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Abstract

The Green-Schwarz superstring action in a general type ITA or IIB supergravity background is
derived up to fourth order in the Grassmann-odd coordinates 6. This is done by solving the
superspace Bianchi identities order by order in #, to quadratic order for all superfields and to
quartic order for the supervielbeins. For a large class of backgrounds it is possible to fix the
kappa symmetry in such a way that the action actually terminates at the quartic order in 6.
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1 Introduction

In many examples of the AdS/CFT-correspondence [I] string theory on an AdS-background
with RR-flux is conjectured to be dual to a conformal field theory living on the boundary of
AdS. Particularly interesting examples, because of their integrable structure, include:

e Type IIB string theory on AdSs x S° with RR five-form flux [2].
e Type IIA string theory on AdS; x CPP? with RR two- and four-form flux [3] 4, [5].

e Type IIB string theory on AdSs x S3 x T* or AdS3 x S3 x §% x S with RR (and/or NSNS
[6]) three-form flux [7].

e Type IIA string theory on AdSy x S? x T% with RR four-form flux [§].

The last two have both type IIA and type IIB realizations due to T-duality. For the last case
there is also a version with both two- and four-form flux also related by T-duality.

An important tool in studying the AdS/CFT-correspondence is the study of semiclassical strings
in the relevant background. Since the NSR-formulation of the string is not suited for describing
strings in RR backgrounds one typically relies on the Green-Schwarz formulation, which is per-
fectly suited for describing strings in any supergravity background, at least at the semiclassical
level. The backgrounds listed above preserve 32, 24, 16 and 8 supersymmetries respectively and
therefore they have a supercoset realization with the same number of fermionic coordinates. For
all but the last example this means that the Green-Schwarz superstring, which has 16 physical
fermions, can be described by a supercoset sigma model. However, this supercoset sigma model
is in general a (partially) kappa symmetry gauge-fixed version of the full Green-Schwarz string
which has 32 fermions. Due to subtleties with gauge-fixing of kappa symmetry it turns out that
this gauge-fixing is not always compatible with the string configuration one is studying leading
to potential problems with the supercoset formulation in certain cases. Because of this it is
sometimes desirable to work with the full Green-Schwarz superstringE Unfortunately the full
Green-Schwarz supersting action is only known in a few special backgrounds such as AdS5 x S°
[11], where it is the same as the supercoset sigma model, AdSy x CP3 [5], where it was found by
dimensional reduction from eleven dimensions, a certain 7-brane background [12] and plane-wave
backgrounds. However, the action is known to quadratic order in fermions in a general type II
supergravity background [I3], something which has proved to be quite useful for semiclassical
computations.

In this paper we will construct the type II Green-Schwarz superstring action in a general super-
gravity background (with vanishing gravitino and dilatino) to fourth order in the fermions. We
hope that this result will be useful in the study of semiclassical strings in the AdS/CFT-context.
To write the Green-Schwarz action to a given order in 6 one must know the supergeometry, specif-
ically the supervielbeins, to the same order. The supergeometry can be found in a systematic
way order by order in 6 from the superspace constraints and Bianchi identities. We carry out
this construction up to order #* for the Supervielbeinsﬁ It could in principle be pushed to higher
orders but the complexity of the expressions increases quite rapidly. In fact, for a large class of

!The classical integrability has been extended to the full Green-Schwarz action up to quadratic order in fermions
[9, 10] (and in the AdSs-case to all orders for a truncated model).

2 An alternative approach would have been to obtain the result by dimensional reduction from eleven dimensions
where the supergeometry is known up to order 6° [14).



backgrounds including the ones mentioned above, the fourth order action is enough in the sense
that one can find a certain light-cone kappa symmetry gauge fixing such that the action termi-
nates at the quartic order in fermions. This was suggested in [I5] where the kappa symmetry
fixed type IIB superstring action was also constructed for these backgrounds. Here we are able
to write a more compact and geometrical expression for the action which is not gauge-fixed and
covers all possible backgrounds.

The outline of the paper is as follows. In section [2] we give our results for the superstring action
in a general type II supergravity background up to quartic order in . We also review the
argument for why one can find a kappa-gauge such that the action terminates at this order for
a large class of interesting backgrounds. The rest of the paper is devoted to the derivation of
these results. In section [l we outline the systematic process for solving the superspace Bianchi
identities order by order in 0. All superfields of the type II background are computed to order
62, while the supervielbeins (and B field) are computed to order #*. Section E contains our
conclusions.

Appendix [A] gives our spinor and gamma matrix conventions and in appendix [Bl we describe
the constraints and Bianchi identities of type IIB supergravity in superspace. For the type ITA
case the superspace constraints are listed in appendix [Cl The constraints are written in a form
which makes it trivial to go between the ITA and the IIB case.

