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We present results from a harmonic decomposition of two-particle azimuthal correlations measured with
the STAR detector in Au + Au collisions for energies ranging from /syy = 7.7 to 200 GeV. The third
harmonic v2{2} = (cos3(¢h, — ¢,)), where ¢, — ¢, is the angular difference in azimuth, is studied as a
function of the pseudorapidity difference between particle pairs Ay = 1, — 1,. Nonzero v3{2} is directly
related to the previously observed large-An narrow-A¢ ridge correlations and has been shown in models to
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be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions,
v%{ 2} persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in
these low energy collisions. In peripheral collisions at these low energies, however, v%{ 2} is consistent with
zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon
pair, v3{2} for central collisions shows a minimum near ,/syy = 20 GeV.

DOI: 10.1103/PhysRevLett.116.112302

Researchers collide heavy nuclei at ultrarelativistic
energies to create nuclear matter hot enough to form a
quark gluon plasma (QGP) [1-4]; QGP permeated the
entire Universe in the first few microseconds after the big
bang. Lattice QCD calculations show that the transition
between hadronic matter and a QGP at zero baryon
chemical potential is a smooth crossover [5]. Data from
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory and at the Large Hadron Collider
(LHC) at CERN have been argued to show that the matter
created in these collisions is a nearly perfect fluid with a
viscosity-to-entropy density ratio smaller than any other
fluid known in nature [6-10]. At the higher collision
energies, the baryon number is not as easily transported
from beam rapidity to midrapidity leaving the matter at
midrapidity nearly net baryon free [11]. As /syy is
decreased, however, more baryon number can be trans-
ported to midrapidity creating a system with a larger net
baryon density and larger baryon chemical potential (up)
[12—14]. Collisions with higher up values probe a region of
the temperature-up phase diagram, where the transition
between QGP and hadrons may change from a smooth
crossover to a first-order phase transition [15], thus defin-
ing a possible critical point. In addition to having a larger
ug, collisions at lower ,/syy will also start with lower
initial temperatures. For this reason, the system will spend
relatively more time in the transition region until, at low
enough /syy, it will presumably fail to create a QGP. It is
not currently known at what y5 the transition might become
first order or at what | /sy the collision region will become
too cold to create a QGP. In this Letter, we report on
measurements of particle correlations that are expected to
be sensitive to whether a low viscosity QGP phase has been
created.

Correlations between particles emitted from heavy-ion
collisions are particularly rich in information about the
dynamics of the collision. It has been found that pairs of
particles are preferentially emitted with small relative
azimuthal angles (A¢ = ¢p; — ¢, ~0) [16]. Surprisingly,
this preference persists even when the particles are sepa-
rated by large pseudorapidity (1) gaps (An > 1). These
long-range correlations, known as the ridge, have been
traced to the conversion of density anisotropies in the initial
overlap of the two nuclei into momentum space correla-
tions through subsequent interactions in the expansion
[17-21]. Hydrodynamic models have been shown to

require a low viscosity plasma phase early in the evolution
to propagate the geometry fluctuations through pressure
gradients into correlations between particles produced at
freeze-out [7,8]. Reduction in the pressure, as expected
during a mixed phase, for example, should lead to a
reduction in the observed correlations [22-25]. The
strength of correlations at different length scales can be
studied through the analysis of v2{2} = (cosn(A¢)) as a
function of Az. The second harmonic in this decomposition
is dominated by asymmetries related to the elliptic shape
of the collision overlap region and has been studied for
decades [26,27]. The higher harmonics in this decompo-
sition received attention more recently [16,28-30] after the
importance of the initial density fluctuations was realized
[17-21]. The harmonic v3{2} is thought to be particularly
sensitive to the presence of a QGP phase: Hybrid model
calculations show that while the large elliptic shape of the
overlap region can develop into v3{2} throughout the
evolution, including the hadronic phase, the development
of v3{2} relies more strongly on the presence of a low
viscosity QGP phase early in the collision [31,32]. This
suggests that unless an alternative explanation for v3{2} is
found [33], v3{2} will be an ideal observable to probe the
formation of a QGP and the pressure gradients in the early
plasma phase. In this Letter we present measurements of
v3{2}(An) as a function of centrality in Au + Au collisions
at\/syy = 7.7,11.5,14.5,19.6, 27, 39, 62.4, and 200 GeV
by the STAR detector at RHIC. We also compare these
measurements to similar measurements from 2.76 TeV
Pb + Pb collisions at the LHC [28].

