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VARIATIONAL MULTISCALE FINITE ELEMENT METHOD FOR FLOWS IN HIGHLY
POROUS MEDIA

O. ILIEV∗, R. LAZAROV†, AND J. WILLEMS‡

Abstract. Wepresent a two-scale finite elementmethod for solving Brinkman’s andDarcy’s equations. These
systems of equations model fluid flows in highly porous and porous media, respectively. The method uses a
recently proposed discontinuous Galerkin FEM for Stokes’ equations byWang and Ye and the concept of subgrid
approximation developed by Arbogast for Darcy’s equations. In order to reduce the “resonance error” and to
ensure convergence to the global fine solution the algorithm is put in the framework of alternating Schwarz
iterations using subdomains around the coarse-grid boundaries. The discussed algorithms are implemented
using the Deal.II finite element library and are tested on a number of model problems.

Key words. numerical upscaling, flow in heterogeneous porous media, Brinkman equations, Darcy’s law,
subgrid approximation, discontinuous Galerkin mixed FEM

AMS subject classifications. 80M40, 80M35, 35J25, 35R05, 76M50

1. Introduction. Flows in porous media appear in many industrial, scientific, engi-
neering, and environmental applications. One common characteristic of these diverse
areas is that porous media are intrinsicly multiscale and typically display heterogeneities
over a wide range of length-scales. Depending on the goals, solving the governing equa-
tions of flows in porous media might be sought at:

(a) A coarse scale (e.g., if only the global pressure drop for a given flow rate is needed,
and no other fine scale details of the solution are important).

(b) A coarse scale enriched with some desirable fine scale details.
(c) The fine scale (if computationally affordable and practically desirable).

At pore level slow flows of incompressible fluids through the connected network of
pores are governed by Stokes’ equations. On a field-level fluid flows in porous media have
beenmodeledmainly bymass conservation equation and by Darcy’s relation between the
macroscopic pressure p and velocity u:

∇p =−μκ−1u,

with κ being the permeability tensor and μ the viscosity.

In naturally occurring materials, e.g. soil or rock, the permeability is small in granite
formations (say 10−15 cm2), medium in oil reservoirs, (say 10−7 cm2 to 10−9 cm2), and
large in highly fractured or in vuggy media (say 10−3 cm2). The latter is characterized by
a high porosity. Aside from these examples from hydrology and geoscience there are also
numerous instances of highly porous man-made materials, which are important for the
engineering practice. These examples include mineral wool with porosity up to 99.7 %
(see Figure 1.1(a)) and industrial foams with porosity up to 95% (see Figure 1.1(b)).

In order to reduce the deviations between themeasurements for flows in highly porous
media, such as the ones justmentioned, and the Darcy-based predictions, Brinkman in [9]
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introduced a new phenomenological relation between the velocity and the pressure gra-
dient (see, also [23, page 94]):

∇p =−μκ−1u +μΔu.

Darcy’s and Brinkman’s relations are then augmented by proper boundary conditions and
by the conservation of mass principle, which in the absence of any mass sources/sinks is
expressed by ∇ ·u = 0. Solving the corresponding equations in heterogeneous media is a
difficult task which up to now is not fully mastered.

(a) Glass wool: macro- andmicrostructures (b) Industrial open foams on a microstructure scale

FIG. 1.1. Highly porous materials on a macro- and micro-scales

Darcy’s andBrinkman’s equationswere introduced as phenomenologicalmacroscopic
equations without direct link to underlyingmicroscopic behavior. Nevertheless, advances
in homogenization theory made it possible to rigorously derive Darcy’s and Brinkman’s
equations from Stokes’ equations. The case of slow viscous fluid flow at pore level, when
slip effects at interfaces between the fluid and solid walls are negligible, was extensively
studied for periodic geometries, see e.g. [1, 19, 30]. As concluded in [1, pp. 266–273], there
are three different limits depending on the size of the periodically arranged obstacles,
which respectively lead to Darcy’s, Brinkman’s, and Stokes’ equations as macroscopic, i.e.,
homogenized, relation. In the case of rather simple geometries one may account for slip
conditions at the interfaces between free and porous media flow regions by application
of Beavers-Joseph-Saffman interface conditions (see e.g. [5, 21, 26]). For viscous flows in
highly heterogeneous (and thus topologically complicated) and highly porous media like
the ones mentioned above Brinkman’s equations are considered to be an adequate model
(cf. [9, 7, 32]).

Brinkman’s system of equations is part of a large class of mathematical problems de-
scribing various types of flows of compressible and incompressible fluids treated by the
fictitious regions method. These include flows in porous media, [25], time dependent in-
compressible viscous flows, [10, 16, 24], transient compressible viscous flows, [33, 36]. The
rigorous analysis of Brinkman’s system from the point of view fictitious domain method
was carried out in [2]. This formulation is used to replace Stokes flow in a complicated
domain (flow around many obstacles, or an obstacle with complicated topology, e.g. Fig-
ure 1.1(b)), with Brinkman’s equations in a simpler domain but with highly varying coeffi-
cients. Note, that in the literature concerning fictitious region (fictitious domain)methods
for flow problems, this system does not have an established name. Although, sometimes
it is called perturbed Stokes’s system, in this paper we will refer to it as Brinkman’s system.

Summing up, there is an abundance of challenging multiscale problems in physics
and engineering modeled by Brinkman’s equations at micro-, meso-, or macro-scale.

Motivated by these practical applications in this paper we consider numerical meth-
ods and solution techniques for porousmedia flows in both Brinkman and Darcy regimes.
More precisely, we have the following specific goals:
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1. Devise a subgrid (variational multiscale) method for Brinkman’s problem allow-
ing to compute a two-scale (enriched coarse scale) solution, case (b) above;

2. Derive a subgrid based two level domaindecompositionmethod for solvingBrinkman’s
problem in highly heterogeneous porous media at fine scale (sometimes called
iterative upscaling), see case (c) above, and also devise such method for Darcy’s
problem as well;

3. Give a unified framework of the subgrid method for both Darcy’s and Brinkman’s
problem.

According to the first goal in this article we derive and study a two-scale finite element
method for Brinkman’s equations using the idea of subgrid (variational multiscale) meth-
ods earlier developed by Arbogast for Darcy’s problem (cf. [3]). The function κmay repre-
sent permeability variations involving different length-scales, see, e.g. Figure 1.1 (see also
[31]). To the best of our knowledge, there is no subgrid method for Brinkman’s problem in
the literature, except the short announcement in our earlier publications (cf. [20, 40]).