2 The type II superstring action to order ¢*

The Green-Schwarz superstring action takes the following form in a general type II supergravity
background [16]

1 a
S = —T/Z (5+E E’ny — B), (2.1)

where E* (a = 0,...,9) are the vector supervielbeins of the background pulled back to the
worldsheet and B is the NSNS two-form potential also pulled back to the woldsheet. We are
using 2d form notation and the Hodge-dual '« is defined using an auxiliary worldsheet metric [
We will assume only that the background is a supergravity solution with vanishing fermionic
(gravitino, dilatino) fields. The supervielbeins and B field are superfields and therefore depend
both on the ten bosonic coordinates and also on the 32 fermionic coordinates of the type II
superspace. The action therefore has an expansion in even powers of the fermions © up to
32nd order which follows from the expansion of these superfields. In this section we give the
expansion up to fourth order in ©. The rest of the paper is devoted to deriving the expansion
of the superfields to this order. We will write the expressions for the ITA case and at the end
of the section we explain how to obtain the IIB expressions by simple substitutions in the ITA
expressions.

The zeroth order Lagrangian is obtained by simply setting the fermions to zero in (2.1I),
1
£O = 2 * ey, — B (2.2)

where we denote the purely bosonic vielbeins by e and B(© is the lowest component in the
f-expansion of B.

31t is of course also possible to use the Nambu-Goto form of the action, obtained by integrating out the auxiliary
worldsheet metric, but then the statement about the action truncating at order #* for certain backgrounds does
not apply.



The terms quadratic in fermions take the following form

£® = % %9 OI, DO — %e“ Or,['11DO, (2.3)
where 1 1 1
DO = (d - Zw“brab + gea Hap Ty + gea ST,)0, (2.4)

w® is the spin connection, H = dB is the NSNS three-form field strength and

S = e¢(%F£)F“bF11 + %Féjﬁdrabw) : (2.5)
The derivative operator D is the Killing spinor operator as we will discuss below. The matrix
S encodes the dependence on the dilaton ¢ and RR-fields (recall that we are describing the ITA
case here with RR two- and four-form fields, the IIB case will be discussed below). Here © is a
32-component Majorana spinor, see Appendix [Al for our spinor and gamma-matrix conventions.
The quadratic action was first derived in [I7), [I3] starting from the supermembrane action in
eleven dimensions.

The main result of this paper is the quartic superstring Lagrangian which takes the form

r@ —
1 1 ) )
~ 0TI * DO OT,DO + SOI"DO OT,[11D6 + i % ¢2 OL, MDO — iea Or,1;MDO
‘ a_b ) . a_b Y

To(M 4+ M)ST,0 — Lol'y1 (M + M)ST

+3.64>1<ee@ (M + M)ST,© 3.64669 11(M + M)ST,©

+ 3757 [xefe? OT 20 — ece? OT 2T1,0] (30T 1U4© — 20T ,Ups©)

-3 [xefe? OT PT110 — efe? OT.%0] (30T 41" Ugp© + 20T ,I'11UpgO) . (2.6)

To shorten the expression we have defined two matrices which are quadratic in fermions

Mo = M%+ M% + gHabc (I*T110)%(OI°)5 + gHabc (I**©)* (OIT11)4

+ %(SF@@)@(@P@)é - 11—6(rab@)@(@rasrb)é
1 (8] 1 o o] a o]
&g = 50T 65 — S6ruTe (T11)% +©%(TO)g + (T9TO)* (OT,)5 (2.7)

while M = I'11MT11. In addition two new matrices constructed from the background fields
contracted with gamma-matrices appear at this order

T = VT + o Hane roery; + 75 laST" (2.8)
1 cd 1 1 1 e cd
Uab = Zv[aHb]ch Pll + ZV[QSPI)} - Z(Rabcd + §HaceHbd )P
1 1
+ 55 5T(STy = 55 Hedia (ST + T STy)Ty - (2.9)

These have a simple interpretation as the matrices that appear in the conditions that ensure
supersymmetry of the background. For the background to preserve some supersymmetry the



corresponding supersymmetry parameters should make the variation of the dilatino and the
gravitino field strength vanish. These conditions read

0 = 6xa= eévéxg\gzo = (Te€)q
0 = 6y = Vst lo—o = (Uae)® (2.10)

where we used (C.14) and (C20). Therefore supersymmetries of the background correspond
to spinors annihilated by the matrices T' and Uy, i.e. T and U, are typically proportional
to projection operators (1 — P) where P projects on the supersymmetries of the background.
Normally one talks about the supersymmetry variation of the gravitino itself vanishing which is
equivalent to the Killing spinor equation

De=0. (2.11)

The equation for the vanishing of the supersymmetry variation of the gravitino field strength is
in fact the integrability condition for the Killing spinor equation since

1
De=0 = 0="D%= iebe“ ab€ - (2.12)

We therefore see that the matrices T and U, have nice interpretations in the type II super-
gravity. When the background preserves some supersymmetry or, more generally, has some
superisometries the string action will be invariant under the superisometry transformations

50% = 2%,0), 2™ = K™(z,0). (2.13)

The superfields K™ and =% can be constructed order by order in # in a very similar way to how
the supervielbeins are constructed (see section [J). For a supersymmetry the lowest component
of = is the Killing spinor while the lowest component of K vanishes.