The charged particles used in this analysis are detected
through ionization energy loss in the STAR time projection
chamber [34]. The transverse momentum pr, 1, and charge
are determined from the trajectory of the track in the
solenoidal magnetic field of the detector. With the 0.5 T
magnetic field used during data taking, particles can be
reliably tracked for p; > 0.2 GeV/c. The efficiency for
finding particles drops quickly as p; decreases below this
value [14]. Weights w have been used to correct the
correlation functions for the pr-dependent efficiency and
for imperfections in the detector acceptance. The quantity
analyzed and reported as v2{2}(An) is

Ei,j,i;éjwiwj cosn(¢; — ¢j)> > (1)

Zi. jiziWiv;

osntan) = { (
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where ), ; ;. is a sum over all unique pairs in an event and
(---) represents an average over events with each event
weighted by the number of pairs in the event. The weights
w are determined from the inverse of the ¢ distributions
after they have been averaged over many events (which for
a perfect detector should be flat) and by the pr-dependent
efficiency. The weights depend on the pr, 17, and charge of
the particle, the collision centrality, and the longitudinal
position of the collision vertex. The correction procedure is
verified by checking that the ¢ distributions are flat after the
correction and that (cosn(¢)) and (sinn(¢)) are much
smaller than the (cos(nA¢g)) [35]. With these corrections
applied, the data represent the v2{2}(An) that would be
seen by a detector with perfect acceptance for particles with
pr > 0.2 GeV/c and |n| < 1. Some previous results [30]
on the An dependence of v3{2} use average rather than
differential corrections leading to small differences in the
An dependence between that work and this work. The
difference is largest in central collisions at 1.5 < Ay < 2,
where the v3{2}(An) reported previously is smaller by
about 25%. The difference becomes less significant else-
where. The data have been divided into standard centrality

classes based on the number of charged hadrons observed
for a given event within the pseudorapidity region
|| < 0.5. In some figures, we report the centrality in terms
of the number of participating nucleons (Np,) estimated
from Monte Carlo Glauber calculations [14,36].

In Fig. 1, we show examples of the third harmonic of the
two-particle azimuthal correlation functions as a function
of An for three centrality intervals (0%—5%, 20%—30%, and
60%—70%) and four energies (\/syy = 200, 27, 14.5, and
7.7 GeV). The harmonic »3{2} exhibits a narrow peak in
An centered at zero. For the more central collisions,
nonzero v3{2} persist out to large values of An. The
nonzero values of v3{2} at larger Ay are the result of a
long-range correlation phenomena called the ridge, which
was first discovered in 200 GeV collisions at RHIC [16]. In
central collisions, we observe that this long-range structure
persists down to 7.7 GeV, the lowest beam energies
measured at RHIC. In peripheral collisions, quantum
interference effects grow broader owing to the inverse
relationship between the size of the system and the width of
the induced -correlations. In peripheral collisions at
200 GeV, we observe an additional residual v3{2} that,

