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ABSTRACT

We explore the non-BPS analog of ‘AdS bubbles’, which are regular spherically symmetric

1/2 BPS geometries in type IIB supergravity. They have regular horizons and can be thought of

as bubbling generalizations of non-extremal AdS black hole solutions in five-dimensional gauged

supergravity. Due to the appearance of the Heun equation even at the linearized level, various

approximation and numerical methods are needed in order to extract information about this system.

We study how the vacuum expectation value and mass of a particular dimension two chiral primary

operator depend on the temperature and chemical potential of the thermal Yang-Mills theory. In

addition, the mass of the bubbling AdS black holes is computed. As is shown numerically, there are

also non-BPS solitonic bubbles which are completely regular and arise from continuous deformations

of BPS AdS bubbles.
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1 Introduction

Black holes in five dimensions have been extensively studied in the framework of both ungauged

and gauged supergravity theories. Furthermore, many of these explicit studies have been performed

in the context of the STU model, which corresponds to N = 2 supergravity coupled to two vector

multiplets. Because of the presence of the graviphoton and two vector fields, the STU model

generally admits three-charge black holes with up to two rotation parameters. In fact, in the

ungauged context, many solutions have been constructed, and their explicit forms have often been

proven to be useful, especially in the context of black hole thermodynamics and stringy microstate

counting.

At the same time, AdS black holes (and their variants) in gauged supergravity theories have

found widespread application in the study of the AdS/CFT correspondence. For instance, an

R-charged black hole in global AdS5 geometry corresponds to equilibrium non-zero temperature

N = 4 SU(N) supersymmetric Yang-Mills theory on S3 × R with finite chemical potential. Five-

dimensional BPS ‘black holes’ were first constructed in [1], although there it was also realized that

they are in fact naked singularities. Unlike the ungauged case, angular momentum must be turned

on in order to obtain true BPS black holes in gauged supergravity. This was done in [3, 4] for one

rotation parameter, and subsequently generalized to two independent rotations. As in the ungauged
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case, these black holes admit non-extremal generalizations [2], which can be further generalized to

include rotations [5–9].

BPS objects play an important rôle in AdS/CFT, regardless of their precise nature, since they

necessarily survive in both the strong and weak coupling regimes of the duality. Along these lines,

the BPS naked singularities were shown in [10] to correspond to a distribution of giant gravitons in

AdS5 × S5, where they were also denoted ‘superstars.’ In terms of the Lin, Lunin and Maldacena

(LLM) boundary conditions for 1/2 BPS configurations [11], these superstars correspond to a disk

in the phase space of free fermions with a uniform shade of gray, which may be interpreted as a

coarse graining of an underlying spacetime foam picture of gravity [13].

The investigation of smooth 1/2 BPS geometries in [11] also led to the construction of a new

set of 1/2 BPS ‘AdS bubbles’ which eliminate the naked singularity of the singular black holes–

not through angular momentum but rather by turning on additional scalar fields ϕi. These scalars

are present in the full N = 8 gauged supergravity but lie outside of the N = 2 truncation [11,14].

These AdS bubbles are in fact completely regular geometries without horizons and, as such, admit

a description in the LLM language as a deformation of the AdS disk into an ellipse in the phase

space of free fermions.

In order to generalize the above five-dimensional single-charge AdS bubbles to include three

charges, the authors of [14] considered a consistent truncation of five-dimensional N = 8 gauged

supergravity that retains the three U(1) gauge fields in the maximal torus of the SO(6) gauge group

along with five scalar fields. Although this truncated system is not itself the bosonic sector of any

supersymmetric theory, it nevertheless allows the construction and lifting of BPS solutions to yield

supersymmetric configurations of the full N = 8 theory and hence the original IIB supergravity as

well.

Although LLM configurations are by their very nature pure states, and not thermal ones, it is

natural to investigate the effect of turning on non-zero temperature starting from a particular LLM

background. The main goal of this paper is to initiate such an exploration by constructing AdS

bubbles away from the BPS limit. In particular, we will look for non-extremal AdS black holes

with regular horizon and carrying ϕi scalar deformations of the same sort encountered in the BPS

bubbles of [11,14]. We will refer to these solutions as ‘bubbling AdS black holes,’ which are a subset

of thermal AdS bubbles. Though not the focus of our paper, we will demonstrate numerically that

there are also non-BPS solitonic AdS bubbles which are completely regular and horizon-free.

We note that a coarse-graining of LLM geometries was considered in [12], and expanded upon

in [13, 15], where the free fermion configuration was given an equilibrium non-zero temperature.

Using the LLM correspondence, this configuration can then be mapped into a ‘hyperstar’ super-

gravity background by appropriate transformation of the Fermi-Dirac distribution into the LLM

z(x1, x2, y) function. It is not clear, however, whether this background actually describes a non-

zero temperature field theory; it is by no means obvious that simply giving the matrix eigenvalues

(the ‘free fermions’) a Fermi-Dirac profile would correspond to turning on non-zero temperature

in N = 4 super Yang-Mills. If this were the case, then one would expect the corresponding su-

pergravity background to have a horizon and to break supersymmetry. In [12], it was pointed out
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that the coarse-graining has been taken over only the half-BPS sector of the full Hilbert space of

type IIB supergravity, and that the result of using the complete Hilbert space should be a non-BPS

background that has a horizon. Because of these considerations, we shall not pursue this direction

of coarse-graining, but will look directly for bubbling AdS black holes in the supergravity itself.

For the case of the AdS black hole, the main effect of moving away from the extremal limit

is to introduce a ‘renormalization’ of the charge. One might hope that the AdS bubble might

be generalized away from the BPS limit in a similar way, in which much of the original structure

survives in a ‘renormalized’ form. Unfortunately, upon closer inspection of the equations of motion,

it does not appear that the AdS bubble can be made non-extremal in such a simple manner. Thus,

we must content ourselves with either approximate or numerical methods.

We will proceed by performing a linearized analysis of the second-order equations of motion.

Although the non-extremal AdS bubble solution is not known, explicit solutions are known in the

two separate limits of either turning off non-extremality or turning off the ϕi deformation. Since

we will focus on solutions for which there is a horizon, we choose to consider the initial background

to be that of the non-extremal R-charged black hole. We will turn on the additional scalars ϕi at

linear order, which will then backreact onto the other fields at higher order.

The linearized ϕi equations are second-order equations with four regular singular points, and

hence may be mapped to the Heun equation. Unfortunately, in contrast with the hypergeometric

equation which has three regular singular points, much less is known about the solutions to the

Heun equation. In particular, the general two-point connection problem, i.e. relating local solutions

at two regular singular points, remains unsolved.

This is of course not the first time where the Heun equation has arisen in the study of the

wave equation in AdS black hole backgrounds. In particular, calculations involving quasi-normal

modes for black holes have generally led to expressions related to the Heun equation. In such

cases, various methods have been applied in order to obtain approximate solutions of the resulting

system. A common method, also used in black hole absorption calculations, involves matching

approximate solutions in two overlapping regions: an inner region containing the horizon and an

outer region that includes asymptotic infinity. Provided that there is a large overlap, then essentially

complete information may be reliably extracted from this approach. Higher-order corrections can

be included via a perturbative approach. We will implement this approximation technique for the

regime T ≫ µi, where T and µi are the temperature and chemical potentials of the field theory,

respectively. Furthermore, there is a high temperature limit T ≫ 1, along with T ≫ µi, for which

there is an approximate solution which covers the entire region from the horizon to asymptotic

infinity without the need for matching.

The asymptotic behavior of ϕi is related to perturbations away from the UV superconformal

fixed point of the dual field theory. In particular, as in the BPS case, the normalizable mode of

ϕi corresponds to giving a vacuum expectation value (vev) to the dimension two chiral primary

operator TrZ2
i , where Zi =

1√
2
(φi1+iφi2) and φ

i
1 and φ

i
2 are three pairs of real scalars of N = 4 super

Yang-Mills theory, for i = 1, 2, 3. On the other hand, the non-normalizable mode of ϕi corresponds

to a term of the form TrZ2
i in the Lagrangian of the conformal field theory. This massive term is

4



only present for nonzero temperature, which could be indicative of a phase transition in the field

theory at zero temperature. We will discuss how these field theory deformations depend on the

physical parameters of the thermal field theory, namely the temperature, chemical potential and

R-charge, in both the grand canonical ensemble and the canonical ensemble.

The paper is organized as follows. In section 2, we review the previously-known AdS black hole

and BPS bubble solutions. In section 3, we perform a linearized analysis of the bubbling AdS black

hole. In particular, we consider the linearized ϕi equations in the background of the AdS black

hole. Focusing on the single-charge case, matching and perturbation techniques are used to find

approximate solutions to the linearized ϕ1 equation. Properties of the ϕ1 solution are discussed.

Specifically, the asymptotic behavior is matched with perturbations of the dual field theory as

functions of temperature and chemical potential. In section 4, we consider the backreaction of ϕ1

onto the metric and other matter fields, and in section 5 we then discuss the mass of these non-BPS

bubbles. In section 6, we present some numerical support for the existence of bubbling AdS black

holes for arbitrary values of ϕ1. Lastly, we conclude in section 7.

2 Review of AdS black holes and BPS bubbles

2.1 AdS black hole

The bosonic Lagrangian for the STU model takes the form

L = R ∗ 1− 1
2

2
∑

α=1

∗dφα ∧ dφα − 1
2

3
∑

i=1

X−2
i ∗F i ∧ F i − V ∗1+ F 1 ∧ F 2 ∧A3, (2.1)

where the Xi’s are constrained scalars satisfying X1X2X3 = 1, and which may be taken to be

X1 = e
− 1√

6
φ1− 1√

2
φ2 , X2 = e

− 1√
6
φ1+

1√
2
φ2 , X3 = e

2√
6
φ1 . (2.2)

The scalar potential is given by

V = −4g2
3
∑

i=1

X−1
i = −4g2(X2X3 +X3X1 +X1X2), (2.3)

and the ungauged system is recovered by setting g = 0.

The three-charge AdS5 black hole solution is given by

ds2 = −H−2/3fdt2 +H1/3(f−1dr2 + r2dΩ2
3),

Ai
(1) = − coth βiH

−1
i dt, Xi = H1/3H−1

i , ϕi = 0,

f = 1− m

r2
+ g2r2H, H = H1H2H3, (2.4)

where the harmonic functions are given by

Hi = 1 +
qi
r2
, qi ≡ m sinh2 βi. (2.5)
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We shall focus primarily on the case of a single charge q1, for which the roots of f are given by

r2± = − 1

2g2
(1 + g2q1)±

1

2g2

√

(1 + g2q1)2 + 4g2m. (2.6)

The event horizon is located at rh = r+. Notice that, in the one-charge case with q1 > 0, any

positive value of m guarantees a regular horizon. On the other hand, for the two and three-charge

cases, a regular horizon may always be obtained for sufficiently large m.

