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Abstract. The spatial variability of preferential pathways
for water and chemical transport in a field soil, as visualized
through dye infiltration experiments, was studied by apply-
ing multifractal and wavelet transform analysis (WTA). After
dye infiltration into a 4 m2 plot located on a Vertisol soil near
College Station, Texas, horizontal planes in the subsoil were
exposed at 5 cm intervals, and dye stain patterns were pho-
tographed. Box-counting methods and WTA were applied to
all of the 16 digitalized high-resolution dye images and to
the dye-mass image obtained merging all sections. The well-
known Devil’s staircase multifractal was also used to illus-
trate wavelet-based analysis. Our results suggest that wavelet
methods can complement box-counting analysis in the con-
text of multiscaling structure analysis.

1 Introduction

The study of water movement and transport of chemicals in
soils is of fundamental importance in hydrologic science. It
is generally accepted that in most soils, water and solutes
may flow through preferential paths. The spatial variabili-
ty of these preferential pathways in a field soil, as visuali-
zed through dye infiltration experiments are of special im-
portance in determining if and how fast contaminants reach
ground water (Tarquis et al., 2006).

A common approach to describe dye patterns has been by
descriptive statistics of the vertical variation in dye coverage
as estimated from high-resolution dye images taken at vary-
ing depth increments. Frequently, these images show a com-
plex pattern that are unpredictable in detail, but predictable in
the sense that smaller pieces of the pattern, when suitably en-
larged, are statistically similar to larger pieces of the pattern.
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This property of statistical self-similarity can be quantified
using fractal geometry (Pachepsky et al., 2000).

Previous work done by some of the authors (Tarquis et
al., 2006) describes the scaling/multiscaling behavior of dye-
stained flow paths calculating the maximum configuration
entropy (H(L)), the characteristic length (L) and the gene-
ralized dimensions (Dq ). The work presented herein focuses
on multifractal spectra and includes computation of the mul-
tifractal spectrumf (α). The multifractal spectrumf (α) pro-
vides a detailed distribution of the singularities of the signal
and can be considered more general than generalized dimen-
sionsDq . The relation between these two parameters is es-
tablished through the mass exponentτq as:

Dq =
τq

q − 1
(1)

f (α) = qα(q)− τq (2)

However, other parameters such as configuration entropy
have shown their relevance and are also of great importance
while characterizing flow paths. For this reason these param-
eters are briefly described in Sect.2.

With respect to multifractal related parameters, the appli-
cation of the wavelet transform modulus maxima (WTMM)
representation of a signal has almost reached the status of
a standard. The wavelet related multifractal formalism was
first developed inArneodo et al.(1988) and has been ex-
tensively used to test many natural phenomena and has con-
tributed to substantial progress in each domain in which it
has been applied (Struzik, 1999). However, in the case of
multidimensional signals such as images, there are ambi-
guities (Hsung et al., 1999) in tracing the maxima curves
of the WTMM, so new methods are needed (Zhong and
Ning, 2005). Thus, the objectives of this work were to de-
scribe how wavelet theory can be used to solve multifrac-
tal analysis (global estimates) and compare the method with
boxcounting-based analysis.
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Fig. 1. Images of horizontal sections of 2×2 m corresponding to
a depth of:(A) 20 cm and(B) 30 com. Black pixels represent dye
stained areas.

The organization of the paper is as follows. First other pa-
rameters such as configuration entropy are revisited. Next,
a necessary introduction to wavelet transform and singu-
larity measures is given as well as a definition of the so-
called Wavelet Transform Modulus Maxima (WTMM) (Ma-
llat, 1999). The extension to multifractal one dimensional
signals is covered next and experiments on soil images are
described. Finally some conclusions and future work re-
search directions are given.

2 Methodology and previous results

2.1 Dye tracer experiment

The experiments were conducted in a five hectare agricul-
tural research site located on the Brazos River floodplain near
College Station, Texas. The field in which the plot was lo-

cated is mainly used to grow cotton, corn, grain sorghum,
and small grain, and improved pasture. At the time of the
experiment the soil was tilled after a corn crop and a plot of
2×2 m was selected for this study.

