
Durham Research Online

Deposited in DRO:

17 May 2017

Version of attached �le:

Published Version

Peer-review status of attached �le:

Peer-reviewed

Citation for published item:

Strigari, L.E. and Frenk, C.S. and White, S.D.M. (2017) 'Dynamical models for the Sculptor dwarf spheroidal
in a CDM universe.', Astrophysical journal., 838 (2). p. 123.

Further information on publisher's website:

https://doi.org/10.3847/1538-4357/aa5c8e

Publisher's copyright statement:

c© 2017. The American Astronomical Society. All rights reserved.

Additional information:

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for
personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in DRO

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full DRO policy for further details.

Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom
Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971

http://dro.dur.ac.uk

http://www.dur.ac.uk
https://doi.org/10.3847/1538-4357/aa5c8e
http://dro.dur.ac.uk/21816/
http://dro.dur.ac.uk/policies/usepolicy.pdf
http://dro.dur.ac.uk


Dynamical Models for the Sculptor Dwarf Spheroidal in a ΛCDM Universe

Louis E. Strigari1, Carlos S. Frenk2, and Simon D. M. White3
1 Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A & M University, College Station, TX 77843, USA

2 Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK
3Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, D-85740 Garching bei München, Germany
Received 2016 November 10; revised 2017 January 22; accepted 2017 January 24; published 2017 March 31

Abstract

The Sculptor dwarf spheroidal galaxy appears to contain two distinct stellar populations of differing metallicity.
Several authors have argued that in order for these two populations to reside in the same gravitational potential, the
dark matter halo must have a core similar to that observed in the stellar count profile. This would exclude cuspy
Navarro–Frenk–White (NFW) density profiles of the kind predicted for halos and subhalos by dark matter-only
simulations of the ΛCDM cosmological model. We present a new theoretical framework to analyze observations of
stellar count and velocity in a self-consistent manner based on separable models, f E J g J h E, =( ) ( ) ( ), for the
distribution function of an equilibrium spherical system. We use this machinery to analyze available photometric
and kinematic data for the two stellar populations in Sculptor. We find, contrary to some previous claims, that the
data are consistent with populations in equilibrium within an NFW dark matter potential with structural parameters
in the range expected in ΛCDM; we find no statistical preference for a potential with a core. Our models allow a
maximum circular velocity for Sculptor between 20 and 35 km s−1. We discuss why some previous authors came
to a different conclusion.

Key words: galaxies: kinematics and dynamics

1. Introduction

ΛCDM has emerged as the standard model of cosmic
structure largely because of its successful predictions for the
temperature anisotropies of the cosmic microwave background
radiation, the power spectrum of the large-scale distribution of
galaxies, the structure of the main body of the halos of galaxies
and galaxy clusters, as inferred from weak gravitational
lensing, and the broad features of the galaxy formation process
(see Frenk & White 2012 for a review). However, the adequacy
of the model remains controversial in the well observed inner
regions of galaxies where the distribution of dark matter is
strongly nonlinear (e.g., Walker & Peñarrubia 2011; Newman
et al. 2013). Disagreements on these scales are particularly
interesting because they could provide clues to the nature of the
dark matter (e.g., Lovell et al. 2012; Peter et al. 2013; Shao
et al. 2013; Zavala et al. 2013).

A robust prediction of ΛCDM is that, in the absence of
baryonic effects, the spherically averaged radial density profiles
of dark matter halos of all masses should approximately follow
a universal form, the Navarro–Frenk–White (NFW) profile
(Navarro et al. 1996, 1997), which diverges as r 1- toward the
center. In galactic halos, baryonic effects associated with the
formation of the galaxy could, in principle, flatten this central
cusp through explosive events produced by supernovae, as
proposed by Navarro et al. (1996) and seen more recently in a
number of simulations of galaxy formation (see Pontzen &
Governato 2014 for a review). Energetic arguments suggest
that such processes—if they do indeed occur in nature—should
be ineffective in dwarf galaxies of stellar mass below 106 or
107M, which would then retain their NFW dark matter cusps
(Peñarrubia et al. 2012). Although difficult to study because of
their intrinsic faintness, the dwarf galaxies with the lowest mass
are thus promising sites for testing ΛCDM in the strongly
nonlinear regime and learning about the identity of the dark
matter and the effects of baryonic processes.