This supergravity background is dual to equilibrium non-zero temperature N = 4 SU(N) su-

persymmetric Yang-Mills theory on S3 × R with chemical potentials for the U(1) R-charges. The

temperature of the field theory is equated with the Hawking temperature of the black hole, which

is [20]

T =
2r6h + r4h(1 +

∑

i qi)−
∏

i qi

2πr2h
∏

i

√

r2h + qi

, (2.7)

where the horizon radius rh is the largest root of f . We have set g = 1 for simplicity. Likewise, the

R-charge chemical potentials µi of the field theory are equated with the electric potentials at the

horizon, which are

µi =
Qi

r2h + qi
, (2.8)

where

Q2
i = qi(r

2
h + qi)

[

1 +
1

r2h

∏

j 6=i

(r2h + qj)
]

. (2.9)

Also, the physical charges Qi of the AdS black hole correspond to R-charges in the dual field theory.

These relations will be useful for expressing various results in terms of the physical quantities of

the field theory.

2.2 BPS AdS bubble

The authors of [14] considered a consistent truncation of five-dimensional N = 8 gauged super-

gravity retaining the three U(1) gauge fields in the maximal torus of the SO(6) gauge group along

with five scalar fields. In N = 2 language, this corresponds to taking the bosonic sector of the STU

model and coupling it to three additional scalars ϕi, which are not described by special geometry.

The Lagrangian is given by [14]

L = R ∗ 1− 1
2

2
∑

α=1

∗dφα ∧ dφα − 1
2

3
∑

i=1

X−2
i ∗ F i ∧ F i − V ∗ 1+ F 1 ∧ F 2 ∧A3

−1
2

3
∑

i=1

∗dϕi ∧ dϕi − 2g2
3
∑

i=1

sinh2 ϕi∗Ai ∧Ai, (2.10)

where the scalar potential has the modified form

V = 2g2
(

3
∑

i=1

X2
1 sinh

2 ϕi − 2

3
∑

i<j

XiXj coshϕi coshϕj

)

. (2.11)
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The original STU model scalars satisfy the same constraints as above, and in particular may be

given by (2.2).

In order to ensure a supersymmetric solution, the regular three-charge AdS bubble configuration

then takes the form [14]

ds2 = −H−2/3f dt2 +H1/3(f−1dr2 + r2dΩ2
3),

Ai
(1) = −H−1

i dt, Xi = H1/3H−1
i , coshϕi = (xHi)

′,

f = 1 + g2xH, H = H1H2H3, (2.12)

where x ≡ r2, and a prime denotes a derivative with respect to x. The above solution is fully

determined up to the functions Hi, which must satisfy the conditions

f(xHi)
′′ = −g2[(xHi)

′2 − 1]HH−1
i , (2.13)

to ensure that the equations of motion are satisfied.

For the one-charge case, corresponding to a 1/2 BPS configuration, we may take H2 = H3 = 1.

Then the equation of motion (2.13) reduces to

[(1 + g2xH1)
2]′′ = 2g4, (2.14)

which admits a general solution of the form

H1 =

√

1 +
2(1 + g2q1)

g2x
+

c2

g4x2
− 1

g2x
. (2.15)

Here q1 is the R-charge, and c is a constant related to the ϕ1 scalar deformation. Note that, at

large distances, H1 admits the expansion

H1 ∼ 1 +
q1
x

+ · · · , (2.16)

while regularity of the AdS bubble at short distances demands c = 1. In addition, the BPS naked

singularity of [1, 2] is recovered by taking c = 1 + g2q1, in which case H1 reduces to the standard

‘harmonic function’ form H1 = 1 + q1/x.

In general, as we will demonstrate below, the scalar ϕ1 carries E0 = 2, and hence has an

asymptotic expansion of the form

ϕ1 ∼ c1 + c2 log x

x
+ · · · , (2.17)

However, based on the explicit solution (2.15), we see that the log term vanishes, c2 = 0, while

c1 =
√

(1 + q1)2 − c2 =
√

q1(q1 + 2) , (2.18)

where the second expression is for the regular AdS bubble solution. We have set g = 1. Applying

the AdS/CFT dictionary (see e.g. [19]), this implies that the dimension two chiral primary operator
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TrZ2
1 gets a vev c1, where Z1 =

1√
2
(φ1+iφ2) and φ1 and φ2 are two of the six real scalars of N = 4

super Yang-Mills theory.

Although we are not aware of any closed form expressions, it can be seen that regular two and

three-charge solutions to (2.13) also exist. These solutions correspond to 1/4 and 1/8 BPS AdS

bubbles, and can be realized in the framework of LLM configurations with fewer supersymmetries

[16–18].

3 Linearized analysis of the bubbling AdS black hole

Given the relatively simple non-extremal generalization (2.4) of the BPS AdS black hole solution, we

have been led to look for a corresponding non-extremal version of the AdS bubble (2.12) where the

ϕi scalars are present. In the absence of supersymmetry, we no longer have the benefit of working

with first-order Killing spinor equations. However, the form of the non-extremal black hole (2.4)

is curiously close to that of the BPS limit; the primary difference is that the charge parameters

qi in the harmonic functions Hi are ‘renormalized’ as follows: qi → m sinh2 βi. This suggests that

perhaps a similarly straightforward generalization may be obtained for the AdS bubble, where much

of the BPS structure might survive, except perhaps in ‘renormalized’ form.

Unfortunately, closer inspection of the equations of motion arising from the Lagrangian (2.10)

does not suggest any simple manner in which the AdS bubble solution may be made non-extremal.

In particular, retaining the BPS-like relation coshϕi = (xHi)
′ leads to either the possibility that

ϕi = 0, in which case Hi takes the form (2.5), or to a constrained system of equations which only

appear to admit a natural solution of the BPS bubble form given by (2.13). As a result, we must

use either approximate or numerical methods when moving away from extremality.

3.1 Linearized ϕi equations

In this section, we explore the basic features of the non-extremal AdS bubble by performing a

linearized analysis of the second-order equations of motion obtained from (2.10). We proceed by

noting that, although it is not clear how to write down the complete solution for a non-extremal

AdS bubble, explicit forms for the solutions are known in the two separate limits of either turning

off non-extremality or turning off the ϕi deformation. Since we are mainly interested in solutions

with a horizon, we choose to start from the non-extremal R-charged black hole background of (2.4)

and (2.5) and then turn on the additional scalars ϕi at linear order. Turning on these scalars will

then backreact onto the other fields. However this backreaction occurs at the next order, and may

be ignored in the initial analysis. (We will return to the backreaction in another section.)

At linearized order we are only concerned with the linearized equation of motion for ϕi, which

takes the form
[

− 4g2Xi(2Xi −
3
∑

j=1

Xj)− 4g2(Ai
µ)

2
]

ϕi = 0. (3.1)

Here the scalars Xi take on the background values given above in (2.4) and (2.5). There is a
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slight subtlety for the background gauge fields, however, related to the ‘gauge fixed’ form of the

action (2.10). In particular, while the standard black hole solution (2.4) is invariant under gauge

transformations of Ai, the above equation of motion is not. Taking this into account, we allow a

constant term in the expression for the background electric potential

Ai = (bi − coth βiH
−1
i )dt ≡ Ai

t dt. (3.2)

We shall see below that this constant must be chosen to make the potential vanish at the horizon.

The motivation for this requirement can already be seen by noting that the invariant square of

the electric potential, (Ai
µ)

2, which acts as a source in (3.1), blows up at the horizon unless Ai
t is

arranged to vanish there.

By substituting the background fields into (3.1), we obtain the scalar equation

(x2fϕ′
i)
′ + g2

[ 3
∑

j 6=i

(x+ qj) + (x2f)−1
3
∏

j 6=i

(x+ qj)
(

−g2
3
∏

j 6=i

(x+ qj)

+
mx

qi
− 2bi

√

1 +m/qi x+ (bi)2(x+ qi)
)

]

ϕi = 0,(3.3)

where

x2f = g2
3
∏

j=1

(x+ qj) + x2 −mx, (3.4)

is a cubic polynomial, and where qi ≡ m sinh2 βi. Note that, in the event qi = 0, the above equation

is replaced by the considerably simpler expression

(x2fϕ′
i)
′ +

g2

x

(

x2 −
3
∏

j 6=i

qj

)

ϕi = 0, (3.5)

which may be obtained by directly taking Ai = 0 in (3.1).

Since x2f is cubic, it can be seen that (3.3) is a second-order equation with three regular singular

points at the roots of x2f . Including the singular point at infinity, which is also regular, this

equation in fact has four regular singular points, and hence may be mapped into the general Heun

equation. Unfortunately, the general two-point connection problem is as yet unsolved. However,

general features of the linearized ϕi deformation may be extracted from the second-order equation

(3.3).

Recalling that the goal of the linearized analysis is to turn on a ϕi deformation starting from the

R-charged black hole background, we demand that the solution to (3.3) be regular and bounded

in the entire region from the horizon to the spatial boundary at infinity. Before examining the

solution, we find it convenient to trade the non-extremality parameter m with the horizon location

xh, defined to be the largest positive root of f(x). Note that, in terms of xh, we have

m = xh +
g2

xh

3
∏

i=1

(xh + qi), (3.6)
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along with the factorization

x2f = g2(x− xh)(x
2 +Qx−R), (3.7)

where

Q = xh +
1

g2
+ q1 + q2 + q3, R =

q1q2q3
xh

. (3.8)

Examination of the indicial equation around the horizon xh (which is a regular singular point)

yields the characteristic exponents ±ζi where

ζ2i = −
∏3

j=1(xh + qj)

(x2h +Qxh −R)2

(

bi −
√

1 +
m

qi

xh
xh + qi

)2

. (3.9)

Noting that the expression above is non-positive (since xh + qj must be positive to avoid naked

singularities), we immediately see that the characteristic exponents are purely imaginary, except for

the case when they vanish. Since imaginary exponents give rise to undesirable oscillatory solutions

of the form ϕi ∼ sin(|ζi| log(x−xh)), we conclude that the constant bi in the electric potential must

be adjusted to satisfy

bi =

√

1 +
m

qi

xh
xh + qi

=
coth βi
Hi(xh)

. (3.10)

This ensures that the potentials given by (3.2) indeed vanish at the horizon, Ai(xh) = 0, thus

confirming what we had alluded to above.