The selected plot was irrigated for a few days to establish
a uniform and steady moisture level throughout the profile
prior to the experiment. After wetting, irrigation water with
30 g/l brilliant blue dye (FCF) was applied uniformly with
an automated spray system. About six days after the irriga-
tion with the dye, parallel horizontal sections spaced 5 cm
apart were successively excavated until no dye stained soil
was found, resulting in 15 sections. A 35-mm camera with
Kodachrome 60 film was used to photograph each of the hor-
izontal sections as they emerged during the excavation. Six-
teen sections were photographed: the surface and fifteen sub-
surface sections.

The 2×2 m horizontal section at any given depth was re-
presented by a matrix of 2048×2048 pixels. Each pixel re-
presented an area of approximately 1 mm2. The value of each
pixel was either black (dye stained) or white (unstained), so
we had two-dimensional binary images like the ones shown
in Fig. 1.

2.2 Configuration entropy

Configuration entropy analysis studies the effect of scale in
any measure (a scalar quantity that leads to a positive dis-
tribution) defined in a plane. If a plane were divided into
an arbitrary number of smaller areas (e.g., boxes) and the
measure (µ) were estimated in each sub-area, a distribution
of the measure would be obtained. Estimation of dye pat-
terns from a binary image implies counting pixels represent-
ing dyed areas and expressing this count as a percentage of
the total number of pixels in the image. We refer to this quan-
tity as Dye Tracer percentage (DT) and it is the basis of the
configuration entropy.

Mathematically, the probability associated with a case of
j dye pixels in a box of sizer is defined as:

pj (r) =
Nj (r)

n(r)
. (3)

whereNj (r) is the number of boxes withj dye pixels and
n(r) is the number of boxes of sizer. The configuration
entropy is thus defined as:

H(r) = −

r×r∑
j=0

pj (r) log(pj (r)). (4)

H(r) as expresses in Eq. (4) reveals the uncertainty associ-
ated with the DT. For proper comparisonH(r) needs to be
normalized resulting in:

H ∗(r) =
H(r)

Hmax(r)
(5)
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Fig. 2. Normalized configuration entropyH∗(r) versus box sizer
from horizontal sections at different depths.

whereHmax(r)= log(r2
+1). Plotting the normalized entropy

versusr could be used as a descriptor of the image morphol-
ogy. In our experiment, for example, all the horizontal sec-
tions showed the same behavior in the configuration entropy
curve (Fig.2). The general pattern was a rapid increase inH

with r followed by a gradual decay.
The first point of the curve, forr=1, was totally correlated

with the DT of the horizontal section. Note that the decrease
in DT with depth was not linear, but showed abrupt changes.
By a depth of 15 cm, the DT value had decreased to half of
that at the surface, and by 30 cm depth the value was 10%.

3 Wavelets and singularities

3.1 Introduction

Wavelet theory has its origin in several disciplines. The
types of functions that are now called wavelets were studied
in quantum field theory, signal analysis, and function space
theory. In all these areas, wavelet-like algorithms replaced
the classical “windowed” Fourier transform.

The windowed Fourier transform serves as means to des-
cribe or compare the fine structure of a function at different
resolutions. Its basic building blocks are the integer dilates
of the sine and cosine functions multiplied by a “window”
function. Although quite successful, this method is not ap-
plicable to highly localized structures when the window size
is fixed.

To overcome these problems, one replaces sine and cosine
by a function that has compact support and its dilates and
translates form an orthonormal basis of the function space
being considered (usuallyL2(R)). The famousDaubechies
wavelets (Daubechies, 1992) are an example of these wavelet
bases. Other examples, like thederivative of a Gaussianthat
will be used in our work are also sketched in (Fig.3)

It can be shown that under certain conditions this type
of function performs a multiresolution analysis or decompo-
sition of L2(R). Such wavelet decompositions are obtained
via a multiresolution analysis (Mallat, 1989). Therefore, the

Fig. 3. Some examples of Wavelet bases: Daubechies of order 4,
first derivative of a gaussian and Mexican Hat wavelets.

main feature we are interested in, is the ability of wavelet
transform to focus on localized signal structures performing
a multiscale (multiresolution) analysis of signal singularities.
Next, we extend this type of analysis to complex signals such
as multifractals.

