
J
H
E
P
1
0
(
2
0
0
7
)
0
3
0

Published by Institute of Physics Publishing for SISSA

Received: August 14, 2007

Accepted: September 10, 2007

Published: October 5, 2007

Bubbling AdS black holes

James T. Liu

Michigan Center for Theoretical Physics,

Randall Laboratory of Physics, The University of Michigan,

500 E. University Avenue, Ann Arbor, MI 48109-1040, U.S.A.

E-mail: jimliu@umich.edu

Hong Lü, Christopher N. Pope and Justin F. Vázquez-Poritz

George P. & Cynthia W. Mitchell Institute for Fundamental Physics,

Physics Department, Texas A&M University,

College Station, TX 77843-4242, U.S.A.

E-mail: honglu@physics.tamu.edu, pope@physics.tamu.edu,

jporitz@physics.tamu.edu

Abstract: We explore the non-BPS analog of ‘AdS bubbles’, which are regular spherically

symmetric 1/2 BPS geometries in type IIB supergravity. They have regular horizons and

can be thought of as bubbling generalizations of non-extremal AdS black hole solutions in

five-dimensional gauged supergravity. Due to the appearance of the Heun equation even at

the linearized level, various approximation and numerical methods are needed in order to

extract information about this system. We study how the vacuum expectation value and

mass of a particular dimension two chiral primary operator depend on the temperature and

chemical potential of the thermal Yang-Mills theory. In addition, the mass of the bubbling

AdS black holes is computed. As is shown numerically, there are also non-BPS solitonic

bubbles which are completely regular and arise from continuous deformations of BPS AdS

bubbles.
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1. Introduction

Black holes in five dimensions have been extensively studied in the framework of both

ungauged and gauged supergravity theories. Furthermore, many of these explicit studies

have been performed in the context of the STU model, which corresponds to N = 2

supergravity coupled to two vector multiplets. Because of the presence of the graviphoton

and two vector fields, the STU model generally admits three-charge black holes with up

to two rotation parameters. In fact, in the ungauged context, many solutions have been

constructed, and their explicit forms have often been proven to be useful, especially in the

context of black hole thermodynamics and stringy microstate counting.

At the same time, AdS black holes (and their variants) in gauged supergravity theories

have found widespread application in the study of the AdS/CFT correspondence. For

instance, an R-charged black hole in global AdS5 geometry corresponds to equilibrium

non-zero temperature N = 4 SU(N) supersymmetric Yang-Mills theory on S3 × R with
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finite chemical potential. Five-dimensional BPS ‘black holes’ were first constructed in [1],

although there it was also realized that they are in fact naked singularities. Unlike the

ungauged case, angular momentum must be turned on in order to obtain true BPS black

holes in gauged supergravity. This was done in [3, 4] for one rotation parameter, and

subsequently generalized to two independent rotations. As in the ungauged case, these

black holes admit non-extremal generalizations [2], which can be further generalized to

include rotations [5 – 9].

BPS objects play an important rôle in AdS/CFT, regardless of their precise nature,

since they necessarily survive in both the strong and weak coupling regimes of the duality.

Along these lines, the BPS naked singularities were shown in [10] to correspond to a dis-

tribution of giant gravitons in AdS5 × S5, where they were also denoted ‘superstars.’ In

terms of the Lin, Lunin and Maldacena (LLM) boundary conditions for 1/2 BPS configu-

rations [11], these superstars correspond to a disk in the phase space of free fermions with

a uniform shade of gray, which may be interpreted as a coarse graining of an underlying

spacetime foam picture of gravity [13].

The investigation of smooth 1/2 BPS geometries in [11] also led to the construction of

a new set of 1/2 BPS ‘AdS bubbles’ which eliminate the naked singularity of the singular

black holes– not through angular momentum but rather by turning on additional scalar

fields ϕi. These scalars are present in the full N = 8 gauged supergravity but lie outside of

the N = 2 truncation [11, 14]. These AdS bubbles are in fact completely regular geometries

without horizons and, as such, admit a description in the LLM language as a deformation

of the AdS disk into an ellipse in the phase space of free fermions.

In order to generalize the above five-dimensional single-charge AdS bubbles to include

three charges, the authors of [14] considered a consistent truncation of five-dimensional

N = 8 gauged supergravity that retains the three U(1) gauge fields in the maximal torus

of the SO(6) gauge group along with five scalar fields. Although this truncated system

is not itself the bosonic sector of any supersymmetric theory, it nevertheless allows the

construction and lifting of BPS solutions to yield supersymmetric configurations of the full

N = 8 theory and hence the original IIB supergravity as well.

Although LLM configurations are by their very nature pure states, and not thermal

ones, it is natural to investigate the effect of turning on non-zero temperature starting from

a particular LLM background. The main goal of this paper is to initiate such an exploration

by constructing AdS bubbles away from the BPS limit. In particular, we will look for non-

extremal AdS black holes with regular horizon and carrying ϕi scalar deformations of the

same sort encountered in the BPS bubbles of [11, 14]. We will refer to these solutions as

‘bubbling AdS black holes,’ which are a subset of thermal AdS bubbles. Though not the

focus of our paper, we will demonstrate numerically that there are also non-BPS solitonic

AdS bubbles which are completely regular and horizon-free.

We note that a coarse-graining of LLM geometries was considered in [12], and expanded

upon in [13, 15], where the free fermion configuration was given an equilibrium non-zero

temperature. Using the LLM correspondence, this configuration can then be mapped

into a ‘hyperstar’ supergravity background by appropriate transformation of the Fermi-

Dirac distribution into the LLM z(x1, x2, y) function. It is not clear, however, whether
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this background actually describes a non-zero temperature field theory; it is by no means

obvious that simply giving the matrix eigenvalues (the ‘free fermions’) a Fermi-Dirac profile

would correspond to turning on non-zero temperature in N = 4 super Yang-Mills. If

this were the case, then one would expect the corresponding supergravity background to

have a horizon and to break supersymmetry. In [12], it was pointed out that the coarse-

graining has been taken over only the half-BPS sector of the full Hilbert space of type IIB

supergravity, and that the result of using the complete Hilbert space should be a non-BPS

background that has a horizon. Because of these considerations, we shall not pursue this

direction of coarse-graining, but will look directly for bubbling AdS black holes in the

supergravity itself.

For the case of the AdS black hole, the main effect of moving away from the extremal

limit is to introduce a ‘renormalization’ of the charge. One might hope that the AdS bubble

might be generalized away from the BPS limit in a similar way, in which much of the original

structure survives in a ‘renormalized’ form. Unfortunately, upon closer inspection of the

equations of motion, it does not appear that the AdS bubble can be made non-extremal

in such a simple manner. Thus, we must content ourselves with either approximate or

numerical methods.

We will proceed by performing a linearized analysis of the second-order equations of

motion. Although the non-extremal AdS bubble solution is not known, explicit solutions

are known in the two separate limits of either turning off non-extremality or turning off the

ϕi deformation. Since we will focus on solutions for which there is a horizon, we choose to

consider the initial background to be that of the non-extremal R-charged black hole. We

will turn on the additional scalars ϕi at linear order, which will then backreact onto the

other fields at higher order.

The linearized ϕi equations are second-order equations with four regular singular

points, and hence may be mapped to the Heun equation. Unfortunately, in contrast with

the hypergeometric equation which has three regular singular points, much less is known

about the solutions to the Heun equation. In particular, the general two-point connection

problem, i.e. relating local solutions at two regular singular points, remains unsolved.

This is of course not the first time where the Heun equation has arisen in the study

of the wave equation in AdS black hole backgrounds. In particular, calculations involving

quasi-normal modes for black holes have generally led to expressions related to the Heun

equation. In such cases, various methods have been applied in order to obtain approximate

solutions of the resulting system. A common method, also used in black hole absorption

calculations, involves matching approximate solutions in two overlapping regions: an inner

region containing the horizon and an outer region that includes asymptotic infinity. Pro-

vided that there is a large overlap, then essentially complete information may be reliably

extracted from this approach. Higher-order corrections can be included via a perturbative

approach. We will implement this approximation technique for the regime T ≫ µi, where

T and µi are the temperature and chemical potentials of the field theory, respectively.

Furthermore, there is a high temperature limit T ≫ 1, along with T ≫ µi, for which there

is an approximate solution which covers the entire region from the horizon to asymptotic

infinity without the need for matching.
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The asymptotic behavior of ϕi is related to perturbations away from the UV super-

conformal fixed point of the dual field theory. In particular, as in the BPS case, the

normalizable mode of ϕi corresponds to giving a vacuum expectation value (vev) to the

dimension two chiral primary operator TrZ2
i , where Zi = 1√

2
(φi

1 + iφi
2) and φi

1 and φi
2 are

three pairs of real scalars of N = 4 super Yang-Mills theory, for i = 1, 2, 3. On the other

hand, the non-normalizable mode of ϕi corresponds to a term of the form Tr Z2
i in the

Lagrangian of the conformal field theory. This massive term is only present for nonzero

temperature, which could be indicative of a phase transition in the field theory at zero

temperature. We will discuss how these field theory deformations depend on the physical

parameters of the thermal field theory, namely the temperature, chemical potential and

R-charge, in both the grand canonical ensemble and the canonical ensemble.

The paper is organized as follows. In section 2, we review the previously-known AdS

black hole and BPS bubble solutions. In section 3, we perform a linearized analysis of

the bubbling AdS black hole. In particular, we consider the linearized ϕi equations in

the background of the AdS black hole. Focusing on the single-charge case, matching and

perturbation techniques are used to find approximate solutions to the linearized ϕ1 equa-

tion. Properties of the ϕ1 solution are discussed. Specifically, the asymptotic behavior

is matched with perturbations of the dual field theory as functions of temperature and

chemical potential. In section 4, we consider the backreaction of ϕ1 onto the metric and

other matter fields, and in section 5 we then discuss the mass of these non-BPS bubbles.

In section 6, we present some numerical support for the existence of bubbling AdS black

holes for arbitrary values of ϕ1. Lastly, we conclude in section 7.

2. Review of AdS black holes and BPS bubbles

2.1 AdS black hole

The bosonic Lagrangian for the STU model takes the form

L = R ∗ 1− 1

2

2
∑

α=1

∗dφα ∧ dφα − 1

2

3
∑

i=1

X−2
i ∗F i ∧ F i − V ∗1 + F 1 ∧ F 2 ∧ A3, (2.1)

where the Xi’s are constrained scalars satisfying X1X2X3 = 1, and which may be taken to

be

X1 = e
− 1√

6
φ1− 1√

2
φ2 , X2 = e

− 1√
6
φ1+ 1√

2
φ2 , X3 = e

2√
6
φ1 . (2.2)

The scalar potential is given by

V = −4g2
3

∑

i=1

X−1
i = −4g2(X2X3 + X3X1 + X1X2), (2.3)

and the ungauged system is recovered by setting g = 0.

