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Abstract 

The properties of two-, three-, four-, five-, and six-jet events with multijet masses > 600 

GeV/c’ are compared with QCD predictions. The shapes of the multijet-mass and leading- 

jet-angular distributions are approximately independent of jet multiplicity and are well IL,- 

scribed by the NJETS matrix element calculation and the HERWIG parton shower lloutr 

Carlo predictions. The observed jet transverse momentum distributions for three- and four- 

jet events discriminate between the matrix element and parton shower predictions, the Ilata 

favoring the matrix element calculation. 
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In this paper we describe the properties of multijrt events with multijet masses m > 600 
GeV/r,” rrrorded in proton-antiproton collisions at a center-of-mass energy of 1.8 TeV. The 

data were recorded by the CDF experiment at the Fermilab Tevatron collider over the period 

1992 - 1994, and correspond to an integrated luminosity of 35 pb-‘. 

Within the framework of perturbativr QCD, multijet events are expected to arise from 

hard parton-parton scattering. The outgoing scattered partons manifest themselves as 

hadronic jets. The lowest order QCD diagrams predict two jets in the fmal state. Higher 

order corrections ran give rise to events with more than two jets. A comparison of the 

properties of multijet events with QCD predictions provides a test of the higher-order QCD 

corrections, and enables a searc,h for new phenomena associated with the presence of many 

hard partons in the final state. 

In a previous analysis [l] based on a 4 pb-’ data sample we showed that a good first 

description of multijet events at high mass was provided by the HERWIG [2] QCD parton 

shower Monte Carlo program interfaced to a full simulation of the CDF detector response. 

The HERWIG calculation includes initial- and final-state gluon radiation, color cohrrrnw. 

hadronization, and an underlying event accompanying the hard scattering. In the present 

paper we compare a much larger data sample with predictions from (i) the HERWIG Vontr 

Carlo program, and (ii) the NJETS [3] complete leading order (LO) QCD matrix element 

Monte Carlo program for 2 --i N scattering. Note that the NJETS calculation has been 

used to provide predictions for topologies with up to five final-state jets. This comparison 

enables us to further test the QCD predictions, and see if the data discriminate between the 

complete LO matrix element predictions and the parton-shower Monte Carlo approximation. 

A full description of the CDF detector can be found in ref. [4]. The analysis described in 

this paper exploits the CDF calorimeters, which cover the pseudorapidity region ]q] < 4.2. 

where /n/ E -ln(tan6’/2). The calorimeters are constructed in a tower geometry in T) 

- S$I (azimuthal angle) space. The towers are 0.1 units wide in 7. The tower widths in 

4 are 15” in the central region and 5O at larger 11 (approximately ]nj > 1.2). .Jets are 

reconstructed using an algorithm that forms clusters from localized energy depositions in 

the calorimeter towers. Calorimeter towers are associated with a jet if their separation from 

the jet axis in (TI,~)-space AR = (A$ + A@)‘12 < &. For the analysis described iu 

this paper the clustering cone radius was chosen to be & = 0.7. With this & a plot of t,he 

separation between all jets observed in the data sample described below reveals that to a good 

approximation clusters with separations AR < 0.8 are always merged by the jet algorithm 
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into a single jet, and clusters with separations LM > 1.0 are never merged. Thus, the 
effective minimum observable separation between jets lR~r)v = 0.9 5 0.1. .Jet energies are 

corrected for calorimeter nonliuearitiesl energy lost in uninstrumented regions and outside 

of the clustering cone, aud energy gained from the underlying event. The jet corrections 

typically increase jet energies by 25% for jets with transverse energy ET = E sin 6’ > GO 

GeV, where @ is the angle between the jet axis and the beam direction. The jet corrections 

are larger for lower ET jets, and typically increase jet energies by about 30% (40%) for jets 

with ET = 40 GeV (20 GeV). After correction, jet energies are measured with a precision 

CTE/E of approximately 0.1 and multijet masses calculated from the jet four-vectors are 

measured with a precision u,,,/m of approximately 0.1. The systematic uncertainty ou the 

jet energy scale is 5%. Full details of the CDF jet algorithm, jet corrections, and jet resolution 

functions can be found in ref. [5]. 