So far all that we have said applies to a type ITA supergravity background, however we have
chosen to write the expressions in such a way that they generalize almost trivially to the type IIB
case. The 32-component Majorana spinor ¢ should be replace by a doublet of 16-component
Majorana-Weyl spinors ©% i = 1, 2. Similarly the gamma-matrices are replaced as follows

Ty = Ya, INTE e (except: T'1T — —O'3T) . (2.14)

Finally, instead of the S defined in (2.5]) one should use the expression appropriate to type I1B

1 be (3 1 bede (5
S = —€¢ (€’YQF£1) + 50'1’}/(1 chEbz + 2.—5!6’}/(1 ¢ eFébzde) . (215)
Here (0!, 02 = —ig,0?) are Pauli matrices and +y, are 16-component gamma-matrices defined in

Appendix[Al With these replacements all the previous expressions apply also for the superstring
in a type IIB supergravity background.

2.1 Exact quartic action for certain backgrounds

As was pointed out in [I5] many supergravity backgrounds of interest belong to a class for
which the fourth order action is actually the complete answer. This class includes for example
the backgrounds listed in the beginning of the introduction. This statement is true provided
that one fixes the kappa-symmetry of the string in the appropriate way. The argument is quite
simple: Suppose it is possible to find light-cone coordinates such that



1. The supergravity fields depend only on the transverse coordinates, i.e. V¢ =0, VL Hype =
0 etc.

2. The background tensor fields have only transverse indices or a pair of +— indices, i.e.
Rygpye =0, Fiarl___% = 0 etc. (the prime denotes transverse directions).

Then, fixing the kappa-symmetry by demanding that I'*© = 0, the only non-zero spinor bilinears
that can appear in the string action are of the form

@Pa/l___a/nF_D@ or @Fa/l___alnf_@ . (216)

Because of the assumptions (1) and (2) above the single '—’ index can only be absorbed by
multiplying with a vielbein e*. This means that in the Lagrangian (2] each spinor bilinear
must be accompanied by a vielbein and since the Lagrangian contains at most two vielbeins the
action must truncate at fourth order in ©.

For these backgrounds the action presented here is therefore the complete answer (at least in this
kappa-gauge). This makes the quartic action particularly interesting. Note that the statements
here apply to the action after fixing kappa symmetry but before fixing the bosonic symmetries.
Fixing also the bosonic symmetries will typically reintroduce higher order 6-terms in the action
through the Virasoro constraints. It is known that this can be avoided in certain cases including
the first three backgrounds listed in the introduction by choosing a special, non-conformal, ” AdS
light-cone” gauge [18] 19]@ Note also that the gauge I'"© = 0 is not automatically compatible
with a certain bosonic gauge-fixing for some string configuration. The consistency of the gauge-
fixing must be checked by hand.

3 Solving the Bianchi identities for the # dependence

In this section we show how to obtain the type II supergeometry systematically as an expansion in
6. All superfields are obtained to order 2 while the supervielbeins and B-field, which are needed
for the string action, are obtained to order #. It is in principle straightforward to push the
calculation to higher orders in 8 but the expressions become quite long and not very illuminating.
We assume that the fermionic fields are zero in the background. It is straightforward to include
them but the expressions become longer and we did not find it particularly useful.

The method we use is essentially the superspace normal coordinate expansion outlined in [20],
applied to the fermionic coordinates 6 (see [14] for an application of this procedure to eleven-
dimensional supergravity). Rescaling the fermions by a parameter ¢

0 — to (3.1)
the #-expansion of a superfield becomes an expansion in ¢, e.g.
E*=EOae L 2p@ayip@ae (3.2)

for the vector supervielbein. One can then write a set of first order (coupled) differential equa-
tions in the variable ¢ for the set of superfields of type II supergravity. To do this one uses the

fact that p
— = 0%W,, 3.3
dt Va (3.3)

T want to thank A. Tseytlin for useful discussions of the gauge-fixing.




where the normal coordinate © is defined as

0% = 01E,* = igE*, iwE*=0, 9% = 0. (3.4)
For the supervielbeins one then finds for example
d
aEA = igdEA + digE* = LyEY A= (a,a) (3.5)

and similarly for the spin connection superfield Q. Using the definition of torsion and curvature
(see the Appendix), together with ([B.4]) one finds

d

B = ipdE" =igT" (3.6)
d 1

aEg = dO%+ipdE* = ([d — ZQabrab]@)ﬂ +igTe (3.7)
d
EQab _ i@Rab, (38)

where T, T are the components of the torsion superfield and R, is the Riemann curvature
superfield. These fields are subject to superspace constraints which are described in the Ap-
pendix (as in the previous section we write the equations appropriate to type ITA and describe
how to obtain the type IIB case by simple substitutions at the end of the section), e.g