10 S5\=200 GeV (Suw=27 GeV Vsw=14.5 GeV Vs\=7.7 GeV
06 F F F F
ev3{2}(AN) 4 Va(2)(Am) | v5(2)(Am) i va{2)(Aan)
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0.4 ¢ — Long-range (ridge) |+ r rh 3
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FIG. 1. Representative results on v3{2} from Au + Au collisions as a function of A for charged hadrons with p; > 0.2 GeV/c and
|7] < 1. The columns (from left to right) show data from /syy = 200, 27, 14.5, and 7.7 GeV, while the rows (from top to bottom) show
data from 0%—5%, 20%-30%, and 60%—70% centrality intervals. The error bars show statistical uncertainties only. The fitted curves are

described in the text. UrQMD [37] results are also shown.
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while not as wide as the ridge in central collisions, is still
too wide to be attributed to quantum interference. At the
lower beam energies, however, the only v3{2} signal
present is at small Ay and the ridgelike structure is absent.
These data indicate that for more central collisions the ridge
first seen at 200 GeV persists down to the much lower
energies probed in the RHIC beam energy scan. In the
peripheral collisions, however, the ridge is absent at the
lowest energies. The figure also shows calculations from
UrQMD [37], a hadronic cascade model with no QGP
phase. Although UrQMD produces a significant v, in
quantitative agreement with measurements at ,/syy <
20 GeV [38], the model produces no appreciable v;.
The long-range correlations seen in Fig. 1 are only
consistent with this hadronic model for peripheral colli-
sions at the lower energies.

Short-range correlations can arise from several sources,
including the fragmentation of hard or semihard scattered
partons (jets) [39], from resonances, from quantum inter-
ference (HBT) [40], and from Coulomb interference. In
central collisions, a narrow peak arising primarily from
HBT is present that is easy to isolate from other correla-
tions. In order to study the remaining, longer-range
correlations of interest in this Letter, we simultaneously
fit that short-range correlation with a narrow Gaussian peak
and the remaining correlations with a wider Gaussian with
a constant offset. The fitting functions are shown in the
figures where the solid curves represent the correlations of
interest and the dashed curves represent the totals. We then
extract v3{2} averaged over Ay by excluding the contri-
bution parametrized by the narrow short-range Gaussian
and integrating over the remaining structure within
|An| < 2:

J(dN/dAn)[v3{2} (An) — 8]dAn

(3{2}) = T(dN/dAn)din ’

(2)

where dN/dAn is the number of pairs in each Az bin
(which decreases approximately linearly with Az to zero at
the edge of the acceptance) and ¢ is the contribution from
the narrow Gaussian. This quantity is extracted using the
same procedure for different centralities and different beam
energies. Our analysis does not attempt to isolate correla-
tions attributed to flow from those attributed to other
sources like jets and resonance decays (flow versus non-
flow) [41,42]. Those nonflow correlations typically
decrease with increasing multiplicity, and thus are not
the dominating contribution in central collisions. This is
especially true for the cases where v3{2} is present in
central collisions but absent in peripheral.

In Fig. 2, we present v3{2} for charged hadrons
integrated over pr > 0.2 GeV/c and || < 1, multiplied
by Ny and plotted versus N, The figure shows data for
eight \/syy values ranging from 7.7 to 200 GeV and for
nine different centrality intervals corresponding to 0%—5%,

01F
B Npartvg{Z}
0.08 7$ %/;EN 200 GeV
L 439
4 27
0.06 ¢ 19.6
L 4 14.5
Y 11.5
0.04

0.02

ﬁ AMPT Default;I 7.7 GeV

0 100 200 300
N

part

FIG. 2. The v3{2} results from Au + Au collisions integrated
over all Ay and multiplied by N,y Statistical errors are typically
smaller than the symbol size. Systematic errors are shown either
as a shaded band or as thin vertical error bars with caps. The
v3{2} from a non-QGP-based model, AMPT (default), is also
shown for /syy = 7.7 GeV for comparison [32].