3.2 Wavelet transform and Lipschitz regularity

Conceptually, the continuous wavelet transform (CWT) is a
convolution product of a signal with a scaled and translated
kernel (usually a n-th derivative of a smoothing kernel in or-
der to precisely detect singularities as pointed out later)

Wf (u, s) =
1

s

∫
∞

−∞

f (x)ψ

(
x − u

s

)
(6)

Wheres andu are real numbers (s>0) which are discretized
for computation purposes. In this way, the wavelet transform
performs a transformation of a functionf (x) into a function
defined over the scale-space plane (pair of valuesu ands).
As shown later, this transformation reveals more and more
detail when observing smaller and smaller scales where the
location of singularities can be detected.
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Fig. 4. Cone of influence of and abscissav and example.

To characterize singular structures, Lipschitz exponents
are commonly used. They provide uniform regularity mea-
surements over time intervals and local measures at any
point. If f has a singularity atv, which means that it is
not differentiable at this point, the Lipschitz exponent atv

characterizes this singular behaviour.
Proper definitions of Lipschitz exponents are given next:

– A function f is pointwise Lipschitzα≥0 at v if there
existK>0 and a polynomialpv of degreem= bαc such
that:

∀t ∈ R, |f (t)− pv(t)| ≤ k|t − v|α (7)

– A function f is uniformly Lipschitzα over [a, b] if it
satisfies (7) for all v∈[a, b], with a constantK indepen-
dent ofv.

To measure the local regularity of a signal is crucial to choose
a wavelet with enough vanishing moments. A wavelet func-
tionψ(t) is said to haven>α vanishing moments if and only
if:∫

∞

−∞

tkψ(t)dt = 0 for 0 ≤ k ≤ n (8)

It can be shown that a wavelet withn vanishing moments
can be written as thenth order derivative of a functionθ ,
so the resulting wavelet transform is a multiscale differen-
tial operator which is able to detect and isolate singularities
up to exponentsα≤n, such as the following theorem from
establishes.

Theorem (Mallat, 1999)

If f∈L2(R) is uniformly Lipschitzα≤n over [a, b] then
there existsA>0 such that:

∀(u, s) ∈ [a, b]xR (s > 0) |Wf (u, s) ≤ Asα+
1
2 (9)

Conversely, ifWf (u, s) satisfies Eq. (9) and ifα<n is not an
integer thenf is uniformly Lipschitzα on [a+ε, b−ε] for
anyε>0.

When studying the regularity at pointv for one dimen-
sional signals, we have to consider only those pointsu which
are in the cone of influence ofv in the scale-space plane de-
fined by the CTW. The Fig.4 shows the definition of the
cone of influence of the singularityv at the left side while an
example for a signal is given to the right where the cones of
influences of several singularities are highlighted.

In Fig. 4 we shall suppose that the analyzing wavelet has
a compact support equal to[−C,C], so the support of a
dilated and translated version such asψ

(
t−u
s

)
is equal to

[u−Cs, u+Cs] and this is the cone of influence ofv. In this
way, we have to analyze the wavelet transform values inside
these cones so that Eq. (9) remains valid as a necessary and
sufficient condition for pointwise regularity computation.

As a concluding remark of this section, it must be pointed
out that a wavelet able to detect any singularity such as the
derivatives of the Gaussian always will be a worse choice
than a wavelet fitting the actual range of singularities because
the more vanishing moments produce longer effective sup-
ports and, as a consequence, coarser estimations.

3.3 Wavelet transform modulus maxima (WTMM)

We use the term modulus maximum (strict maximum) to de-
scribe any point(u0, s0) such that|Wf (u, s0)| is locally max-
imum atu=u0. We call maxima line to any connected curve
s(u) in the scale-space plane(u, s) along which all points are
modulus maxima.

It can be shown (Mallat, 1999) that:

– Singularities can be detected finding the abscissa where
the wavelet modulus maxima converge at fine scales.

– Pointwise regularity (α+
1
2) can be calculated by mea-

suring the decay slope of log2|Wf (u, s)| as a function
of log2(s) at the finest scales. So measuring the decay
in the time-scale plane as suggested in Eq. (9) is not ne-
cessary. We can control it from its local maxima values
connected via the maxima lines.