The three-charge AdS5 black hole solution is given by

ds2 = −H−2/3fdt2 + H1/3(f−1dr2 + r2dΩ2
3),

Ai
(1) = − coth βiH

−1
i dt, Xi = H1/3H−1

i , ϕi = 0,

f = 1 − m

r2
+ g2r2H, H = H1H2H3, (2.4)
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where the harmonic functions are given by

Hi = 1 +
qi

r2
, qi ≡ m sinh2 βi. (2.5)

We shall focus primarily on the case of a single charge q1, for which the roots of f are given

by

r2
± = − 1

2g2
(1 + g2q1) ±

1

2g2

√

(1 + g2q1)2 + 4g2m . (2.6)

The event horizon is located at rh = r+. Notice that, in the one-charge case with q1 > 0,

any positive value of m guarantees a regular horizon. On the other hand, for the two and

three-charge cases, a regular horizon may always be obtained for sufficiently large m.

This supergravity background is dual to equilibrium non-zero temperature N = 4

SU(N) supersymmetric Yang-Mills theory on S3 ×R with chemical potentials for the U(1)

R-charges. The temperature of the field theory is equated with the Hawking temperature

of the black hole, which is [20]

T =
2r6

h + r4
h(1 +

∑

i qi) −
∏

i qi

2πr2
h

∏

i

√

r2
h + qi

, (2.7)

where the horizon radius rh is the largest root of f . We have set g = 1 for simplicity.

Likewise, the R-charge chemical potentials µi of the field theory are equated with the

electric potentials at the horizon, which are

µi =
Qi

r2
h + qi

, (2.8)

where

Q2
i = qi(r

2
h + qi)

[

1 +
1

r2
h

∏

j 6=i

(r2
h + qj)

]

. (2.9)

Also, the physical charges Qi of the AdS black hole correspond to R-charges in the dual

field theory. These relations will be useful for expressing various results in terms of the

physical quantities of the field theory.

2.2 BPS AdS bubble

The authors of [14] considered a consistent truncation of five-dimensional N = 8 gauged

supergravity retaining the three U(1) gauge fields in the maximal torus of the SO(6) gauge

group along with five scalar fields. In N = 2 language, this corresponds to taking the

bosonic sector of the STU model and coupling it to three additional scalars ϕi, which are

not described by special geometry. The Lagrangian is given by [14]

L = R ∗ 1 − 1

2

2
∑

α=1

∗dφα ∧ dφα − 1

2

3
∑

i=1

X−2
i ∗ F i ∧ F i − V ∗ 1 + F 1 ∧ F 2 ∧ A3

−1

2

3
∑

i=1

∗dϕi ∧ dϕi − 2g2
3

∑

i=1

sinh2 ϕi∗Ai ∧ Ai, (2.10)
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where the scalar potential has the modified form

V = 2g2

(

3
∑

i=1

X2
1 sinh2 ϕi − 2

3
∑

i<j

XiXj cosh ϕi cosh ϕj

)

. (2.11)

The original STU model scalars satisfy the same constraints as above, and in particular

may be given by (2.2).

In order to ensure a supersymmetric solution, the regular three-charge AdS bubble

configuration then takes the form [14]

ds2 = −H−2/3f dt2 + H1/3(f−1dr2 + r2dΩ2
3),

Ai
(1) = −H−1

i dt, Xi = H1/3H−1
i , cosh ϕi = (xHi)

′,

f = 1 + g2xH, H = H1H2H3, (2.12)

where x ≡ r2, and a prime denotes a derivative with respect to x. The above solution is

fully determined up to the functions Hi, which must satisfy the conditions

f(xHi)
′′ = −g2[(xHi)

′2 − 1]HH−1
i , (2.13)

to ensure that the equations of motion are satisfied.

For the one-charge case, corresponding to a 1/2 BPS configuration, we may take H2 =

H3 = 1. Then the equation of motion (2.13) reduces to

[(1 + g2xH1)
2]′′ = 2g4, (2.14)

which admits a general solution of the form

H1 =

√

1 +
2(1 + g2q1)

g2x
+

c2

g4x2
− 1

g2x
. (2.15)

Here q1 is the R-charge, and c is a constant related to the ϕ1 scalar deformation. Note

that, at large distances, H1 admits the expansion

H1 ∼ 1 +
q1

x
+ · · · , (2.16)

while regularity of the AdS bubble at short distances demands c = 1. In addition, the BPS

naked singularity of [1, 2] is recovered by taking c = 1 + g2q1, in which case H1 reduces to

the standard ‘harmonic function’ form H1 = 1 + q1/x.

In general, as we will demonstrate below, the scalar ϕ1 carries E0 = 2, and hence has

an asymptotic expansion of the form

ϕ1 ∼ c1 + c2 log x

x
+ · · · , (2.17)

However, based on the explicit solution (2.15), we see that the log term vanishes, c2 = 0,

while

c1 =
√

(1 + q1)2 − c2 =
√

q1(q1 + 2) , (2.18)
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where the second expression is for the regular AdS bubble solution. We have set g = 1.

Applying the AdS/CFT dictionary (see e.g. [19]), this implies that the dimension two chiral

primary operator Tr Z2
1 gets a vev c1, where Z1 = 1√

2
(φ1 + iφ2) and φ1 and φ2 are two of

the six real scalars of N = 4 super Yang-Mills theory.

Although we are not aware of any closed form expressions, it can be seen that regular

two and three-charge solutions to (2.13) also exist. These solutions correspond to 1/4 and

1/8 BPS AdS bubbles, and can be realized in the framework of LLM configurations with

fewer supersymmetries [16 – 18].

3. Linearized analysis of the bubbling AdS black hole

Given the relatively simple non-extremal generalization (2.4) of the BPS AdS black hole

solution, we have been led to look for a corresponding non-extremal version of the AdS bub-

ble (2.12) where the ϕi scalars are present. In the absence of supersymmetry, we no longer

have the benefit of working with first-order Killing spinor equations. However, the form of

the non-extremal black hole (2.4) is curiously close to that of the BPS limit; the primary

difference is that the charge parameters qi in the harmonic functions Hi are ‘renormalized’

as follows: qi → m sinh2 βi. This suggests that perhaps a similarly straightforward gen-

eralization may be obtained for the AdS bubble, where much of the BPS structure might

survive, except perhaps in ‘renormalized’ form.

Unfortunately, closer inspection of the equations of motion arising from the La-

grangian (2.10) does not suggest any simple manner in which the AdS bubble solution

may be made non-extremal. In particular, retaining the BPS-like relation cosh ϕi = (xHi)
′

leads to either the possibility that ϕi = 0, in which case Hi takes the form (2.5), or to a

constrained system of equations which only appear to admit a natural solution of the BPS

bubble form given by (2.13). As a result, we must use either approximate or numerical

methods when moving away from extremality.

3.1 Linearized ϕi equations

In this section, we explore the basic features of the non-extremal AdS bubble by performing

a linearized analysis of the second-order equations of motion obtained from (2.10). We

proceed by noting that, although it is not clear how to write down the complete solution

for a non-extremal AdS bubble, explicit forms for the solutions are known in the two

separate limits of either turning off non-extremality or turning off the ϕi deformation.

Since we are mainly interested in solutions with a horizon, we choose to start from the

non-extremal R-charged black hole background of (2.4) and (2.5) and then turn on the

additional scalars ϕi at linear order. Turning on these scalars will then backreact onto the

other fields. However this backreaction occurs at the next order, and may be ignored in

the initial analysis. (We will return to the backreaction in another section.)

At linearized order we are only concerned with the linearized equation of motion for
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ϕi, which takes the form

[

− 4g2Xi(2Xi −
3

∑

j=1

Xj) − 4g2(Ai
µ)2

]

ϕi = 0. (3.1)

Here the scalars Xi take on the background values given above in (2.4) and (2.5). There is

a slight subtlety for the background gauge fields, however, related to the ‘gauge fixed’ form

of the action (2.10). In particular, while the standard black hole solution (2.4) is invariant

under gauge transformations of Ai, the above equation of motion is not. Taking this into

account, we allow a constant term in the expression for the background electric potential

Ai = (bi − coth βiH
−1
i )dt ≡ Ai

t dt. (3.2)

We shall see below that this constant must be chosen to make the potential vanish at

the horizon. The motivation for this requirement can already be seen by noting that the

invariant square of the electric potential, (Ai
µ)2, which acts as a source in (3.1), blows up

at the horizon unless Ai
t is arranged to vanish there.

By substituting the background fields into (3.1), we obtain the scalar equation

(x2fϕ′
i)
′ + g2





3
∑

j 6=i

(x + qj) + (x2f)−1
3

∏

j 6=i

(x + qj)

(

−g2
3

∏

j 6=i

(x + qj)

+
mx

qi
− 2bi

√

1 + m/qi x + (bi)2(x + qi)

)]

ϕi = 0, (3.3)

where

x2f = g2
3

∏

j=1

(x + qj) + x2 − mx, (3.4)

is a cubic polynomial, and where qi ≡ m sinh2 βi. Note that, in the event qi = 0, the above

equation is replaced by the considerably simpler expression

(x2fϕ′
i)
′ +

g2

x

(

x2 −
3

∏

j 6=i

qj

)

ϕi = 0, (3.5)

which may be obtained by directly taking Ai = 0 in (3.1).

Since x2f is cubic, it can be seen that (3.3) is a second-order equation with three

regular singular points at the roots of x2f . Including the singular point at infinity, which

is also regular, this equation in fact has four regular singular points, and hence may be

mapped into the general Heun equation. Unfortunately, the general two-point connection

problem is as yet unsolved. However, general features of the linearized ϕi deformation may

be extracted from the second-order equation (3.3).

Recalling that the goal of the linearized analysis is to turn on a ϕi deformation starting

from the R-charged black hole background, we demand that the solution to (3.3) be regular

and bounded in the entire region from the horizon to the spatial boundary at infinity. Before

examining the solution, we find it convenient to trade the non-extremality parameter m

– 8 –
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with the horizon location xh, defined to be the largest positive root of f(x). Note that, in

terms of xh, we have

m = xh +
g2

xh

3
∏

i=1

(xh + qi), (3.6)

along with the factorization

x2f = g2(x − xh)(x2 + Qx − R), (3.7)

where

Q = xh +
1

g2
+ q1 + q2 + q3, R =

q1q2q3

xh
. (3.8)

Examination of the indicial equation around the horizon xh (which is a regular singular

point) yields the characteristic exponents ±ζi where

ζ2
i = −

∏3
j=1(xh + qj)

(x2
h + Qxh − R)2

(

bi −
√

1 +
m

qi

xh

xh + qi

)2

. (3.9)

Noting that the expression above is non-positive (since xh + qj must be positive to avoid

naked singularities), we immediately see that the characteristic exponents are purely imag-

inary, except for the case when they vanish. Since imaginary exponents give rise to un-

desirable oscillatory solutions of the form ϕi ∼ sin(|ζi| log(x − xh)), we conclude that the

constant bi in the electric potential must be adjusted to satisfy

bi =

√

1 +
m

qi

xh

xh + qi
=

coth βi

Hi(xh)
. (3.10)

This ensures that the potentials given by (3.2) indeed vanish at the horizon, Ai(xh) = 0,

thus confirming what we had alluded to above.