5%—10%, 10%-20%, 20%—-30%, 30%—-40%, 40%—-50%,
60%—70%, and 70%—-80% most central. The corresponding
average Np,, values are estimated to be 350.6, 298.6,
234.3, 167.6, 117.1, 78.3, 49.3, 28.2, and 15.7 [14]. Npu
only weakly depends on energy, and we use the same N,
values for all energies even though the centrality resolution
changes with /syy. We plot Np,v3{2} to cancel the
approximate 1/N,,, decrease one expects for two-particle
correlations or fluctuations as N, increases. If a central
collision was a trivial linear superposition of p 4 p colli-
sions, then N, v3{2} would remain constant with central-
ity. These data deviate drastically from the trivial
expectation. In peripheral collisions, Npanvg{Z} is close
to zero, but then increases with centrality until it saturates at
values close to N,y = 300 before exhibiting a systematic
tendency to drop slightly in the most central bins. This drop
in the most central bin is there for all except the lowest
energies where error bars become somewhat larger and the
centrality resolution becomes worse. This rise and then fall
has been traced to the nontrivial evolution of the initial
geometry of two overlapping nuclei [43]; when the colli-
sions are off axis, the effect of fluctuations in positions of
nucleons on one nucleus is enhanced when they collide
with the center of the other nucleus (increasing v3{2}).
This effect subsides when the two nuclei collide nearly
head-on. The increase of N,,v3{2} is exhibited at all
energies including 7.7 GeV. Several models suggest that the
absence of a QGP should be accompanied by a significant
decrease in v%{Z} [31,32], but we do not see that decrease.
We compare the 7.7 GeV data to expectations from a non-
QGP model, the multi-phase transport model (AMPT) in
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default setting [32]. The non-QGP model predicts a smaller
v3{2} value than the data, suggesting that a QGP phase
may exist in more central collisions at energies as low
as 7.7 GeV.

Systematic errors on the integrated v3{2} are studied by
analyzing data from different years or from different
periods of the run, by selecting events that collided at
different z-vertex positions, by varying the efficiency
correction within uncertainties, and by varying the selec-
tion criteria on tracks. A systematic uncertainty is also
assigned based on the fitting and subtraction of the short-
range correlations (we assume a 10% uncertainty on the
subtraction) and on residual acceptance corrections
(10% of (cos 3¢)? + (sin 3¢)?). These errors are all added
in quadrature for the final error estimate.

In Fig. 3, we replot the data from Fig. 2 for several
centralities as a function of ,/syy. Data from 2.76 TeV
Pb + Pb collisions are also included [28]. At 200 GeV, the
50%—-60% central data are similar to the 30%—40% data. As
the collision energy decreases, however, values in the
peripheral 50%—60% centrality data group drop well below
the 30%—40% central data and become consistent with zero
for 7.7 and 11.5 GeV collisions. This shows again that
peripheral collisions at lower energies seem to fail to
convert geometry fluctuations into a ridgelike correlation.
This idea is consistent with the absence of a low viscosity
QGP phase in low energy peripheral collisions [31]. For
more central collisions, however, v3{2} is finite even at the
lowest energies and changes very little from 7.7 to
19.6 GeV. Above that, it begins to increase more quickly
and roughly linearly with log(,/syy). This trend continues
up to 2.76 TeV where, for corresponding centrality inter-
vals, the v3{2} values are roughly twice as large as those at

0.001—v3{2}
- ¢ 0-5%
0.0008 |- 4 10-20%
|+ 30-40%
-RN°
0.0006 - 30-60%
0.0004
0.0002
0 225
| L Lol L Lol L R
10 10 10°
[Sw (GeV)

FIG. 3. The ,/syy dependence of v3{2} for four representative
centrality intervals. All data are Au + Au except for the 2.76 TeV
data points from the ALICE Collaboration [28], which are
Pb + Pb. ALICE data are not available for the 50%-60%
centrality interval. Systematic errors are shown either as a shaded
band or as thin vertical error bars with caps.

200 GeV. Given that the dominant trend at the higher
energies is for v3{2} to increase with log(,/syy), it is
notable that v3{2} is approximately constant for the lower
energies.