The most direct way to study the central density structure of
a gas-poor galaxy is by fitting an equilibrium stellar dynamical
model to a large sample of stars that have high-resolution
spectroscopy and good photometry. In recent years, data of the
required quality have been obtained for a number of nearby
dwarf spheroidal galaxies (dSphs) around the Milky Way
(Simon & Geha 2007; Walker et al. 2009) and M31(Tollerud
et al. 2012). Simple dynamical analyses based on spherical
symmetry and the Jeans equations suffer from degeneracies
that preclude an unambiguous determination of the dark matter
potential (Strigari 2013; Walker 2013). Thus, data for several
dSphs have been shown to be equally consistent with flat
central profiles (cores) (Gilmore et al. 2007) or with NFW
cusps(Strigari et al. 2010; Jardel & Gebhardt 2013). In some
cases, one can hope to break degeneracies by considering
higher moments of the line-of-sight velocity distribution
(Richardson & Fairbairn 2014).
Sculptor, a dSph of stellar mass 107~ M located ∼80kpc

from the Galactic Center (Lianou & Cole 2013), is a
particularly interesting case. Modeling using a variety of
techniques, but treating the available stellar data as sampled
from a single stellar population and assuming spherical
symmetry, has shown that the kinematic data are consistent
with an NFW halo potential, but also allow a core(Strigari
et al. 2010; Breddels et al. 2013; Richardson & Fairbairn 2014).
These studies suggest a dark matter halo mass of 109 M for
Sculptor though with rather large uncertainties(Łokas 2009;
Strigari et al. 2010; Breddels et al. 2013).
The data for Sculptor are of sufficient quality that two

distinct stellar populations of differing metallicity can be
identified: a centrally concentrated metal-rich (MR) population
and a more extended metal-poor (MP) population(Battaglia
et al. 2008, B08). The presence of two populations makes it
possible to carry out more refined dynamical analyses. Thus,
applying the Jeans equations to each population separately,
B08 showed that their data could be fit by a model in which the
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orbital distribution of each population is isotropic near the
center and becomes radially biased in the outer regions. They
found a best fit for a model potential with a core, but also found
the data to be consistent with an NFW potential. Using Michie–
King models for the stellar distribution function, Amorisco &
Evans (2012) also found that while an NFW model provides an
acceptable 2c fit to the data, models with a core seem to be
preferred. On the other hand, applying the projected virial
theorem, Agnello & Evans (2012) concluded that it is not
possible to fit both the MRand the MPpopulations with a
single NFW model.

An independent dynamical analysis of Sculptor using a
larger sample of stars was carried out byWalker & Peñarrubia
(2011, WP11). Rather than simply separating the observed stars
into two populations according to their estimated metallicity,
they devised a statistical method that fits the full data
set simultaneously with two Plummer-profile populations of
constant velocity dispersion and differing metallicity, together
with a contaminating Galactic component. They then inserted
the half-light radius and velocity dispersion estimated for each
population into the mass estimator proposed by Walker et al.
(2009). This allowed them to infer the mass contained within
each half-light radius and thus the slope of the density profile
between the two half-light radii. They concluded that the slope
is flatter than predicted for an NFW profile at the 99%
confidence level (c.l.).

In this study we carry out a new analysis of Sculptor in an
attempt to clarify the conflicting claims in the literature. The
specific statistical question we ask is whether the kinematic and
photometric data for this galaxy exclude potentials of the type
predicted by ΛCDM. We re-examine both the B08 and WP11
data sets from a different theoretical perspective and discuss
how they compare. There are both similarities and differences
between our analysis and those that have been undertaken
previously. Like B08 and Amorisco & Evans (2012), but
unlike Agnello & Evans (2012) and WP11, we exploit the full
information contained within the line-of-sight velocity disper-
sion and photometry profiles. Like Amorisco & Evans (2012),
but unlike B08, we build models based on distribution
functions. Our analysis differs from that of Amorisco & Evans
(2012) primarily in that we use a more flexible form for the
distribution function, which allows a wider range of energy
distributions and velocity anisotropies for the stars.

We conclude, in agreement with B08 and Amorisco & Evans
(2012), that NFW potentials are not excluded by the B08 data.
For our more general models the constraints used by Agnello &
Evans (2012) are also no longer sufficient to exclude NFW
potentials. Indeed, the implied peak circular velocity of the
Sculptor dark matter halo and its concentration are consistent
with the values predicted from ΛCDM simulations. While an
NFW potential gives an acceptable fit to the Sculptor data, our
analysis cannot exclude potentials with a core; indeed, we find
below that a potential of the form proposed by Burkert (1995)
provides a slightly (though not significantly) better fit to the
B08 data than an NFW profile. We find similar conclusions
when we apply our analysis directly to the WP11 data. Thus,
our discrepant conclusions reflect differences in analysis
methods rather than in observational data sets.

This paper is organized as follows. In Section 2 we introduce
our model for the stellar distribution function. In Section 3 we
briefly discuss our methodology for fitting the theoretical
model to the data. In Section 4 we present our results, and in

Section 5 we compare them to previous studies, highlighting
discrepancies where they exist.

2. Models

In this section we introduce the dynamical models we use to
interpret the observed stellar populations in Sculptor. We
assume each population to be spherically symmetric and to be
in dynamical equilibrium within a static and spherically
symmetric potential well. These are strong assumptions and
should be treated as approximations. The observed stellar
distribution is clearly noncircular on the sky, and Sculptor
orbits within the potential of the Milky Way, so the effective
potential seen by its stars is time-varying. Some aspects of the
effects of flattened potentials on the dynamical analysis of
dSph data are considered by Laporte et al. (2013).