Demanding that the electric potentials vanish at the horizon, the ϕi equation can now

be put into the form

((x − xh)(x2 + Qx − R)ϕ′
i)
′+

[ 3
∑

j 6=i

(x+qj)−(x2+Qx−R)−1
3

∏

j 6=i

(x+qj)

×
(

x2
h+Qxh−R

xh + qi
+(x−xh)

)]

ϕi= 0.(3.11)

The solutions to this equation may be characterized by the Riemann P -symbol

P











xh x1 x2 ∞
0 α1 α2 1 ;x

0 −α1 −α2 1











, (3.12)

where x1 and x2 are the two roots of the quadratic equation x2 + Qx − R = 0. Their

associated exponents, α1 and α2, may easily be obtained, although we have no particular

need for their explicit forms. We do note, however, that the characteristic exponents sum

to 2, which is in agreement with the general theory of the Heun equation.
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The single-charge case. Since we are primarily interested in the non-extremal general-

ization of the single-charge 1/2 BPS bubble, we now focus on the case where q2 = q3 = 0.

In this case, we assume the corresponding scalars ϕ2 and ϕ3 ought not to be excited. As

a result, we are left with a single equation for ϕ1, which now takes the form

(x(x − xh)(x + Q)ϕ′
1)

′ + x

[

1 +
xh + Q

x + Q

q1

xh + q1

]

ϕ1 = 0. (3.13)

This equation still contains four regular singular points, and as such can be brought into

Heun form. In particular, we may map the singular points {0, xh,−Q} to {0, 1, a} by

introducing

x = zxh, Q = −axh, (3.14)

after which the scalar equation becomes

(z(z − 1)(z − a)ϕ′
1)

′ + z

[

1 + ζ
1 − a

z − a

]

ϕ1 = 0. (3.15)

Here the prime denotes a derivative with respect to z. We have also defined the dimen-

sionless parameter

ζ =
q1

xh + q1
. (3.16)

Note that ζ → 1 in the limit of large charge, while ζ → 0 in the limit of vanishing charge.

The scalar equation (3.15) can be brought into the canonical form of the Heun equation

through the substitution ϕ1 = (z − a)±
√

ζ ϕ̃1. As a result, the solution may be written in

terms of a local Heun function

ϕ1 =
1 − a

z − a
Hl

(

1

a
,−ζ

a
; 1 −

√

ζ, 1 +
√

ζ, 1, 1;
z − 1

z − a

)

. (3.17)

Here we have imposed the boundary condition that ϕ1 is regular at the horizon. In par-

ticular, the expansion of the local Heun function gives

ϕ1 = 1 + (1 + ζ)
z − 1

a − 1
+

4 − a + (6 − a)ζ + ζ2

4

(z − 1)2

(a − 1)2
+ · · · . (3.18)

where ζ is given in (3.16), and where

a = −
(

1 +
q1 + 1/g2

xh

)

. (3.19)

In principle, we would also like to obtain the expansion of ϕ1 in the asymptotic regime

z → ∞ in order to extract the boundary behavior (3.20). However, the two-point connec-

tion problem for the Heun equation is in general a difficult task, and there is as yet no

straightforward way to connect the behavior of (3.17) near the horizon with (3.20) near

the boundary. In order to match the horizon and boundary behaviors of ϕ1, we need to

utilize further approximation techniques. Before turning to this, we shall first consider the

general behavior of ϕi.
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General behavior. The asymptotic behavior of the solution for ϕi is governed by the

point at infinity. In particular, given the repeated characteristic exponent of 1, it may be

shown that the solution near the boundary has the form

ϕi(x) ∼ ci
1 + ci

2 log x

x
+ · · · , x → ∞, (3.20)

which is consistent with ϕi being an E0 = 2 scalar (or equivalently being associated with

conformal dimension ∆ = 2 in the dual gauge theory). Although the two independent

solutions encoded in (3.20) admit different interpretations in the dual gauge theory, they

are both allowed to be present in the supergravity solution.

In particular, as in BPS case, ci
1 can be interpreted as the vev of the dimension 2 chiral

primary operator Tr Z2
i , where Zi = 1√

2
(φi

1 + iφi
2) and φi

1 and φi
2 are three pairs of real

scalars of N = 4 super Yang-Mills theory, for i = 1, 2, 3. On the other hand, the ci
2 term

corresponds to adding the relevant deformation ci
2 Tr Z2

i to the Lagrangian of the conformal

field theory. The ci
2 term is only present when one moves away from extremality, which

indicates that there may be a phase transition in the field theory at zero temperature.

Turning to the horizon, we see that, with the choice of bi in (3.10), the repeated

characteristic exponent of 0 at x = xh indicates that the solution near the horizon has the

form

ϕi(x) ∼ di
1 + di

2 log(x − xh) + · · · , x → xh. (3.21)

Clearly, we must set di
2 = 0 to avoid a logarithmic divergence of ϕi at the horizon.

In principle, this boundary condition now fixes the complete solution, in the sense that

the coefficients ci
1 and ci

2 in the asymptotic expansion may be determined directly from di
1

and the physical parameters of the background solution. However, in the absence of any

general connection formulae for the Heun equation, there is no straightforward way to make

this relation explicit. (We note that, even if the generic connection matrix were known, it

might not be applicable to this solution as it has repeated characteristic exponents.) In

order to match the horizon and boundary behaviors of ϕ1 for the single-charge case, we

instead turn to approximate solutions of equation (3.15).

3.2 Matching approximate solutions

We first consider an approximation technique which involves matching approximate solu-

tions in two overlapping regions. In particular, one region contains the horizon while the

other includes asymptotic infinity. Provided these two regions overlap, the solutions may

then be matched up in the overlap region. A drawback of this approach is that it is not

always possible to ensure a large overlap region, depending on the physical parameters of

the system. However, if such a large overlap exists, then essentially complete information

may be reliably extracted using this matching.

Noting that a introduces a new scale into the problem, we may consider solving (3.15)

in the two regions: i) the asymptotic region where z ≫ 1, and ii) the horizon region where

z ≪ |a|. Provided |a| ≫ 1, these two regions will have a large overlap (1 ≪ z ≪ |a|) where

reliable matching may be performed. From (3.19), we see that overlap is ensured for either

q1 ≫ xh or xh ≪ 1/g2.
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3.2.1 The asymptotic region

To highlight the asymptotic region, z ≫ 1, we may rewrite the scalar equation (3.15) as

ϕ′′
1+

(

2

w
+

1

w−1

)

ϕ′
1+

1

w(w−1)

(

1− ζ

w−1

)

ϕ1 =−1

a

[

1

w
(

w− 1
a

)

(

ϕ′
1+

1+ζ

w−1
ϕ1

)

]

, (3.22)

where we have introduced the rescaled coordinate w = z/a. In this case, the additional

factor of 1/a on the right-hand side of (3.22) allows us formally to develop a solution for

ϕ1 as a perturbative expansion in 1/a

ϕ1 = ϕ(0) +
1

a
ϕ(1) +

1

a2
ϕ(2) · · · , (3.23)

where ϕ(0) solves the homogeneous equation corresponding to the left-hand side of (3.22).

Since this can be put into hypergeometric form, the solution is essentially known. In

practice, however, matching of the asymptotic and horizon expansions is facilitated by

introducing yet another expansion, this time in ζ. Examination of (3.16) indicates that

there are two relevant limits to consider, namely the large and small charge limits.

The large charge limit corresponds to q1 ≫ xh, or equivalently ζ ≈ 1. In this case, we

let ζ = 1 + ζ̂ and rearrange (3.22) to read

ϕ′′
1 +

(

2

w
+

1

w−1

)

ϕ′
1+

w−2

w(w−1)2
ϕ1 =

ζ̂

w(w−1)2
ϕ1 −

1

a

[

1

w
(

w− 1
a

)

(

ϕ′
1+

2+ζ̂

w−1
ϕ1

)]

. (3.24)

Solutions to this equation can now be developed as a double expansion in ζ̂ and 1/a.

Although this may seem to be only a slight rearrangement of (3.22), the main simplification

here is that the homogeneous equation can now be solved in terms of elementary functions,

ϕ
(0)
1 = c1u1 + c2u2 where

u1 =
1

w − 1
, u2 =

1

w − 1

(

log(−w) +
1

w

)

. (3.25)

At each successive order in the perturbation, the lower order solutions feed in as sources on

the right-hand side of (3.24). However, since the homogeneous solutions are elementary, the

inhomogeneous system has a straightforward solution which can be developed, e.g through

variation of parameters.

Up to first order in both ζ̂ and 1/a, we find that the two linearly independent solutions

for the outside function can be expressed as

ϕ1
out =

1

w−1

[

1 − ζ̂

2

(

log

(

1 − 1

w

)

− 1

w

)

− 1

aw

(

1 − ζ̂

2

(

log

(

1− 1

w

)

− 2+
1

2w

))

+ · · ·
]

,

ϕ2
out =

1

w−1

[

log(−w) +
1

w
− ζ̂

2

(

log(−w)

(

log

(

1 − 1

w

)

− 1

w

)

+

(

2 − 1

w

)

log

(

1 − 1

w

)

+log2

(

1− 1

w

)

+2Li2

(

1

1−w

))

+
1

aw

(

−3−log(−w)+
1

2w
+O(ζ̂)

)

+ · · ·
]

, (3.26)
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where we recall that w = z/a. We have organized these two solutions according to the

asymptotic behavior

ϕ1
out ∼

a

z
+ · · · , ϕ2

out ∼
a

z
log z + · · · , (3.27)

corresponding to the normalizable and non-normalizable E0 = 2 modes of ϕ1, as in (3.20).

3.2.2 The horizon region

Turning next to the horizon region, z ≪ |a|, we now choose to write the scalar equa-

tion (3.15) as

ϕ′′
1 +

(

1

z
+

1

z − 1

)

ϕ′
1 =

1

a

(

1

1 − z/a

)[

ϕ′
1 +

1

z − 1

(

1 + ζ
1 − 1/a

1 − z/a

)

ϕ1

]

. (3.28)

This again allows us to develop an expansion in 1/a, where the independent solutions to

the homogeneous equation on the left-hand side are simply

u1 = 1, u2 = log
z − 1

z
. (3.29)

These two solutions correspond directly to the near horizon behavior given in (3.21); in

particular, we see that only u1 is well behaved at the horizon. Developing this solution to

the first few orders in 1/a gives

ϕin = 1 +
1

2a
(1 + ζ)(z − 1 + log z) +

1

24a2

[

(z − 1)
(

9(1 − ζ2) + 2(ζ2 + 7ζ + 4)z
)

−
(

5ζ2+14ζ+5−6(1 + ζ)2z
)

log z + 3(1 + ζ)2 log2 z + 6(1 + ζ)2Li2

(

1 − 1

z

)]

+· · · .