Demanding that the electric potentials vanish at the horizon, the ϕi equation can now be put

into the form

((x− xh)(x
2 +Qx−R)ϕ′

i)
′ +

[ 3
∑

j 6=i

(x+ qj)− (x2 +Qx−R)−1
3
∏

j 6=i

(x+ qj)

×
(

x2h +Qxh −R

xh + qi
+ (x− xh)

)]

ϕi = 0. (3.11)

The solutions to this equation may be characterized by the Riemann P -symbol

P











xh x1 x2 ∞
0 α1 α2 1 ;x

0 −α1 −α2 1











, (3.12)

where x1 and x2 are the two roots of the quadratic equation x2 + Qx − R = 0. Their associated

exponents, α1 and α2, may easily be obtained, although we have no particular need for their explicit

forms. We do note, however, that the characteristic exponents sum to 2, which is in agreement

with the general theory of the Heun equation.

The single-charge case

Since we are primarily interested in the non-extremal generalization of the single-charge 1/2

BPS bubble, we now focus on the case where q2 = q3 = 0. In this case, we assume the corresponding
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scalars ϕ2 and ϕ3 ought not to be excited. As a result, we are left with a single equation for ϕ1,

which now takes the form

(x(x− xh)(x+Q)ϕ′
1)

′ + x

[

1 +
xh +Q

x+Q

q1
xh + q1

]

ϕ1 = 0. (3.13)

This equation still contains four regular singular points, and as such can be brought into Heun

form. In particular, we may map the singular points {0, xh,−Q} to {0, 1, a} by introducing

x = zxh, Q = −axh, (3.14)

after which the scalar equation becomes

(z(z − 1)(z − a)ϕ′
1)

′ + z

[

1 + ζ
1− a

z − a

]

ϕ1 = 0. (3.15)

Here the prime denotes a derivative with respect to z. We have also defined the dimensionless

parameter

ζ =
q1

xh + q1
. (3.16)

Note that ζ → 1 in the limit of large charge, while ζ → 0 in the limit of vanishing charge.

The scalar equation (3.15) can be brought into the canonical form of the Heun equation through

the substitution ϕ1 = (z − a)±
√
ζ ϕ̃1. As a result, the solution may be written in terms of a local

Heun function

ϕ1 =
1− a

z − a
Hl(

1

a
,−ζ

a
; 1 −

√

ζ, 1 +
√

ζ, 1, 1;
z − 1

z − a
). (3.17)

Here we have imposed the boundary condition that ϕ1 is regular at the horizon. In particular, the

expansion of the local Heun function gives

ϕ1 = 1 + (1 + ζ)
z − 1

a− 1
+

4− a+ (6− a)ζ + ζ2

4

(z − 1)2

(a− 1)2
+ · · · . (3.18)

where ζ is given in (3.16), and where

a = −
(

1 +
q1 + 1/g2

xh

)

. (3.19)

In principle, we would also like to obtain the expansion of ϕ1 in the asymptotic regime z → ∞ in

order to extract the boundary behavior (3.20). However, the two-point connection problem for the

Heun equation is in general a difficult task, and there is as yet no straightforward way to connect

the behavior of (3.17) near the horizon with (3.20) near the boundary. In order to match the

horizon and boundary behaviors of ϕ1, we need to utilize further approximation techniques. Before

turning to this, we shall first consider the general behavior of ϕi.

General behavior

The asymptotic behavior of the solution for ϕi is governed by the point at infinity. In particular,

given the repeated characteristic exponent of 1, it may be shown that the solution near the boundary

has the form

ϕi(x) ∼
ci1 + ci2 log x

x
+ · · · , x→ ∞, (3.20)
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which is consistent with ϕi being an E0 = 2 scalar (or equivalently being associated with conformal

dimension ∆ = 2 in the dual gauge theory). Although the two independent solutions encoded in

(3.20) admit different interpretations in the dual gauge theory, they are both allowed to be present

in the supergravity solution.

In particular, as in BPS case, ci1 can be interpreted as the vev of the dimension 2 chiral primary

operator TrZ2
i , where Zi =

1√
2
(φi1 + iφi2) and φi1 and φi2 are three pairs of real scalars of N = 4

super Yang-Mills theory, for i = 1, 2, 3. On the other hand, the ci2 term corresponds to adding

the relevant deformation ci2 TrZ
2
i to the Lagrangian of the conformal field theory. The ci2 term is

only present when one moves away from extremality, which indicates that there may be a phase

transition in the field theory at zero temperature.

Turning to the horizon, we see that, with the choice of bi in (3.10), the repeated characteristic

exponent of 0 at x = xh indicates that the solution near the horizon has the form

ϕi(x) ∼ di1 + di2 log(x− xh) + · · · , x→ xh. (3.21)

Clearly, we must set di2 = 0 to avoid a logarithmic divergence of ϕi at the horizon.

In principle, this boundary condition now fixes the complete solution, in the sense that the

coefficients ci1 and ci2 in the asymptotic expansion may be determined directly from di1 and the

physical parameters of the background solution. However, in the absence of any general connection

formulae for the Heun equation, there is no straightforward way to make this relation explicit. (We

note that, even if the generic connection matrix were known, it might not be applicable to this

solution as it has repeated characteristic exponents.) In order to match the horizon and boundary

behaviors of ϕ1 for the single-charge case, we instead turn to approximate solutions of equation

(3.15).

3.2 Matching approximate solutions

We first consider an approximation technique which involves matching approximate solutions in

two overlapping regions. In particular, one region contains the horizon while the other includes

asymptotic infinity. Provided these two regions overlap, the solutions may then be matched up

in the overlap region. A drawback of this approach is that it is not always possible to ensure a

large overlap region, depending on the physical parameters of the system. However, if such a large

overlap exists, then essentially complete information may be reliably extracted using this matching.

Noting that a introduces a new scale into the problem, we may consider solving (3.15) in the

two regions: i) the asymptotic region where z ≫ 1, and ii) the horizon region where z ≪ |a|.
Provided |a| ≫ 1, these two regions will have a large overlap (1 ≪ z ≪ |a|) where reliable matching

may be performed. From (3.19), we see that overlap is ensured for either q1 ≫ xh or xh ≪ 1/g2.

3.2.1 The asymptotic region

To highlight the asymptotic region, z ≫ 1, we may rewrite the scalar equation (3.15) as

ϕ′′
1+

(

2

w
+

1

w − 1

)

ϕ′
1+

1

w(w − 1)

(

1− ζ

w − 1

)

ϕ1 = −1

a

[

1

w(w − 1/a)

(

ϕ′
1 +

1 + ζ

w − 1
ϕ1

)]

, (3.22)
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where we have introduced the rescaled coordinate w = z/a. In this case, the additional factor of

1/a on the right-hand side of (3.22) allows us formally to develop a solution for ϕ1 as a perturbative

expansion in 1/a

ϕ1 = ϕ(0) +
1

a
ϕ(1) +

1

a2
ϕ(2) · · · , (3.23)

where ϕ(0) solves the homogeneous equation corresponding to the left-hand side of (3.22). Since

this can be put into hypergeometric form, the solution is essentially known. In practice, however,

matching of the asymptotic and horizon expansions is facilitated by introducing yet another expan-

sion, this time in ζ. Examination of (3.16) indicates that there are two relevant limits to consider,

namely the large and small charge limits.

The large charge limit corresponds to q1 ≫ xh, or equivalently ζ ≈ 1. In this case, we let

ζ = 1 + ζ̂ and rearrange (3.22) to read

ϕ′′
1 +

(

2

w
+

1

w − 1

)

ϕ′
1 +

w − 2

w(w − 1)2
ϕ1 =

ζ̂

w(w − 1)2
ϕ1 −

1

a

[

1

w(w − 1/a)

(

ϕ′
1 +

2 + ζ̂

w − 1
ϕ1

)]

.

(3.24)

Solutions to this equation can now be developed as a double expansion in ζ̂ and 1/a. Although

this may seem to be only a slight rearrangement of (3.22), the main simplification here is that

the homogeneous equation can now be solved in terms of elementary functions, ϕ
(0)
1 = c1u1 + c2u2

where

u1 =
1

w − 1
, u2 =

1

w − 1

(

log(−w) + 1

w

)

. (3.25)

At each successive order in the perturbation, the lower order solutions feed in as sources on the right-

hand side of (3.24). However, since the homogeneous solutions are elementary, the inhomogeneous

system has a straightforward solution which can be developed, e.g through variation of parameters.

Up to first order in both ζ̂ and 1/a, we find that the two linearly independent solutions for the

outside function can be expressed as

ϕ1
out =

1

w − 1

[

1− ζ̂

2

(

log
(

1− 1

w

)

− 1

w

)

− 1

aw

(

1− ζ̂

2

(

log
(

1− 1

w

)

− 2 +
1

2w

)

)

+ · · ·
]

,

ϕ2
out =

1

w − 1

[

log(−w) + 1

w
− ζ̂

2

(

log(−w)
(

log
(

1− 1

w

)

− 1

w

)

+
(

2− 1

w

)

log
(

1− 1

w

)

+ log2
(

1− 1

w

)

+ 2Li2

( 1

1− w

)

)

+
1

aw

(

−3− log(−w) + 1

2w
+O(ζ̂)

)

+ · · ·
]

,

(3.26)

where we recall that w = z/a. We have organized these two solutions according to the asymptotic

behavior

ϕ1
out ∼

a

z
+ · · · , ϕ2

out ∼
a

z
log z + · · · , (3.27)

corresponding to the normalizable and non-normalizable E0 = 2 modes of ϕ1, as in (3.20).
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3.2.2 The horizon region

Turning next to the horizon region, z ≪ |a|, we now choose to write the scalar equation (3.15) as

ϕ′′
1 +

(

1

z
+

1

z − 1

)

ϕ′
1 =

1

a

(

1

1− z/a

)[

ϕ′
1 +

1

z − 1

(

1 + ζ
1− 1/a

1− z/a

)

ϕ1

]

. (3.28)

This again allows us to develop an expansion in 1/a, where the independent solutions to the

homogeneous equation on the left-hand side are simply

u1 = 1, u2 = log
z − 1

z
. (3.29)

These two solutions correspond directly to the near horizon behavior given in (3.21); in particular,

we see that only u1 is well behaved at the horizon. Developing this solution to the first few orders

in 1/a gives

ϕin = 1 +
1

2a
(1 + ζ)(z − 1 + log z) +

1

24a2

[

(z − 1)
(

9(1 − ζ2) + 2(ζ2 + 7ζ + 4)z
)

−
(

5ζ2 + 14ζ + 5− 6(1 + ζ)2z
)

log z + 3(1 + ζ)2 log2 z + 6(1 + ζ)2Li2

(

1− 1

z

)]

+ · · · .
(3.30)

Note that this is purely an expansion in 1/a, and in particular it is valid for arbitrary ζ. Further-

more, it can be seen that this expression for ϕin agrees with the near horizon expansion given in

(3.18) in the overlapping region of validity z → 1 and a→ ∞. The advantage of (3.30) over (3.18),

however, is that here ϕin remains valid even for z away from the horizon (provided z ≪ |a|). This
is precisely what is needed in order to match the horizon expression with the asymptotic forms of

the solution given above in (3.26).