T = —%EP“E. (3.9)
Using these constraints, specifically (C.7), (C9), (C.I0) and (CI5) the equations become
d
—FE* = —iET?0O 3.10
p i (3.10)
d o 1 ab a 1 a be a 1 a a
1 1 1 1
- 5@@ Ex + §(F11@)QEF11X + §Eg Ox — 5(1111]57)g OI'nix
1 1
— §(FGX)QEIW@ + §(FGF11X)QEIWF11@ (311)
J : , .
—a = —%Habc or.IE + %@F[“SFI’]E + %E Orwe® — igcorlayd, . (3.12)

The bosonic superfields appearing in these expressions are the NSNS three-form field H . and
the matrix encoding the RR-superfields S, defined in (C.11l) and (B.17) for the type ITA and IIB
case respectively, and the fermionic superfields are the dilatino x and gravitino field strength

T;Z)ab .

Besides the equations for the #-expansion of the supervielbeins ([B.10), (8.11]) and the spin con-
nection (B.I2]) we also need the corresponding equations for the remaining superfields of the
theory which appear in the right-hand-sides of these equations. These are easily obtained, for

example, from (CI6]) we find

d
%Habc = @gngabc = 3i@r[arllwbc} : (313)

6



Similarly, using the equation for the spinor derivative of S (CI1), we find

%Sﬂ_v — $87,0 + 0L (Sx)Y) — (N,0)8 (I Sx)2 + (STPO)E (D)7

+ (ST'T110) 8 (T Tyx)Y — 2i(T40)2 (¢poq)Y) + 2i(TT110) (T1100ea)) . (3.15)

where S = I'11ST'1; which is equal to S in the ITA case while in the IIB case we have S = 63553 =
—5, hence the notation. The corresponding equation for the Riemann tensor superfield, although
it will not be needed to find the superstring action to order 6%, is

d . C 7/ e 7/ ec
g B = —iOTVyy™ + 2 Hopl OTITy Mg + 4 i OT L1y

+ %@r[asrb]zpcd + 10T ST Yy + [(ab)  (cd)]. (3.16)

Finally we need the equations for the fermionic superfields. Using (C.14]) we find for the dilatino

d /) ) ) 1 1
—Xa = = re — H e (D90CT —(IesT — —(r r
7 X 2Va¢( O)a + 21 abe 119)a + 16( STqO)q + 2XQGX + 2( 11X)a OT'11X,
(3.17)
while for the gravitino field strength we find, using (C.20]),
d a 1 cd a 1 a 1 1 e cd\a
%1/1;5, = Zv[aHb}cd (IT110)* + Z(V[aSPb}G)* - Z(Rabcd + §HaceHbd )(re)=
1 cd a 1 cd a 1 a
- 3_2Hcd[a (Srb]r I'10)% — ﬁHcd[a (F Srb}rll(—))i + 3_2(SP[aSFb]@)7
1 1 1, 1 .
- §@g¢abx + §(F11@)g¢abf11x + 5%7, Ox — §(F11¢ab)* CINTPY
1 1
+ §(F(:X)g @chab - §(Fcrll>()g GFcrlﬂ/)ab . (318)

This completes the list of superfields in the theory, but since we are interested in the string
action it is not enough to know the NSNS three-form field strength H, we want to know its
two-form potential B which appears in the string action. Fortunately this is easily obtained
from H by the formula

1
B =B +/ dtigH (3.19)
0

where B is the purely bosonic part of B. Using the superspace constraint on H in (C.H) we
find

1
B =B —i/ dt E°ET.I';,0, (3.20)
0

which is easily evaluated once we know the form of the supervielbeins to a given order. Analogous
formulas can be used to obtain the RR potentials which are needed if one wants to write down
D-brane actions.

In general this set of coupled first order differential equations has to be solved order by order in
t, i.e. 0. In very special cases, namely when the background is maximally supersymmetric they
can however be solved exactly in a rather simple closed form. The reason for this is that for
a maximally supersymmetric background the fermionic superfields x and %4, vanish identically
(at lowest order this follows from the supersymmetry transformations (2.10))), leading to drastic
simplifications of the system of equations. This simplification is related to the fact that in the



maximally supersymmetric case the superspace is in fact a supercoset space. This simplifying
structure has been exploited to construct the full supergeometry of AdSs x S® [11, 21] and
also those of AdSy x S7 and AdS7 x S* [21], 22] in eleven dimensions. When there is less than
maximal supersymmetry a subspace of the superspace can still be a supercoset. This leads to
some simplification but it is not clear if this is enough to find the full supergeometry directly
instead of order by order in 6.