(3.30)

Note that this is purely an expansion in 1/a, and in particular it is valid for arbitrary

ζ. Furthermore, it can be seen that this expression for ϕin agrees with the near horizon

expansion given in (3.18) in the overlapping region of validity z → 1 and a → ∞. The

advantage of (3.30) over (3.18), however, is that here ϕin remains valid even for z away

from the horizon (provided z ≪ |a|). This is precisely what is needed in order to match

the horizon expression with the asymptotic forms of the solution given above in (3.26).

3.2.3 Matching

While the asymptotic and horizon solutions (3.26) and (3.30) were derived under the in-

dependent conditions of z ≫ 1 and z ≪ |a|, they are both valid in the overlap region

1 ≪ z ≪ |a|, so long as |a| ≫ 1. In order to match the solutions in this overlap region, it

is convenient to rewrite the horizon solution (3.30) in terms of w.
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After suitable rearrangement, ϕin then takes the form of a series solution in w as well

as an expansion in 1/a

ϕin =

[

1 +
w

2
(1 + ζ) +

w2

12
(ζ2 + 7ζ + 4) + O(w3)

]

+
1

a

[

1

2
(1 + ζ)(log(wa) − 1) +

w

24
(−11ζ2 − 14ζ + 1 + 6(1 + ζ)2 log(wa)) + O(w2)

]

+O
( 1

a2

)

. (3.31)

Here it is important to realize that, although the expressions are no longer complete at

each new order in 1/a, the resulting series in w are in principle well behaved for |w| < 1.

This is what allows a consistent matching with the asymptotic solution (3.26), with ϕout

similarly expanded as a series in w.

The asymptotic solution to the scalar equation is in general a linear combination of

the two solutions given in (3.26):

ϕout(x) = c1ϕ
1
out + c2ϕ

2
out ∼

axh(c1 + c2 log(−x/axh))

x
, (3.32)

where we have transformed back to the coordinate x = r2. By matching this with the

normalized horizon solution (3.31), we find

c1 = −1 +
1

a

(

1 − log(−a) − ζ̂

2

(

π2

3
+ 1 + log(−a)

))

+ O(ζ̂2) + O
( 1

a2

)

,

c2 =
ζ̂

2
+

1

a

(

−1 +
ζ̂

2
log(−a)

)

+ O(ζ̂2) + O
( 1

a2

)

, (3.33)

where

ζ̂ = − xh

xh + q1
, (3.34)

and a is given by (3.19). Note that both ζ̂ and a are negative for physical values of the

charge and horizon radius.

In order to more readily apply the AdS/CFT dictionary for examining the asymptotic

behavior, we express (3.32) in terms of the original r coordinate:

ϕout(r) =
axh[c1 − c2 log(−axh)]

r2
+ 2axhc2

log r

r2
. (3.35)

Note that we can always include factors of g to ensure that the logarithms have dimen-

sionless arguments. However, we have set g = 1 for simplicity. The above 1/r2 term

corresponds to giving a vev to the chiral primary operator TrZ2. The (log r)/r2 term,

on the other hand, corresponds to adding a massive deformation −1
2m̄2 Tr Z2 to the La-

grangian of the conformal field theory. A priori, there is an ambiguity in the normalization

of ϕ1. Recall that, for the BPS AdS bubble, the thermal mass m̄ = 0 while, from (2.18),

Tr Z2 gets a vev v1 ≡
√

q1(q1 + 2). Therefore, since we are interested in a thermalization

of N = 4 super-Yang Mills on top of the 1/2 BPS sector specified by a given vev v1, we
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may fix the normalization by taking 〈Tr Z2〉 = v1 for the bubbling AdS black hole. Then,

taking the limit q1 ≫ xh, we find

m̄2 ≈ 4xh

(

1

q1 + 1
− 1

2q1

)

√

q1(q1 + 2) . (3.36)

As xh vanishes, the thermal mass goes to zero. This is certainly not unexpected, since the

thermal mass vanishes in the BPS limit, though at the same time it would not have been

surprising if m̄ did not behave in a smooth manner in this limit. Interestingly enough, m̄

also vanishes for q1 → 1. As we will see, this could be due to a phase transition in the field

theory that is associated with the Hawking-Page transition. In particular, for q1 < 1, the

operator Tr Z2 could become tachyonic, thereby destabilizing the moduli space of the field

theory.

We would now like to express m̄ in terms of the physical parameters of the thermal

field theory, namely the temperature T , chemical potential µ1 and R-charge Q1. These

quantities are all expressed in terms of the AdS black hole parameters qi and xh = r2
h

in (2.7), (2.8) and (2.9). In the limit q1 ≫ xh for a single charge,

T =
1 + q1

2π
√

q1
, µ1 =

√
1 + xh , Q1 = q1

√
1 + xh . (3.37)

We therefore have a choice of expressing xh and q1 in terms of two out of the three physical

parameters of the field theory, which corresponds to different ensembles. For example, the

R-charge Q1 is held fixed in the canonical ensemble. Therefore, the thermal mass is a

function of temperature and chemical potential in the grand canonical ensemble, while it

depends on temperature and R-charge in the canonical ensemble.

We first work in the grand canonical ensemble. We can express xh and q1 in terms of T

and µ1 in the limit q1 ≫ xh as xh ≈ µ2
1−1 and q1 ≈ 2πT (πT ±

√
π2T 2 − 1)−1. Notice that

black holes with two different values of q1 correspond to the same temperature. However,

since the entropy is given by S ≈ 2πxh
√

q1, the black hole with larger q1 is entropically

favorable and so we shall take the + sign in the expression for q1. Since xh ≥ 0, in this

regime µ2
1 ≥ 1. Also, πT > 1 in order for q1 to be real.

One way in which q1 ≫ xh is if T ≫ µ1. This implies that T ≫ 1 and q1 ≈ 4π2T 2.

We can then express the thermal mass as m̄2 ≈ 2(µ2
1 − 1). Thus, for a given chemical

potential, the thermal mass vanishes at zero temperature and approaches a constant in

this high temperature limit, which may imply a sort of saturation taking place. Also,

the thermal mass gets enhanced by increased chemical potential. Notice that this high

temperature regime does not include the point at which the thermal mass vanishes at a

finite temperature.

Alternatively, q1 ≫ xh can be satisfied without having to take T to be large by taking

µ1 ≈ 1. Then after expressing the thermal mass in (3.36) in terms of T and µ1, we find

that m̄ = 0 for πT = 1, which corresponds to q1 = 1. As T increases, the thermal mass

asymptotically approaches the constant value discussed in the previous large temperature

limit, that is m̄2 → 2(µ2
1 − 1).

We will now look at the situation in the canonical ensemble, for which the R-charge

Q1 is held fixed. One way to satisfy q1 ≫ xh is to consider T 3 ≫ Q1 and T ≫ 1. Then we
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have

m̄2 ≈ 2

(

Q2
1

16π4T 4
− 1

)

, (3.38)

where m̄2 ≥ 0 since xh ≥ 0. We see that the thermal mass decreases with temperature and

increases with the R-charge Q1. Note that in order for there to be a horizon at xh > 0,

m̄2 > 0. This requires that Q1 > 4π2T 2.

We will now briefly discuss the conditions for the regime q1 ≫ xh to be consistent with

local thermodynamical stability constraints and dynamical considerations for the charged

AdS black hole that were given in [20], in both the canonical ensemble and grand canonical

ensemble. At the level of linearized ϕ1, we do not need to consider the backreaction on

this background, which would then alter these thermodynamical relations.

In the grand canonical ensemble, in order for the AdS black hole to be dynamically

preferred over pure AdS, πT > πTc ≈ 1, where Tc is the temperature of the Hawking-Page

transition. Furthermore, the local thermodynamical stability constraint is satisfied only for

πT ≈ 1. Thus, we only have a small window for which the above calculations are consistent

with stability. The temperature at which m̄ vanishes lies within this window; in particular,

this occurs at the Hawking-Page transition and presumably signifies the corresponding

phase transition in the field theory. On the other hand, the large temperature regime

where m̄ saturates does not lie within this window. For the canonical ensemble, the local

stability constraint is satisfied for πT ≈
√

2, which also satisfies the condition for the AdS

black hole to be dynamically preferred over pure AdS.

We would now like to recall the approximations that have been made, namely that

|ζ̂| ≪ 1 and |a| ≫ 1 correspond to the large charge limit q1 ≫ xh, which is equivalent to

T ≫ µ1. We could also match approximate solutions in the small charge limit q1 ≪ xh,

which means that |ζ| ≪ 1. Then in order to be consistent with the condition that the

asymptotic and horizon regions have a large overlap, we require that |a| ≫ 1, which further

implies that xh ≪ 1. We can use (2.7) and (2.8) to express these conditions as µ1 ≪ 1 ≪ T .

Therefore, this is the regime of high temperature and small chemical potential. However,

as we will see in the next section, we do not have to rely on the matching technique if

T ≫ 1 and T ≫ µ1, which encompasses the above high temperature regime.

3.3 Perturbative approach for a second high temperature regime

We will now consider the linearized ϕ1 equation (3.15) for the case of xh ≫ q1 and xh ≫ 1,

where we have taken g = 1 for simplicity. As we will see, this is a second high temperature

regime. Note that ϕ1 can be expanded for small x−1
h as

ϕ1 = u0

(

1 + x−1
h u1 + O(x−2

h )
)

. (3.39)

The function u0 satisfies the following linear differential equation

((z2 − 1)z u′
0)

′ + z u0 = 0 , (3.40)

which has the general solution

u0 =
2c1

π
K(1 − z2) +

2c2

π
K(z2) . (3.41)
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where K(x) denotes the complete elliptic integral of the first kind. For the solution to be

regular at the horizon z = 1, it is necessary to set c2 = 0. Furthermore, without loss of

generality we can set the scaling factor c1 = 1, so that near the horizon u0 behaves like

u0 = 1 − 1

2
(z − 1) +

5

16
(z − 1)2 + O((z − 1)3) . (3.42)

Asymptotically we find that

u0 → 2[log z − γ − ψ(1/2)]

πz
, (3.43)

where γ is Euler’s constant and ψ is the digamma function. Approximate numerical values

are γ ≈ .58 and ψ(1/2) ≈ −1.96.

We can now consider the x−1
h corrections in ϕ1. The function u1 can be expressed in

terms of a functional integral as

u1 =

∫ z

1

v(y)

y(y2 − 1)u2
0(y)

dy ,

v = I+(z) + q1I−(z) , I±(z) ≡
∫ z

1

1

y + 1

(

y(y − 1)u0(y)u′
0(y) ± y u2

0(y)
)

dy . (3.44)

Setting the lower bound of the v integral to unity ensures that the solution remains regular

at the horizon. Moreover, the chosen lower bound of the u1 integral guarantees that u1

vanishes at z = 1, so that the boundary condition on ϕ1 remains unchanged.