3.2.3 Matching

While the asymptotic and horizon solutions (3.26) and (3.30) were derived under the independent

conditions of z ≫ 1 and z ≪ |a|, they are both valid in the overlap region 1 ≪ z ≪ |a|, so long

as |a| ≫ 1. In order to match the solutions in this overlap region, it is convenient to rewrite the

horizon solution (3.30) in terms of w.

After suitable rearrangement, ϕin then takes the form of a series solution in w as well as an

expansion in 1/a

ϕin =

[

1 +
w

2
(1 + ζ) +

w2

12
(ζ2 + 7ζ + 4) +O(w3)

]

+
1

a

[

1

2
(1 + ζ)(log(wa)− 1) +

w

24
(−11ζ2 − 14ζ + 1 + 6(1 + ζ)2 log(wa)) +O(w2)

]

+O
( 1

a2

)

. (3.31)

Here it is important to realize that, although the expressions are no longer complete at each new

order in 1/a, the resulting series in w are in principle well behaved for |w| < 1. This is what allows
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a consistent matching with the asymptotic solution (3.26), with ϕout similarly expanded as a series

in w.

The asymptotic solution to the scalar equation is in general a linear combination of the two

solutions given in (3.26):

ϕout(x) = c1ϕ
1
out + c2ϕ

2
out ∼

axh(c1 + c2 log(−x/axh))
x

, (3.32)

where we have transformed back to the coordinate x = r2. By matching this with the normalized

horizon solution (3.31), we find

c1 = −1 +
1

a

(

1− log(−a)− ζ̂

2

(π2

3
+ 1 + log(−a)

)

)

+O(ζ̂2) +O
( 1

a2

)

,

c2 =
ζ̂

2
+

1

a

(

−1 +
ζ̂

2
log(−a)

)

+O(ζ̂2) +O
( 1

a2

)

, (3.33)

where

ζ̂ = − xh
xh + q1

, (3.34)

and a is given by (3.19). Note that both ζ̂ and a are negative for physical values of the charge and

horizon radius.

In order to more readily apply the AdS/CFT dictionary for examining the asymptotic behavior,

we express (3.32) in terms of the original r coordinate:

ϕout(r) =
axh[c1 − c2 log(−axh)]

r2
+ 2axhc2

log r

r2
. (3.35)

Note that we can always include factors of g to ensure that the logarithms have dimensionless

arguments. However, we have set g = 1 for simplicity. The above 1/r2 term corresponds to giving

a vev to the chiral primary operator TrZ2. The (log r)/r2 term, on the other hand, corresponds

to adding a massive deformation −1
2m̄

2 TrZ2 to the Lagrangian of the conformal field theory. A

priori, there is an ambiguity in the normalization of ϕ1. Recall that, for the BPS AdS bubble, the

thermal mass m̄ = 0 while, from (2.18), TrZ2 gets a vev v1 ≡
√

q1(q1 + 2). Therefore, since we are

interested in a thermalization of N = 4 super-Yang Mills on top of the 1/2 BPS sector specified by

a given vev v1, we may fix the normalization by taking 〈TrZ2〉 = v1 for the bubbling AdS black

hole. Then, taking the limit q1 ≫ xh, we find

m̄2 ≈ 4xh

( 1

q1 + 1
− 1

2q1

)

√

q1(q1 + 2) . (3.36)

As xh vanishes, the thermal mass goes to zero. This is certainly not unexpected, since the thermal

mass vanishes in the BPS limit, though at the same time it would not have been surprising if m̄

did not behave in a smooth manner in this limit. Interestingly enough, m̄ also vanishes for q1 → 1.

As we will see, this could be due to a phase transition in the field theory that is associated with

the Hawking-Page transition. In particular, for q1 < 1, the operator TrZ2 could become tachyonic,

thereby destabilizing the moduli space of the field theory.
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We would now like to express m̄ in terms of the physical parameters of the thermal field

theory, namely the temperature T , chemical potential µ1 and R-charge Q1. These quantities are

all expressed in terms of the AdS black hole parameters qi and xh = r2h in (2.7), (2.8) and (2.9). In

the limit q1 ≫ xh for a single charge,

T =
1 + q1
2π

√
q1
, µ1 =

√
1 + xh , Q1 = q1

√
1 + xh . (3.37)

We therefore have a choice of expressing xh and q1 in terms of two out of the three physical

parameters of the field theory, which corresponds to different ensembles. For example, the R-charge

Q1 is held fixed in the canonical ensemble. Therefore, the thermal mass is a function of temperature

and chemical potential in the grand canonical ensemble, while it depends on temperature and R-

charge in the canonical ensemble.

We first work in the grand canonical ensemble. We can express xh and q1 in terms of T and µ1

in the limit q1 ≫ xh as xh ≈ µ21 − 1 and q1 ≈ 2πT (πT ±
√
π2T 2 − 1)− 1. Notice that black holes

with two different values of q1 correspond to the same temperature. However, since the entropy is

given by S ≈ 2πxh
√
q1, the black hole with larger q1 is entropically favorable and so we shall take

the + sign in the expression for q1. Since xh ≥ 0, in this regime µ21 ≥ 1. Also, πT > 1 in order for

q1 to be real.

One way in which q1 ≫ xh is if T ≫ µ1. This implies that T ≫ 1 and q1 ≈ 4π2T 2. We can then

express the thermal mass as m̄2 ≈ 2(µ21 − 1). Thus, for a given chemical potential, the thermal

mass vanishes at zero temperature and approaches a constant in this high temperature limit, which

may imply a sort of saturation taking place. Also, the thermal mass gets enhanced by increased

chemical potential. Notice that this high temperature regime does not include the point at which

the thermal mass vanishes at a finite temperature.

Alternatively, q1 ≫ xh can be satisfied without having to take T to be large by taking µ1 ≈ 1.

Then after expressing the thermal mass in (3.36) in terms of T and µ1, we find that m̄ = 0 for

πT = 1, which corresponds to q1 = 1. As T increases, the thermal mass asymptotically approaches

the constant value discussed in the previous large temperature limit, that is m̄2 → 2(µ21 − 1).

We will now look at the situation in the canonical ensemble, for which the R-charge Q1 is held

fixed. One way to satisfy q1 ≫ xh is to consider T 3 ≫ Q1 and T ≫ 1. Then we have

m̄2 ≈ 2
( Q2

1

16π4T 4
− 1
)

, (3.38)

where m̄2 ≥ 0 since xh ≥ 0. We see that the thermal mass decreases with temperature and increases

with the R-charge Q1. Note that in order for there to be a horizon at xh > 0, m̄2 > 0. This requires

that Q1 > 4π2T 2.

We will now briefly discuss the conditions for the regime q1 ≫ xh to be consistent with local

thermodynamical stability constraints and dynamical considerations for the charged AdS black hole

that were given in [20], in both the canonical ensemble and grand canonical ensemble. At the level

of linearized ϕ1, we do not need to consider the backreaction on this background, which would then

alter these thermodynamical relations.
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In the grand canonical ensemble, in order for the AdS black hole to be dynamically preferred

over pure AdS, πT > πTc ≈ 1, where Tc is the temperature of the Hawking-Page transition.

Furthermore, the local thermodynamical stability constraint is satisfied only for πT ≈ 1. Thus,

we only have a small window for which the above calculations are consistent with stability. The

temperature at which m̄ vanishes lies within this window; in particular, this occurs at the Hawking-

Page transition and presumably signifies the corresponding phase transition in the field theory. On

the other hand, the large temperature regime where m̄ saturates does not lie within this window.

For the canonical ensemble, the local stability constraint is satisfied for πT ≈
√
2, which also

satisfies the condition for the AdS black hole to be dynamically preferred over pure AdS.

We would now like to recall the approximations that have been made, namely that |ζ̂| ≪ 1 and

|a| ≫ 1 correspond to the large charge limit q1 ≫ xh, which is equivalent to T ≫ µ1. We could also

match approximate solutions in the small charge limit q1 ≪ xh, which means that |ζ| ≪ 1. Then

in order to be consistent with the condition that the asymptotic and horizon regions have a large

overlap, we require that |a| ≫ 1, which further implies that xh ≪ 1. We can use (2.7) and (2.8)

to express these conditions as µ1 ≪ 1 ≪ T . Therefore, this is the regime of high temperature and

small chemical potential. However, as we will see in the next section, we do not have to rely on the

matching technique if T ≫ 1 and T ≫ µ1, which encompasses the above high temperature regime.

3.3 Perturbative approach for a second high temperature regime

We will now consider the linearized ϕ1 equation (3.15) for the case of xh ≫ q1 and xh ≫ 1, where

we have taken g = 1 for simplicity. As we will see, this is a second high temperature regime. Note

that ϕ1 can be expanded for small x−1
h as

ϕ1 = u0

(

1 + x−1
h u1 +O(x−2

h )
)

. (3.39)

The function u0 satisfies the following linear differential equation

((z2 − 1)z u′0)
′ + z u0 = 0 , (3.40)

which has the general solution

u0 =
2c1
π
K(1− z2) +

2c2
π
K(z2) . (3.41)

where K(x) denotes the complete elliptic integral of the first kind. For the solution to be regular

at the horizon z = 1, it is necessary to set c2 = 0. Furthermore, without loss of generality we can

set the scaling factor c1 = 1, so that near the horizon u0 behaves like

u0 = 1− 1
2(z − 1) + 5

16(z − 1)2 +O((z − 1)3) . (3.42)

Asymptotically we find that

u0 →
2[log z − γ − ψ(1/2)]

πz
, (3.43)

where γ is Euler’s constant and ψ is the digamma function. Approximate numerical values are

γ ≈ .58 and ψ(1/2) ≈ −1.96.
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We can now consider the x−1
h corrections in ϕ1. The function u1 can be expressed in terms of

a functional integral as

u1 =

∫ z

1

v(y)

y(y2 − 1)u20(y)
dy ,

v = I+(z) + q1I−(z) , I±(z) ≡
∫ z

1

1

y + 1

(

y(y − 1)u0(y)u
′
0(y)± y u20(y)

)

dy . (3.44)

Setting the lower bound of the v integral to unity ensures that the solution remains regular at the

horizon. Moreover, the chosen lower bound of the u1 integral guarantees that u1 vanishes at z = 1,

so that the boundary condition on ϕ1 remains unchanged.