As in the previous section we have written the equations in such a way that the corresponding
type IIB equations can be obtained by trivial substitutions. These are as follows

Ty = Y, Iy — o (except: T11x — —O'3X) (3.21)

and using the appropriate form of S given in (B.I7)).

3.1 Solution to order 62

Here we construct all the superfields of the supergravity background up to order 2 using the
approach laid out in the previous section. We will assume that in the supergravity background
the fermionic fields vanish. This means that the fermionic superfields will have an expansion in
odd powers of 8 and the bosonic ones will have an expansion in even powers of 6.

For the supervielbeins we find, using (311]) and (310,
gWe_ (peye, E@a— %@ram), (3.22)

where D is the Killing spinor derivative operator defined in (24]). The dilatino and gravitino
field strength superfields at linear order in 6 are easily found by evaluating (B.17) and [B.I8) at
# = 0 and one obtains

o, W= o 329
where the matrices 7" and Uy, are defined in (2.8)) and (2.9) and determine the amount of
supersymmetry of the background. Once we know all fermionic superfields at linear order it is
easy to find the bosonic ones at the quadratic order. From (BI4]) and (B.I3]) we find for the
dilaton and NSNS three-form

abc

1 |
0¥ =cere,  HE = er,rnle, (3.24)

while from (B.15]) we get

~ 1~ 1 1 1
S@ By — 55& oTe + 5@@ (STO)Y — 5(rn@)[é (T11570)Y + §(sra@)[é (T, 7O)Y
(P115190)1 (1111, 70)Y — i(10)F (U0)) + i(II'110)F (111 U40)7 (3.25)

N | —

Finally, from ([3.12]) and (B.I6]) we find the spin connection and Riemann curvature tensor
Q@ ab — —iﬂabc Or. ;DO + é@r[asrb]p@ + iec or.u*e — %ec orleutl.o  (3.26)
and
R@ed  _ —%@r[avb] Ue + 1—Z6H 10 OTY T T 1 U0 + éH[ae[c or.I'Uy%e

1 1
+ 16O STy Uelo + g@F[aSF[CUb}d}Q + [(ab) > (cd)] . (3.27)

8



Using (3.20) the B-field follows from the expression for the supervielbeins and we get
B® = %ec or.I',DO . (3.28)

This completes the construction of all superfields to order #?. The corresponding expressions
for the type IIB case are obtained by simple substitutions as explained at the end of section

3.2 Supervielbeins and B-field to order §*

In this section we will derive the supervielbeins and B-field, which are needed to write the
superstring action, to order #*. The other superfields can also be easily obtained but we will
not give them since we do not need them. From (B.10) it follows that the fourth order terms in
the vector supervielbein are given by

EWea = i@raE@) . (3.29)
And from (B3.20) it follows that the B-field at this order is given by
. .
BY = —ZOI"DO OT, 1, DO + iec or.InE®. (3.30)

All that remains then is to determine the cubic terms in the spinor supervielbein. From (B.IT])
on finds

E(3)g _ Q(Z)ab(]:w @) + E(2)a Habc (Pbcrne)g 2 H( )

abc

(I"T'110)*
1 1
+ ﬂE(Q)a (ST,0)2 + ﬂea (SAr,0)* — 6@@E(l)x(l) + E(FH@)Q EDr; M
1 1 1
+ EE(UQ@X(D - 6(]-“11]57(1))g eryx — E(Fax(l)) EWTO + - (F Iy xM)* BT 0.

Using the expressions obtained for the superfields at the linear and quadratic order in 6 we
obtain

1 - 1 -
E®)a (MD@) 5" (M + M)ST,0)* + e (BT, (M + M)S)=

- ﬂe (D)2 O, U0 + iec (I*©)2 I, U}.0 + 1460 (rabrn@)g Or.I'11U,,0

+ ﬂe (F“’Tn@) O I'11Up.0 — 41—86c (Uab@) er. ab@ + 4—86 (Flanbe) @Pc“bFH@

(3.31)

where the matrices M and M are quadratic in © and were defined in (27). Using these expres-
sions in the general expression for the string action (2.I) one obtains the quartic Lagrangian

given in (2.0]).

4 Conclusions

We have constructed the type ITA and type IIB superstring action to quartic order in 6 in a
general supergravity background (with vanishing fermionic fields). To obtain this action we had



to find the supervielbeins of the background to the same order. This can be done straightfor-
wardly by solving the superspace Bianchi identities order by order in 6 although the expressions
quickly become quite involved. We have also argued that knowing the quartic action is especially
interesting since for many backgrounds of interest, for example in the AdS/CFT context, one
can find a kappa-gauge such that the string action actually truncates at this order. We therefore
hope that the action presented here will be useful for semiclassical string computations, espe-
cially in the AdS/CFT context. It would be very interesting to study the integrable structure
of this action, especially for cases where there is no (complete) supercoset description such as
AdSy x 8% x T5. We hope to address this question in the near future.
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Appendices

A Spinor and gamma-matrix conventions

In the type IIA case the Grassmann-odd coordinates are represented as one 32-component
Majorana spinor ©% (o = 1,...,32). While in the type IIB case they are described as a doublet
of 16-component Majorana-Weyl spinors % (. =1,...,16 and i = 1, 2).