The data were recorded using a trigger which required C ET > 300 GeV, where the sum 

is over all uncorrected jets with transverse energy ET > 10 GeV, and the calculation was 

done assuming an event vertex at the center of the detector. In the subsequent analysis the 

C ET was recalculated using the reconstructed vertex position and corrected jet energies, and 

summing over all jets with corrected ET > 20 GeV. The resulting C ET distribution peaks 

at 400 GeV. At lower CET the trigger requirements are no longer fully efficient. Events 

were retained with C ET > 420 GeV. To reject backgrounds from cosmic ray interactions, 

beam halo, and detector malfunctions, the events were required to have (i) total energy lrss 

than 2000 GeV, (ii) a primary vertex reconstructed within 60 cm of the detector center, 

(iii) no significant energy deposited in the hadron calorimeters out-of-time with the protou- 

antiproton collision, and (iv) missing-& (&- ) significance [l] S G +??T /(JET )I/2 < 6. 

These requirements select 9980 multijet events, of which 4072 events have multijet masses 

m > 600 GeV/c’. Finally we have applied cuts on the values of multijet mass and leading- 

jet scattering angle. To motivate these mass and angular requirements consider a two-jet 

event in which the two-jet system is at rest in the laboratory frame. The C ET > 420 GeV 

requirement places a mass dependent restriction on the two-jet center-of-mass scattering 

angle 0’ such that 1 cos 6’*] < (1 - (420/m)‘)“‘, where m is in units of GeV/c”. To obtain 

an acceptance which is independent of mass above a minimum mass ma we must restrict 

ourselves to the angular region ( cos 0’1 < cos 0~ax, and choose a value for cos @MM less than 

(1 - (420/mo)‘)‘/*. In the present analysis we have chosen ma = 600 GeV/c*, cos Bz~..M = 

2/3, and applied the angular cut to the leading (highest ET) jet in the multijet rest-frame. 
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This selects 1874 events. of which 345 have 2 jets with ET > 20 GeV, 612 have 3 jets, 554 

have 4 jets, 250 have 5 jets, 88 have 6 jets, 21 have 7 jets. 4 have 8 jets, and there are no 

events with more than 8 jets. 

The multijet mass distributions for events with 1 cos 6’*l < 2/3 are shown in Fig. 1 for 2-j&. 

3-jet, 4-j&, j-jet, and 6-jet events, with no requirement on the minimum multijet masses. 

The mass distributions extend up to masses of about 1 TeV/c’. As expected, the mass 

distributions exhibit a turn-over near to 600 GeV/c”. At lower masses the C ET requirement 

is more restrictive than the angular cut, and results in a decreasing angular acceptance with 

decreasing multijet mass. To check that the shapes of the mass distributions are not sensitive 

to the uncertainty on the jet energy scale, we have increased and decreased the jet energy 

scale by ilu and repeated the analysis. The resulting small changes in the shapes of the 

multijet mass distributions are smaller than or comparable to the statistical uncertainties 

on the measurements. The HERWIG Monte Carlo predictions are in reasonable agreement 

with all of the multijet mass distributions. Note that the HERWIG predictions include a 

full simulation of the CDF detector response, and use the CTEQlM structure functions [6] 

with the scale given by Q’ = stu/2(s2 + u2 + t”), where s, t, and u are the Mandelstam 

variables. This Q’ is approximately equal to the square of the average ET of the outgoing 

scattered partons. The predictions from the LO QCD matrix element Monte Carlo program 

NJETS are also shown in Fig. 1 for all but the 6-jet distribution. On each distribution there 

are 8 NdETS curves corresponding to the structure function, Q* scale, and nR~1.v choices 

summarized in Table 1. The NJETS calculation does not include a full simulation of the 

CDF detector, but does include a gaussian jet energy resolution function with UE/E = 0.1. 

The resulting predictions give reasonable descriptions of the shapes of the measured mass 

distributions. Furthermore, compared to the statistical precision of the measurements, the 

NJETS predictions for the shapes of the mass distributions are not sensitive to uncertainties 

associated with the choice of structure function, Q’ scale, or ARMIN. 

Above the turn-on, all of the multijet mass distributions have similar shapes. This is 

seen clearly in Fig. 2 which shows the 3-jet/2-jet, 4jet/2-jet, 5-jet/2-jet, and 6-jet/z-jet 

ratios as a function of multijet mass. These ratios are almost independent of mass. Wit,hin 

the substantial theoretical uncertainties which are associated predominantly with the choice 

of Q’-scale, both the parton shower Monte Carlo predictions and the complete LO QCD 

matrix element predictions give a good description of the mass dependent multijet ratios. 

and therefore give a reasonable description of the observed jet multiplicity distribution. 
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The ability of the parton shower Monte Carlo predictions to describe the multijet-mass 

and jet-multiplicity distributions suggests that 2 -+ 2 scattering plus gluon radiation provides 

a good approximate description of the production of events with several jets in the final state. 