The discretization of (2.1) is based on a Discontinuous Galerkin (DG) finite element
method using H(di v)-conforming velocity functions. This method has been proposed
by Wang and Ye (cf. [39]) to approximate Stokes equations. For details concerning this
extension we refer to [40]. A discretization of Brinkman’s equation using H1-conforming
elements that works well in the Darcy limit was proposed in [18]. The reasons for adopting
the discontinuous Galerkin method are:

• optimal orders of convergence in the Stokes and Darcy limiting regimes
• additional crucial properties of themixed finite element spaces (see (2.4)), neces-
sary for the derivation of the numerical subgrid method.

• local mass conservation ensured by piecewise constant pressure functions.
According to the second goal in this article we extend the subgrid approximations

to numerically treat problems without scale separations. More precisely, by enhancing
the method with overlapping subdomains we devise an alternating Schwarz method for
computing the fine grid approximate solution. Similarmultiscale DomainDecomposition
methods for Darcy’s problem have been presented earlier in connection with multiscale
finite element, [13, 14, 15], energy minimizing basis functions, [37, 42, 38], etc. To the
best of our knowledge, there has been no multiscale domain decomposition method for
Brinkman’s equation and/or variational multiscale (VMS) based domain decomposition
method for Darcy’s problem.

The subgrid method for Brinkman’s and for Darcy’s problem is presented in a unified
way, which allows to identify the similarities and the differences of the variational multi-
scale approach for these two problems. Morever, this method works rather well in both
limiting cases, Stokes and Darcy. Recall that the VMS method for Darcy’s problem was
presented earlier, e.g., in [3, 29].

The remainder of this paper is organized as follows: In the next section we provide
a detailed description of the problems under consideration as well as the necessary nota-
tion. Section 3 is devoted to the description of aDGdiscretization of Brinkman’s equations.
In section 4 we outline the derivation of the numerical subgrid algorithm for Brinkman’s
and Darcy’s equations. After that we discuss an extension of this algorithm by alternating
Schwarz iterations. The final section contains numerical experiments corresponding to
the presented algorithms as well as conclusions.

2. Problem Formulation and Notation. We use the standard notation for spaces of
scalar and vector-valued functions defined on a bounded simply connected domain Ω ⊂
Rn (n = 2,3) with polyhedral boundary having the outward unit normal vector n. Fur-
ther, L20(Ω) ⊂ L2(Ω) is the space of square integrable functions with mean value zero and
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H1(Ω)n , H1
0 (Ω)

n , and L2(Ω)n denote the spaces of vector-valued functions with compo-
nents in H1(Ω), H1

0 (Ω), and L2(Ω), respectively. Furthermore,

H(di v ;Ω) := {v ∈ L2(Ω)n : ∇·v ∈ L2(Ω)},

H0(di v ;Ω) := {v ∈ H(di v ;Ω) : v ·n = 0 on ∂Ω},

equipped with the norm

‖v‖H(di v ;Ω) =
(∫

Ω
(|∇ ·v |2+|v |2) d x

) 1
2

,

and where the values at the boundary are assumed in the usual trace sense. We also use

the standard notation ∇u : ∇v :=
n∑

i ,k=1

∂ui

∂xk

∂vi

∂xk
, where u = (u1, . . . ,un) and v = (v1, . . . ,vn).

Further, we denote by Pk the space of polynomials of degree k ∈N0 and, consistently with
our notation, P n

k denotes the set of vector-valued functions having n components in Pk .
As mentioned in the introduction, our work is dedicated to the numerical upscaling

of Brinkman’s and Darcy’s equations:

(Brinkman)

⎧⎨
⎩

−μΔu +∇p +μκ−1u = fm inΩ,
∇·u = 0 inΩ,

u = g on ∂Ω,
(2.1)

(Darcy)

⎧⎨
⎩

∇p +μκ−1u = fm inΩ,
∇·u = 0 inΩ,
u ·n = g on ∂Ω,

(2.2)

where the viscosityμ is assumed to be a positive constant, the permeabilityκ ∈ L∞(Ω) with
∞> κmax ≥ κ ≥ κmi n > 0, fm ∈ L2(Ω)n is a forcing term (m stands for “momentum”), and

the boundary data g ∈ H
1
2 (∂Ω)n and g ∈ H

1
2 (∂Ω) satisfy the compatibility condition∫

∂Ω
g ·n d s = 0 and

∫
∂Ω

g d s = 0,

respectively. With these assumptions problems (2.1) and (2.2) have unique weak solutions
(u,p) in (H1(Ω)n ,L20(Ω)) and (H(di v ;Ω),L20(Ω)), respectively. The smoothness of the ve-
locity solutions of these problems can be studied by the methods developed in [12, 17].
We shall assume that u ∈ (H s(Ω))n with some s > 3

2 , where H s(Ω), for noninteger s is the
standard interpolation space.

To make the derivation of the numerical subgrid upscaling method more transpar-
ent we adopt a semi-discrete setting. More specifically, we assume that all “coarse global”
problems are posed with respect to a (finite dimensional) finite element space, whereas
all “fine local” problems are solved exactly in an infinite dimensional space. In practi-
cal computations, we can only approximate the fine local problems by finite dimensional
ones based on a finite element partition of each coarse-grid cell. Nevertheless, for the
presentation of the method this setting greatly simplifies the exposition.

We need the following notation. Let T be a quasi-uniform partition of Ω into paral-
lelepipeds of size H . Let I denote the set of all edges/faces of T . Also, we define I̊ to be
the set of internal interfaces ofT , i.e., I̊ := {ι ∈I : ι� ∂Ω}, and denotenI̊ := #I̊ . Without
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normal velocity

pressure

FIG. 2.1. Degrees of freedom of the BDM1 finite element space.

loss of generality, we assume that the interfaces in I̊ are numbered, i.e., I̊ = {ιi }i=1...n
I̊
.

Also, we denote the set of all boundary edges/faces byI ∂, i.e.,I ∂ :=I \I̊ . For each ι ∈ I̊

we also define N (ι) to be an O (H)-neighborhood of ι, i.e., N (ι) := {x ∈Ω : dist(x , ι)<CιH }.
HereCι < 1 is a constant independent of H .

Now, let V ∂
H ⊂ H(di v ;Ω) be the Brezzi-Douglas-Marini (BDM1) mixed finite element

spaces of degree 1 with respect to T (cf. e.g. [8, pages 120–130]). On the reference cell
(0,1)n the space is characterized by

P2
1 + span{cur l (x21x2), cur l (x1x22}= P2

1 + span{(x21,−2x1x2), (2x1x2,−x22)}, n = 2

and

P3
1 + span{cur l (0,0,x1x22), cur l (x2x23,0,0), cur l (0,x21x2,0), cur l (P3

0x1x2x3)}, n = 3.