For the type IIA case the appropriate gamma-matrices are 32 x 32 matrices satisying the Clifford

algebra

{Faa Fb} = 2Nap , (Al)
where the Minkowski metric has mostly plus signature. Together with I'y; = I'g...9 they form
the D = 11 gamma-matrices I'; (@ =0,...,9,11). The symmetry properties are as follows

Symmetric:  (CTa)ag, (CT)as: (CTp40)a8
Anti-symmetric:  Cog, (CTlg)ass  (CT500)a8 -
Here C' is the charge conjugation matrix used to raise and lower spinor indices. It satisfies

C? = —1. All spinors are defined with an upper index and the charge conjugation matrix will
mostly be left implicit, e.g. I'q5 = (CT*)qp. It can always be restored by looking at the position

of the spinor indices.

The D = 11 gamma-matrices satisfy the basic Fierz identity

Das(Tap)re) = 0. (A.2)
They also satisfy the duality relations
[ar-azya (_1)11 ai--aznbi--bro—2n (T )&
( ) B = (10 — 271)!6 (Lbybro—z,L'11) B
(Falma%“ )g - (_1)n 6@1"'G2n+1b1"'b9—2n (F T )Q
= 7(9 — 2n)' brbg_onl11) B -

In the type IIB case the appropriate gamma-matrices are instead 16 x 16. They can in fact be
taken to be the off-diagonal blocks of the 32 x 32 gamma matrices in the realization

a0 () o _ (05 0 (0 &
(F)ﬁ_<ﬂﬁ 0 ) (Fn)g— 0 _5§ ) Cop = _52 5 . (A3)

These have the symmetry properties

Symmetric: Yap s *yg%Cde Anti-symmetric: *yg%c .
In addition they satisfy the basic Fierz identity
Yag(Ya)ye) =0 (A.4)

and the duality relations

a1-asm\a (_1)11 a1---aznbi--bro—2n o
(P}/ ) = 7(10 — 277,)' (’Yb1---b10—2n) B
n
al---a2n+1) _ (-1) a1--azn+1b1---bg—2n
(7 &% (9 B 271)'8 (Vbl"'bQ—Qn)aB N

Note that 24 ig self-dual.
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B Type IIB supergravity in superspace

Here we briefly review the formulation of type IIB supergravity in superspace [23] and write

the superspace constraints in a useful form for our calculations. The torsion and curvature
two-forms are defined as (A = a, «i)

T4 = dEA + EPQRA (B.1)

R4P = d0aP +Qa°05, (B.2)

in terms of the supervielbeins E4 and spin connection Q42 which satisfies
VO — do% 4 0% ;0% — do% — iQ“b ()™, Q. =08, = —%Qab(%b)ﬁa. (B.3)
The Bianchi identities for the torsion and curvature are
dr* + T8Qp? = EPRpA (B.4)
dRAP + RA“Qc® —Q.°RcP = 0. (B.5)

In addition we have the NSNS three-form field strength H and RR field strengths F(27t1)
(n=0,...,4) with Bianchi identities

dH = 0 (B.6
dFertl) = _pCn=Dp (B.7)

Note that we are not using a notation which makes the SL(2, R)-invariance of type IIB super-
gravity manifest [24, 25]. Instead we have tried to use simple constraints which look almost
identical in the type IIA and type IIB case so as to make it easy to go back and forth between
the two.

It is useful to have the Bianchi identities also in components. For the RR-fields, for example,
they take the form

(2n+1) 2n+1 B p(2n+1) __(@n+12n (2n-1)
V[AlFA2~~A2n+2} + 9 T[AIAQ F\B\Aa---z‘bnw} - 3! H[A1A2A3FA4---A2n+2} . (BS)

B.1 Superspace constraints
Here we organize the superspace constraints according to the mass-dimension at which they

occur. The higher dimension constraints follow from the dimension zero ones (together with
certain conventional choices).

Dimension 0

The curvature vanishes at dimension 0 and the non-zero components of the torsion, NSNS
three-form H and RR-fields are

Taip® = —i0ij7ag (B.9)
Haigje = —i03;(Yc)ag (B.10)

2n—+1 .
e = e S (YaramJag (n=0,...,4), (B.11)

12



where ¢ is the dilaton superfield and

=@ ={ o 0o (B.12)

in terms of the Pauli matrices.

