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Abstract 

We report a measurement of the proton-antiproton total cross section, VT, 
at c.m.s. energies fi = 546 and .I800 GeV. Using the luminosity’independent 
method, we find Q=61.26&0.93 mb at ,/k546 GeV and 80.03f2.24 mb at fi = 
1800 GeV. In this energy range, the ratio v,l/UT increases from 0.2lOkO.002 to 
0.246~0.004. 

PACS numbers: 13.85.Lg, 12.40.Gg, 12.4O.P~ 

We have measured the total proton-antiproton cross section at the Fermilab Tevatron 

Collider at c.m.8. energies fi=546 and 1800 GeV using the luminosity independent 

method [l, 21. This method is based on the simultaneous measurement of the elastic 

scattering differential cross section at low four-momentum transfer-squared (t) and the 

total inelastic rate. The total cross section is the sum of the elastic and inelastic rates 

divided by +k machine luminosity L : 

aT = ; . (&I + &,) (1) 

The optical theorem relates the total cross section to the imaginary part of the forward 



elastic scattering rate, 

,T+ = 
16x(hc)s 1 

1+ pz 
. L d%c/d%o 

where p is the ratio of the real to imaginary part of the forward elastic scattering 

amplitude . Dividing (2) by (1) yields 

~~ = W~c)* d%c/dtlt=o 
1+P2 . RI+& (3) 

At present, only this method provides a precise measurement of the Tevatron luminos- 

ity and of the total cross section. 

I. EXPERIMENTAL METHOD 

The data for the total cross section measurement were collected in short dedicated runs 

during the 1988-1989 data taking period of CDF. At each energy, the machine optics 

was specially tuned to enable detection of low-t elastic scattering events. The elastic 

scattering and inelastic rates were measured simultaneously (the inelastic trigger was 

conveniently prescaled). 

The elastic &&Wing measurement is reported in the preceding paper [3]. The ap- 

paratus II& ti measure the inelastic rate is shown in Fig. 1. The region of polar 

angles 3.5” < 0 < 176.5” (171 <3.5) was covered by the VTPC [4], a system of eight 

time projection chambers around the beam pipe, mounted end-to-end along the beam 

direction (z-axis). These chambers provided accurate event vertex and tracking in- 

formation. They employed 3072 sense wires and 3072 pads for the measurement of 



track coordinates projected onto the T-Z and r-4 planes, where P is the radial distance 

from the beam line. The active region of the chambers was 2.6 m along the beam 

direction, covering well the interaction region (uz E 30 cm), and extended from ~~6.6 

cm to r=21 cm. The VTPC provided single-hit precision of 200-500 pm and two-track 

resolution of 6 mm in the R-z plane. 

Two identical forward telescopes (S4+FTB and S5+FTF), added to the CDF detector 

for these special runs, were placed symmetrically on the west (outgoing p) and east 

(outgoing p) sides of the interaction region. The detectors FTB (FTF) covered the po 

lar angles 0.45” < 0 < 2.56” (179.55” > 6’ > 177.44”), corresponding to 3.8 < ]u( < 5.5. 

Each FTB/FTF telescope consisted of four drift chambers separated by 25 cm along 

the z-axis[5]. Each chamber contained a front section, which measured the (horizontal) 

x-coordinate in four parallel drift cells (4 cm wide by 36 cm long) on each side of the 

beam-pipe, and an identical back section with sense wires rotated by 90” for measuring 

the (vertical) y-coordinate. In addition, in every drift cell, the coordinate perpendicu- 

lar to the drift direction was measured with a delay line placed close to the sense wire, 

providing in most cases unambiguous reconstruction of space points. The drift time 

measurement provided single-hit accuracy of 700 pm and two-track resolution of 4.0 

mm. The single-hit accuracy of the delay line was 2.0 cm and the twotrack resolution 