To compute the asymptotic behavior in u1, evaluate I±(∞) in order to take the large z expansion

of the u1 integral. The result gives

ϕ1 → u0 −
π(I+(∞) + q1I−(∞))

2xhz
, (3.45)

for large z. The approximate numerical values are I+(∞) ≈ 1.03 and I−(∞) ≈ −3.51. In terms of

the coordinate r, the asymptotic behavior is roughly given by

ϕ1 →
4xh log r

πr2
+

c

r2
, c ≡ −2xh

π
[log xh + γ + ψ(1/2)] − π

2
[I+(∞) + q1I−(∞)] . (3.46)

Once again, the 1/r2 term corresponds to giving a vev to the chiral primary operator TrZ2. We

normalize ϕ1 by equating this vev to the value v1 =
√

q1(q1 + 2) for the case of the BPS AdS

bubble, as we did in the previous section. This enables us to find the thermal mass of TrZ2 to be

m̄2 ≈
√

q1(q1 + 2)

log xh
, (3.47)

in the limit xh ≫ q1 and xh ≫ 1. We would like to express this in terms of the temperature,

chemical potential and R-charge of the field theory. From (2.7) and (2.8) and (2.9), we can express

the temperature, chemical potential and R-charge Q1 in terms of the black hole parameters xh and

q1 in the regime xh ≫ q1 and xh ≫ 1 as

T ≈
√
xh
π

, µ1 ≈
√
q1 , Q1 ≈

√
q1xh . (3.48)

In the grand canonical ensemble, this regime corresponds to T ≫ µ1 and T ≫ 1 and the thermal

mass can be expressed as

m̄2 ≈
√

µ21(µ
2
1 + 2)

2 log T
. (3.49)

Thus, the thermal mass increases with chemical potential and decreases with temperature.

In the canonical ensemble, this regime corresponds to T 3 ≫ Q1 and T ≫ 1 and

m̄2 ≈ Q1

√

Q2
1 + 2π4T 4

2π4T 4 log T
. (3.50)

The thermal mass now increases with R-charge Q1 and still decreases with temperature. Note that,

in this regime, the results for the thermal mass are identical for the case of three equal charges.
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Recall that there was only a small window for which the regime discussed in the previous section

satisfied the local thermodynamic stability constraints and entropic considerations. On the other

hand, for the regime xh ≫ q1 and xh ≫ 1, all of these constraints are satisfied. This provides a

large range of temperatures for which this system can be reliably discussed. Of course, backreaction

and non-linear effects would also have to be taken into account, should we desire a more detailed

treatment of the thermodynamics.

4 Taking backreaction into account

In the previous section, we have explored the linearized equations of motion for the deformation

scalars ϕi. Going beyond linear order, these scalars will backreact on the metric through the

Einstein equation, as well as on the other matter fields through the couplings implicit in the

Lagrangian (2.10). In particular, the field ϕi acts as a source for the Ai gauge fields through the

sinh2 ϕi ∗ Ai ∧ Ai couplings, and the Xi (or equivalently φ1 and φ2) scalars through the modified

scalar potential (2.11).

While the generalized backreaction equations are straightforward to obtain, we restrict the

analysis to the non-extremal generalization of the single-charge AdS bubble. In this case, the

natural way to parameterize the metric backreaction is to start from the (one-charge) black hole

solution (2.4) and to write

ds2 = −H−2/3fdt2 +H1/3(f−1dr2 + r2dΩ2
3), (4.1)

where the metric functions are, to second order in the linearization parameter ǫ,

H = 1 +
q1
x

+ ǫ2h2(x) + · · · ,

f = 1− m

x
+ g2xH + ǫ2f2(x) + · · · = 1 + g2q1 −

m

x
+ g2x+ ǫ2(f2 + g2xh2) + · · · . (4.2)

Here we recall that x = r2 and q1 = m sinh2 β1, as indicated in (2.5). Note that we have continued

to write the function f in the natural combination of f = 1−m/x+ g2xH plus corrections.

We now turn to the matter fields. For the electric potential, we follow (3.2) and write

A1
t = (b1 − coth β1H

−1) + ǫ2a2(x) + · · ·

= coth β1

(

xh
xh + q1

− x

x+ q1 + xǫ2h2

)

+ ǫ2a2 + · · ·

= −q1 coth β1
x− xh

(xh + q1)(x+ q1)
+ ǫ2

(

coth β1
x2

(x+ q1)2
h2 + a2

)

+ · · · , (4.3)

where coth β1 =
√

1 +m/q1 =
√

(g2/q1)(xh + 1/g2)(xh + q1). Finally, for the backreaction of ϕ1

on the Xi scalars, we note that it is consistent to set X2 = X3 = 1/
√
X1, since ϕ1 sources X2 and

X3 in an identical manner. We then take a multiplicative parameterization of X1:

X1 = H−2/3(1 + ǫ2χ2(x)) =
(

1 +
q1
x

)−2/3
(

1 + ǫ2
(

χ2 − 2
3

x

x+ q1
h2

))

+ · · · . (4.4)
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For ϕ1 of order ǫ, its backreaction on the metric fields h2 and f2, the electric potential a2 and

scalar χ2 is then governed by the set of inhomogeneous second-order equations

[x2h′2 + 2q1χ2]
′ = −x(x+ q1)ϕ

′2
1 − q1x(xh + 1/g2)

(xh + q1)(x+ xh + 1/g2 + q1)2
ϕ2
1, (4.5)

(x2f2)
′′ + g2[x3h′2 + 2x2h2]

′ + g2[x2h′2 + 2q1χ2]

=
g2x(x+ xh + 1/g2 + 2q1 + q1(xh + 1/g2)/(xh + q1))

x+ xh + 1/g2 + q1
ϕ2
1, (4.6)

((x+ q1)
2a′2)

′ = coth β1x(x+ q1)

(

ϕ′2
1 − q1

(xh + q1)(x+ xh + 1/g2 + q1)2
ϕ2
1

)

, (4.7)

[(x(x− xh)(x+ xh + 1/g2 + q1)χ
′
2)

′ + xχ2] + [2xf2/g
2 + x2h2]

′ + [x2h′2 + 2q1χ2] = xϕ2
1. (4.8)

In addition, the constraint equation coming from the Einstein equations gives rise to a rather

cumbersome first-order equation

2g2q1
x+ q1

(x− xh)(x+ xh + 1/g2 + q1)χ
′
2 + 2g2q1

(

(xh + 1/g2)(xh + q1)

(x+ q1)2
− 1

)

χ2

−x(3x+ 2q1)

x+ q1
f ′2 +

(

q21
(x+ q1)2

− 3

)

f2 + 2q1 coth β1a
′
2

−
(

4g2x2 − xxh(1 + g2(xh + q1))

x+ q1

)

h′2 −
(

4g2x− q1xh(1 + g2(xh + q1))

(x+ q1)2

)

h2

= −g2x(x− xh)(x+ xh + 1/g2 + q1)ϕ
′2
1

−g
2x(x+ xh + 1/g2 + 2q1 + q1(xh + 1/g2)/(xh + q1))

(x+ xh + 1/g2 + q1)
ϕ2
1. (4.9)

We observe that the metric backreaction equations (4.5) and (4.6), along with the X1 equation

(4.8), are coupled in a non-trivial manner. On the other hand, the electric potential equation (4.7)

is independent, and can be solved by quadratures:

a2(x) = coth β1

∫ x dx′

(x′ + q1)2

∫ x′

dx′′ x′′(x′′ + q1)×
(

ϕ′2
1 (x

′′)− q1
(xh + q1)(x′′ + xh + 1/g2 + q1)2

ϕ2
1(x

′′)

)

. (4.10)

Note that the indefinite integrals allow for the addition of an arbitrary homogeneous solution

a2 = k1 + k2
1

x+ q1
+ · · · . (4.11)

These constants may be fixed by demanding that the leading asymptotic behavior of the solution

be unchanged by the backreaction. In particular, for the electric potential we demand the vanishing

of any 1/x correction to A1
t (which would modify the R charge). We also insist that the potential

continues to vanish at the horizon, A1
t (xh) = 0, so that A1 remains normalizable at the horizon.

Note, however, that these two conditions do not fix k1 and k2 directly, since h2 also enters into the

correction to the potential, as indicated in (4.3). Assuming (as we demonstrate below) that h2 falls
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off faster than 1/x at infinity, the above requirements then lead to

a2(x) = − coth β1

[
∫ x

xh

dx′

(x′ + q1)2

∫ ∞

x′
dx′′ x′′(x′′ + q1)×

(

ϕ′2
1 (x

′′)− q1
(xh + q1)(x′′ + xh + 1/g2 + q1)2

ϕ2
1(x

′′)

)

− x2h
(xh + q)2

h2(xh)

]

. (4.12)

From the asymptotic behavior of ϕ1 as given in (3.20)

ϕ1 ∼
c1 + c2 log x

x
+ · · · , x→ ∞, (4.13)

we obtain

a2 ∼ a2(∞) +
coth β1
x2

[

−c2(c1 + c2) +
xh

xh + q1

(

1
2c

2
1 +

3
2c1c2 +

7
4c

2
2

)

+

(

−c22 +
xh

xh + q1
c2
(

c1 +
3
2c2
)

)

log x+ 1
2

xh
xh + q1

c22 log
2 x+ · · ·

]

. (4.14)

The constant a2(∞) contributes to a shift in the value of the electric potential (or, equivalently,

the R charge chemical potential) compared to the zeroth-order solution.

Turning to the other fields {h2, f2, χ2}, the coupled system of backreaction equations (4.5), (4.6)

and (4.8) do not appear to admit a straightforward solution. Nevertheless, some general properties

are evident. Firstly, in the limit of vanishing electric charge, q1 → 0, the metric equations (4.5) and

(4.6) become self-contained. In this limit, (4.5) may be integrated twice to obtain h2 and, in turn,

knowledge of h2 allows (4.6) to be integrated for f2. Secondly, even with q1 6= 0, the combination of

the metric equations admit first integrals, thus reducing the order of the coupled system. In fact,

using the first-order equation, (4.9), along with the backreaction equations for {h2, f2, a2}, we may

obtain the homogeneous equation

g2xh(xh + 1/g2 + q1)

(

x

x+ q1
h2

)′
+ g2xh(x

2h′2)
′ +

(

x2f ′2 −
x2

x+ q1
f2

)′

+q1 coth β1

(

a2 +
(x+ q1)(x− xh)

xh + q1
a′2

)′
+ 2g2q1(xh + 1/g2)

(

x− xh
x+ q1

χ2

)′
= 0, (4.15)

which yields yet another constant of integration (which is presumably related to the conserved

energy of the static gravitational system). Finally, we note from (4.8) that the χ2 scalar fluctuations

satisfy an equation of motion which is of similar form to the ϕi equation (3.3). This should not be

of much surprise, as small scalar fluctuations are naturally governed by the Klein-Gordon equation,

which in the present background takes on the form

(x2fΦ′)′ − 1
4M

2xH1/3Φ = 0, (4.16)

for a scalar Φ. (Note that, in a background with non-zero R charge, the supergravity potential

(2.11) leads to position-dependent ‘masses’ for both the ϕi and Xi scalars.) Since ϕi and Xi both

originate from the Tij tensor of the sphere reduction [21], they all have E0 = 2, and hence share a

common value of mass M2 = −4g2 (at least when the charges are turned off). Regardless of the
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details, we expect that the χ2 fluctuations are likewise described by a Heun equation. Hence similar

difficulties to those we encountered in the previous section arise when obtaining explicit solutions

for the backreaction of ϕ1 on χ2.