To compute the asymptotic behavior in u1, evaluate I±(∞) in order to take the large

z expansion of the u1 integral. The result gives

ϕ1 → u0 −
π(I+(∞) + q1I−(∞))

2xhz
, (3.45)

for large z. The approximate numerical values are I+(∞) ≈ 1.03 and I−(∞) ≈ −3.51. In

terms of the coordinate r, the asymptotic behavior is roughly given by

ϕ1 → 4xh log r

πr2
+

c

r2
, c ≡ −2xh

π
[log xh + γ + ψ(1/2)] − π

2
[I+(∞) + q1I−(∞)] . (3.46)

Once again, the 1/r2 term corresponds to giving a vev to the chiral primary operator Tr Z2.

We normalize ϕ1 by equating this vev to the value v1 =
√

q1(q1 + 2) for the case of the

BPS AdS bubble, as we did in the previous section. This enables us to find the thermal

mass of Tr Z2 to be

m̄2 ≈
√

q1(q1 + 2)

log xh
, (3.47)

in the limit xh ≫ q1 and xh ≫ 1. We would like to express this in terms of the temperature,

chemical potential and R-charge of the field theory. From (2.7) and (2.8) and (2.9), we can

express the temperature, chemical potential and R-charge Q1 in terms of the black hole

parameters xh and q1 in the regime xh ≫ q1 and xh ≫ 1 as

T ≈
√

xh

π
, µ1 ≈ √

q1 , Q1 ≈ √
q1xh . (3.48)
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In the grand canonical ensemble, this regime corresponds to T ≫ µ1 and T ≫ 1 and the

thermal mass can be expressed as

m̄2 ≈
√

µ2
1(µ

2
1 + 2)

2 log T
. (3.49)

Thus, the thermal mass increases with chemical potential and decreases with temperature.

In the canonical ensemble, this regime corresponds to T 3 ≫ Q1 and T ≫ 1 and

m̄2 ≈ Q1

√

Q2
1 + 2π4T 4

2π4T 4 log T
. (3.50)

The thermal mass now increases with R-charge Q1 and still decreases with temperature.

Note that, in this regime, the results for the thermal mass are identical for the case of three

equal charges.

Recall that there was only a small window for which the regime discussed in the

previous section satisfied the local thermodynamic stability constraints and entropic con-

siderations. On the other hand, for the regime xh ≫ q1 and xh ≫ 1, all of these constraints

are satisfied. This provides a large range of temperatures for which this system can be reli-

ably discussed. Of course, backreaction and non-linear effects would also have to be taken

into account, should we desire a more detailed treatment of the thermodynamics.

4. Taking backreaction into account

In the previous section, we have explored the linearized equations of motion for the defor-

mation scalars ϕi. Going beyond linear order, these scalars will backreact on the metric

through the Einstein equation, as well as on the other matter fields through the couplings

implicit in the Lagrangian (2.10). In particular, the field ϕi acts as a source for the Ai

gauge fields through the sinh2 ϕi ∗ Ai ∧ Ai couplings, and the Xi (or equivalently φ1 and

φ2) scalars through the modified scalar potential (2.11).

While the generalized backreaction equations are straightforward to obtain, we restrict

the analysis to the non-extremal generalization of the single-charge AdS bubble. In this

case, the natural way to parameterize the metric backreaction is to start from the (one-

charge) black hole solution (2.4) and to write

ds2 = −H−2/3fdt2 + H1/3(f−1dr2 + r2dΩ2
3), (4.1)

where the metric functions are, to second order in the linearization parameter ǫ,

H = 1+
q1

x
+ǫ2h2(x)+· · · ,

f = 1−m

x
+g2xH+ǫ2f2(x)+· · · = 1+g2q1−

m

x
+g2x+ǫ2(f2+g2xh2)+· · · . (4.2)

Here we recall that x = r2 and q1 = m sinh2 β1, as indicated in (2.5). Note that we have

continued to write the function f in the natural combination of f = 1−m/x + g2xH plus

corrections.
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We now turn to the matter fields. For the electric potential, we follow (3.2) and write

A1
t = (b1 − coth β1H

−1) + ǫ2a2(x) + · · ·

= coth β1

(

xh

xh + q1
− x

x + q1 + xǫ2h2

)

+ ǫ2a2 + · · ·

= −q1 coth β1
x − xh

(xh + q1)(x + q1)
+ ǫ2

(

coth β1
x2

(x + q1)2
h2 + a2

)

+ · · · , (4.3)

where coth β1 =
√

1 + m/q1 =
√

(g2/q1)(xh + 1/g2)(xh + q1). Finally, for the backreaction

of ϕ1 on the Xi scalars, we note that it is consistent to set X2 = X3 = 1/
√

X1, since ϕ1

sources X2 and X3 in an identical manner. We then take a multiplicative parameterization

of X1:

X1 = H−2/3(1 + ǫ2χ2(x)) =
(

1 +
q1

x

)−2/3
(

1 + ǫ2

(

χ2 −
2

3

x

x + q1
h2

))

+ · · · . (4.4)

For ϕ1 of order ǫ, its backreaction on the metric fields h2 and f2, the electric potential

a2 and scalar χ2 is then governed by the set of inhomogeneous second-order equations

[x2h′
2 + 2q1χ2]

′ = −x(x + q1)ϕ
′2
1 − q1x(xh + 1/g2)

(xh + q1)(x + xh + 1/g2 + q1)2
ϕ2

1, (4.5)

(x2f2)
′′ + g2[x3h′

2 + 2x2h2]
′ + g2[x2h′

2 + 2q1χ2]

=
g2x(x + xh + 1/g2 + 2q1 + q1(xh + 1/g2)/(xh + q1))

x + xh + 1/g2 + q1
ϕ2

1, (4.6)

((x + q1)
2a′2)

′ = coth β1x(x + q1)

(

ϕ′2
1 − q1

(xh + q1)(x + xh + 1/g2 + q1)2
ϕ2

1

)

, (4.7)

[(x(x−xh)(x+xh+1/g2+q1)χ
′
2)

′+xχ2] + [2xf2/g
2+x2h2]

′+[x2h′
2+2q1χ2]=xϕ2

1.(4.8)

In addition, the constraint equation coming from the Einstein equations gives rise to a

rather cumbersome first-order equation

2g2q1

x + q1
(x − xh)

(

x + xh + 1/g2 + q1

)

χ′
2 + 2g2q1

(

(

xh + 1/g2
)

(xh + q1)

(x + q1)2
− 1

)

χ2

−x(3x + 2q1)

x + q1
f ′
2 +

(

q2
1

(x + q1)2
− 3

)

f2 + 2q1 coth β1a
′
2

−
(

4g2x2 − xxh(1 + g2(xh + q1))

x + q1

)

h′
2 −

(

4g2x − q1xh(1 + g2(xh + q1))

(x + q1)2

)

h2 (4.9)

= −g2x(x − xh)
(

x+xh+1/g2+q1

)

ϕ′2
1 −

g2x
(

x+xh+1/g2+2q1+q1
xh+1/g2

xh+q1

)

(x + xh + 1/g2 + q1)
ϕ2

1.

We observe that the metric backreaction equations (4.5) and (4.6), along with the

X1 equation (4.8), are coupled in a non-trivial manner. On the other hand, the electric

potential equation (4.7) is independent, and can be solved by quadratures:

a2(x) = coth β1

∫ x dx′

(x′ + q1)2

∫ x′

dx′′ x′′(x′′ + q1) ×
(

ϕ′2
1 (x′′) − q1

(xh + q1)(x′′ + xh + 1/g2 + q1)2
ϕ2

1(x
′′)

)

. (4.10)
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Note that the indefinite integrals allow for the addition of an arbitrary homogeneous solu-

tion

a2 = k1 + k2
1

x + q1
+ · · · . (4.11)

These constants may be fixed by demanding that the leading asymptotic behavior of the

solution be unchanged by the backreaction. In particular, for the electric potential we

demand the vanishing of any 1/x correction to A1
t (which would modify the R charge). We

also insist that the potential continues to vanish at the horizon, A1
t (xh) = 0, so that A1

remains normalizable at the horizon. Note, however, that these two conditions do not fix

k1 and k2 directly, since h2 also enters into the correction to the potential, as indicated

in (4.3). Assuming (as we demonstrate below) that h2 falls off faster than 1/x at infinity,

the above requirements then lead to

a2(x) = − coth β1

[

∫ x

XH

dx′

(x′ + q1)2

∫ ∞

x′
dx′′ x′′(x′′ + q1) ×

(

ϕ′2
1 (x′′)− q1

(xh + q1)
(

x′′ + xh + 1/g2 + q1

)2ϕ
2
1(x

′′)

)

− x2
h

(xh + q)2
h2(xh)

]

. (4.12)

From the asymptotic behavior of ϕ1 as given in (3.20)

ϕ1 ∼ c1 + c2 log x

x
+ · · · , x → ∞, (4.13)

we obtain

a2 ∼ a2(∞) +
coth β1

x2

[

−c2(c1 + c2) +
xh

xh + q1

(

1

2
c2
1 +

3

2
c1c2 +

7

4
c2
2

)

+

(

−c2
2 +

xh

xh + q1
c2

(

c1 +
3

2
c2

))

log x +
1

2

xh

xh + q1
c2
2 log2 x + · · ·

]

. (4.14)

The constant a2(∞) contributes to a shift in the value of the electric potential (or, equiv-

alently, the R charge chemical potential) compared to the zeroth-order solution.

Turning to the other fields {h2, f2, χ2}, the coupled system of backreaction equa-

tions (4.5), (4.6) and (4.8) do not appear to admit a straightforward solution. Neverthe-

less, some general properties are evident. Firstly, in the limit of vanishing electric charge,

q1 → 0, the metric equations (4.5) and (4.6) become self-contained. In this limit, (4.5)

may be integrated twice to obtain h2 and, in turn, knowledge of h2 allows (4.6) to be inte-

grated for f2. Secondly, even with q1 6= 0, the combination of the metric equations admit

first integrals, thus reducing the order of the coupled system. In fact, using the first-order

equation, (4.10), along with the backreaction equations for {h2, f2, a2}, we may obtain the

homogeneous equation

g2xh(xh + 1/g2 + q1)

(

x

x + q1
h2

)′
+ g2xh(x2h′

2)
′ +

(

x2f ′
2 −

x2

x + q1
f2

)′

+q1 coth β1

(

a2 +
(x + q1)(x − xh)

xh + q1
a′2

)′
+ 2g2q1(xh + 1/g2)

(

x − xh

x + q1
χ2

)′
=0, (4.15)
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which yields yet another constant of integration (which is presumably related to the con-

served energy of the static gravitational system). Finally, we note from (4.8) that the χ2

scalar fluctuations satisfy an equation of motion which is of similar form to the ϕi equa-

tion (3.3). This should not be of much surprise, as small scalar fluctuations are naturally

governed by the Klein-Gordon equation, which in the present background takes on the

form

(x2fΦ′)′ − 1

4
M2xH1/3Φ = 0, (4.16)

for a scalar Φ. (Note that, in a background with non-zero R charge, the supergravity

potential (2.11) leads to position-dependent ‘masses’ for both the ϕi and Xi scalars.) Since

ϕi and Xi both originate from the Tij tensor of the sphere reduction [21], they all have

E0 = 2, and hence share a common value of mass M2 = −4g2 (at least when the charges

are turned off). Regardless of the details, we expect that the χ2 fluctuations are likewise

described by a Heun equation. Hence similar difficulties to those we encountered in the

previous section arise when obtaining explicit solutions for the backreaction of ϕ1 on χ2.