The degrees of freedom of the BDM1 velocity functions are given by
∫
ι v ·nr d s with r ∈

P1(ι) on each edge/face ι of the reference cell. Furthermore, the normal component of v is
restricted to be continuous across cell boundaries.

The pressure spaceWH ⊂ L20(Ω) consists of piecewise constant functions (constant on
each T ∈ T ). We refer to Figure 2.1 for an illustration of the degrees of freedom of the
BDM1 element.

Additionally, we introduce the finite element spaceVH ⊂V ∂
H of functions inV ∂

H whose
normal traces vanish on ∂Ω so that VH ⊂ H0(di v ;Ω).

In the following we treat the Brinkman and the Darcy case simultaneously by using a
unified notation. For each T ∈T and ι ∈ I̊ let

(δV (T ),δW (T ))=
{ (

H1
0 (T )

n ,L20(T )
)
, in the Brinkman case(

H0(di v ;T ),L20(T )
)
, in the Darcy case

(2.3a)

and

(
V τ(ι),W τ(ι)

)= { (
H1
0 (N (ι))n ,L20(N (ι))

)
, in the Brinkman case(

H0(di v ;N (ι)),L20(N (ι))
)
, in the Darcy case.

(2.3b)

Recall, that above we have defined N (ι) to be anO (H)-neighborhood of ι. We also consider
the (direct) sums of these local spaces and set

(δV ,δW ) := ⊕
T∈T

(δV (T ),δW (T ))

and

(V τ,W τ) := ∑
ι∈I̊

(V τ(ι),W τ(ι)),
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where functions in (δV (T ),δW (T )) and (V τ(ι),W τ(ι)) are extended by zero to Ω\T and
Ω\N (ι), respectively. With these definitions it is clear that the introduced function spaces
satisfy the following properties:

∇·δV ⊂ δW and ∇·VH ⊂WH , (2.4a)

δW ⊥WH in the L2-inner-product, (2.4b)

and

VH ∩δV = {0}. (2.4c)

Due to (2.4b) and (2.4c) the following direct sum is well-defined.(
VH ,δ,WH ,δ

)
:= (VH ,WH )⊕ (δV ,δW ) . (2.5)

REMARK 2.1. The composite space VH ,δ differs from H1
0 (Ω)

n and H0(di v ;Ω), respec-
tively, in particular in that the former has only (finitely many) “coarse” degrees of freedom
across coarse interfaces, i.e., ι ∈I .

REMARK 2.2. In practice δV and δW will be finite element spaces of vector and scalar
functions, respectively, that satisfy the properties (2.4). Candidates for such spaces are Brezzi,
Douglas, and Marini (BDMk) or Raviart-Thomas (RTk) spaces of degree k ≥ 1, (see, [8, pages
120–130]). Since the coarse space consists of BDM1 finite elements, from an approximation
point of view, it does not make sense to use finite elements of order higher than one on the
fine mesh. In our implementation we use BDM1 finite elements on the fine mesh, as well.

3. Discontinuous Galerkin Discretization of Brinkman’s Equations. In this section
we present a DG discretization of Brinkman’s equations and – continuing our unified no-
tational setting – a standard discretization of Darcy’s equations. The DG discretization of
Brinkman’s equations is an extension of the one introduced and studied for Stokes’ equa-
tions by Wang and Ye [39]. We consider discretizations of (2.1) and (2.2) using the mixed
finite element space (VH ,WH ). Note, that (VH ,WH ) is conforming for the Darcy but non-
conforming in the Brinkman case. Following well-established approaches for the deriva-
tion and analysis of DG discretizations (cf. e.g. [34, 39]) and using a classical result from [8]
we arrive at the following discretization of (2.1) and (2.2):

Find (uH ,pH ) ∈ (VH ,WH ) such that for all (vH ,qH ) ∈ (VH ,WH ){
a (uH ,vH )+b

(
vH ,pH

) = Fm(vH ),
b

(
uH ,qH

) = Fs(qH ),
(3.1)

where for v ,w ∈VH the bilinear form a (·, ·) is defined as

a (w ,v ) :=
⎧⎨
⎩

aS(w ,v )+aD (w ,v )+aI (w ,v ) Brinkman

aD (w ,v ) Darcy
(3.2)

aS(w ,v ) :=μ
∑

T∈T

∫
T
∇w :∇v d x , aD (w ,v ) :=μ

∫
Ω
κ−1w ·v d x ,

aI (w ,v ) :=μ
∑
ι∈I

∫
ι

( α
H

�w
 · �v
− {{ε(w )}} · �v
− {{ε(v )}} · �w

)

d s,
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b
(
v ,q

)
:=−

∫
Ω
∇·v q d x , (3.3)

Fm(v ) :=

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

f ·v d x +μ
∑
ι∈I ∂

∫
ι

( α
H

�
g
� · �v
− {{ε(v )}} ·�g

�)
d s −a

(
ug ,v

)
Brinkman∫

Ω
f ·v d x −a

(
ug ,v

)
Darcy

and

Fs(q) :=
{ −b

(
ug ,q

)
, Brinkman

−b
(
ug ,q

)
, Darcy.

(3.4)

Above we use the following notation for the average of the normal derivative of the tan-
gential velocity, {{ε(·)}}, and the jump of the tangential component of the velocity, �·
:

{{ε(v )}} :=
{ 1

2

[(∇(v |T + ×n+)
)

n++ (∇(v |T − ×n−))n−]
on ι ∈ I̊ ,(∇(v |T + ×n+)

)
n+ on ι ∈I ∂ (3.5a)

and

�v
 :=
{

v |T + ×n++v |T − ×n− on ι ∈ I̊ ,
v |T + ×n+ on ι ∈I ∂,

(3.5b)

where as usual n denotes the outer unit normal vector. The superscripts + and − refer to
the elements on either side of interface ι.

In the Brinkman case the penalty parameterα ∈R+ should be chosen sufficiently large
(depending on the shape regularity of the underlying triangulation) in order for the bilin-
ear form a (·, ·) to be positive definite.

We need to point out that the relations (3.5a) require a little bitmore smoothness from
the vector-function v in order that the involved traces are well defined. However, in the
subsequent implementation, these are piece-wise polynomial functions from certain fi-
nite element spaces and the traces are well defined.

Also, we assume that ug ∈ H1(Ω) and ug ∈ H(di v : Ω) are extensions of g and g , re-
spectively, for which it holds that

ug , ug ∈V ∂
H . (3.6)

Thus, by the definition of Fs(·) we see that it is sufficient to consider the case of homoge-
neous boundary conditions, which we will henceforth assume.

