegaCam 7 > 244

2009-Nov-25 —179 MegaCam r’ >24.4

2009-Nov-25 —179 MegaCam g > 244

2010-Nov-13 174 IMACS i’ 22.97 + 0.06
2010-Nov-13 174 IMACS 7’ 22.85 +£ 0.04
2011-Jan-12 234 LDSS-3 i’ 21.64 + 0.03
2011-Oct-21 516 LDSS-3 i’ 19.77 £+ 0.06
2011-Oct-21 516 LDSS-3 7’ 19.42 + 0.04
2011-Oct-21 516 LDSS-3 g 20.58 + 0.03
2011-Dec-27 583 IMACS i’ 20.29 £+ 0.05
2011-Dec-27 583 IMACS 7’ 20.27 £ 0.09
2011-Dec-27 583 IMACS g’ 22.29 4+ 0.20
2012-May-17 725 LDSS-3 i’ 21.65 4+ 0.04
2012-May-17 725 LDSS-3 7’ 21.94 +£ 0.04
2012-May-17 725 LDSS-3 g 22.32 £ 0.03
2013-Jan-11 964 LDSS-3 i’ 21.70 £ 0.04
2013-Jan-11 964 LDSS-3 r’ 20.75 + 0.06
2013-Jul-15 1149 LDSS-3 i’ 20.06 £+ 0.01
2013-Dec-30 1317 LDSS-3 i’ 20.80 £+ 0.18
2014-Jun-26 1495 LDSS-3 i’ 21.03 £ 0.01
2015-May-15 1818 IMACS i’ 20.03 £ 0.02
2015-May-15 1818 IMACS 7’ 18.89 £ 0.13
2015-Jul-17 1881 IMACS i’ 20.18 4+ 0.02
2015-Jul-17 1881 IMACS r’ 19.87 £+ 0.02
2015-Jul-17 1881 IMACS g 20.99 £+ 0.03
2015-Aug-01 1896 IMACS i’ 19.71 £ 0.05
2015-Aug-01 1896 IMACS 7’ 20.09 £+ 0.05
2015-Aug-01 1896 IMACS g 20.74 + 0.08
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Table 4: HST Photometry

Start Date (UT) Epoch Proposal ID PI Filter =~ AB Magnitude
2012-Jul-18 787 12450 Kochanek F814W  20.63 £+ 0.03
2014-Jul-02 1501 13515 Binder F606W  20.68 £ 0.02
2014-Jul-02 1501 13515 Binder F814W  20.99 £ 0.03
Table 5: Ground-based Optical Spectroscopy
Date (UT) Epoch (days) Instrument Exposure (s) Grating/Grism Resolution (A)
2010-May-25 2 GMOS-S 1200 R400 4
2010-May-25 2 GMOS-S 600 B600 4
2010-Jun-07 15 MIKE 1800 R2 0.3
2010-Jun-07 15 MIKE 1800 R2.4 0.4
2010-Jul-02 40 GMOS-S 1200 R400 4
2010-Jul-02 40 GMOS-S 900 B600 4
2011-Oct-21 516 MagE 1200 - 2
2011-Dec-29 585 IMACS 300 300-17.5 5
2015-May-16 1819 IMACS 1500 300-17.5 5
2015-Jul-17 1881 IMACS 1800 300-17.5 5
Table 6: Swift UVOT/ Photometry
Date Epoch AB Magnitude
(UT) UVWw2 UVM2 UVW1 U B \4
2010-May-26 3 18.27 £ 0.08 18.06 &£ 0.07 17.48 £0.07  16.72 £0.07 16.48 £ 0.07 16.23 £ 0.07
2010-May-27 4 18.20 £ 0.08 17.96 £+ 0.07 17.43 £ 0.071  16.67 £ 0.07 16.43 £ 0.07 16.17 £ 0.08
2010-May-28 5 18.33 £ 0.08 18.10 £ 0.07 17.57 £ 0.07 16.73 £ 0.067 16.53 £ 0.07 16.31 £ 0.08
2010-May-31 8 18.89 £ 0.09 18.58 £0.08 17.97 £ 0.076 17.21 £ 0.07 16.92 &+ 0.08 16.61 £ 0.09
2010-Jun-01 9 19.31 £ 0.10 18.79 +£0.08 18.25+0.08 17.46 +£0.08 17.20 = 0.08 17.00 £ 0.11
2010-Jun-03 11 19.43 £0.11 1893 £0.09 18.41 £ 0.10 1748 £0.08 17.45+0.10 17.05 £ 0.11
2010-Jun-05 14 19.61 £0.11 19.30 £ 0.09 18.61 +£0.085 17.77 £0.08 17.63 £0.10 17.35 £ 0.12
2010-Jun-07 16 19.89 £0.12 19.58 £0.10 18.81 £0.092 18.06 £ 0.09 1793 £0.11 17.75 £ 0.16
2010-Jun-09 18 20.07 £ 0.13 19.62 £ 0.10 1.46 £ 0.0 18.24 £0.10 18.14 £0.13 17.78 £ 0.16
2010-Jun-11 20 20.13 £0.14 1983 £0.11 19.11 £ 0.10 18.53 £0.11  18.56 + 0.17 18.02 £+ 0.20
2010-Jun-16 24 20.49 £ 0.16 20.18 £0.13 19.46 £+ 0.123 18.71 £0.12 18.87 & 0.21 1848 £ 0.27
2010-Jun-17 25 20.53 £ 0.17 20.10 £ 0.15 19.61 £ 0.15 18.92 £0.14 18.85 £ 0.20 18.59 £ 0.32
2010-Jun-18 26 20.51 £0.16 20.15 £ 0.13  19.52 £ 0.12 19.08 £ 0.14 19.03 £ 0.23 > 19.01
2010-Jun-21 29 21.05 £ 0.26 20.57 £0.24 19.89 +0.148 19.02 £ 0.14 > 19.71 > 18.25
2010-Jun-26 34 20.8 £0.24 20.08 £0.22 19.84 £ 0.181  19.28 £ 0.20 > 19.42 > 17.98
2010-Jul-02 40 21.21 £0.25 21.13 £0.23 20.54 = 0.219 19.76 £ 0.21 > 19.82 > 19.00
2011-Oct-26 521 > 21.46 > 20.86 > 20.72 20.84 + 0.30 > 19.43 > 18.62
2011-Oct-27 522 > 22.32 > 21.02 > 20.84 > 20.30 > 19.53 > 18.72
2011-Oct-28 523 > 21.64 21.85 + 0.33 > 20.92 > 20.39 > 19.60 > 18.80
Table 7: Chandra Photometry
Start Date  Epoch  Proposal ID PI Counts  Detection Significance 0.3 - 10 keV Flux
(UT) (1071% erg s7! cm™2)
2010-Sep-24 123 12238 Willams 77 £ 9 210 50.7757
2014-May-16 1453 16028 Binder 7+3 30 5.67%%
2014-Nov-17 1638 16029 Binder 140 + 12 520 142712
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Table 8: Summary of SN 2010da Blackbody Fits

Progenitor Epoch 1 Epoch 9
Te 1500 £40 K 3230 + 490 K 2760 £ 250 K
Ty 9440 + 280 K 9080 £ 330 K
Re 94+05AU 95429 AU 10.5 £ 1.6 AU
Ry 1.59 £ 0.14 AU 1.25 £ 0.13 AU
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