In this picture we would expect the leading-jet angular distributions to be similar to the two- 

jet angular distribution, even when there are many final-state jets. This is indeed seen to be 

the case in Fig. 3 which shows that for events with m > 600 GeV/c’, the leading-jet angular 

distributions are similar to the Rutherford scattering form independent of jet multiplicity, 

and are well described by both the HERWIG and NJETS QCD predictions. 

At some level, we would expect to see differences between the HERWIG and NJETS 

predictions which reflect the presence of additional LO QCD diagrams in the N.JETS ma- 

trix element calculation. Differences are indeed observed in the inclusive jet transverse- 

momentum (pr) distributions, shown in Fig. 4 for the different multijet topologies. The 

2.jet, 3-jet, 4jet, and 5-jet inclusive-jet pi distributions exhibit a peak in the region 260 

- 300 GeV/c, reflecting the effect of the C ET requirement on events in which most of the 

C ET is associated with two hard jets in the linal state. The observed jet pr distributions 

are well described by the NJETS predictions. Within the statistical precision of the data, 

the HERWIG predictions also give a reasonable description of the 2-jet, 5-jet, and 6-jet dis- 

tributions. However for 3-jet and 4jet events the HERWIG predictions overestimate the jet 

rate at intermediate pi between the twejet dominance peak at high-m and the soft gluon 

enhancement at low-yr. 

In summary, the properties of multijet events with multijet mass m > 600 GeV/c2 and up 

to six jets in the final state have been compared with QCD predictions. The jet multiplicity 

distribution is well described by both a complete LO matrix element calculation (NJETS) 

and a parton shower Monte Carlo calculation (HERWIG). The shapes of the multijet-mass 

and leading-jet angular distributions are approximately independent of jet multiplicity, and 

are well described by both HERWIG and NJETS. This suggests that 2 + 2 scattering plus 

gluon radiation provides a good approximate description of the production of events with 

several jets in the final state. However, the observed inclusive-jet pr distributions for 3-jet 

and 4jet events do discriminate between the NJETS and HERWIG predictions. The parton- 

shower Monte Carlo program predicts too many jets at intermediate transverse momenta. 
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Sttuctwc &’ - Scale ARMI,V 
Function 
KMRSD- <pT >2 0.8 
KMRSD- iI-‘T >2 0.9 
KMRSD- 11L2 0.9 
KMRSD- < pT 9 1.0 
KMRSSO <pT 2’ 0.9 
KMRSDO <PT >’ 0.9 
CTEQlM i PT >’ 0.9 

CTEQlMS < PT >2 0.9 

Table 1: Parameter choices used for the 8 N-JETS calculations. The structure function 
choices are described in refs. [6] and [7]. 
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Figure 1: Exclusive multijet mass distributions. The data (solid points) are compared with 
HERWIG predictions (histogram) and NJETS predictions for the eight parameter choices 
listed in Table 1 (curves). 

11 



5. 1 3-Jet / 21 Jet 

5. L 4-Jet / 2iJet 

E 1 S-Jet /2=Jet 

1. 
c 

6-Jet / 2-Jet 

600 700 800 900 

m (GeV/c’) 
1000 

Figure 2: Exclusive Multijet mass distributions divided by the corresponding two-jet dis- 
tribution. The data (solid points) are compared with HERWIG predictions (triangles) and 
NJETS predictions (bands). The inner band shows the variation of the NJETS prediction 
with choice of structure function listed in Table 1, and a Q2 scale of < pi >‘. The outer 
band shows the variation of the predictions with choice of Q*-scale listed in Table 1. The 
variation with AR,+,MIN is negligible. 
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Figure 3: Leading-jet angular distributions. The data (solid points) are compared with 
HERWIG predictions (open points) and NJETS predictions (histograms). The curves show 
the Rutherford scattering form (1 - cos ~9*)-~. 
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Figure 4: Jet transverse momentum distributions.The data (solid points) are compared with 
HERWIG predictions (histogram) and NJETS predictions for the eight parameter choices 
listed in Table 1 (curves). 
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