Analogous to the analysis in [39] we obtain the following convergence result for the
Brinkman case (for more details we also refer the reader to [40]).

THEOREM 3.1. Let (uH ,pH ) and (u,p) be the solution of (3.1) and (2.1), respectively.
Assume also that u is H2(Ω)-regular and p ∈ H1(Ω). Then there exists a constant C inde-
pendent of H such that ∥∥p −pH

∥∥
L2(Ω) ≤C H

(
‖u‖H2(Ω)+

∥∥p
∥∥

H1(Ω)

)
(3.7)

and

‖u −uH‖L2(Ω) ≤C H2
(
‖u‖H2(Ω)+

∥∥p
∥∥

H1(Ω)

)
. (3.8)

REMARK 3.2. Here, it is worth noting that according to [39] and [8], respectively, anal-
ogous L2–error estimates can be obtained when BDM1 finite elements are used for a DG
discretization of Stokes equations and the classical discretization of Darcy’s equations, re-
spectively.
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4. Numerical Subgrid Method. We now outline the numerical subgrid approach for
problems (2.1) and (2.2), which is essentially analogous to the method derived in [3, 4]
for Darcy’s equations. For this, we consider (3.1) posed with respect to the two-scale space
(VH ,δ,WH ,δ), i.e.: Find (uH ,δ,pH ,δ) ∈ (VH ,δ,WH ,δ) such that for all (vH ,δ,qH ,δ) ∈ (VH ,δ,WH ,δ)
we have {

a
(
uH ,δ,vH ,δ

)+b
(
vH ,δ,pH ,δ

) = Fm(vH ,δ),
b

(
uH ,δ,qH ,δ

) = Fs(qH ,δ).
(4.1)

Due to (2.5) we know that each function in (VH ,δ,WH ,δ) may be uniquely decomposed
into its components from (VH ,WH ) and (δV ,δW ). Thus, (4.1) may be rewritten as

{
a (uH +uδ,vH +vδ)+b

(
vH +vδ,pH +pδ

) = Fm(vH +vδ),
b

(
uH +uδ,qH +qδ

) = Fs(qH +qδ),
(4.2)

withuH ,δ = uH+uδ, vH ,δ = vH+vδ, pH ,δ = pH+pδ, and qH ,δ = qH+qδ, whereuH , vH ∈VH ,
pH , qH ∈WH , uδ, vδ ∈ δV , and pδ, qδ ∈ δW . By linearity we may decompose (4.2) into

{
a (uH +uδ,vH )+b

(
vH ,pH +pδ

) = Fm(vH ) ∀vH ∈VH ,
b

(
uH +uδ,qH

) = Fs(qH ) ∀qH ∈WH
(4.3a)

and {
a (uH +uδ,vδ)+b

(
vδ,pH +pδ

) = Fm(vδ) ∀vδ ∈ δV ,
b

(
uH +uδ,qδ

) = Fs(qδ) ∀qδ ∈ δW .
(4.3b)

Due to (2.4a), (2.4b), (3.3), and (3.6) we may simplify (4.3) to obtain

{
a (uH +uδ,vH )+b

(
vH ,pH

) = Fm(vH ) ∀vH ∈VH ,
b

(
uH ,qH

) = Fs(qH ) ∀qH ∈WH
(4.4a)

and {
a (uH +uδ,vδ)+b

(
vδ,pδ

) = Fm(vδ) ∀vδ ∈ δV ,
b

(
uδ,qδ

) = 0 ∀qδ ∈ δW .
(4.4b)

REMARK 4.1. This last step is actually crucial to ensure the solvability of (4.4b). In fact,
the equivalence of (4.3b) and (4.4b) is a major reason for requiring properties (2.4) for the
function spaces we use.

Now, by further decomposing (uδ,pδ)= (uδ(Fm)+uδ(uH ),pδ(Fm)+pδ(uH )) and using
superposition, (4.4b) may be replaced by the following systems of equations satisfied by
(uδ(uH ),pδ(uH )) and (uδ(Fm),pδ(Fm)), respectively:{

a (uH +uδ(uH ),vδ)+b
(
vδ,pδ(uH )

) = 0 ∀vδ ∈ δV ,
b

(
uδ(uH ),qδ

) = 0 ∀qδ ∈ δW
(4.5a)

and {
a (uδ(Fm),vδ)+b

(
vδ,pδ(Fm)

) = Fm(vδ) ∀vδ ∈ δV ,
b

(
uδ(Fm),qδ

) = 0 ∀qδ ∈ δW .
(4.5b)

We easily see by (4.5a) that (uδ(uH ),pδ(uH )) is a linear operator in uH . Note, that the
solutions (uδ(Fm),pδ(Fm)) and for uH given, (uδ(uH ),pδ(uH )) can be computed locally
due to the implicit homogeneous boundary condition in (2.3a), i.e., the restrictions of
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(uδ(Fm),pδ(Fm)) and (uδ(uH ),pδ(uH )) to elements from T can be computed indepen-
dently of each other. In the following we refer to (uδ(Fm),pδ(Fm)) and (uδ(uH ),pδ(uH )) as
the local responses to the right hand side and uH , respectively.

Plugging uδ(Fm)+uδ(uH ) into (4.4a) we arrive at the upscaled equation, which is en-
tirely posed in terms of the coarse-grid unknowns, i.e.,

{
a (uH +uδ(uH ),vH )+b

(
vH ,pH

) = Fm(vH )−a (uδ(Fm),vH ) ,
b

(
uH ,qH

) = Fs(qH ).
(4.6)

Now, due to the first equation in (4.5a) we see by choosing vδ = uδ(vH ) that

a (uH +uδ(uH ),uδ(vH ))+b
(
uδ(vH ),pδ(uH )

)= 0.

The second equation in (4.5a) in turn yields b
(
uδ(vH ),pδ(uH )

) = 0. Combining these two
results with (4.6) we obtain the symmetric upscaled system

{
a (uH +uδ(uH ),vH +uδ(vH ))+b

(
vH ,pH

) = Fm(vH )−a (uδ(Fm),vH ) ∀vH ∈VH ,
b

(
uH ,qH

) = Fs(qH ) ∀qH ∈WH .
(4.7)

Now we define the symmetric bilinear form

ã (uH ,vH ) := a (uH +uδ(uH ),vH +uδ(vH ))

so that the upscaled system can be rewritten in the form

{
ã (uH ,vH )+b

(
vH ,pH

) = Fm(vH )−a (uδ(Fm),vH ) ∀vH ∈VH ,
b

(
uH ,qH

) = Fs(qH ) ∀qH ∈WH .
(4.8)

Once (uH ,pH ) is obtained we get the solution of (4.1) by piecing together the coarse and
fine components, i.e.,

(uH ,δ,pH ,δ)= (uH ,pH )+
(
uδ(uH ),pδ(uH )

)+ (uδ(Fm),pδ(Fm)). (4.9)

The above construction results in Algorithm 1 for computing (uH ,δ,pH ,δ).