about 12 q 

The S4 and Sg telescopes extended the polar angle coverage down to 6 N 0.14” and 

6 N 179.86” (191 =6.7), respectively. Each telescope contained two drift chambers 

separated by 1 m along the a-axis. Each chamber had two sections, one above and 

one below the beam line. These sections were inserted in a beam pipe with variable 

aperture. When stable beam conditions were reached, the two sections were pushed 

5 



close to the beam forming a 7.0 cm x 7.0 cm square with a 1.2 cm radius hole around 

the beam line. Each section had four drift cells sampling four times the y-coordinate of 

a track along the beam direction. A delay line placed close to the sense wires measured 

the x-coordinate. The drift measurement provided single-hit accuracy of 200 pm and 

two-track resolution of 4 mm; the single-hit resolution of the delay line was 420 pm and 

the two-track resolution about 2 cm. Each S4 and S5 chamber section was backed by a 

trigger’counter. In addition, two scintillator hodoscopes (BBCW and BBCE [4]) were 

located behind the S4 and S5 telescopes, covering the polar angles 0.32” < B < 4.47’ 

and 179.66” > 8 > 175.53”. 

Data were taken with two inelastic triggers, making use of BBCW, BBCE, the counters 

of S4, S5 and the counters of Sl, S2 on the outgoing p side of the elastic spectrometer 

[31: 

(a) Inelastic trigger (WeB): the condition [W=(BBCW+S4)sE=(BBCE+S5)] 

was fulfilled by events with at least one particle at 3.2 < (q] < 6.7 on both 

the west and east sides of the interaction region; this trigger detected almost 

all inelastic (non-diffractive) events. 

(b) Inelastic trigger (POE): the requirement ((SleS2)*E] was fulfllled by 

the m&t& &&action dissociation interactions that might escape the 

(WOE) tliegcr. The observed trigger rate was multiplied by two to account 

for the antiproton diffraction dissociation. This trigger was preferred to the 

traditional one-side-only trigger [2] to reduce the background contamination 

[6]. Proton dissociation events were chosen because of the excellent spec- 

trometer momentum resolution for the recoil antiproton [7]. 
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The analysis of the events collected by the (POE) trigger is described in the preceding 

paper 171; the following section describes only the analysis of the events collected by 

the (WOE) trigger. 

II. DATA REDUCTION 

The data at fi=546 GeV were collected in one run with average luminosity L N 

3.2. 10” cm-*see-‘. The data at fi=lSOO GeV were collected in two different runs 

with average luminosity L N 1.9 . loss cm-ssec- ‘; the second run took place at the 

end of the &=546 run. 

In order to separate @ interactions from background, a first selection was made by 

rejecting events in which the time of flight analysis of the S4 (S5) ‘counters showed 

early hits in time with the incoming proton (antiproton) beams (TOF FILTER). The 

S4 and S5 detectors, located 1.2 cm away from the beam axis, detected efficiently 

beam halo particles travelling inside the vacuum chamber; the TOF FILTER rejected 

most of the (S4eS5) triggers due to random colnddences of these halo particles. In the 

J&546 run,and in the second fi=lgOO run, a loose TOF FILTER was also applied 

by the level 3 trigger of CDF [a]. Events were also rejected if the VTPC detected 

particle showers originating upstream of the interaction region (VTPC FILTER). Ta- 

ble 1 a- the event flow through these filters. The above two filters removed 

most of the bukground at the expense of a small loss of good events. The event losses 

caused by the TOF FILTER (< 1%) were evaluated by looking with the VTPC at the 

vertex z-distribution of a large sample of TOF rejected eventa . The losses due to the 

VTPC FILTER (5 0.5%) were evaluated by looking with the forward telescopes at 
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the z-distribution of the rejected events. These losses are listed in Table 2. 

When the level 3 trigger of CDF was used, about 10% of the inelastic triggers were 

lost in the hardware event-builder, a part of the CDF data acquisition system that, 

for every event, puts together the information coming from all detector components. 