2.1. Dark Matter

For the total mass density profile of the system we adopt two
standard models. First, an NFW model,
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model is determined by just two scale parameters—the
characteristic radius rs and the characteristic density sr . Note
that we define the potential to be zero at the center of the system
and to be sF at infinity. NFW models are often parameterized
in terms of the maximum circular velocity, Vmax, and the radius,
rmax, at which this is attained. These are related to rs and sF
through
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Our second model is the cored profile proposed by Burkert
(1995),
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As for the NFW case, we define the potential to be zero at the
center of the system. With these definitions, as r  ¥ we have

4bpF  F . For the Burkert model, the maximum of the
circular velocity curve and the radius at which it is attained
are related to the other parameters through

r r V3.245 ; 0.602 . 6b bmax max= = F ( )
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2.2. Stellar Distribution Function

We define the specific energy and specific angular
momentum of a star as E v r22= + F( ) and J vr sin q= ,
respectively, where v is the modulus of the velocity vector and
θ is the angle between this vector and the star’s position vector
relative to the center of the system. Given a static and
spherically symmetric gravitational potential well, any positive-
definite function f E J,( ) corresponds to the phase-space
distribution function of some stable, dynamically mixed, and
spherically symmetric equilibrium for a stellar population. In
this paper we will consider only models in which the
dependence on E and J is separable,

f E J g J h E, , 7=( ) ( ) ( ) ( )

with both g(J) and h(E) positive-definite and given by simple
parametric forms. It would be easy to build more general,
nonseparable models as a superposition of several individually
separable components, but we will not pursue this further here.

The stellar density profile and the radial and tangential stellar
velocity dispersion profiles of such models are given by
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where v r2lim lim= F - F[ ( )] (we explicitly define limF
below in Equation (18)). Note that with the definition we are
using here, the total velocity dispersion at radius r is

r r r2 . 11r ttot
2 2 2s s s= +( ) ( ) ( ) ( )

Equations (8)–(10) can be combined to give the projected
stellar density profile and stellar line-of-sight velocity disper-
sion profile at a fixed projected distance R:
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where r z R2 2 2= + .
A particularly interesting and simple case occurs when the

angular momentum dependence is taken to be a power law,

g J J , 14b=( ) ( )

where b 2> - is a constant. For this assumption, the integrals
over v and θ separate in Equations (8)–(10), and the ratio of the
two velocity dispersions is independent both of r and of h(E).
The lower limit on b is required for the θ integrals to converge
for small θ. For this choice of g(J) the orbital anisotropy of the
stellar population model, usually parameterized as

r r r1 , 15t r
2 2b s s= -( ) ( ) ( ) ( )

is independent of radius and depends on b alone, b 2b = - .
For an isotropic velocity distribution, b 0b = = . For near-
radial orbits β is close to unity and b approaches its lower limit
of −2, while for near-circular orbits b is very large and positive
while β is very large and negative.

In this paper we will investigate models where the orbital
anisotropy varies with radius, and we therefore need a more
general form for g(J). We consider the function
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which interpolates between a power law of index b0 at J Jb
and a power law of index b1 at J Jb . The parameter α

controls the rapidity of the transition between the two regimes
at the characteristic scale, Jβ, which corresponds to a radius of
order r J 1 2= Fb b ¥ , where sF = F¥ for NFW and

4bpF = F¥ for the Burkert case. In addition, α is required
to be positive for b b1 0> and to be negative in the
opposite case.
For simplicity when comparing with the Sculptor data, we

prefer in this paper to use a function with fewer free parameters
and to assume that the velocity distribution is isotropic near the
center, as seems plausible on general theoretical grounds. We
therefore set 1a =∣ ∣ and b 00 = , resulting in the simpler
expression

g J
J J b

J J b
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The upper and lower cases here correspond to radially and
tangentially biased orbits for large angular momenta, respec-
tively. Both produce isotropy for small angular momenta and
so also at small radii. This simplified model retains only two
parameters—Jβ, which sets the extent of the inner isotropic
region, and b, which determines the velocity anisotropy for
large angular momenta.
For the energy distribution, h(E), we have found the

following form to be sufficiently general for our purposes:
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where the restriction lim F F¥ is required because orbits with
E  F¥ are unbound. The normalization, N, in this expression
sets the amplitude of the stellar density profile, while the
exponent a determines the behavior at small energies, hence as
r 0 . Comparison with the simple scale-free distribution
functions explored by White (1981) shows that at sufficiently
small radii (where F F¥ , E Ec , and J Jb )
Equations (2), (16), and (18) imply a power-law stellar density
profile, rr µ g- , where

a b a b
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When a b2 30+ < - , the density in the innermost regions is
dominated by stars on orbits that are confined to those regions,
while in the contrary case it is dominated by stars on orbits that
extend well beyond them. Our model for h(E) thus produces a
central cusp in the stellar density profile when Equation (19)
gives 0g > .