Because the system of backreaction equations is linear, the inhomogeneous solution

can in principle be obtained by variation of parameters, so long as the fundamental matrix

(i.e. the complete set of linearly independent solutions to the homogeneous system) is

known. More precisely, we may rewrite the second-order equations in coupled first-order

form. Then the solution to the system of n first-order equations

~f ′(x) = ~A(x)x + ~B(x), (4.17)

may be formally expressed as

~f(x) = Φ(x)~f0 + Φ(x)

∫ x

x0

Φ−1(x′) ~B(x′) dx′, (4.18)

where Φ(x) is the fundamental matrix satisfying Φ′(x) = ~A(x)Φ(x) and normalized ac-

cording to Φ(x0) = I. This formal solution is not particularly useful, since in the present

case Φ(x) would be a 7 × 7 matrix, corresponding to the freedom of four second-order

equations (4.5) through (4.8) minus the first-order constraint (4.10). Nevertheless, we note

that five out of the seven linearly independent solutions to the homogeneous system are

easy to obtain:

h2 f2 a2 χ2

1: 1

2: −2q1 coth β1

mx

1

x + q1

3:
q1

x
−m

x

4:
q1

x2
− m

2x2
− 3m + 4q1

2q1x

1

x

5:
3

2
−g2(x + q1) +

7m + 4q1

2x
1

(4.19)
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where m = xh(1 + g2(xh + q)) as obtained from (3.6). The remaining two solutions appear

to involve non-trivial Heun functions pertaining to the χ2 system.

Our main interest in studying the backreaction is to obtain the asymptotic form of

the corrections so we may discern what effects turning on ϕ1 may have on the conserved

quantities such as mass and R charge. For the latter, we have already seen from (4.14)

that we may hold the charge q1 fixed, even as we turn on ϕ1. For the mass, we turn to

an asymptotic expansion of the coupled system (4.5), (4.6) and (4.8) as x → ∞. From the

asymptotic ϕ1 behavior (4.13), we obtain

h2 ∼ 1

x2

[

−1

2
c2
1 −

1

2
c1c2 −

3

4
c2
2 + q

(

χ1 +
1

2
χ11

)

+

(

−c2

(

c1 +
1

2
c2

)

+ q1χ11

)

log x − 1

2
c2
2 log2 x

]

+ · · · ,

f2 ∼ 1

x2

[

2

3
q1

(

χ1 +
1

3
χ11

)

+
1

3
c2

(

2c1 +
5

3
c2

)

− xh(1 − g2q1)

xh + q1

(

1

3
c2
1 +

8

9
c1c2 +

26

27
c2
2

)

+

(

2

3
q1χ11 +

2

3
c2
2 −

2

9

xh(1 − g2q1)

xh + q1
c2(3c1 + 4c2)

)

log x

−1

3

xh(1 − g2q1)

xh + q1
c2
2 log2 x

]

+ · · · ,

χ2 ∼ 1

x
(χ1 + χ11 log x) +

1

x2

[

c2

(

c1 +
3

2
c2

)

+
χ11

g2
+ c2

2 log x

]

+ · · · . (4.20)

Note that here we have used the freedom expressed in (4.19) to set the leading order terms in

h2 and f2 to zero. The content of the residual two homogeneous solutions are incorporated

through the constants χ1 and χ11, which are related to the shift in the asymptotic profile

of the scalar X1 at infinity. Of course, the contribution for the full set of homogeneous

solutions may have to be added back in to satisfy the desired boundary conditions. For

the gauge potential, we have argued that it is natural to demand A1
t (xh) = 0. Likewise,

here it would be appropriate to set f2(xh) + g2xhh2(xh) = 0 so that f(x) as given in (4.2)

continues to vanish at xh when the backreaction is included.

Although we have explored the backreaction of ϕ1 on the other fields of the system,

we can also see from (4.20) that the X1 scalar may be deformed as well, through χ1 and

χ11. Presumably, this would allow a wider class of thermal black hole solutions with scalar

hair. However, assuming our goal is to thermalize the BPS bubble, one may presumably set

χ1 = χ11 = 0 directly without any major concern. At the same time, we note an interesting

feature of the non-extremal bubble solution. While the R-charged black hole (2.4) and the

BPS bubble (2.12) both have the X1 scalar satisfying X1 = H
−2/3
1 (for the one-charge case),

this condition can no longer be maintained when the bubble is thermalized, as evidenced

by the non-vanishing backreaction on χ2.

We also note that, according to (4.20), it appears that the backreaction can be adjusted

so that it has no effect on the mass of the black hole. This is because, at least heuristically,

the mass can be read off from the 1/r2 ≡ 1/x terms in the metric functions H1 and f

(since we are working in five dimensions), and both such terms are absent in (4.20). It

may turn out, however, that boundary conditions at the horizon would feed in some of the
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homogeneous solution of the third type in (4.19), thus leading to a possible shift in the

mass. Of course, such issues cannot be properly examined in the linearized analysis, and

would have to await a full (possibly numerical) solution to be addressed. Nevertheless, the

heuristic concept of mass can be made rigorous, and this is what we turn to next.

5. Mass of the non-BPS bubbles

The definition, and calculation, of the mass of an asymptotically AdS spacetime is some-

what more subtle than it is in an asymptotically flat spacetime. One can no longer use the

ADM definition, which assumes an asymptotically Minkowski region [22]. A generalisation

of the ADM procedure, in which one decomposes the metric as the sum of an AdS back-

ground plus deviations, was introduced in [23] by Abbott and Deser. Effectively, one is

making an infinite background AdS subtraction from a divergent boundary integral. The

presence of scalar fields in the solution, such as one has in the supergravity black holes

and bubbles, can complicate the application of this AD procedure considerably, because of

the inherent ambiguities in the separation of the metric into background plus deviations.

Some discussion of the AD approach, and calculations for higher-dimensional rotating black

holes, can be found in [24].

A procedure for calculating the mass of asymptotically AdS spacetimes that avoids

all the problems inherent in making a split into background and deviation was introduced

by Ashtekar, Magnon and Das [25, 26]. This is based on a conformal definition that

expresses the mass in terms of an integral of certain components of the Weyl tensor over the

spatial conformal boundary at infinity. Since the metric approaches AdS asymptotically,

the integrand falls off and the integral is inherently well-defined. This AMD method was

applied in [27] to the calculation of the masses of higher-dimensional rotating AdS black

holes in general relativity, and in [28] this was extended to the case of rotating black holes

in gauged supergravities.

Alternatively, the boundary counterterm method may be used to calculate the mass of

configurations in an AdS background [29 – 33]. This notion of holographic renormalization

is particularly natural in the context of AdS/CFT, where the addition of boundary coun-

terterms in AdS has a natural counterpart in the addition of renormalization counterterms

in the dual field theory. Furthermore, the boundary counterterm method has the advantage

that it regulates divergences not just in the mass, but also in the on-shell gravitational ac-

tion which is dual to the thermodynamic potential of the CFT. The boundary counterterm

method was used in [34 – 36] to investigate the mass of the (undeformed) R-charged black

holes (2.4).

Here, however, we shall use the AMD method to discuss the masses of BPS bubble

metrics and their non-extremal deformations. Note that, in this definition of mass, pure

AdS has by construction zero energy. This is in contrast with holographic renormalization,

which naturally assigns non-zero energy to the vacuum (which is viewed as dual to the

Casimir energy of the CFT on S3 × R). We begin by briefly summarising the AMD

procedure, drawing on material presented in [27, 28].
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Consider an asymptotically AdS bulk spacetime {X, g} of dimension D, equipped with

a conformal boundary {∂X, h̄}. It admits a conformal compactification {X̄, ḡ} if X̄ = ⊔∂X

is the closure of X, and the metric ḡ extends smoothly onto X̄ where ḡ = Ω2 g for some

function Ω with Ω > 0 in X and Ω = 0 on ∂X, with dΩ 6= 0 on ∂X. One might, for

example, take

Ω =
l

y
, (5.1)

where in the asymptotic region the metric approaches AdS with Rµν = l−2 gµν . (For the

solutions in gauged supergravity that we shall consider, l = 1/g, where g here denotes the

gauge-coupling constant.) Since Ω is determined only up to a factor, Ω → f Ω, where the

function f is non-zero on ∂X, the metric ḡ on X̄ and its restriction h̄ = ḡ|∂X are defined

only up to a non-singular conformal factor. The conformal equivalence class {∂X̄, h̄} is

called the conformal boundary of X. If C̄µ
νρσ is the Weyl tensor of the conformally rescaled

metric ḡµν = Ω2 gµν , and n̄µ ≡ ∂µΩ, then in D dimensions one defines

Ēµ
ν = l2ΩD−3 n̄ρ n̄σ C̄µ

ρνσ . (5.2)

This is the electric part of the Weyl tensor on the conformal boundary. The conserved

charge Q[K] associated to the asymptotic Killing vector K is then given by

Q[K] =
l

8π (D − 3)

∮

Σ
Ēµ

ν Kν dΣ̄µ , (5.3)

where dΣ̄µ is the area element of the (D−2)-sphere section of the conformal boundary. (The

derivation of (5.3) is discussed in [25, 26]). Note that the expression (5.3) is invariant under

the non-singular conformal transformations of the boundary metric that we discuss above.

Thus, one may take for Ω any conformal factor that is related to (5.1) by a non-singular

multiplicative factor.

In order to define the energy, one takes K = ∂/∂t, where t is the time coordinate

appearing in the asymptotically AdS form

ds2 = −(1 + y2 l−2) dt2 +
dy2

1 + y2 l−2
+ y2 dΩ2

D−2 (5.4)

of the metric under investigation. The energy (or mass) is then given by

E =
l

8π (D − 3)

∮

Σ
Ē t

t dΣ̄t . (5.5)

For our present discussion, we need to apply (5.5) to the class of five-dimensional

metrics given by

ds2
5 = −H−2/3 fdt2 + H1/3(f−1 dr2 + r2dΩ2

3) , (5.6)

where H and f are functions only of r, and dΩ2
3 is the metric on the unit 3-sphere. It is

convenient, as usual, to define x = r2. From (5.5) we then find that the mass is given by

E = lim
x→∞

πg2x2

16fH2

[

(1 − f + xf ′ − 2x2f ′′)H2 + x2(3f ′HH′ − 3fH′2 + 2fHH′′)
]

, (5.7)
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where primes denote derivatives with respect to x, and we have taken the five dimensional

Newton’s constant G5 = 1.