Algorithm 1 Numerical subgrid method for Brinkman’s and Darcy’s equations.

1: Let {ϕi
H }i∈J be a finite element basis of VH (Ω), whereJ is a suitable index set.

2: for i ∈J do
3: Compute

(
uδ(ϕ

i
H ),pδ(ϕ

i
H )

)
by solving (4.5a) with uH replaced by ϕi

H . Note that(
uδ(ϕ

i
H ),pδ(ϕ

i
H )

)
can be computed locally on each T ∈T .

4: end for
5: Compute

(
uδ(Fm),pδ(Fm)

)
by solving (4.5b). This is done independently on each T ∈

T .
6: Compute

(
uH ,pH

)
by solving (4.8). For this we use

(
uδ(ϕ

i
H ),pδ(ϕ

i
H )

)
for all i ∈J and(

uδ(Fm),pδ(Fm)
)
in order to set up the linear system corresponding to (4.8).

7: Piece together the solution of (4.1) according to (4.9).

REMARK 4.2. We emphasize that Algorithm 1 is essentially a special way for computing(
uH ,δ,pH ,δ

)
satisfying (4.1).
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5. Extending the Numerical Subgrid Method by Alternating Schwarz Iterations. As
noted in the previous section Algorithm 1 is just some special way of computing the so-
lution of (4.1), i.e., the finite element solution corresponding to the space

(
VH ,δ,WH ,δ

)
.

As mentioned in Remark 2.1 the main difference between the spaces
(
VH ,δ,WH ,δ

)
com-

pared with
(
H1
0 (Ω)

n ,L20(Ω)
)
and

(
H0(di v ;Ω),L20(Ω)

)
, respectively, is that the former only

has some coarse degrees of freedom across coarse cell boundaries. Thus, any fine-scale
features of the solution (u,p) across those coarse cell boundaries can only be captured
poorly by functions in

(
VH ,δ,WH ,δ

)
. Algorithm 2 addresses this problem by performing

alternating Schwarz iterations between the spaces
(
VH ,δ,WH ,δ

)
and (V τ(ι),W τ(ι)), with

ι ∈ I̊ .

Algorithm 2 Alternating Schwarz extension to the numerical subgrid approach for
Brinkman’s problem – first formulation.

1: Set (u0,p0)≡ (0,0).
2: for j = 0, . . .until convergence do
3: if j = 0 then
4: Set

(
u1/3,p1/3

)= (
u0,p0

)
.

5: else
6: for i = 1. . .nI̊ do
7: Find (eτ,eτ) ∈ (

V τ(ιi ),W τ(ιi )
)
such that for all (vτ,qτ) ∈ (

V τ(ιi ),W τ(ιi )
)

{
a (eτ,vτ)+b (vτ,eτ) = Fm(vτ)−a

(
u j+(i−1)/(3n

I̊
),vτ

)−b
(
vτ,p j+(i−1)/(3n

I̊
)) ,

b
(
eτ,qτ

) = Fs(qτ)−b
(
u j+(i−1)/(3n

I̊
),qτ

)
.

(5.1)
8: Set (

u j+i/(3n
I̊
),p j+i/(3n

I̊
)
)
=

(
u j+(i−1)/(3n

I̊
),p j+(i−1)/(3n

I̊
)
)
+ (

eτ,eτ
)
, (5.2)

where (eτ,eτ) is extended by zero toΩ\N (ιi ).
9: end for
10: end if
11: Find (eH ,δ,eH ,δ) ∈

(
VH ,δ,WH ,δ

)
such that for all (vH ,δ,qH ,δ) ∈

(
VH ,δ,WH ,δ

)
we have

{
a

(
eH ,δ,vH ,δ

)+b
(
vH ,δ,eH ,δ

) = Fm(vH ,δ)−a
(
u j+1/3,vH ,δ

)−b
(
vH ,δ,p

j+1/3) ,
b

(
eH ,δ,qH ,δ

) = Fs(qH ,δ)−b
(
u j+1/3,qH ,δ

)
.

(5.3)
12: Set (

u j+1,p j+1
)
=

(
u j+1/3,p j+1/3

)
+ (eH ,δ,eH ,δ). (5.4)

13: end for

REMARK 5.1. It is straightforward to see that
(
u1,p1

)≡ (
uH ,δ,pH ,δ

)
solving (4.1).

Now, problem (5.3) is of exactly the same form as (4.1). Thus, by the same reasoning
as in the previous section wemay replace (5.3) by the following two problems:

Find (eδ,eδ) ∈ (δV ,δW ) such that for all (vδ,qδ) ∈ (δV ,δW ) we have

{
a (eδ,vδ)+b (vδ,eδ) = Fm(vδ)−a

(
u j+1/3,vδ

)−b
(
vδ,p

j+1/3) ,
b

(
eδ,qδ

) = −b
(
u j+1/3,qδ

)
.

(5.5a)
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Find (eH ,eH ) ∈ (VH ,WH ) such that for all (vH ,qH ) ∈ (VH ,WH ) we have{
ã (eH ,vH )+b (vH ,eH ) = Fm(vH )−a

(
u j+1/3+eδ,vH

)−b
(
vH ,p j+1/3) ,

b
(
eH ,qH

) = Fs(qH )−b
(
u j+1/3,qH

)
.

(5.5b)

Here, (5.5a) and (5.5b) correspond to (4.5b) and (4.8), respectively, and analogous to (4.9)
(eH ,δ,eH ,δ) from (5.3) is obtained by(

eH ,δ,eH ,δ
)= (eH ,eH )+

(
uδ(eH ),pδ(eH )

)+ (eδ,eδ) . (5.6)

To obtain (5.5a) it is important to note that Fs(qδ)= 0 due to (3.6), (3.4), (3.3), and (2.4).
Now, let us define (

u j+2/3,p j+2/3
)
:=

(
u j+1/3,p j+1/3

)
+ (eδ,eδ) .

Combining this with (5.4) and (5.6) we obtain(
u j+1,p j+1

)
=

(
u j+2/3,p j+2/3

)
+ (eH ,eH )+

(
uδ(eH ),pδ(eH )

)
. (5.7)

We furthermore observe that due to (2.4a) and (2.4b) we may simplify (5.5b) to obtain

{
ã (eH ,vH )+b (vH ,eH ) = Fm(vH )−a

(
u j+2/3,vH

)−b
(
vH ,p j+2/3) ,

b
(
eH ,qH

) = Fs(qH )−b
(
u j+2/3,qH

)
.