3
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At somewhat larger energies, E Ec> (hence at radii larger
than rc, where r Ec cF =( ) ) the density profile steepens to a new
slope, g¢, which is given by Equation (19) with a replaced by
a+d where we assume d 0< . The rapidity of the transition
around rc is controlled by the parameter q 0> . The final factor
in Equation (18) allows for truncation of the stellar density at a
radius rlim defined by r lim limF = F( ) , which is directly
analogous to the “tidal radius” in the classic King models for
globular clusters (King 1966). The shape of this cutoff in the
profile can be adjusted using the final parameter, e. A special
case arises when limF = F¥. Then r lim  ¥ and the density
profile at large radii becomes a power law of slope

e b3 2 21g = + - (or e b3 2 2g = + - for the
simpler case of Equation (17)).

As a final remark, we note that when limF < F¥, the
constraint E lim< F forces stellar velocities and hence stellar
angular momenta to be small as r r .lim The anisotropy in
this region is thus determined by the form of g(J) for small
rather than large J, with the result that b 20b = - rather than

b 21- (i.e., the distribution becomes isotropic again as
r r lim if the simpler parameterization of Equation (17) is
used). This complication does not arise when limF = F¥, in
which case β is indeed equal to b 21- at large radii ( b 2- for
the simpler model of Equation (17)).

3. Data Analysis

In this section we briefly detail the Bayesian analysis
methods that we will apply to the data sets described in the
following sections.

For a single stellar population, the model of Equations (7),
(17), and (18) is a function of nine parameters,
N a d q E e b J, , , , , , , ,c limF b{ }. Including the two parameters
that describe the NFW potential, Equation (2), a fit to an
individual stellar population has 11 free parameters, whereas a
joint fit to both populations (each of which has independent
distribution function parameters) has a total of 20 free
parameters.

We use our theoretical model to fit to the binned velocity
dispersion data. We define the quantities
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where the subscript p denotes a specific population, either MR
or MP. Additionally np I, is the number of data points in the
photometric profile of a population, and np,s the number of data
points in the velocity dispersion profile of a population, both of
which are measured at projected distance Rı. The associated
measurement uncertainties are p ı,d and p ı, . Using these
quantities we define a full likelihood function of the form

2 ln const, 22total
2 c- = + ( )

where

. 23I Itotal
2

,MR
2

,MR
2

,MP
2

,MP
2c c c c c= + + +s s ( )

The constant in Equation (22) depends on the uncertainties of
the photometric and velocity dispersion measurements but does
not depend on the distribution function model.

We employ a Markov chain Monte Carlo (MCMC)
algorithm that is an adapted version of the CosmoMC
code(Lewis & Bridle 2002). From this algorithm we can
extract two important quantities: (i) the maximum value of the
likelihood, ,max which corresponds to a minimum value of

total
2c and to the “best fit” set of parameters from a given chain,

and (ii) the posterior probability distribution for each model
parameter. For scans of a large and complex theoretical
parameter space, MCMC algorithms are not necessarily
effective at finding the true value of ,max so it is important
to determine whether the estimated value of max corresponds
to a set of theoretical parameters that provide a statistically
good fit to the data. We thus run several chains from different
starting points in the theoretical parameter space to ensure that
the chains find similar values of max and are thus not burning
in at local maxima in the likelihood. For all models below, we
find that our maximum likelihood values are robust.
The fact that we are marginalizing over up to 20 parameters

also means that we must test that the posterior probability
distributions for the model parameters have appropriately
converged. We test for convergence of the posterior probability
distributions in a standard manner by estimating the variance of
a parameter as a weighted sum of the within-chain and
between-chain variances (Gelman & Rubin 1992).

4. Results

B08 obtained spectroscopy for 470 stars in Sculptor, from
which they measured line-of-sight velocities and metallicities
derived from the calcium triplet lines. They identified two
distinct populations with different metallicities, spatial dis-
tributions, and kinematics: an MR population, defined to have
Fe H 1.5> -[ ] , and an MP population, defined to have
Fe H 1.7< -[ ] . This clean separation and the large radial
coverage of the two populations make this an attractive sample
to analyze using our distribution function model described in
Section 2. We fit our distribution function model to the
photometric and velocity dispersion profiles reported by B08
for each population by performing a likelihood analysis using
the MCMC technique, as described in Section 3. Note that the
photometric profiles are obtained from a different and much
larger population of stars than the velocity dispersion profiles.
Since the stellar distribution of Sculptor is elongated on the

sky, B08 give the surface brightness profile of each population
as a function of an “elliptical radius,” which corresponds to the
projected semimajor axis determined from the photometry
(Tolstoy et al. 2004). To account for this in the context of our
assumption of spherical symmetry, we take as the radial
coordinate the geometric mean of the major and minor axes,
which we expect to correspond best to the count profile for
circular annuli. We also perform the same scaling on the B08
kinematic data. The ellipticity of Sculptor is 0.3 = (Irwin &
Hatzidimitriou 1995).
We fit the full stellar density and velocity dispersion profiles

of the two metallicity populations to the 20-parameter model
defined in Section 2, which here assumes an NFW potential,
and in which the velocity anisotropy can vary with radius but is
assumed to be isotropic at the center. From the MCMC chains
we obtain both the maximum likelihood value and the posterior
probability distribution for each model parameter. The surface
density and velocity dispersion profiles for a model that has
near-maximal likelihood are shown in Figure 1. The count
profiles of both stellar populations exhibit well defined cores.