Because the system of backreaction equations is linear, the inhomogeneous solution can in

principle be obtained by variation of parameters, so long as the fundamental matrix (i.e. the

complete set of linearly independent solutions to the homogeneous system) is known. More precisely,

we may rewrite the second-order equations in coupled first-order form. Then the solution to the

system of n first-order equations
~f ′(x) = ~A(x)x+ ~B(x), (4.17)

may be formally expressed as

~f(x) = Φ(x)~f0 +Φ(x)

∫ x

x0

Φ−1(x′) ~B(x′) dx′, (4.18)

where Φ(x) is the fundamental matrix satisfying Φ′(x) = ~A(x)Φ(x) and normalized according to

Φ(x0) = I. This formal solution is not particularly useful, since in the present case Φ(x) would be

a 7 × 7 matrix, corresponding to the freedom of four second-order equations (4.5) through (4.8)

minus the first-order constraint (4.9). Nevertheless, we note that five out of the seven linearly

independent solutions to the homogeneous system are easy to obtain:

h2 f2 a2 χ2

1: 1

2: −2q1 coth β1
mx

1

x+ q1

3:
q1
x

−m
x

4:
q1
x2

− m

2x2
− 3m+ 4q1

2q1x

1

x

5:
3

2
−g2(x+ q1) +

7m+ 4q1
2x

1

(4.19)

where m = xh(1 + g2(xh + q)) as obtained from (3.6). The remaining two solutions appear to

involve non-trivial Heun functions pertaining to the χ2 system.

Our main interest in studying the backreaction is to obtain the asymptotic form of the correc-

tions so we may discern what effects turning on ϕ1 may have on the conserved quantities such as

mass and R charge. For the latter, we have already seen from (4.14) that we may hold the charge

q1 fixed, even as we turn on ϕ1. For the mass, we turn to an asymptotic expansion of the coupled
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system (4.5), (4.6) and (4.8) as x→ ∞. From the asymptotic ϕ1 behavior (4.13), we obtain

h2 ∼ 1

x2

[

−1
2c

2
1 − 1

2c1c2 − 3
4c

2
2 + q

(

χ1 +
1
2χ11

)

+
(

−c2
(

c1 +
1
2c2
)

+ q1χ11

)

log x− 1
2c

2
2 log

2 x

]

+ · · · ,

f2 ∼ 1

x2

[

2
3q1
(

χ1 +
1
3χ11

)

+ 1
3c2
(

2c1 +
5
3c2
)

− xh(1− g2q1)

xh + q1

(

1
3c

2
1 +

8
9c1c2 +

26
27c

2
2

)

+

(

2
3q1χ11 +

2
3c

2
2 − 2

9

xh(1− g2q1)

xh + q1
c2(3c1 + 4c2)

)

log x

−1
3

xh(1− g2q1)

xh + q1
c22 log

2 x

]

+ · · · ,

χ2 ∼ 1

x
(χ1 + χ11 log x) +

1

x2

[

c2
(

c1 +
3
2c2
)

+
χ11

g2
+ c22 log x

]

+ · · · . (4.20)

Note that here we have used the freedom expressed in (4.19) to set the leading order terms in h2

and f2 to zero. The content of the residual two homogeneous solutions are incorporated through

the constants χ1 and χ11, which are related to the shift in the asymptotic profile of the scalar

X1 at infinity. Of course, the contribution for the full set of homogeneous solutions may have

to be added back in to satisfy the desired boundary conditions. For the gauge potential, we

have argued that it is natural to demand A1
t (xh) = 0. Likewise, here it would be appropriate to

set f2(xh) + g2xhh2(xh) = 0 so that f(x) as given in (4.2) continues to vanish at xh when the

backreaction is included.

Although we have explored the backreaction of ϕ1 on the other fields of the system, we can

also see from (4.20) that the X1 scalar may be deformed as well, through χ1 and χ11. Presumably,

this would allow a wider class of thermal black hole solutions with scalar hair. However, assuming

our goal is to thermalize the BPS bubble, one may presumably set χ1 = χ11 = 0 directly without

any major concern. At the same time, we note an interesting feature of the non-extremal bubble

solution. While the R-charged black hole (2.4) and the BPS bubble (2.12) both have the X1 scalar

satisfying X1 = H
−2/3
1 (for the one-charge case), this condition can no longer be maintained when

the bubble is thermalized, as evidenced by the non-vanishing backreaction on χ2.

We also note that, according to (4.20), it appears that the backreaction can be adjusted so

that it has no effect on the mass of the black hole. This is because, at least heuristically, the

mass can be read off from the 1/r2 ≡ 1/x terms in the metric functions H1 and f (since we are

working in five dimensions), and both such terms are absent in (4.20). It may turn out, however,

that boundary conditions at the horizon would feed in some of the homogeneous solution of the

third type in (4.19), thus leading to a possible shift in the mass. Of course, such issues cannot be

properly examined in the linearized analysis, and would have to await a full (possibly numerical)

solution to be addressed. Nevertheless, the heuristic concept of mass can be made rigorous, and

this is what we turn to next.
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5 Mass of the non-BPS bubbles

The definition, and calculation, of the mass of an asymptotically AdS spacetime is somewhat more

subtle than it is in an asymptotically flat spacetime. One can no longer use the ADM definition,

which assumes an asymptotically Minkowski region [22]. A generalisation of the ADM procedure, in

which one decomposes the metric as the sum of an AdS background plus deviations, was introduced

in [23] by Abbott and Deser. Effectively, one is making an infinite background AdS subtraction

from a divergent boundary integral. The presence of scalar fields in the solution, such as one has

in the supergravity black holes and bubbles, can complicate the application of this AD procedure

considerably, because of the inherent ambiguities in the separation of the metric into background

plus deviations. Some discussion of the AD approach, and calculations for higher-dimensional

rotating black holes, can be found in [24].

A procedure for calculating the mass of asymptotically AdS spacetimes that avoids all the

problems inherent in making a split into background and deviation was introduced by Ashtekar,

Magnon and Das [25,26]. This is based on a conformal definition that expresses the mass in terms

of an integral of certain components of the Weyl tensor over the spatial conformal boundary at

infinity. Since the metric approaches AdS asymptotically, the integrand falls off and the integral is

inherently well-defined. This AMD method was applied in [27] to the calculation of the masses of

higher-dimensional rotating AdS black holes in general relativity, and in [28] this was extended to

the case of rotating black holes in gauged supergravities.

Alternatively, the boundary counterterm method may be used to calculate the mass of config-

urations in an AdS background [29–33]. This notion of holographic renormalization is particularly

natural in the context of AdS/CFT, where the addition of boundary counterterms in AdS has a

natural counterpart in the addition of renormalization counterterms in the dual field theory. Fur-

thermore, the boundary counterterm method has the advantage that it regulates divergences not

just in the mass, but also in the on-shell gravitational action which is dual to the thermodynamic

potential of the CFT. The boundary counterterm method was used in [34–36] to investigate the

mass of the (undeformed) R-charged black holes (2.4).

Here, however, we shall use the AMD method to discuss the masses of BPS bubble metrics and

their non-extremal deformations. Note that, in this definition of mass, pure AdS has by construction

zero energy. This is in contrast with holographic renormalization, which naturally assigns non-zero

energy to the vacuum (which is viewed as dual to the Casimir energy of the CFT on S3 × R). We

begin by briefly summarising the AMD procedure, drawing on material presented in [27,28].

Consider an asymptotically AdS bulk spacetime {X, g} of dimension D, equipped with a con-

formal boundary {∂X, h̄}. It admits a conformal compactification {X̄, ḡ} if X̄ = ⊔∂X is the closure

of X, and the metric ḡ extends smoothly onto X̄ where ḡ = Ω2 g for some function Ω with Ω > 0

in X and Ω = 0 on ∂X, with dΩ 6= 0 on ∂X. One might, for example, take

Ω =
l

y
, (5.1)

where in the asymptotic region the metric approaches AdS with Rµν = l−2 gµν . (For the solutions

24



in gauged supergravity that we shall consider, l = 1/g, where g here denotes the gauge-coupling

constant.) Since Ω is determined only up to a factor, Ω → f Ω, where the function f is non-zero on

∂X, the metric ḡ on X̄ and its restriction h̄ = ḡ|∂X are defined only up to a non-singular conformal

factor. The conformal equivalence class {∂X̄, h̄} is called the conformal boundary of X. If C̄µ
νρσ

is the Weyl tensor of the conformally rescaled metric ḡµν = Ω2 gµν , and n̄µ ≡ ∂µΩ, then in D

dimensions one defines

Ēµ
ν = l2ΩD−3 n̄ρ n̄σ C̄µ

ρνσ . (5.2)

This is the electric part of the Weyl tensor on the conformal boundary. The conserved charge Q[K]

associated to the asymptotic Killing vector K is then given by

Q[K] =
l

8π (D − 3)

∮

Σ
Ēµ

ν K
ν dΣ̄µ , (5.3)

where dΣ̄µ is the area element of the (D − 2)-sphere section of the conformal boundary. (The

derivation of (5.3) is discussed in [25, 26]). Note that the expression (5.3) is invariant under the

non-singular conformal transformations of the boundary metric that we discuss above. Thus, one

may take for Ω any conformal factor that is related to (5.1) by a non-singular multiplicative factor.

In order to define the energy, one takes K = ∂/∂t, where t is the time coordinate appearing in

the asymptotically AdS form

ds2 = −(1 + y2 l−2) dt2 +
dy2

1 + y2 l−2
+ y2 dΩ2

D−2 (5.4)

of the metric under investigation. The energy (or mass) is then given by

E =
l

8π (D − 3)

∮

Σ
Ē t

t dΣ̄t . (5.5)

For our present discussion, we need to apply (5.5) to the class of five-dimensional metrics given

by

ds25 = −H−2/3 fdt2 +H1/3(f−1 dr2 + r2dΩ2
3) , (5.6)

where H and f are functions only of r, and dΩ2
3 is the metric on the unit 3-sphere. It is convenient,

as usual, to define x = r2. From (5.5) we then find that the mass is given by

E = lim
x→∞

πg2x2

16fH2

[

(1− f + xf ′ − 2x2f ′′)H2 + x2(3f ′HH′ − 3fH′2 + 2fHH′′)
]

, (5.7)

where primes denote derivatives with respect to x, and we have taken the five dimensional Newton’s

constant G5 = 1.