(5.8)

Thus, we can rewrite Algorithm 2 in form of Algorithm 3, and we summarize our
derivations in the following

PROPOSITION 5.2. The iterates (u j ,p j ) of Algorithms 2 and 3 coincide.

Algorithm 3 Alternating Schwarz extension to the numerical subgrid approach for
Brinkman’s problem – second formulation.

1: Steps 1–4: of Algorithm 1.
2: Set (u0,p0)≡ (0,0).
3: for j = 0, . . .until convergence do
4: Steps 3:–10: of Algorithm 2
5: Solve (5.5a) for (eδ,eδ).
6: Set (u j+2/3,p j+2/3)= (u j+1/3,p j+1/3)+ (eδ,eδ).
7: Solve (5.8) for (eH ,eH ).
8: Set

(
u j+1,p j+1)= (

u j+2/3,p j+2/3)+ (eH ,eH )+
(
uδ(eH ),pδ(eH )

)
.

9: end for

REMARK 5.3. Algorithm 3 also has a different interpretation than just being some equiv-
alent formulation of Algorithm 2. It is easy to see that (u2/3,p2/3) = (uδ(Fm),pδ(Fm)), i.e.,
(u2/3,p2/3) is the solution of (4.5b). For j ≥ 1 (u j+2/3,p j+2/3) is the solution of (4.5b) with
the homogeneous boundary conditions being replaced by (in general) inhomogeneous ones
defined by (u j+1/3,p j+1/3). Besides, (5.8) is of the same form as (4.8). Thus, Algorithm 3 can
be viewed as a subgrid algorithm that iteratively improves the local boundary conditions of
the response to the right hand side.

REMARK 5.4 (Solvability of (5.5a)). Looking at (5.5a) it is not immediately evident that
the boundary conditions given by u j+1/3 are compatible, i.e., that∫

∂T
u j+1/3 ·n d s = 0 (5.9)
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is satisfied for all T ∈ T . If u j+1/3 ≡ u solving (2.1) and (2.2), respectively, this condition
certainly holds. For an arbitrary iterate u j+1/3 we, however, need to project the normal com-
ponent of u j+1/3 at ∂T in order to guarantee that (5.9) is satisfied. This is done in such a way
that mass conservation is maintained in the entire domain. By a similar procedure we also
ensure the solvability of (5.1). This procedure also allows to drop restriction (3.6), i.e., it is
possible to treat boundary conditions with fine features in this iterative framework.

REMARK 5.5. As stated above Algorithm 2 (and equivalently Algorithm 3) is an alter-
nating Schwarz iteration using the spaces (VH ,δ,WH ,δ) and (V τ(ι),W τ(ι)), with ι ∈ I̊ . More
precisely, in the terminology of [28] it is a multiplicative Schwarz iteration, with (VH ,δ,WH ,δ)
taking the role of the coarse space in [28]. By the reasoning in [28, Section 10.4.2] the analy-
sis of alternating Schwarz methods for saddle point problems, like the one we consider, may
be reduced to the standard case of elliptic problems. Thus, the standard convergence results
(cf. [28, Section 2.5]) are applicable.

6. Numerical Results and Conclusions. In this sectionwe investigate the performance
of the methods developed above bymeans of a series of numerical examples. Tomake the
above procedure fully computational we need to find a finite element analog of the spaces
δV (T ) and δW (T ). For this each finite element T is subdivided into a number of subele-
ments with smaller step-size h. The nice property of this partition is that each element
could have its own subgrid including the case when for some finite element T the spaces
δV (T ) and δW (T ) could be empty. For our numerical experiments on the fine mesh we
have taken δV (T ) to be the space of BDM1finite elements (already described above) while
the space δW (T ) consists of piece-wise constant scalar functions withmean value zero on
T . All of our numerical experiments were performed on a 128×128 squaremesh, while the
coarse meshes were 4×4, 8×8, and 16×16. This means that on each coarse grid element
the corresponding spaces δV (T ) and δW (T ) are in fact finite element spaces defined on
32×32, 16×16, and 8×8 meshes, respectively.

The algorithms described above have been implemented in the open source soft-
ware deal.II – a General Purpose Object Oriented Finite Element Library of Bangerth, Kan-
schat and Hartman, [6]. The library allows unified implementation of both two and three-
dimensional problems. However, our numerical experiments were performed on two-
dimensional examples only.

6.1. Objectives and Numerical Examples. In our numerical experiments we shall
pursue the following objectives:

(1) Investigate the performance of Algorithm 1, i.e., the subgrid method (without
Schwarz iterations). In particular, we are interested in finding the dependence
of the accuracy with respect to the choice of H and also with respect to the mag-
nitude of variations in the permeability κ.

(2) Investigate the performance of Algorithm 3 (and equivalently Algorithm 2). This
includes in particular a verification that the iterates converge to the reference so-
lution computed on a global fine gird. We are furthermore interested in checking
the dependence of this convergence on the choice of the mesh parameter H and
the magnitude of variations in κ.

For the achievement of these objectives we employ several examples motivated by
practical situations outlined in the introduction. More precisely, we consider the following
flow regimes and example geometries:

(a) Flow in a periodic geometry modeled by Darcy’s equations – example geometry
given in Figure 6.1(a). This example hardly has anymeaningful physical interpre-
tation, but is frequently considered in homogenization theory (cf. [19, 22]).
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(a) Periodic geometry. (b) SPE10 benchmark ge-
ometry.

(c) Vuggy medium. (d) Open foam.

FIG. 6.1. Different geometries with lowly (black and blue, respectively) and highly (white and red, respec-
tively) permeable regions.

(b) Flow in a natural reservoir modeled by Darcy’s equations – example geometry
given in Figure 6.1(b). This geometry is the spatially rescaled slice 44 of the geom-
etry of the Tenth SPE Comparative Solution Project (cf. [11]).

(c) Flow in a vuggy porous mediummodeled by Brinkman’s equations – example ge-
ometry given in Figure 6.1(c). This example is relevant to simulations in reservoirs
with large cavities (cf. [31]).

(d) Flow in an open foam modeled by Brinkman’s equations – example geometry
given in Figure 6.1(d)). This example is relevant to filtration processes, heat ex-
changers, etc. (cf. [27, 35]).