4
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The MPpopulation in this particular model is isotropic
everywhere, while the MRpopulation is isotropic in the center,
has a sharp transition at a scale radius of ∼0.2kpc to 0.94b 
over the range 0.2–1 kpc, and then transitions smoothly back to

0b = at larger radii in order to satisfy the boundary conditions
at rlim. The parameters of this model are listed in Table 1.

Figure 1 shows that the data for the two metallicity
populations in Sculptor are very well fit by our model, and
this impression is confirmed by the values of 2c for the fits:
21.6 for the MPphotometry (left; 23 data points), 8.8 for the
MRphotometry (middle; 15 data points), 8.3 for the MPkine-
matics (upper right; 8 data points), and 1.5 for the MR
kinematics (lower right; 5 data points). Our analysis therefore
demonstrates that the data are consistent with both populations
residing in a single NFW potential.

Consistency with a potential of the NFW form, however, does
not guarantee that the data are consistent with the predictions of
the ΛCDMmodel. For this to be the case, the parameters of the
NFW density profile must lie within the theoretically predicted
range. The comparison is most easily carried out in V r,max max( )
space, where the maximum circular velocity of the dark matter
halo, Vmax, and the radius, rmax, at which it is attained are defined
in Equation (3) and are readily measured for subhalos in high-
resolution ΛCDMN-body simulations of galactic halos.

The region in the V r,max max( ) plane in which 90% of the
subhalos in the “Aquarius” ΛCDM simulations of Springel
et al. (2008) lie is shown by the thin lines in Figure 2. The thick
lines show the 68% and 90% contours of two-dimensional joint
posterior probability distributions of Vmax and rmax derived
from our fits to the B08 data. These contours overlap well with
the theoretically predicted region, demonstrating that the
kinematics of the populations in Sculptor are fully consistent
with expectations in a ΛCDM universe. The range of Vmax

allowed by our fits, ∼(20–35) km s−1, is significantly wider
than the range estimated in some previous analyses(Boylan-
Kolchin et al. 2011).
To compare the quality of our NFW fits to that obtained for a

cored potential, Figure 3 presents results from a joint analysis
of the two populations using a Burkert profile. In this case, we
also have 20 parameters, but we replace r,s sr( ) by r,b br( ). The
best-fit Vmax–rmax values in this figure are almost identical to
those found in the NFW case, but the constraints are
considerably tighter, reflecting the much more sharply defined
characteristic scale of the cored potential. The total 2c for the
best fit is 39.3 in the Burkert case, which is slightly but not
significantly smaller than the value of 40.2 that we found for
the best fitting NFW potential.
Given the similar quality of the fits for the two profiles, we

consider the more general question of whether we can expect
to distinguish them with kinematic and photometric data sets
similar to those of B08. We start from distribution function
parameters resembling those of our best Burkert fit to B08,
and generate mock photometric and kinematic data sets with
similar size and uncertainties to B08. We consider several
values for the Burkert scale radius and scale density, chosen
to give dispersion and count profiles similar to those
observed. The largest value for the scale radius we consider
is r 1 kpcb = . We fit these mock data to Burkert and NFW
models, comparing the best-fit 2c values in the two cases.
Even for r 1 kpcb = , we find NFW models with very similar

2c to the best fitting Burkert model. The latter always has
parameters very close to the input values, showing our
procedure to be approximately unbiased. This test implies that
the B08 data samples are not large enough to be able to
distinguish between Burkert and NFW potentials on the basis
of count and velocity dispersion profiles. We will return to the

Figure 1. Best-fit model of Equations (17) and (18) to the data of Battaglia et al. (2008) for the metal-poor and metal-rich populations in Sculptor, assuming an NFW
potential. The left and middle panels show the surface brightness profiles of the MP and MR populations, respectively; the right panel shows the velocity dispersion
profile of the MP population (blue line at the top) and the MRpopulation (red line at the bottom).

Table 1
An Example Distribution Function Model that Provides a Good Fit to the Sculptor Two-population Data

Population a d e Ec limF rlim b q Jβ Vmax rmax

MR 2.0 −5.3 2.5 0.16 0.45 1.5 −9.0 6.9 8.6 10 2´ - 21 1.5
MP 2.4 −7.9 1.1 0.17 0.60 3.0 0 8.2 L L L

Note. Ec and limF are in units of sF , and for the MR population Jβ is in units of r ;s sF Vmax is in km s−1 and rmax in kpc.
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issue of distinguishing between these two models below when
discussing the WP11 data.

5. Comparison to Previous Results

Several previous studies have constrained the potential in
Sculptor by splitting its stars into high- and low-metallicity

populations and requiring each separately to be in equilibrium.
In this section we compare our results with these earlier
analyses.