Before applying this mass formula to the non-BPS bubbles that we have been investigating in

this paper, it is instructive to consider some BPS bubble examples. For the spherically-symmetric

1-charge bubble constructed in [11], the metric functions in (5.6) are given by

H = H1 , f = 1 + g2xH1 , H1 =

√

g4x2 + 2(g2q1 + 1)g2x+ 1− 1

g2x
, (5.8)
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where q1 is the electric charge parameter. Substituting into (5.7), we find that the mass is given by

E =
π q1
4

. (5.9)

For the more general case of 3-charge BPS bubbles, which were constructed in [14], we have

H = H1H2H3 , f = 1 + g2xH1H2H3 . (5.10)

In this case the explicit solution for the three functions Hi is not known, but at large x they take

the form

H1 = 1 +
qi
x

+ · · · . (5.11)

Substituting into (5.7), we find that the mass is given by

E =
π(q1 + q2 + q3)

4
. (5.12)

As a further example, one finds from (5.7) that the 3-charge non-extremal black holes (2.4) in

five-dimensional gauged supergravity have mass given by

E =
πm

8

∑

i

cosh 2βi =
π

4

(

3

2
m+

∑

i

qi

)

. (5.13)

In the limit when m is taken to zero, this black hole result reduces to that of the BPS bubble,

(5.12).

In general, for a gravitational background parameterized by the asymptotic behavior

H ∼ 1 +
h1
x

+
h2
2x2

+ · · · ,

f ∼ 1 + g2xH +
f1
x

+
f2
2x2

+ · · · , (5.14)

we find that application of the mass formula (5.7) gives simply

E =
π

8

(

2h1 − 3f1
)

. (5.15)

This demonstrates that the mass indeed receives contributions only from the 1/x terms in the

expansion of H and f , as alluded to at the end of the previous section. In reality, the expansion in

(5.14) may also include log terms. However, so long as the logs are confined to the 1/x2 and higher

terms, the mass remains finite and unchanged from (5.15).

For the linearized bubbling AdS black hole solution, the metric functions H ≡ H1 and f are

given by the backreaction expansions (4.2). As a result, we obtain for the mass

E =
π

4

[

3

2
m+ q1 + lim

x→∞
x

(

h2(x)−
3

2
f2(x)

)]

. (5.16)

Note that we have already assumed that the backreaction functions h2 and f2 vanish at infinity

h2(∞) = f2(∞) = 0. (5.17)

26



Based on the backreaction expansion (4.20), and taking into account the possible contribution of the

homogeneous solutions in (4.19), we see that the masses of the bubbling AdS black holes remain

finite, at least for arbitrary linearized deformations. Unfortunately, however, the local analysis

leading to (4.20) is insufficient in itself to determine how the mass varies as the ϕ1 deformation is

turned on while keeping, say, temperature and R-charge fixed.

6 A numerical approach

As in much of the rest of this paper, our interest is in non-BPS bubbles. However, we also numer-

ically explore some features of the BPS bubbles of [14].

6.1 Non-BPS bubbles

There are two types of AdS bubbles. The first type can be referred to as solitonic AdS bubbles, of

which the BPS bubbles are a subset. The corresponding geometry is completely regular and horizon-

free. It interpolates between AdS spacetime at asymptotic infinity and Minkowskian spacetime at

short distance. The second type is the thermal AdS bubble, for which the geometry contains

a singular point surrounded by a horizon. In the above sections, we have mainly looked at the

linearized solution of a subset of thermal AdS bubbles, which we have referred to as bubbling AdS

black holes. We can demonstrate the existence of both types of AdS bubbles through numerical

analysis.

Solitonic AdS bubbles

Solitonic AdS bubbles have no horizon, and may be described by a global radial coordinate

x ∈ [0,∞). Focusing on the one-charge spherically symmetric system, the Lagrangian (2.10) gives

rise to a coupled set of non-linear ordinary differential equations for the metric functions f and

H1 as well as the matter fields X1, ϕ1 and A1
t . In general, the equations of motion, including

the Einstein equations, gives rise to five second-order equations (one for each function). However,

there is also a first-order ‘energy’ or constraint equation arising from the Einstein equations. As a

result, any general solution may essentially be specified by nine constants. Not all such solutions

are physically independent, however. Even with the metric given in the form (4.1)

ds2 = −H(x)−2/3f(x)dt2 +H(x)1/3
(

dx2

4xf(x)
+ xdΩ2

3

)

, (6.1)

there remains a residual coordinate transformation

t→ λ−1t, x→ λx, H → λ−3H, A1
t → λA1

t , (6.2)

leaving the form of the metric invariant. This reduces the nine constants to eight physical param-

eters of the solution.

27



Of course, most of these solutions may be singular as x → 0+. For solitonic AdS bubbles, we

necessarily demand regularity at the origin, and hence may set up initial conditions by obtaining

the Taylor expansion of the solution near x → 0+. For small x, up to linear order, this expansion

is given by

H1 = H0 − 1
2H

2
0A

2
0(cosh

2 ϕ0
1 − 1)x+ · · · ,

X1 = X0 +
1
3H

1

3

0 (1− coshϕ0
1X

3

2

0 + (cosh2 ϕ0
1 − 1)X3

0 )x+ · · · ,

coshϕ1 = coshϕ0
1 − 1

2(cosh
2 ϕ0

1 − 1)H
1

3

0 (A
2
0 coshϕ

0
1H

2

3

0 + 2
√

X0 − coshϕ0
1X

2
0 )x+ · · · ,

A1 = A0 +
1
2A0(cosh

2 ϕ0
1 − 1)X2

0H
1

3

0 x+ · · · ,

f = 1 +
(cosh2 ϕ0

1 − 1)A0H
2
0X0 +H

4

3

0 (2 + 4X
3

2

0 coshϕ0
1 + (cosh2 ϕ0

1 − 1)X3
0 )

6H0X0
x+ · · · . (6.3)

Thus, by imposing regularity, we see that the solution ends up being parameterized by only four

constants, namely H0, A0, X0 and ϕ0
1. One of the parameters is trivial, owing to the residual

symmetry (6.2). Note that f0 ≡ f(x = 0) is fixed to be unity by the equations of motion, and by

regularity of the spatial slice for shrinking S3.

To obtain the BPS bubble, we may impose the first-order condition coshϕ1 = (xH1)
′ given in

(2.12). This reduces the four constants down to one according to

coshϕ0
1 = H0 , A0 =

1

H0
, X0 = H

− 2

3

0 , (6.4)

and precisely gives rise to the BPS bubbles that preserve 1
2 supersymmetry, and with charge q =

H0 − 1. On the other hand, general solitonic (but non-BPS) bubbles may be obtained by relaxing

any or all of the constraints in (6.4). While we do not explore this parameter space in detail, we

can numerically demonstrate that non-BPS solitonic bubbles can also exist. For example, taking

H0 = 8, A0 = 1/8, X0 = 1/4, coshϕ0
1 = 2 (6.5)

gives rise to a smooth solution with ϕ1 profile given in Fig. 1. Taking the scaling symmetry (6.2)

into account, these non-BPS bubbles are parameterized by three physical parameters, presumably

the R-charge, as well as two scalar ‘charges’ describing s-wave excitations of the X1 and ϕ1 scalars in

AdS. These solutions can be viewed as continuous non-BPS deformations of the BPS AdS bubbles.

Thermal AdS bubbles

We now turn to AdS bubbles with horizons. Since the horizon appears as a coordinate singu-

larity, we restrict the numerical solution to cover the outside region x ∈ [xh,∞). In this case, the

generic regular solution near the horizon may be specified by six parameters, namely the location

of the horizon x = xh, the initial values of the functions X1(xh), H1(xh), coshϕ1(xh) and the slopes

f1 and a1 of f(x) and A1(x), which both much approach zero as x → xh. Note that, taking the

scaling symmetry (6.2) into account, we may set xh to a generic value (say xh = 1). This indicates
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Figure 1: Plot of coshϕ1 as a function of x for a non-BPS soliton bubble with parameters given by

(6.5).

that the solutions may be specified by five physical parameters. However, we find it convenient to

allow xh to remain free in the numerical work.

If we let coshϕ1 = 1, then we turn off the bubble parameter and the solution reduces to that of

a charged AdS black hole. It is worth remarking that the previously-known charged AdS black hole

solution, in which the scalar X1 does not have an independent charge parameter, is not the unique

spherically symmetric black hole. Numerical analysis shows that the generic black hole is, in fact,

characterized by three parameters: the mass, the R-charge and the scalar charge ofX1. The thermal

AdS bubble solution, which also turns on ϕ1, is then characterized by four parameters. (It remains

unclear what the elusive fifth parameter is. Possibly it could be removed by yet another residual

gauge transformation.) Using a numerical approach, we can demonstrate the existence of these

solutions. In particular, we present an AdS bubble solution that can be viewed as a deformation

of the previously-known AdS black hole. In this case, the initial conditions are specified by the

following:

H0 = 1 +
q

xh
, X0 = H

−2
3

0 , f1 =
1 + q + 2x+ h

xh
, a21 =

q(xh + 1)

(xh + q)3
. (6.6)

For coshϕ1 = 1, this leads precisely to the previously-known charged AdS black hole. We can turn

on ϕ1 and numerical analysis indicates that the solution exists provided that 1 ≤ coshϕ1 < H0. In

Fig. 2 we present a plot of coshϕ1 for q = 10, xh = 1 and coshϕ0
1 = 5.

6.2 BPS bubbles

In [14], defining equations for multi-charge BPS bubbles were obtained in D = 4, 5, 6 and 7 AdS

gauged supergravities. Those equations in general do not admit analytical solutions. Here we shall

report that numerical analysis indicates that smooth bubble solutions exist in all of these cases.

In all of these solutions, the coordinate x (which is denoted as R in [14]) runs from 0, where the

metric is Minkowskian, to asymptotic AdS spacetime at x = ∞.
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Figure 2: Plot of coshϕ1 as a function of x for a thermal bubble. We have taken q = 10, xh = 1

and coshϕ0
1 = 5.

In D = 5, the functions Hi describing the general three-charge BPS bubble solutions satisfy the

nonlinear equation (2.13), which may be rewritten as

ξ′′i = −g2 (ξ
′2
i − 1)ξjξk
x2 + ξ1ξ2ξ3

, (6.7)

where i 6= j 6= k, and where we have defined ξi ≡ xHi. The one-charge case is given by ξ2 = ξ3 = x,

while the two-charge case is given by ξ3 = x.