Before applying this mass formula to the non-BPS bubbles that we have been inves-

tigating in this paper, it is instructive to consider some BPS bubble examples. For the

spherically-symmetric 1-charge bubble constructed in [11], the metric functions in (5.6) are

given by

H = H1 , f = 1 + g2xH1 , H1 =

√

g4x2 + 2(g2q1 + 1)g2x + 1 − 1

g2x
, (5.8)

where q1 is the electric charge parameter. Substituting into (5.7), we find that the mass is

given by

E =
π q1

4
. (5.9)

For the more general case of 3-charge BPS bubbles, which were constructed in [14], we

have

H = H1H2H3 , f = 1 + g2xH1H2H3 . (5.10)

In this case the explicit solution for the three functions Hi is not known, but at large x

they take the form

H1 = 1 +
qi

x
+ · · · . (5.11)

Substituting into (5.7), we find that the mass is given by

E =
π(q1 + q2 + q3)

4
. (5.12)

As a further example, one finds from (5.7) that the 3-charge non-extremal black

holes (2.4) in five-dimensional gauged supergravity have mass given by

E =
πm

8

∑

i

cosh 2βi =
π

4

(

3

2
m +

∑

i

qi

)

. (5.13)

In the limit when m is taken to zero, this black hole result reduces to that of the BPS

bubble, (5.12).

In general, for a gravitational background parameterized by the asymptotic behavior

H ∼ 1 +
h1

x
+

h2

2x2
+ · · · ,

f ∼ 1 + g2xH +
f1

x
+

f2

2x2
+ · · · , (5.14)

we find that application of the mass formula (5.7) gives simply

E =
π

8

(

2h1 − 3f1

)

. (5.15)

This demonstrates that the mass indeed receives contributions only from the 1/x terms in

the expansion of H and f , as alluded to at the end of the previous section. In reality, the
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expansion in (5.14) may also include log terms. However, so long as the logs are confined

to the 1/x2 and higher terms, the mass remains finite and unchanged from (5.15).

For the linearized bubbling AdS black hole solution, the metric functions H ≡ H1 and

f are given by the backreaction expansions (4.2). As a result, we obtain for the mass

E =
π

4

[

3

2
m + q1 + lim

x→∞
x

(

h2(x) − 3

2
f2(x)

)]

. (5.16)

Note that we have already assumed that the backreaction functions h2 and f2 vanish at

infinity

h2(∞) = f2(∞) = 0. (5.17)

Based on the backreaction expansion (4.20), and taking into account the possible contri-

bution of the homogeneous solutions in (4.19), we see that the masses of the bubbling AdS

black holes remain finite, at least for arbitrary linearized deformations. Unfortunately, how-

ever, the local analysis leading to (4.20) is insufficient in itself to determine how the mass

varies as the ϕ1 deformation is turned on while keeping, say, temperature and R-charge

fixed.

6. A numerical approach

As in much of the rest of this paper, our interest is in non-BPS bubbles. However, we also

numerically explore some features of the BPS bubbles of [14].

6.1 Non-BPS bubbles

There are two types of AdS bubbles. The first type can be referred to as solitonic AdS

bubbles, of which the BPS bubbles are a subset. The corresponding geometry is completely

regular and horizon-free. It interpolates between AdS spacetime at asymptotic infinity and

Minkowskian spacetime at short distance. The second type is the thermal AdS bubble,

for which the geometry contains a singular point surrounded by a horizon. In the above

sections, we have mainly looked at the linearized solution of a subset of thermal AdS

bubbles, which we have referred to as bubbling AdS black holes. We can demonstrate the

existence of both types of AdS bubbles through numerical analysis.

Solitonic AdS bubbles. Solitonic AdS bubbles have no horizon, and may be described

by a global radial coordinate x ∈ [0,∞). Focusing on the one-charge spherically symmetric

system, the Lagrangian (2.10) gives rise to a coupled set of non-linear ordinary differential

equations for the metric functions f and H1 as well as the matter fields X1, ϕ1 and

A1
t . In general, the equations of motion, including the Einstein equations, gives rise to

five second-order equations (one for each function). However, there is also a first-order

‘energy’ or constraint equation arising from the Einstein equations. As a result, any general

solution may essentially be specified by nine constants. Not all such solutions are physically

independent, however. Even with the metric given in the form (4.1)

ds2 = −H(x)−2/3f(x)dt2 + H(x)1/3

(

dx2

4xf(x)
+ xdΩ2

3

)

, (6.1)
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there remains a residual coordinate transformation

t → λ−1t, x → λx, H → λ−3H, A1
t → λA1

t , (6.2)

leaving the form of the metric invariant. This reduces the nine constants to eight physical

parameters of the solution.

Of course, most of these solutions may be singular as x → 0+. For solitonic AdS

bubbles, we necessarily demand regularity at the origin, and hence may set up initial

conditions by obtaining the Taylor expansion of the solution near x → 0+. For small x, up

to linear order, this expansion is given by

H1 = H0 −
1

2
H2

0A2
0(cosh

2 ϕ0
1 − 1)x + · · · ,

X1 = X0 +
1

3
H

1

3

0 (1 − cosh ϕ0
1X

3

2

0 + (cosh2 ϕ0
1 − 1)X3

0 )x + · · · ,

cosh ϕ1 = cosh ϕ0
1 −

1

2
(cosh2 ϕ0

1 − 1)H
1

3

0 (A2
0 cosh ϕ0

1H
2

3

0 + 2
√

X0 − cosh ϕ0
1 X2

0 )x + · · · ,

A1 = A0 +
1

2
A0(cosh

2 ϕ0
1 − 1)X2

0H
1

3

0 x + · · · ,

f = 1+
(cosh2 ϕ0

1−1)A0H
2
0X0+H

4

3

0 (2+4X
3

2

0 cosh ϕ0
1+(cosh2 ϕ0

1−1)X3
0 )

6H0X0
x+· · ·.(6.3)

Thus, by imposing regularity, we see that the solution ends up being parameterized by only

four constants, namely H0, A0, X0 and ϕ0
1. One of the parameters is trivial, owing to the

residual symmetry (6.2). Note that f0 ≡ f(x = 0) is fixed to be unity by the equations of

motion, and by regularity of the spatial slice for shrinking S3.

To obtain the BPS bubble, we may impose the first-order condition cosh ϕ1 = (xH1)
′

given in (2.12). This reduces the four constants down to one according to

cosh ϕ0
1 = H0 , A0 =

1

H0
, X0 = H

− 2

3

0 , (6.4)

and precisely gives rise to the BPS bubbles that preserve 1
2 supersymmetry, and with charge

q = H0 − 1. On the other hand, general solitonic (but non-BPS) bubbles may be obtained

by relaxing any or all of the constraints in (6.4). While we do not explore this parameter

space in detail, we can numerically demonstrate that non-BPS solitonic bubbles can also

exist. For example, taking

H0 = 8, A0 = 1/8, X0 = 1/4, cosh ϕ0
1 = 2 (6.5)

gives rise to a smooth solution with ϕ1 profile given in figure 1. Taking the scaling symme-

try (6.2) into account, these non-BPS bubbles are parameterized by three physical parame-

ters, presumably the R-charge, as well as two scalar ‘charges’ describing s-wave excitations

of the X1 and ϕ1 scalars in AdS. These solutions can be viewed as continuous non-BPS

deformations of the BPS AdS bubbles.
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Figure 1: Plot of coshϕ1 as a function of x for a non-BPS soliton bubble with parameters given

by (6.5).

Thermal AdS bubbles. We now turn to AdS bubbles with horizons. Since the horizon

appears as a coordinate singularity, we restrict the numerical solution to cover the outside

region x ∈ [xh,∞). In this case, the generic regular solution near the horizon may be

specified by six parameters, namely the location of the horizon x = xh, the initial values

of the functions X1(xh), H1(xh), cosh ϕ1(xh) and the slopes f1 and a1 of f(x) and A1(x),

which both much approach zero as x → xh. Note that, taking the scaling symmetry (6.2)

into account, we may set xh to a generic value (say xh = 1). This indicates that the

solutions may be specified by five physical parameters. However, we find it convenient to

allow xh to remain free in the numerical work.

If we let cosh ϕ1 = 1, then we turn off the bubble parameter and the solution reduces to

that of a charged AdS black hole. It is worth remarking that the previously-known charged

AdS black hole solution, in which the scalar X1 does not have an independent charge

parameter, is not the unique spherically symmetric black hole. Numerical analysis shows

that the generic black hole is, in fact, characterized by three parameters: the mass, the

R-charge and the scalar charge of X1. The thermal AdS bubble solution, which also turns

on ϕ1, is then characterized by four parameters. (It remains unclear what the elusive fifth

parameter is. Possibly it could be removed by yet another residual gauge transformation.)

Using a numerical approach, we can demonstrate the existence of these solutions. In

particular, we present an AdS bubble solution that can be viewed as a deformation of the

previously-known AdS black hole. In this case, the initial conditions are specified by the

following:

H0 = 1 +
q

xh
, X0 = H

− 2

3

0 , f1 =
1 + q + 2x + h

xh
, a2

1 =
q(xh + 1)

(xh + q)3
. (6.6)

For cosh ϕ1 = 1, this leads precisely to the previously-known charged AdS black hole. We

can turn on ϕ1 and numerical analysis indicates that the solution exists provided that

1 ≤ cosh ϕ1 < H0. In figure 2 we present a plot of cosh ϕ1 for q = 10, xh = 1 and

cosh ϕ0
1 = 5.

– 28 –



J
H
E
P
1
0
(
2
0
0
7
)
0
3
0

20 40 60 80 100

2

3

4

5

Figure 2: Plot of coshϕ1 as a function of x for a thermal bubble. We have taken q = 10, xh = 1

and coshϕ0
1 = 5.

6.2 BPS bubbles

In [14], defining equations for multi-charge BPS bubbles were obtained in D = 4, 5, 6 and 7

AdS gauged supergravities. Those equations in general do not admit analytical solutions.

Here we shall report that numerical analysis indicates that smooth bubble solutions exist

in all of these cases. In all of these solutions, the coordinate x (which is denoted as R

in [14]) runs from 0, where the metric is Minkowskian, to asymptotic AdS spacetime at

x = ∞.

In D = 5, the functions Hi describing the general three-charge BPS bubble solutions

satisfy the nonlinear equation (2.13), which may be rewritten as

ξ′′i = −g2 (ξ′2i − 1)ξjξk

x2 + ξ1ξ2ξ3
, (6.7)

where i 6= j 6= k, and where we have defined ξi ≡ xHi. The one-charge case is given by

ξ2 = ξ3 = x, while the two-charge case is given by ξ3 = x.