Dimension 1/2

The NSNS three-form H and curvature vanish at dimension 1/2 and the non-zero components
of the torsion and RR-fields are

Toigi ™" Simixaq) + (00°) i (0X) 35y — 15@]7a5(7ax) ;U%'Ygﬁ(’)’affgx)yk, (B.13)
Fgﬁ}ign = —e s} (Yaras X )a » (B.14)

where the dilatino superfield is defined as
Xo = Vait- (B.15)

Dimension 1
The NSNS tree-form H and RR forms F() and F®) are unconstrained at dimension 1. The
non-vanishing components of the torsion are

1

. 1
Taﬁi’w = _gHabc U?j(’)/bc),yﬁ - g(Sji’Ya),yﬁa (B16)

where the dependence on the RR fields is captured by the anti-symmetric (in ai <+ 5j) matrix

4
af 2n+1) b1---bon 8
Sij - Z;) 2n —|— 1 bl bon+1 (’Y v +1)o¢
n=
3 1 5
— _(Fé(l)gij,ya + 3|F¢;§)c) @]'Yabc + 5 5|F¢;§7c)de U,yabcde)a[?. (B.l?)

The modified RR field strengths, denoted with a prime, are defined as

2n+1 2 .
FemD = R i ey e X (n=0,...,4). (B.18)

The constraints on the RR-fields at dimension 1 are then the duality relations

(2n—1 (—1)n+t 10-2n+1
Falanl s = g Sy om ™ ity (n=3,4.5). (B19)

In particular Fézz 40 18 self-dual.

In addition we find at dimension 1 that the spinorial derivative of the dilatino is given by

1 1
“XaiXBj T 5 5

; .
9 Habc @]'YSbc - _(7 S@]'Ya)ozﬁ (B 20)

(J X)az(a X)Bj + vﬁgbéwryaﬁ 4! 16

VaiX]é =
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The last term is easily computed from the definition of S giving

1 3
'YaS'Ya — 4(2F;(1)€,.Ya + iFL/LE)C)O_l,yabC) ) (le)

Finally, the dimension 1 curvature can be easily found from the torsion Bianchi identity,
ViuTse)” + Tias"Tipiey” = Riasa” (B.22)

which gives at dimension 1

1

) )
Razﬂjcd = chaiﬁjd + 2Tc(ai7kTﬁj)7kd = §Hacd 0%735 - 8(’YcSij’Yd)aﬁ + =

3 (’deij’yc)ag . (B.23)

Dimension 3/2

The torsion Bianchi identity (B.22]) gives for the dimension 3/2 curvature

2Ruipega = —i(Vatie)a » (B.24)

where we have introduced the gravitino field strength equal to the dimension 3/2 component of
the torsion
Top™ =gy . (B.25)

This implies that the dimension 3/2 curvature is given by
Raibcd - 5(%1/1&&)04 - Z(’Y[Cw:ﬂb)a . (B26)

From the Bianchi identity for the NSNS three-form H one finds
VaiHape = _3ﬂabﬁjH|aiﬁj\c] - 31’(7[a03¢bc])04i . (B27)

It will be useful to also have an expression for the spinor derivative of the RR-matrix S defined
in (B.I7). This can be derived from the appropriate component of the torsion Bianchi identity

(B:22). For i # j we have

Raping™ = —VpiTuj®” = VaTupi® + Tupi™ Tyjos™
]
8

+

1 1 .
YaV;Si) 5" — gaj?j(Vbc)vé VgiHape + g(%Sz‘j)/s‘s X

, 1 , Lo )
8 (YaSijx)g — g('YaSij'Yb)B'y('YbX])a (i # j, no sum on j). (B.28)

Using the expression for the dimension 3/2 curvature (B.26) and (B.27) and multiplying with
¢ we get

VaiSL = ST 400 (Six)? = (Si7") % (wx?)T + 2i(7° e (thea)® — 2i0;5(7° ) e (thea)™

co| —

(no sum on j), (B.29)
or equivalently,
VaiSPh = 8y — 6L (5™ + (6% (0% 53)™ — (59%)F s ()™
+ (Ugsfyb)[ﬁjai (037bX)fyk} - Qi(’YCd)ai (63 (wcd)fyk] + 21’(0'3'7“[)041' (53 (0_31/}“[)714:] .
(B.30)
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From the remaining dimension 3/2 torsion and RR-field Bianchi identities one finds that the
gamma-trace of the gravitino field strength is given by

Aot = 2Vt + ZHabc (v x)? (B.31)
while the dilatino satisfies the equation of motion
) ) 1 | .
V'Vax' = 2Va¢ "X = 57 Habe 037X + 2 Six! = 0. (B.32)

Dimension 2

At dimension 2 we would find the bosonic equations of motion but as we will not need these
here we will only derive the expression for the spinorial derivative of the gravitino field strength
which we will need. From the torsion Bianchi identity (B:22]) we get at dimension 2