The Fig.5 shows a signal with a sharp transition at and its
corresponding continuous wavelet transform. We compute
the WTMM (Wavelet transform modulus maxima) and store
values of the modulus in the maxima lines that converge to
the singularity. The decay of the modulus along these maxi-
ma lines are given to the right for the ridges numbered as 9,7
and 4 (plotted using continuous, dashed and dotted lines res-
pectively). A simple linear regression may be used in order
to compute the desired Lipschitz exponents.

3.4 Extension to images

For illustration of the extension to images we consider a path
of 512×512 pixels of the dye mass image used in our experi-
ments, which reflects the amount of dye stained pixels under
the point being considered as shown in Fig.7 (darker areas
corresponds to higher values).
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Fig. 5. Wavelet Transform Modulus Maxima and maxima chains.

Fig. 6. Decay of modulus amplitude as function of scale gives
Lipschitz exponents.

The extension of the previous concepts to images, or mul-
tidimensional signals in general, is conceptually simple, but
cumbersome. For the two dimensional case the modulus of
the wavelet transform is given by:

Mf (u, v, s) =

√
|W1f (u, v, s)|2 + |W2f (u, v, s)|2 (10)

with u andv denoting the two dimensional coordinates and
the scale parameter being usually used ass=2j . Now, we
compute two separates wavelet transforms:W1 refers to the
wavelet transform performed along the horizontal dimension
andW2 refers to the vertical one.

Apart from the modulus, information about the angle is
required in order to detect modulus maxima points which are
defined as local maxima along the gradient direction which
are initially expressed as:

Af (u, v, s) = tan−1

(
W2f (u, v, s)

W1f (u, v, s)

)
(11)

Next, we show different examples of the results obtained.
The CWT has been computed for 20 consecutive scales along

Fig. 7. A 512×512 path of the dye image of the experiment.

Fig. 8. Modulus of the CWT at scales=2.

vertical and horizontal dimensions. The modulus of these
images are shown in Fig.8 for s=2 and in Fig.9 for s=8.
If we extract maxima values we have images like the ones
showed in Fig.10and in Fig.11.

4 Wavelets and multifractal analysis

4.1 Multifractal formalism

By multifractal structure we mean that there exists a parti-
cular arrangement of the points in an image in the so-called
fractal components. Those fractals components are sets de-
fined by the property that the image undergoes the same kind
of change (transition or singularity) for all the points in the
same component.

This multifractal formalism has two advantages. First, the
multifractal structure leads to well defined statistical proper-
ties and secondly the fractal components are of great geome-
trical relevance. But for being able to apply the multifractal
formalism it is necessary to develop techniques for the co-
rrect decomposition of images into their fractal components.

www.nonlin-processes-geophys.net/14/425/2007/ Nonlin. Processes Geophys., 14, 425–434, 2007
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Fig. 9. Modulus of the CWT at scales=8.

Fig. 10. Modulus maxima of the CWT at scales=2.

That decomposition can be done by means of the wavelet
analysis.

First, for each pixelx(u0, v0) its singularity exponentα
is computed. Then, all the points in the image are arranged
according to the value of their singularity exponent arriving
at the well known multifractal spectrumf (α).

4.2 Multifractal spectrum and wavelets

The goal of a multifractal analysis must then be to estimate
the singularity distribution. In this context the so called mul-
tifractal spectrum and its fractal dimension is used. With the
help of the well-known Devil’s staircase fractal we will show
how to compute its multifractal spectrum through the wavelet
transform.

A Devil’s staircase is the integral of a Cantor measure
whose recursive construction implies that the Devil’s stair-
case is a self-similar function. Figure12 displays the devil’s
staircase obtained withp1=0.475 andp2=0.525, its wavelet
transform computed using the first derivative of a Gaussian
and the modulus maxima lines.

Let un(s) the position of all local maxima of the wavelet
modulus transform. The partition function Z measures the

Fig. 11. Modulus maxima of the CWT at scales=8.