5.1. Battaglia et al. (2008)

In the first dynamical analysis to separate the two populations in
Sculptor, B08 applied the Jeans equation to each population
individually, fitting the star count profiles to standard forms
(Plummer for the metal-rich, Sérsic for the metal-poor) and then
predicting the velocity dispersion profiles for various assumed
potentials and anisotropy profiles. They found that their data were
consistent with both NFW and core potentials, but required radially
biased orbits for both populations.
Our results largely corroborate the conclusions reached

by B08. Our use of a flexible stellar distribution function
removes the need to assume standard forms for the count and
anisotropy profiles and ensures that the resulting model is
physically realisable. As a result, our best-fit model has a
smaller 2c than the model of B08. Like B08, we find that
radially biased orbits are required at large radii for the metal-
rich (although not for the metal-poor) population.

5.2. Amorisco & Evans (2012)

Of the previous studies, that of Amorisco & Evans (2012) is
most similar to our own. They also assumed separable
distribution functions for the two populations and fit predicted
counts and velocity dispersion profiles to the data of B08. They
considered both NFW potentials and pseudo-isothermal
potentials with a core. Although the form they assumed for
their distribution functions is considerably less flexible than our
own, the resulting best fit for an NFW potential is similar to
ours, shown in Figure 1, and has a 2c value that is clearly
insufficient to exclude the model. The best fit for the core case
also looks similar (compare their Figures 9 and 10). Never-
theless, its 2c value is sufficiently smaller that a likelihood ratio
test clearly prefers it over an NFW potential.
As Amorisco & Evans (2012) note, the preference for a core

potential over a cuspy one is driven in their analysis by its
lower prediction for the innermost points of the count profiles,
and to a lesser extent by a somewhat larger predicted difference
in velocity dispersion between the two populations. With our
more flexible distribution function model, the count discre-
pancy at small radii disappears for the NFW potential and the
difference in velocity dispersions between the MP and MR
populations is slightly enhanced (see Figure 1), leading to a fit
of very similar quality to that found by Amorisco & Evans
(2012) for their core potential. A final difference with
Amorisco & Evans (2012) is that their NFW fit required a
halo concentration that is lower than expected in ΛCDM. With
our distribution function model, this problem has disappeared.

5.3. Agnello & Evans (2012)

Agnello & Evans (2012) applied the projected virial theorem
separately to the two populations identified by B08, assuming
that they reside in an NFW potential and have Plummer-law
surface brightness profiles. With these assumptions, the
observational data for each population imply a relation between
Vmax and rmax for its halo. They then show that the regions of
the (Vmax, rmax) plane allowed at 2σ by the MRandMPdata
do not overlap. They therefore conclude that no single NFW
potential can accommodate both populations.

Figure 2. 68% and 90% c.l. regions in the Vmax–rmax plane for fits of the model
of Equations (17) and (18) to the two metallicity populations in Sculptor (thick
lines). A cross indicates the model of Table 1. Thin lines delineate the region
that contains 90% of the subhalos from the Aquarius ΛCDM simulations of
galactic halos (Springel et al. 2008).

Figure 3. 68% and 90% confidence contours in the Vmax–rmax plane for
independent fits to the two metallicity populations in Sculptor assuming a
Burkert profile. The red contours are obtained by fitting the 11-parameter
model of Equations (17) and (18) to theB08MRdata, while the blue contours
are obtained from fitting the same 11-parameter model to theB08MPdata.
These contour sets can be compared with Figure 4 for the NFW profile. The
black contours are the results of a joint fit to theMRandMPdata as shown for
the NFW profile in Figure 2.
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B08 noted that the metal-poor population in Sculptor is
poorly fit by a Plummer model. By applying our procedures to
the MRandMPdata separately, we can perform an analysis
analogous to that of Agnello & Evans (2012). In Figure 4 we
show the two-dimensional joint posterior probability distribu-
tions of Vmax( , rmax). We indeed reproduce an offset similar to
that seen by Agnello & Evans (2012). However, the greater
freedom afforded by our relaxation of the Plummer-law
assumption, allowing instead any profile consistent with the
observed counts, widens the confidence regions so that they are
no longer exclusive. The two distributions are marginally
consistent with each other for V 15max ~ –25 km s−1 and
r 1 kpcmax ~ , which, not surprisingly, is the region also picked
out by our single-potential model. We note that even though
Figure 4 appears to indicate that the individual population fits
are only marginally consistent with the same potential
parameters, the 2c of the joint fit presented in the discussion
of Figure 1 indicates that the two-population NFW model does
indeed provide an excellent fit to the data. As before, the
potential parameters are consistent with the ΛCDM predictions
of Springel et al. (2008).