Regularity of the BPS bubble demands that the ξi vanish linearly (or equivalently that

the Hi approach constants) as x → 0. Taking this into account, we may develop a Taylor

expansion around x = 0:

ξi ≡ xHi = aix − 1

2
ajak(a

2
i − 1)x2 +

1

12
ai(a

2
i − 1)(8ajak − a2

j − a2
k)x3 + O(x4) . (6.8)

To ensure cosh ϕi ≥ 1, it is necessary that ai ≥ 1. We verify numerically that smooth

solutions exist for ai ≥ 1, and that the functions Hi behave as the following at asymptotic

infinity:

Hi = 1 +
qi

x
− (ci

1)
2

2x2
+ · · · . (6.9)

Here qi is the charge parameter for the gauge fields Ai, while ci
1 is the coefficient of the

normalizable scalar mode according to

ϕi =
ci
1 + ci

2 log x

x
+ · · · (6.10)
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at infinity. In particular, the coefficient ci
2 of the non-normalizable mode always vanishes

for these BPS bubbles.

The single-charge case admits an analytic solution of the form given in (2.15). This

gives the exact relation c1 =
√

q1(q1 + 2) highlighted in (2.18). For the generic multi-charge

cases, we have been unable to attain an analytical solution to (6.7). Nevertheless, we may

highlight some of the general features of any such solution. To do so, it is convenient to

perform the transformation ξi = x + ηi. The resulting differential equation is then

η′′i = −η′i(η
′
i + 2)

[

x + ηi +

(

x

x + ηj

)(

x

x + ηk

)]−1

. (6.11)

The main purpose for introducing this transformation is to arrive at the asymptotic forms

ηi ∼ (ai − 1)x + O(x2) as x → 0, ηi ∼ qi + O
(

1

x

)

as x → ∞. (6.12)

Note also that it is only the last two terms in (6.11) which couple the equations for the

three fields together.

The AdS vacuum solution is obtained by taking the trivial solution ηi = 0. Hence, for

small deformations of AdS (corresponding to small changes qi ≪ 1), we may expect ηi ≈ 0.

More precisely, by assuming ηi ≪ x, the above equation may be approximated by

η′′i = −η′i(η
′
i + 2)

x + 1
. (6.13)

This approximation also has the feature that the three equations completely decouple in

this limit. Furthermore, this now admits an exact solution consistent with (6.12):

ηi = λi log
1 + x/(1 − λi)

1 + x/(1 + λi)
. (6.14)

Of course, this is only consistent with our assumption ηi ≪ x for λi ≪ 1. In this limit, we

obtain the approximate solution

ηi ≈ 2λ2
i

x

1 + x
(λi ≪ 1). (6.15)

Asymptotically, we read off

qi = 2λ2
i , ci

1 = 2λ (λi ≪ 1), (6.16)

in which case we have demonstrated that

ci
1 ∼

√

2qi for qi → 0. (6.17)

Physically, we see that since small deformations decouple from each other, we are allowed

to turn on any independent combination of the three commuting R-charges (q1, q2 and q3)

as we wish, while maintaining the form of the 1/8 BPS bubble.

Larger deformations may be treated numerically. However, it is worth noting the gen-

eral feature of (6.11): since η starts with a positive slope (forced by demanding cosh ϕi ≥ 1),
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it will remain positive with η′′i ≤ 0. This means η is monotonic increasing with decreasing

slope, and will asymptotically approach its value at infinity, ηi(x → ∞) = qi. The initial

slope for ηi, which is ai − 1,then determines how large the final charge qi becomes; larger

ai gives larger qi.

With this in mind, we may approximate (6.11) by noting that the expression x/(x+ηi)

is bounded to lie between 0 and 1. This expression starts at its minimum value 1/ai when

x = 0 and increases towards 1 as x → ∞. We now consider the denominator in (6.11):

den = x + ηi +

(

x

x + ηj

)(

x

x + ηk

)

. (6.18)

For small x, this is dominated by the initial value of the last term, 1/(ajak), while for large

x it is dominated by the first term. This suggests that we may make the approximation

den ≈ x + ηi +
1

ajak
, (6.19)

in which case the second-order equation

η′′i = − η′i(η
′
i + 2)

x + ηi + (ajak)−1
(6.20)

admits a simple solution:

ηi =
√

x2 + 2(qi + (ajak)−1)x + (ajak)−2 − x − (ajak)
−1. (6.21)

This is, in fact, exact for the one-charge case (where we take, e.g. a2 = a3 = 1 and find

η1 =
√

x2 + 2(q1 + 1)x + 1 − x − 1). Here we have chosen the constants of integration in

accordance with the asymptotic form (6.12). The R-charge is simply qi, and the scalar

vevs are

ci
1 =

√

qi(qi + 2(ajak)−1). (6.22)

For these expressions to be self-consistent, we examine the behavior of ηi as x → 0:

ηi ∼ qiajakx + O(x2). (6.23)

Comparing this with (6.12), we see that self-consistency demands

ai = qiajak + 1 (i 6= j 6= k), (6.24)

which may also be expressed as

qi = (ai − 1)a−1
j a−1

k , (6.25)

where the initial slopes must satisfy ai ≥ 1. This condition gives a range for the allowed

values of the charges. For example, with three equal charges, the above reduces to

q = a−1(1 − a−1), (6.26)

which has a maximum value qmax = 1/4, which occurs when a = 1/2.
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Of course, this restriction (6.25) is entirely contingent on the validity of the approx-

imation (6.19). Numerically, we find that the above captures the qualitative behavior of

the solutions, but that the actual restrictions on the charges is different. In particular,

numerically we find two possibilities for the behavior of qi(ai). For one-charge and two

equal charge bubbles, qi can be made arbitrarily large. However, for three equal charge

bubbles, the actual limiting value of the charge is given by

q < qmax, qmax ≈ 0.529. (6.27)

This cutoff on the maximum amount of R-charge that can be supported by a three equal

charge BPS bubble may have implications on the nature of the corresponding 1/8 BPS

configuration in the dual super Yang-Mills theory.

For the multi-charge cases where one of the qi can become large, the scalar vev expres-

sion (6.22) applies, and we find

ci
1

qi
→

{

√

2/qi for q → 0;

1 for q → ∞.
(6.28)

Even in regions where qi cannot become arbitrarily large, the dominant behavior is for ci
1

to approach qi from above as qi increases. Similar results can also be obtained for D = 4,

6 and 7 dimensions, given by

D = 4 : Hi = ai −
1

6
(a2

i − 1)ajakaℓ x2 +
1

3
ai(a

2
i − 1)a2

ja
2
ka

2
ℓ x3 + O(x4) .

D = 6 : H1 = ai −
9

10
(a2

i − 1)ajx
2

3 + O(x
4

3 ) ,

D = 7 : Hi = ai −
2

3
(a2

i − 1)aj x
1

2 +
1

6
ai(a

2
i − 1)(4a2

j − 1)x + O(x
3

2 ) , (6.29)

where the i, j, k indices are not equal when they arise within the same equation. Using this

as initial data near x = 0, we can find numerically that smooth BPS bubbles exist in all

cases for ai ≥ 1.

7. Conclusions

We have investigated the non-BPS analog of ‘bubbling AdS’ geometries in type IIB su-

pergravity, corresponding to a special class of non-zero temperature LLM configurations.

From the five-dimensional point of view, these are solutions of the STU model coupled to

three additional scalars ϕi. These solutions can be considered as the bubbling general-

izations of non-extremal AdS black holes, and have regular horizons. However, unlike the

previously-known AdS black holes, the bubbling AdS geometries do not have a straight-

forward generalization away from the BPS limit. Thus, we have had to rely on various

approximation methods, as well as numerical analysis. In particular, we have considered

the linearized ϕi equations on the background of the non-extremal R-charged AdS black

hole. The backreaction onto the other fields occurs at higher order. Even at the linearized
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level, the equations do not have closed-form solutions. Specifically, the linearized ϕi equa-

tions can be mapped to the Heun equation, for which the general two-point connection

problem remains unsolved.

Nevertheless, we can find approximate solutions to the Heun equation by matching

solutions in two overlapping regions. This method is reliable for a certain regime provided

that there is a large overlap. In our case, the relevant regime is T ≫ µi, where T and

µi are the temperature and chemical potentials of the dual thermal Yang-Mills theory,

respectively. If, in addition to this, we consider a high temperature limit for which T ≫ 1,

then the ϕi equations can be solved without matching. Corrections of the order µi/T and

1/T can then be considered via a perturbation approach. The complete ϕi solution is fixed

by the boundary conditions at the horizon. Namely, we require that ϕi is regular at the

horizon. For the most part, we focus on the case of one charge and a single additional

scalar field ϕ1.

The behavior of ϕ1 at asymptotic infinity can be related to perturbations away from

the UV superconformal fixed point of the Yang-Mills theory. In particular, the normalizable

mode of ϕ1 goes as 1/r2 and corresponds to the dimension two chiral primary operator

Tr Z2
1 getting a vev. The non-normalizable mode goes as (log r)/r2 and corresponds to a

massive deformation of the field theory Lagrangian of the form Tr Z2
1 . We have normalized

ϕ1 such that the vev is fixed at the value it has for the BPS AdS bubble. Then we discuss

how the thermal mass depends on the physical parameters of the field theory, namely

the temperature, chemical potential and R-charge. We have considered both the grand

canonical ensemble and the canonical ensemble. The fact that the Tr Z2
1 term is only

present in the Lagrangian for thermal field theories might indicate that there is a phase

transition at zero temperature. Moreover, we find the thermal mass vanishes at the point

of the Hawking-Page transition.

We have gone beyond the linear order in ϕ1 to take into account the backreaction on the

other fields, In particular, we have used this to obtain the asymptotic form of the corrections

in order to read off the mass of the bubbling AdS black hole. It would be interesting

to further consider the backreaction, or else use numerical analysis, to investigate the

thermodynamics of bubbling AdS black holes. In particular, it would be interesting to

find out how the local thermodynamic stability constraints, as well as the Hawking-Page

transition, may be altered due to ϕi.

It would be useful to understand more concretely whether these bubbling AdS black

hole solutions have any relation to the hyperstar solutions considered in [12]. There, it

was suggested that the hyperstar background did not have a horizon because the coarse-

graining was taken over only the half-BPS sector of the full Hilbert space of type IIB theory.

Perhaps these bubbling AdS black holes are the result of including the non-BPS sector in

the coarse-graining.

Finally, we have shown via numerical analysis that there are actually two types of

non-BPS AdS bubbles. Thermal AdS bubbles, of which the bubbling AdS black holes are

a subset, have an event horizon surrounding a singularity. On the other hand, solitonic

AdS bubbles are completely regular and horizon-free. The latter type of non-BPS bubbles

can be obtained from the BPS bubbles by smooth deformations, and therefore correspond
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to non-supersymmetric deformations of the dual field theory. It would be interesting to

investigate this further.
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