Fig. 12. Devil’s staircase, wavelet transform and modulus maxima.

sum at power q of all these wavelet modulus maxima values:

Z(q, s) =

∑
n

|Wf (un, s)|
q (12)

It is important to note that at each scale if there exist more
than a maximum in the cone of influence, the sum includes
only the maxima of largest amplitude.

For eachq (which is a real number) the scaling expo-
nent measures the asymptotic decay of the partition function
Z(q, s) at fine scales:

τq = lim
s→0

logZ(q, s)

logs
(13)

This means thatZ(q, s)∝sτq and intuitively, sinceq has the
ability to select a desired range of values: small forq<0
and large forq>0, the scaling function globally captures the
distribution of the Lipschitz exponents. Weak exponents are
addressed with large negative q, while strong exponents are
suppressed. For large positiveq, the converse takes place.
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Fig. 13. Partition function for several values ofq.

Fig. 14. Moments generating function.

Finally, using the inverse Legendre transform (which is
applicable if and only iff (α) is convex) we obtain the mul-
tifractal spectrumf (α) as:

f (α) = min
q∈R

(
q

(
α +

1

2

)
− τ(q)

)
(14)

wheref (α) is convex when the signal is self-similar (col-
loquially speaking a measure is multifractals when its mul-
tifractal spectrum exists and has the shape of an inverted
parabola). The spectrumf (α) reveals the distribution of sin-
gularities in a multifractal multifractal signal which is cru-
cial to analyze its properties. The spectrum measures the
global repartition of singularities having different Lipschitz
regularity. For example, if the signal being considered were
monofractal (only one component), the spectrum would con-
sist of a single point. In the case of a multifractal as the
devil’s staircase or the dye stained images we are working

Fig. 15. f (α) values calculated with Eq. (14) and theoretical spec-
trum.

on, the spectrum range ofα-values increases according to
the increase in the distribution heterogeneity. In conclusion,
wider concave spectrum means more heterogeneity.

All these steps applied to the Devil’s staircase example are
shown in Fig.13 whereZ(q, s) are plotted against scale for
different q values. Figure14 which showτq and finally in
Fig. 15where values calculated with Eq. (14) and theoretical
spectrum (Mallat, 1999) are compared.

Thef (α) spectrum is related to the other commonly used
set of multifractal exponents known as generalized fractal di-
mensions, calculated from the mass exponent function as:

Dq =
τq

q − 1
(15)

The fractal dimension atq=0, equals the geometric support
of the measure being studied (equals 1.0 for one dimensional
signals or 2.0 for images). The information fractal dimen-
sionD1 is obtained atq=1 using L’Hopital rule. A value of
D1 close to 1.0 characterize a system uniformly distributed
throughout all scales, whereasD1 close to 0 reflects a subset
of the scale in which the irregularities are concentrated. With
respect toD2, simply said that is mathematically associated
to the correlation function, so it measures the self-similarity
of a signal.

For the Devil’s example we haveD1=0.6407 which is near
the theoretical value ofD1=

log 2
log 3=0.6309. One of the rea-

sons for the systematic difference between the theoretical and
the computed multifractal spectrum might be in the computa-
tion of Z(q, s)=

∑
n |Wf (un, s)|

q where at some scales we
may have an indeterminate function forq<0.

5 Multifractal and wavelet based analysis of soil spatial
variability

Initially, most fractal theory applications in soil science use
a monofractal approach, which assumes that soil spatial
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Fig. 16. Dye mass image being processed.

distribution can be uniquely characterized by a single frac-
tal dimension (Kravchenko et al., 1999). However, a single
fractal dimension might not always be sufficient to represent
complex and heterogeneous behaviour of soil spatial varia-
tions.

Motivated by this, the work presented inFolorunso et al.
(1994) found multifractal parameters to be superior to a sin-
gle fractal dimension in distinguishing between soil types.
Later Muller (1996) used multifractal analysis to character-
ize pore space in chalk and noticed that multifractal proper-
ties are closely related to chalk permeability and porosity.