5.4. Walker & Peñarrubia (2011)

WP11 analyzed a sample of 1497 stars with spectroscopy,
from which they derive line-of-sight velocities and an Mg
index that they take as a proxy for metallicity. In practice, we
are able to work with the subsample of 1307 stars for which the
public online data set lists a membership probability value.
WP11 use MCMC techniques to map the parameter distribu-
tions for a three-component model of these data. The metal-rich
and metal-poor populations are each represented by a circularly
symmetric Plummer profile, with Gaussian velocity and
metallicity distributions independent of radius (note that these
assumptions are not consistent with the B08 data), while the
contaminating Galactic foreground is taken to be spatially
uniform with broader distributions of velocity and metallicity.

They insert the half-light radius and velocity dispersion
estimated by this analysis for each population into the mass
estimator proposed by Walker et al. (2009):

M M R R G2.5 , 24h h hlos
2s= = á ñ( ) ( )

which gives the mass, Mh, inside a sphere with radius equal to
the projected half-light radius, Rh, in terms of the measured
velocity dispersion, los

2s , and Rh.
4 The derived increase in

estimated mass between the two values of Rh appears too large
to be consistent with an NFW profile and is close to that
expected for a core of constant density. WP11 conclude that
NFW is excluded at the 99% c.l.
This conclusion is incompatible with our conclusion derived

above, based on the B08 data. In Figure 5 we show the
results of WP11 in the (Rh, Mh) plane, together with lines
corresponding to M rµ g , with 2g = and 3g = . Clearly,
these results agree much better with the dotted line representing
a core than with the dashed line representing an NFW cusp.
Our MCMC analysis based on the distribution function allows
us to reconstruct Rh and Mh for all models consistent with the
B08 data and residing in an NFW potential. Solid red and blue
contours in Figure 5 give the 68% and 90% confidence regions
for the metal-rich and metal-poor populations respectively. As
expected, the center points of these contours define a slightly
shallower slope than the dashed line since 2g = only in the
innermost regions of an NFW profile. The half-light radii found
for the MRand MPpopulations in the two analyses agree well
but there is an offset in the preferred Mh values, although the
contours do overlap. Hence, fitting our models to the B08 data
has resulted in lower velocity dispersions for the

Figure 4. 68% and 90% c.l. contours in the Vmax–rmax plane for independent
fits to the two metallicity populations in Sculptor. The red contours are
obtained from fitting the 11-parameter model of Equations (17) and (18) to
theB08MRdata, while the blue contours are obtained from fitting it to
theB08MPdata. Crosses in each case indicate the best-fit model.

Figure 5. Constraints from WP11 and from the models of this paper in the
(R M,h h) plane. The two straight lines and the contours traced by open circles
are taken directly from Figure 10 of WP11 and indicate M rµ a with 2, 3a =
and the 50% c.l. regions given by their MCMC analysis for the parameters of
the two underlying populations. For comparison, the solid contours show 68%
and 90% c.l. regions from our own MCMC chains constrained by the B08 data
and assuming both populations to be in equilibrium within a single NFW
potential.

4 This estimator is constructed to be only weakly sensitive to the details of the
density and velocity anisotropy profiles (see also Wolf et al. 2010).
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MPpopulation and higher velocity dispersions for the MR one
than estimated by WP11 from their own data.

To determine whether the WP11 data favor a cored or
cusped halo when analyzed using our procedures, we construct
binned photometric and velocity dispersion profiles directly
from the WP11 data. Figure 6 shows the metallicity as a
function of both radius and velocity for the 1160 stars in the
tables published by WP11 that have high-quality data and are
assigned a membership probability 99> %. The W ¢ distribution
of the member stars is unimodal, with no obvious indication of
two distinct populations. To separate the stars by metallicity
into two populations with maximally distinct spatial distribu-
tions, we split them at a given value of W ¢ in the left panel of
Figure 6, and then perform a Kolmogorov–Smirnov (KS) test
to determine the significance of the difference in radial
distribution between the two populations. The value of W ¢
that minimizes the KS p-value then defines the MR and MP
populations with the most significantly distinct spatial
distributions.

Following this procedure, we find a minimum p-value of
W1.4 10 at 0.357´ ¢ =- . This cut gives 763 MP members

with W 0.35¢ , and 397MRmembers with W 0.35¢ > . The
left panel of Figure 6 shows that, with this cut, the fraction of
MR stars at large radii is noticeably smaller than for the MP
stars. Including all 1307 WP11 stars with a membership
probability, regardless of its value, increases the p-value by
nearly two orders of magnitude, but still gives an optimal
separation at about the same W′ value, and with a similar ratio
of MR to MP stars. For comparison, in their statistical
separation, WP11 found that 53% of the Sculptor member
stars belong to the underlying “true”MR population, and the
remainder to the MP population.