Regularity of the BPS bubble demands that the ξi vanish linearly (or equivalently that the

Hi approach constants) as x → 0. Taking this into account, we may develop a Taylor expansion

around x = 0:

ξi ≡ xHi = aix− 1
2ajak(a

2
i − 1)x2 + 1

12ai(a
2
i − 1)(8ajak − a2j − a2k)x

3 +O(x4) . (6.8)

To ensure coshϕi ≥ 1, it is necessary that ai ≥ 1. We verify numerically that smooth solutions

exist for ai ≥ 1, and that the functions Hi behave as the following at asymptotic infinity:

Hi = 1 +
qi
x

− (ci1)
2

2x2
+ · · · . (6.9)

Here qi is the charge parameter for the gauge fields Ai, while c
i
1 is the coefficient of the normalizable

scalar mode according to

ϕi =
ci1 + ci2 log x

x
+ · · · (6.10)

at infinity. In particular, the coefficient ci2 of the non-normalizable mode always vanishes for these

BPS bubbles.

The single-charge case admits an analytic solution of the form given in (2.15). This gives the

exact relation c1 =
√

q1(q1 + 2) highlighted in (2.18). For the generic multi-charge cases, we have

been unable to attain an analytical solution to (6.7). Nevertheless, we may highlight some of the
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general features of any such solution. To do so, it is convenient to perform the transformation

ξi = x+ ηi. The resulting differential equation is then

η′′i = −η′i(η′i + 2)

[

x+ ηi +

(

x

x+ ηj

)(

x

x+ ηk

)]−1

. (6.11)

The main purpose for introducing this transformation is to arrive at the asymptotic forms

ηi ∼ (ai − 1)x+O(x2) as x→ 0, ηi ∼ qi +O
(

1

x

)

as x→ ∞. (6.12)

Note also that it is only the last two terms in (6.11) which couple the equations for the three fields

together.

The AdS vacuum solution is obtained by taking the trivial solution ηi = 0. Hence, for small

deformations of AdS (corresponding to small changes qi ≪ 1), we may expect ηi ≈ 0. More

precisely, by assuming ηi ≪ x, the above equation may be approximated by

η′′i = −η
′
i(η

′
i + 2)

x+ 1
. (6.13)

This approximation also has the feature that the three equations completely decouple in this limit.

Furthermore, this now admits an exact solution consistent with (6.12):

ηi = λi log
1 + x/(1 − λi)

1 + x/(1 + λi)
. (6.14)

Of course, this is only consistent with our assumption ηi ≪ x for λi ≪ 1. In this limit, we obtain

the approximate solution

ηi ≈ 2λ2i
x

1 + x
(λi ≪ 1). (6.15)

Asymptotically, we read off

qi = 2λ2i , ci1 = 2λ (λi ≪ 1), (6.16)

in which case we have demonstrated that

ci1 ∼
√

2qi for qi → 0. (6.17)

Physically, we see that since small deformations decouple from each other, we are allowed to turn

on any independent combination of the three commuting R-charges (q1, q2 and q3) as we wish,

while maintaining the form of the 1/8 BPS bubble.

Larger deformations may be treated numerically. However, it is worth noting the general feature

of (6.11): since η starts with a positive slope (forced by demanding coshϕi ≥ 1), it will remain

positive with η′′i ≤ 0. This means η is monotonic increasing with decreasing slope, and will asymp-

totically approach its value at infinity, ηi(x→ ∞) = qi. The initial slope for ηi, which is ai−1,then

determines how large the final charge qi becomes; larger ai gives larger qi.
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With this in mind, we may approximate (6.11) by noting that the expression x/(x + ηi) is

bounded to lie between 0 and 1. This expression starts at its minimum value 1/ai when x = 0 and

increases towards 1 as x→ ∞. We now consider the denominator in (6.11):

den = x+ ηi +

(

x

x+ ηj

)(

x

x+ ηk

)

. (6.18)

For small x, this is dominated by the initial value of the last term, 1/(ajak), while for large x it is

dominated by the first term. This suggests that we may make the approximation

den ≈ x+ ηi +
1

ajak
, (6.19)

in which case the second-order equation

η′′i = − η′i(η
′
i + 2)

x+ ηi + (ajak)−1
(6.20)

admits a simple solution:

ηi =
√

x2 + 2(qi + (ajak)−1)x+ (ajak)−2 − x− (ajak)
−1. (6.21)

This is, in fact, exact for the one-charge case (where we take, e.g. a2 = a3 = 1 and find η1 =
√

x2 + 2(q1 + 1)x+ 1 − x − 1). Here we have chosen the constants of integration in accordance

with the asymptotic form (6.12). The R-charge is simply qi, and the scalar vevs are

ci1 =
√

qi(qi + 2(ajak)−1). (6.22)

For these expressions to be self-consistent, we examine the behavior of ηi as x→ 0:

ηi ∼ qiajakx+O(x2). (6.23)

Comparing this with (6.12), we see that self-consistency demands

ai = qiajak + 1 (i 6= j 6= k), (6.24)

which may also be expressed as

qi = (ai − 1)a−1
j a−1

k , (6.25)

where the initial slopes must satisfy ai ≥ 1. This condition gives a range for the allowed values of

the charges. For example, with three equal charges, the above reduces to

q = a−1(1− a−1), (6.26)

which has a maximum value qmax = 1/4, which occurs when a = 1/2.

Of course, this restriction (6.25) is entirely contingent on the validity of the approximation

(6.19). Numerically, we find that the above captures the qualitative behavior of the solutions,

but that the actual restrictions on the charges is different. In particular, numerically we find two
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possibilities for the behavior of qi(ai). For one-charge and two equal charge bubbles, qi can be

made arbitrarily large. However, for three equal charge bubbles, the actual limiting value of the

charge is given by

q < qmax, qmax ≈ 0.529. (6.27)

This cutoff on the maximum amount of R-charge that can be supported by a three equal charge

BPS bubble may have implications on the nature of the corresponding 1/8 BPS configuration in

the dual super Yang-Mills theory.

For the multi-charge cases where one of the qi can become large, the scalar vev expression (6.22)

applies, and we find

ci1
qi

→







√

2/qi for q → 0;

1 for q → ∞.
(6.28)

Even in regions where qi cannot become arbitrarily large, the dominant behavior is for ci1 to

approach qi from above as qi increases. Similar results can also be obtained for D = 4, 6 and 7

dimensions, given by

D = 4 : Hi = ai − 1
6(a

2
i − 1)ajakaℓ x

2 + 1
3ai(a

2
i − 1)a2ja

2
ka

2
ℓ x

3 +O(x4) .

D = 6 : H1 = ai − 9
10 (a

2
i − 1)ajx

2

3 +O(x
4

3 ) ,

D = 7 : Hi = ai − 2
3(a

2
i − 1)aj x

1

2 + 1
6ai(a

2
i − 1)(4a2j − 1)x+O(x

3

2 ) , (6.29)

where the i, j, k indices are not equal when they arise within the same equation. Using this as

initial data near x = 0, we can find numerically that smooth BPS bubbles exist in all cases for

ai ≥ 1.

7 Conclusions

We have investigated the non-BPS analog of ‘bubbling AdS’ geometries in type IIB supergrav-

ity, corresponding to a special class of non-zero temperature LLM configurations. From the five-

dimensional point of view, these are solutions of the STU model coupled to three additional scalars

ϕi. These solutions can be considered as the bubbling generalizations of non-extremal AdS black

holes, and have regular horizons. However, unlike the previously-known AdS black holes, the

bubbling AdS geometries do not have a straightforward generalization away from the BPS limit.

Thus, we have had to rely on various approximation methods, as well as numerical analysis. In

particular, we have considered the linearized ϕi equations on the background of the non-extremal

R-charged AdS black hole. The backreaction onto the other fields occurs at higher order. Even

at the linearized level, the equations do not have closed-form solutions. Specifically, the linearized

ϕi equations can be mapped to the Heun equation, for which the general two-point connection

problem remains unsolved.

Nevertheless, we can find approximate solutions to the Heun equation by matching solutions

in two overlapping regions. This method is reliable for a certain regime provided that there is a
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large overlap. In our case, the relevant regime is T ≫ µi, where T and µi are the temperature

and chemical potentials of the dual thermal Yang-Mills theory, respectively. If, in addition to

this, we consider a high temperature limit for which T ≫ 1, then the ϕi equations can be solved

without matching. Corrections of the order µi/T and 1/T can then be considered via a perturbation

approach. The complete ϕi solution is fixed by the boundary conditions at the horizon. Namely,

we require that ϕi is regular at the horizon. For the most part, we focus on the case of one charge

and a single additional scalar field ϕ1.

The behavior of ϕ1 at asymptotic infinity can be related to perturbations away from the UV

superconformal fixed point of the Yang-Mills theory. In particular, the normalizable mode of ϕ1

goes as 1/r2 and corresponds to the dimension two chiral primary operator TrZ2
1 getting a vev.

The non-normalizable mode goes as (log r)/r2 and corresponds to a massive deformation of the

field theory Lagrangian of the form TrZ2
1 . We have normalized ϕ1 such that the vev is fixed at

the value it has for the BPS AdS bubble. Then we discuss how the thermal mass depends on the

physical parameters of the field theory, namely the temperature, chemical potential and R-charge.

We have considered both the grand canonical ensemble and the canonical ensemble. The fact that

the TrZ2
1 term is only present in the Lagrangian for thermal field theories might indicate that there

is a phase transition at zero temperature. Moreover, we find the thermal mass vanishes at the point

of the Hawking-Page transition.

We have gone beyond the linear order in ϕ1 to take into account the backreaction on the other

fields, In particular, we have used this to obtain the asymptotic form of the corrections in order to

read off the mass of the bubbling AdS black hole. It would be interesting to further consider the

backreaction, or else use numerical analysis, to investigate the thermodynamics of bubbling AdS

black holes. In particular, it would be interesting to find out how the local thermodynamic stability

constraints, as well as the Hawking-Page transition, may be altered due to ϕi.

It would be useful to understand more concretely whether these bubbling AdS black hole solu-

tions have any relation to the hyperstar solutions considered in [12]. There, it was suggested that

the hyperstar background did not have a horizon because the coarse-graining was taken over only

the half-BPS sector of the full Hilbert space of type IIB theory. Perhaps these bubbling AdS black

holes are the result of including the non-BPS sector in the coarse-graining.

Finally, we have shown via numerical analysis that there are actually two types of non-BPS AdS

bubbles. Thermal AdS bubbles, of which the bubbling AdS black holes are a subset, have an event

horizon surrounding a singularity. On the other hand, solitonic AdS bubbles are completely regular

and horizon-free. The latter type of non-BPS bubbles can be obtained from the BPS bubbles by

smooth deformations, and therefore correspond to non-supersymmetric deformations of the dual

field theory. It would be interesting to investigate this further.
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