Rabai™ = VaiTu™ + 2V Thjai™ — 2Taia™ Typp™ + Tt Topai™ - (B.33)
This gives the following equation for the spinorial derivative of the gravitino field strength
Vaiha™ = _iv[aHb}cd ol (v o + E(V[avb}szj)aﬁ + iéij(Rabcd + %HaceHbde) (v*)a”
- %Jngcd[a (Y% Skj)a” + 3—1201?3jﬂcd[a (Y Sy — 3—12(7[a5¢mb15kj)a5
— %5@‘55 YabX — %U?jég YapoX + %Xoci ¢5g + %(U3X)ai (03 ap)?
+ %(vcwawm (7)™ + %('Ycagwab)ai (e ). (B.34)

C Type ITA supergravity in superspace

Here we will give a brief description of type ITA supergravity in superspace [26]. We will use a
form of the superspace constraints which is essentially identical to that used for the IIB case.
This is useful since it lets us easily go back and forth between the type IIA and type IIB case
by just replacing the spinors and gamma matrices appropriately.

The basic definitions of torsion and curvature are the same as in the type IIB case. The spin
connection now satisfies

1 1
VO* = db™ + Q05 = db™ — Zmb(raba)@ Q.2=08, = —Zmb(rab)ﬁg. (C.1)

The only difference in the field content is that we now have even RR-form field strengths satis-
fying

dFn) — _p@n=2)g (n=1,...,5), (C.2)
or in components
(2n) m B (2n) _ 2n(2n—1) (2n—2)
V[AlFA2~~~A2n+1} + 7T[A1A2 F|B|A3~~~A2n+1] = _TH[A1A2A3FA4~~A%+1] ’ (C.3)

We take the scalar field strength F(©) to vanish, i.e. we will not consider the Romans massive
type ITA supergravity.

Since the calculations are essentially identical to those of the IIB case we will just list the
superspace constraints for the ITA case.
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C.1 Superspace constraints
Dimension 0

The non-zero components at dimension 0 are

Tap® = —il%, (C.4)
Hope = —i(Tel'11)ag, (C.5)

2n . n
&a)lmagn,g = te ¢(Pa1---a2n,2(_rll) )% (n =1,... 75) . (CG)

Dimension 1/2

The non-zero components at dimension 1/2 are

Tag? = Oaxp — C1)Xa(T1X)p) -

1 1
§Fg£(rax)l + §(P“F11)%(FGP11X)1, (C.7)
Fal oy = ¢ ?(Caroazn 1 T X)a s (C.8)

where the dilatino superfield is defined as x& = —Cﬁvéqﬁ.

Dimension 1

The non-zero components at dimension 1 are

1

1
Tug? = —gHae (T*Tyy)2p — 5(STa)s. (C.9)
i i
Raped = 5Haca (IT'11)ap — Z(F[csrd})@, (C.10)
where 1 1
2 4
S = F'O 4 ST 4 Lo r. (C.11)

The modified RR field strengths, denoted with a prime, are defined as
(2n) ¢ (2n) i n _
Fo g, = €%Fa) . las, + §Xra1---a2nF11X (n=0,..,5). (C.12)

Note that F(©, the Romans mass parameter, is taken to vanish but £’ is still non-zero. The
constraints on the RR-fields at dimension 1 are then the duality relations

_1\n+1
F/(2n) ( 1) 02n+1"'a10F/(1072n) (n = 3,4, 5) . (013)

a a a a a a
1 2n (] 0 2”)! 1 2n 2n+1 10

The spinorial derivative of the dilatino is given by

1

4]

7

Habc (Fabcrll)ﬁg + 16

(TST,)%, .
(C.14)

1 1 7
Vax? = §Xg><é + 5(1“11X)g(1“11><)é + §Va¢ (T*)24 +
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Dimension 3/2

At dimension 3/2 we have
{ .
Ravea = 5(Totea)a = i(Tctap)a (C.15)
ngabc = 3i(r[arll¢bc])g’ (C16)
where the gravitino field strength is defined as z/)agb = Typ®. We also have

Va8 = 587 x o + 62 (5307 — (T11)Ey (T1aSx)2) + (ST B, (D)
— (D STY B, (0 Tyx)Y — 2i(0N) B, (0eg)Y + 20(TT 1) B, (P11eg)d . (C.17)

As well as .
. 7
To4hyy = 2iVax — 7+ Habe 1 DY (C.18)

and the dilatino equation of motion

PVax = 2Vap X + 5 Habc [Ty x + = SX =0. (C.19)

Dimension 2

The spinorial derivative of the gravitino field strength is given by

1 1 1 1
ngabé = Zv[“ bled (FCdPll)ﬁg + Z(v[asrb})ﬁg - Z(Rabcd + §HaceHbde)(FCd)ﬁg
1 1 1
- 3_2Hcd[a (SFb}FCdfn)ﬁg + 35 Hedla (FCdPllSFb])ﬁg + 3—2(5F[aSFb])£g
1 1
R (Fn) o Yal1X + 5 Xa - (an (T11%ap)?
+ §(Fc¢ab)g( X)2 — —(F T'i1vab)a (TT1x)?. (C.20)
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