The velocity dispersion and the photometry profiles of the
two populations are shown in Figure 8. In comparison to the
B08 data in Figure 1, the WP11 data cover a narrower range of
radii but have higher signal-to-noise ratio for the velocity
dispersion measurements. For all four profiles, we have
corrected the raw numbers using the radial selection function
as suggested in WP11. We find the half-light radii for
the MR andMP populations to be 0.18 and 0.22 kpc, respec-
tively. TheMR half-light radius is in good agreement with that
derived by WP11, while the MP half-light radius is signifi-
cantly smaller than the value of 0.30 kpc derived by WP11. The
velocity dispersion profile of the MR component derived from

the WP11 data does not show a steep decline at large radii of
the kind seen in the B08 data.
An MCMC analysis of the WP11 data results in allowed

regions in the Vmax–rmax parameter space shown in Figure 7 for
both Burkert and NFW profiles. For the NFW profile, the
derived values of Vmax are in good agreement with the values
derived from the B08 data, while for the Burkert profile
the central Vmax is larger, peaking at ∼30 km s−1. The
corresponding best fitting photometry and velocity dispersion
profiles are shown in Figure 8. The 2c for the best fitting
profiles for both joint and individual fits are given in Table 2.
Note that in both cases we are fitting 34 data points to a 20-
parameter model. So the 2c values we find indicate fully
acceptable fits and show a slight preference for NFW over
Burkert.
We thus conclude that when analyzed with the methods of

this paper the WP11 data do not favor a core over a cusp. This
result is in disagreement with that of WP11, who find NFW
profiles to be ruled out with 99%> confidence. At this point we
are unable to determine why our conclusions differ from those

Figure 6. Reduced Mg index,W ¢, vs. radius (left) and velocity (right) for stars considered to be probable Sculptor members by WP11. The histogram plotted vertically
(center) shows the distribution of W ¢ for the sample as a whole. The red dashed line defines the cut that maximally separates the radial distributions of metal-rich and
metal-poor populations.

Figure 7. 68% and 90% c.l. contours in the Vmax–rmax plane for joint fits to the
two metallicity populations in Sculptor using the WP11 data split according to
the cut in Figure 6. Solid contours are for an NFW potential and dashed are for
a Burkert one.
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of WP11. Our dynamical analysis is based on self-consistent
distribution function models with considerable flexibility,
which can be exploited to obtain good simultaneous fits to
the photometric and kinematic data. In contrast, WP11 use
simple, Plummer-law models with constant velocity dispersion,
which are inconsistent in detail with the Sculptor data.
However, since these are used only to estimate the half-light
radii and total velocity dispersions of the two populations, it is
unclear whether this inconsistency can significantly bias their
results. A second difference is that our likelihood analysis
explicitly separates Sculptor stars into two populations based
on the directly measured quantity W′ and rejects ab initio the
small number of stars that are not high-probability members,
whereas WP11 treat W′ as an indicator of the relative
probability of belonging to one or other of two assumed
underlying populations, and also treat background rejection
probabilistically. However, at the present time it is unclear
whether these differences can account for the difference in our
conclusions. Figure 8 does appear to demonstrate that our
model can reproduce the WP11 data very well in an NFW
potential.

6. Conclusions

In this paper we have presented a new framework based on
separable distribution functions to study stellar populations in
equilibrium within a spherical dark matter potential well. We
use it to study the two metallicity populations in the Sculptor
dwarf spheroidal galaxy, and in particular to explore the
controversial question of whether their properties exclude a
cuspy profile of the kind expected in the ΛCDM cosmology.

The family of distribution functions we consider gives
substantially more freedom than the models assumed in
previous studies, and as a result it leads to a weakening of
the constraints implied by the observations. Although, in the
absence of any prior on the shape of the inner potential, we
concur with previous studies that the Sculptor data prefer a
shallower profile than NFW, we find this preference to be far
too weak to exclude the cosmological prediction. Indeed, in a

2c sense, we are able to find equilibrium models that are a good
fit to the data sets of both B08 and WP11 within an NFW
potential with parameters that are fully consistent with ΛCDM.
Since the inner structure of dwarf galaxies appears at present

as one of the few significant challenges to the standard
cosmological paradigm, it is unsurprising that considerable
attention has been focused on measuring this structure
precisely. Unfortunately, the problem is underconstrained by
currently available data, given the considerable freedom
inherent in the equations of stellar dynamics. The analysis in
this paper, while comparatively general, still makes at least two
major assumptions that are known to be incorrect: dwarf
spheroidal galaxies are clearly not spherically symmetric and
their orbits within the Milky Way’s potential ensure that most
cannot be static systems in equilibrium. Further theoretical
progress will require these shortcomings to be addressed. (See
Zhu et al. (2016) for a recent study of Sculptor that relaxes the
assumption that the stellar distribution is spherical, while
continuing to assume a spherical potential.) Further observa-
tional progress may be achieved by reducing the statistical and
measurement uncertainties, and in the more distant future by
increasing the phase-space coverage through measurement of
internal proper motions.
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Figure 8. Results of joint fits to the MP (left) and MR (middle) photometry and kinematics (right), using the WP binned data. In each panel, the solid line assumes an
NFW potential, and the dashed line a Burkert one.

Table 2
Total 2c Values for the Best Fit to the Photometry

and Kinematic Profiles using the WP11 Data

NFW Burkert

Photometry Dispersion Photometry Dispersion

MR 5.5 3.9 6.0 2.8
MP 5.0 1.2 5.5 3.2
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