For our application there are two types of experiments.
First of all, horizontal sections, such as those of Fig.1 may
be analyzed separately looking for any scaling pattern. Fi-
nally the data from all 16 sections were merged to produce
a spatial field of two measures: quantity of dye tracer (dye
mass) and maximum dye infiltration depth (dye depth). The
dye mass image is shown in Fig.16where darker values rep-
resent higher dye mass. Although, initially dye mass and dye
depth quantities are integers in the range 0 to 16 (the same
value as number of sections) proper normalization is needed
in order to accurately compute power-law relationships be-
tween quantities and box size. For this reason the sum of all
values is equalled to 1 prior to any computation.

5.1 Box-counting methods for multifractal analysis

A detailed description of the box-counting algorithm applied
to our case study can be found inTarquis et al.(2006), so only
some results are given in order to analyze how wavelet anal-
ysis can complement box-counting algorithms. Figure17
shows the resulting bi-log plots of the partition function ver-
sus box-size for different horizontal planes (only those cor-
responding to 20 cm and 30 cm are given). Partition function
and generalized dimension for different values ofq are given
in Figs.18and19 for the dye-mass image.

Fig. 17. Bi-log plot of partition function versus box-size for differ-
ent sections:(A) 20 cm and(B) 30 cm.

All partition functions showed a clear pattern in the data
with two distinctive areas. One where there was a linear re-
lationship and another where the slope was almost constant.
So, only when the box-size passed a certain value a scaling
pattern begins.

5.2 Wavelet analysys (WTA)

First experiments with the extension of methods developed
in Sect.4 to our case study showed an unstable behavior
which are far from being expected. As mentioned before
and pointed out byHsung et al.(1999) andZhong and Ning
(2005) there are some ambiguities in tracing the maxima
curves in scale planes when dealing with multidimensional
signals. Apart from that, the most important result is that,
as box-counting analysis reveals that multifractal behavior
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Fig. 18. Bi-log plot of partition function versus box-size for dye
mass image.

Fig. 19. Generalized fractal dimension for the dye mass image.

occurs only for scales larger thans≥8, so maxima lines re-
vealing that scaling pattern do not propagate adequately.

However analysis of Lipschitz exponents along maxima
lines is still convenient for our analysis providing important
information about distribution of singularities (and so, the
f (α)spectrum). As suggested inZhong and Ning(2005) and
Struzik(1999) it is possible to evaluate singular spectrum lo-
cally using Eq. (9) and tracing an histogram of the number
of pixels within a certain interval ofα values. First results
for the dye mass image along the scales where a multifractal
behaviour is expected are given in Fig.20where the centroid
of the histogram equalsα0=1.77, approximately equal to
the computed value with box-counting method which equals
α0=1.83.

Fig. 20. Histogram of Local Lipschitz exponents for the dye mass
image.

6 Conclusions

The application of the CWT (Continuos wavelet transform)
and its particular representation called WTMM (Wavelet
transform modulus maxima) to multifractal analysis has al-
most reached the status of a standard in natural phenomena
analysis contributing to substantial progress in each domain
where it has been applied.

This paper reviews the main concepts involved in the mul-
tifractal formalism and its relation with the signal represen-
tation obtained using the wavelet transform. The selected
domain of application has been Hydrology, where different
authors relate the permeability of different materials to the
multifractal spectrum.

Some experiments using a dye tracer over a clay soil has
been done, mainly focusing on the multifractal spectrum of
the dye mass and dye depth quantities. Previous results by
some of the authors (Tarquis et al., 2006) related with other
parameters such as configuration entropy are also revisited
trying to provide a complete set of measures capable of char-
acterize soil properties.

Classical multifractal characterization with box-counting
methods are given both for each horizontal section and for
the dye mass image which shows that only for larger scales
a multifractal behavior is expected. This is the main rea-
son behind unexpected results obtained with wavelet exten-
sion of methods exposed in Sect.4. However, if we plot an
histogram of coefficientsα for selected scales we obtain a
very good approximation of the multifractal spectrum with
the advantage that we precisely know the location of diffe-
rentα-Lipschitz exponents. This may be an important and
complementary information.

Apart from that, the main focus of future research is to ex-
tend the analysis with larger number of image sets to verify
the significance of the results including theoretical multifrac-
tal images such as, for example, Sierpinsky carpets genera-
tors (Perfect et al, 2006).
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