REMARK 6.1 (Comments on geometries in Figure 6.1). The black (blue) and white (red)
areas in the geometries of Figure 6.1 denote the regions of low and high permeabilities, re-
spectively. From an upscaling point of view, the periodic geometry can be considered the
simplest of the four, since the length-scale of the lowly permeable inclusions is clearly sep-
arated from the length-scale defined by the size of the entire geometry. For the other three
geometries such a clear separation of scales does not exist. As discussed in [41] non-local
fine features usually entail large boundary layers, which are generally hard to capture by
upscaling procedures.

We now specify the precise problem parameters for our numerical experiments. The
enumeration of the numerical examples given below is to be understood as follows: “Ex-
ample 1(1.ii)” refers to a problem setting as described in Example 1 with μκ−1 ≡ 1e −2 in
the white parts of the geometry (case (1) above), and T consisting of 8× 8 uniform grid
cells (case (ii) above).

EXAMPLE 1 (Darcy – periodic geometry).

fm ≡ 0, g ≡
[
1
0

]
·n, μκ−1 ≡ 1e3 in black regions of Figure 6.1(a), and

(1) μκ−1 ≡ 1e −2, (2) μκ−1 ≡ 1, (3) μκ−1 ≡ 1e2 in white region of Figure 6.1(a);

(i) T a grid of 162 cells (ii) T a grid of 82 cells (iii) T a grid of 42 cells.

EXAMPLE 2 (Darcy – SPE10 geometry).

fm ≡ 0, g ≡
[
1
0

]
·n, and μκ−1 according to Figure 6.1(b);
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(i) T a grid of 162 cells (ii) T a grid of 82 cells (iii) T a grid of 42 cells.

EXAMPLE 3 (Brinkman – vuggy medium).

fm ≡ 0, g ≡
[
1
0

]
, μ≡ 1e −2, κ≡ 1e −5 in black regions of Figure 6.1(c), and

(1) κ≡ 1, (2) κ≡ 1e −2, (3) κ≡ 1e −4 in white regions of Figure 6.1(c).

(i) T a grid of 162 cells (ii) T a grid of 82 cells (iii) T a grid of 42 cells.

EXAMPLE 4 (Brinkman – open foam).

fm ≡ 0, g ≡
[
1
0

]
, μ≡ 1e −2, κ≡ 1e −5 in black regions of Figure 6.1(d), and

(1) κ≡ 1, (2) κ≡ 1e −2, (3) κ≡ 1e −4 in white regions of Figure 6.1(d).

(i) T a grid of 162 cells (ii) T a grid of 82 cells (iii) T a grid of 42 cells.

For Examples 1–4 we chooseΩ= (0,1)2 and whenever Algorithm 3 is applied we setCι

determining the size of the overlapping region to be 1
4 . Also, for the discretization of (2.1)

we choose α= 20 in (3.2). The reference solutions are obtained by solving discretizations
on a grid of 128×128 uniform cells, and, as stated above, all local fine computations are
performed on the restriction of this global fine mesh to the respective subdomains.

Having defined Examples 1–4 we can now investigate our two objectives.

6.2. Performance of Algorithm 1. For clarity we again note that by Remark 5.1 the
first iterate, i.e., (u1,p1), of Algorithm 3 is equal to the result of the subgrid Algorithm 1.
Furthermore, recall that (u1,p1), by definition, cannot approximate the full fine scale so-
lution, due to the imposed localization conditions on the interfaces between the coarse
cells. However, the solution (u1,p1), in addition to the coarse scale information, contains
a lot of the features of the fine solution, and therefore a comparison with the fine scale
solution is of interest.

Table 6.1 summarizes the results by reporting the relative errors for the velocity with
respect to the reference solutions. Analyzing this data we canmake the following observa-
tions:

Dependence on κ. We see that for all considered instances larger jumps in κ lead
to larger errors. This is not very surprising, since increasing jumps in κ generally leads
to more pronounced features in the solution, which are increasingly harder to resolve
by functions in (VH ,δ,WH ,δ) compared to (H1

0 (Ω)
n ,L20(Ω)) and (H0(di v ;Ω),L20(Ω)), respec-

tively.



Variational Multiscale Method for Flows in Highly Porous Media 15

Dependence on H . Considering different choices of H , we cannot draw a clear con-
clusion. For the periodic geometry, i.e., Example 1, increasing H by a factor of 2 yields
pronounced decreases in the errors. The errors in the velocity are approximately reduced
by a factor of 1.5. This behavior can be explained by the estimates in [4, Theorem 6.1] if
the error term

�
ε/H is dominating, where ε denotes the periodicity length.

On the other hand, for Examples 2–4, which have a much more complicated internal
structure, H is expected to influence the accuracy of the subgrid solution in a more com-
plicated way. In our simulations, the observed changes in the errors are rather small and
non-uniform, i.e., some of the errors decrease/increasewith increasing H . Amore detailed
study of the dependence of the two-scale solution on H is not a main target of this paper
and will be analyzed and discussed separately in the future.

Quality of the approximation. Considering the magnitudes of the relative errors re-
ported in Table 6.1 we can say that depending on the geometry and the targeted applica-
tion they may still be acceptable. In particular for the examples with moderate jumps in κ

the relative errors are in the range of 10%. In many practical situations the relevant prob-
lem parameters, such as the shape of the geometry, the values of κ, etc., are only given up
to a certain accuracy. It is not unusual that these uncertainties entail an uncertainty in the
solution, which can easily exceed 10%. In these situations it would therefore be a waste
of resources to compute very accurate solutions based on inaccurate data. For these in-
stances the numerical subgrid methodmay be a valuable tool for computing approximate
solutions of (2.1) and (2.2).

In Figures 6.2 and 6.3 we also provide two plots of the first velocity component, i.e., u1,
of reference solutions (uref,pref) and some selected solutions of Algorithm1 corresponding
to the examples above with different choices of H . Comparing these plots we see that in
many cases the subgrid solutions actually look rather similar to the reference ones. One
striking difference, however, are the jumps in the subgrid solutions that are aligned with
the coarse cell boundaries. These jumps are, of course, due to the lack of fine degrees of
freedom across coarse edges and well understood in themultiscale finite element analysis
(e.g. [41, 15]).

In Figure 6.4 we provide a plot of the pressure for Example 3(1.ii). It can be seen from
Table 6.1 and from the plot, that the errors of the pressure are quite large for a 4×4 coarse
mesh. However, the error improves substantially if a 16×16 coarse mesh is used. In con-
clusion, we see that keeping a right balance between the number of coarse and fine grid
cells, and also balancing this with the accuracy of the input data, we can ensure accuracies
acceptable for the engineering practice using meshes of reasonable sizes.

(a) Reference solution. (b) H = 1/16. (c) H = 1/8. (d) H = 1/4.