One would expect, independent of which energy range is
considered, that higher energy collisions producing more
particles should be more effective at converting initial
state geometry fluctuations into »3{2}. Deviations from
that expectation could indicate interesting physics,
like a softening of the equation of state [22]. We inves-
tigated these expectations at the lower /syy by scaling
v3{2} by the midrapidity, charged-particle multiplicity
density per participant pair, 71, pp = (2/Npart)dNcn/dn.

We parametrize the ,/syy dependence of the existing
data on ng, pp for central Au+ Au or Pb + Pb collisions
[44] by

{0'77(\/SNN)0430 \/SNN> 16.0 GeV
n =
PP 0.7810g(y/syw) — 0.4 otherwise.

In Fig. 4, we show v3{2}/ngpp for four centrality
intervals. The more central data exhibit a local minimum
in the /syy range around 15-20 GeV, which is absent for
peripheral collisions. Variations of v3{2}/n, pp With dif-
ferent parametrizations of n, pp are typically on the order
of a few percent. The trends in n, pp also have a change in
behavior in the same energy range where the dip appears in
Fig. 4, but the apparent minima in the figure do not depend
on the details of the parametrization of ng, pp; the local
minima remain even if scaling by log(,/syy). The minima
are an inevitable consequence of the near independence of

x10°

L jv3{2)/n ¢ 0-5%
0.14 3t2HNen e & 10-20%

i * 30-40%
012 — ¢ 50-60%

0.1
0.08 —
0.06 —
0.04 —
10 10° 10°
(5w (GeV)
FIG. 4. v3{2} divided by the midrapidity, charged-particle

multiplicity density per participant pair in Au+ Au and
Pb + Pb (2.76 TeV) collisions. Systematic errors are shown either
as a shaded band or as thin vertical error bars with caps. Data in the
centrality range from 0% to 50% exhibit a local minimum near
20 GeV while the more peripheral events do not.
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v3{2} with respect to \/syy for /syy < 20 GeV while,
simultaneously, the multiplicity is monotonically increas-
ing. If the otherwise general increase of v3{2} is driven by
ever increasing pressure gradients in ever denser systems at
higher energies, then the local minimum in v3{2}/ng, pp
could be an indication of an anomalously low pressure
inside the matter created in collisions with energies near
15-20 GeV. We note that the minima in Fig. 4 could depend
on the specific scaling scheme, and more rigorous theo-
retical modeling is needed to connect this measurement to
the initial density and flow dynamics. In addition, the
interpretation of data in this energy range is complicated by
changes in the baryon-to-meson ratio [45], a relatively
faster increase of up driven by baryon stopping [46],
possible changes in the sources and magnitude of nonflow
[42], and the longer crossing times for nuclei at lower
energies [31]. The existence of the minimum in
v3{2}/nq pp and other provocative trends in data collected
around these energies including the minimum in the slope
of the net proton v, [25] is interesting and provides ample
motivation for further investigation [47].

In summary, we presented measurements of the |/syy
dependence of v3{2} in Au+ Au collisions for \/Syy
energies ranging from 7.7 to 200 GeV. The conversion of
density fluctuations in the initial state has previously been
found to provide a simple explanation for v3{2} and the
corresponding ridge correlations. Model calculations have
shown that while v, can also be established over a longer
period in a higher viscosity hadronic phase, v3{2} is
particularly sensitive to the presence of a low viscosity
plasma phase in the evolution of the collision. By studying
the Ay dependence of v3{2}, we find that for sufficiently
central collisions (N, > 50), the ridge and v3{2} persist
down to the lowest energies studied. For more peripheral
collisions, however, the ridge correlation appears to be
absent at low energies for N, < 50, in agreement with
certain non-QGP models. When comparing v3{2} at RHIC
and the LHC, the much larger multiplicities at the LHC lead
to a much larger v3{2}. When divided by multiplicity,
v3{2} shows a local minimum in the region near 15—
20 GeV. This feature has not been shown in any known
models of heavy-ion collisions and could indicate an
interesting trend in the pressure developed inside the
system.
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