FIG. 6.2. First velocity component, u1, corresponding to Example 2 for the reference solution (computed on
the global fine grid) and the subgrid solution computed on different coarse grids.
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Velocity Pressure��������Contrast
H

1/16 1/8 1/4 1/16 1/8 1/4

1e5 3.18e-02 2.18e-02 1.42e-02 1.28e-03 7.16e-04 4.05e-04

Example 1 1e3 3.17e-02 2.17e-02 1.42e-02 1.27e-03 7.13e-04 4.04e-04

1e1 2.48e-02 1.70e-02 1.11e-02 8.38e-04 4.90e-04 2.88e-04

Example 2 2.54e+06 3.19e-01 4.95e-01 3.70e-01 2.05e-01 3.31e-01 5.41e-01

1e5 2.71e-01 2.82e-01 3.00e-01 1.56e-01 2.15e-01 2.70e-01

Example 3 1e3 2.69e-01 2.80e-01 2.94e-01 1.54e-01 2.13e-01 2.68e-01

1e1 1.62e-01 1.75e-01 1.67e-01 7.10e-02 1.12e-01 1.57e-01
1e5 2.45e-01 3.31e-01 3.71e-01 6.18e-01 1.19e+00 1.55e+00

Example 4 1e3 2.41e-01 3.28e-01 3.69e-01 5.82e-01 1.12e+00 1.46e+00

1e1 1.10e-01 1.59e-01 1.86e-01 9.91e-02 1.94e-01 2.66e-01

TABLE 6.1
Relative L2-velocity and pressure errors for the numerical subgrid algorithm applied to Examples 1–4.

(a) Reference solution. (b) H = 1/16. (c) H = 1/8. (d) H = 1/4.

FIG. 6.3. First velocity component, u1, corresponding to Example 3 for the reference solution (computed on
the global fine grid) and the subgrid solution computed on different coarse grids.

6.3. Performance of Algorithm 3 (and Algorithm 2). We now discuss the perfor-
mance of Algorithm 3. Figures 6.5–6.8 show the relative velocity and pressure errors for
the first 39 iterations of Algorithm 3 after the initial subgrid solve for Examples 1–4.

Analyzing this data we can make the following observations:

Convergence to reference solution. The plots in Figures Figures 6.5–6.8 show the
convergence of Algorithm 3.

For practical purposes it is, furthermore, important to note that the observed conver-
gence is rather rapid at the beginning of the iterative process. In fact, in the discussed ex-
amples the error drops very quickly during the first iterations and then decreases linearly
until themethod has converged. The steep initial drop is particularly interesting for appli-
cations requiring only moderate degrees of accuracy, since in these cases a few iterations
are enough to be sufficiently close to the reference solutions.

Asmentioned above, the first iterate, which is the solution of the subgridmethod, dis-
plays a crude representation of fine velocity features across coarse cell boundaries (see
Figures 6.10(b)–6.12(b)). However, after only a few iterations this deficiency is essentially
resolved (see Figures 6.10(c)–6.12(c)). In fact, after only 5 iterations the iterative subgrid
solutions are visually indistinguishable from their respective reference solutions. In ad-
dition to the reduction of the errors depicted in Figures 6.5–6.8 this is another very clear
demonstration of the usefulness of our iterations and once again clarifies the interpreta-
tion of Algorithm 3 as given in Remark 5.3.
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(a) Reference solution. (b) Subgrid solution. (c) Iterated subgrid solution.

FIG. 6.4. Pressure component, p, corresponding to Example 3(1.ii) for the reference solution computed on the
global fine 128×128 grid, the subgrid solution computed on the coarse 8×8 grid (without any iterations), and the
iterated subgrid solution after 5 iterations.

(a) Velocity error. (b) Pressure error.

FIG. 6.5. Relative errors for Example 1. Solid line (—): H = 1/16, dashed line (- -): H = 1/8, dotted line (· · · ):
H = 1/4, black: contrast=1e5, blue: contrast=1e3, red: contrast=1e1.

Dependence on κ. The magnitude of variations in κ influences Algorithm 3 in a sim-
ilar way as it influences Algorithm 1. The convergence rate of the two-level domain de-
composition method, i.e., Algorithm 3, decreases with increasing the magnitude of the
variations. This observation is in particular true for those examples whose solutions dis-
play fine velocity features across coarse cell boundaries. For the periodic geometry there
are hardly any of those features. This is why in this case Algorithm 3 performs essentially
independently of variations in κ (see Figure 6.5). In general, it is expected that the con-
vergence rate is less sensitive to κ if long range correlations in κ (if any) are entirely in the
interior of individual coarse cells.

Dependence on H . As for Algorithm 1 the dependence of the convergence rate of
Algorithm 3 on H is non-uniform. However, variations of H may greatly affect the con-
vergence rate. The influence of H on the convergence of domain decomposition methods
for equations with smooth coefficients is well studied (cf. [28]). We expect that the ob-
served inconsistent influence of H on the rates of convergence reflects the fact that in our
examples the coarse space approximation is not consistently improving with increased H .

Summing up, we conclude that we have developed a numerical subgrid algorithm
for Brinkman’s problem, summarized in Algorithm 1, using a discontinuous Galerkin dis-
cretization. This algorithm may serve as a useful numerical upscaling procedure. In par-
ticular, it is applicable to practical situations where only a moderate degree of accuracy is
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(a) Velocity error. (b) Pressure error.

FIG. 6.6. Relative errors for Example 2. Solid line (—): H = 1/16, dashed line (- -): H = 1/8, dotted line (· · · ):
H = 1/4.

(a) Velocity error. (b) Pressure error.

FIG. 6.7. Relative errors for Example 3. Solid line (—): H = 1/16, dashed line (- -): H = 1/8, dotted line (· · · ):
H = 1/4, black: contrast=1e5, blue: contrast=1e3, red: contrast=1e1.

required and/or feasible to attain (due to uncertainties in the input data). We have further-
more introduced a two-scale iterative domain decomposition algorithm, i.e., Algorithm 3,
for solving Darcy’s and Brinkman’s problem. This algorithm is an extension of the subgrid
Algorithm 1, and ensures convergence to the solution of the global fine discretization. The
developed algorithms require: (1) the solution of coarse global problem and (2) mutually
independent fine local problems. This makes all algorithms very suitable for paralleliza-
tion.
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(a) Velocity error. (b) Pressure error.

FIG. 6.8. Relative errors for Example 4. Solid line (—): H = 1/16, dashed line (- -): H = 1/8, dotted line (· · · ):
H = 1/4, black: contrast=1e5, blue: contrast=1e3, red: contrast=1e1.

(a) Reference solution. (b) Subgrid solution. (c) Iterated subgrid solution.
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