The loss occurred at certain event record-sizes and was evaluated by interpolating the 

record-size distributions of the good $$I interactions. This loss did not affect the short 

record-size elastic events or the first run at fi=lSOO, where as a check we used a 

software event-builder. The event-builder corrections are listed in Table 2. 

In the rem&ring events, pp interactions are recognized by requiring a vertex and look- 

ing at its z-distribution. Details on the event vertex reconstruction procedure are 

given in Appendix A. Vertex z-distributions measured with all vertex detectors for the 

events at ,,/&546 are compared to our simulation in Fig 2. The excellent agreement be- 

tween data and simulation is an indication of nq&ible background contamination and 

demonstrates that the detector resolution is well understood. Vertex z-distributions 

at ,/&1800 are shown in Fig. 3; at this energy, there LI a background contamina- 

tion which appears in the tails of the distributions. For events in which the vertex 

was reconstructed by the VTPC, the data were fit with a gaussian form of width as 

determined by the simulation and a flat background (as expected for beam-gas inter- 

actions). Fez events reconstructed in the forward telescopes, the signal WM also fit 

with a gaussian of width an determined by the simulation. The beam-gas background 

shape was determined by reconstructing with the forward telescopez the vertex of a 

small number of tagged background events. These background events were identified 

when the VTPC reconstructed only a secondary vertex more than four sigma away 

from the primary vertex determined by the timing information of the trigger counters 
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(the VTPC vertex z-distribution of these events is flat). The vertex analysis event flow 

is summarized in Table 3. 

Corrections to the inelastic rate due the partial angular coverage of the trigger (~1.0%) 

and to the requirement of a vertex to validate a good pp interaction (<0.5%), were 

evaluated using the simulation, which is described in Appendix B. These corrections 

are listed in Table 2. Finally, the inelastic rates were multiplied by the trigger prescal- 

ing factors, which are also listed in Table 2. The prescaling factors where determined 

with a full simulation of the trigger and the data acquisition system to account for 

dead time corrections. Using the data, we verified the calculated prescaling factors 

to within l%, by studying the events (mostly background) which were contributed by 

more than one trigger at the same time. The quoted prescaling factor errors account 

for all uncertainties in the simulation inputs. 

III. RESULTS 

The corrected number of inelastic events contributed by the (WOE) trigger is listed in 

Table 4. The contribution of the (FOE) inelastic trigger, as derived in [7], is also shown. 

The (WsE) and (FsE) inelastic triggers share some high mass single diffraction events. 

To avoid doublz counting, we rejected those (p*E) trigger events which also fired the 

W=BBCW+SI eonntem. Fig. 4 shows the BBCW+S4 efficiency for rejecting single 

diffraction events as a function of the recoil momentum. By convoluting the BBCWfS4 

rejection efficiency with the functional form that fita all single diRraction events [7], 

we obtained the number of events to be added to the inelastic rate, as listed in Table 

4. As explained in detail in Appendix C, the inelastic (non-diffractive) contribution 
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(-0.4%) accepted by the (@E) trigger was not added to the total inelastic rate, as it is 

already included in the simulation-calculated correction (-1%) to the (WOE) inelastic 

rate. 

The results of the elastic scattering measurement, described in the preceding paper [3], 

are also listed for completeness in Table 4. 

Substituting the rates listed in Table 4 into eq. (3), we obtain (1 +pr) .a== 62.64f0.95 

and 81.83k2.29 mb at fi=546 and 1800 GeV, respectively. Assuming p=O.15, our 

results for the total cross section are 61.26f0.93 mb at Ji=546 and 80.03f2.24 mb 

at @=I800 GeV. 

The elastic scattering cross sections are 12.87zbO.30 (19.70f0.85) mb at &=546 (1800) 

GeV. 

From the elastic and total cross section values we derive the ratio ~~/ur=O.2lOd~O.O02 

(0.246JtO.004) at &546 (1800) GeV. 

The single diffraction dissociation cross sections [7] are 7.89f0.33 (9.46f0.44) mb, and 

the inelastic cross sections are 48.39f0.66 (60.33k1.49) mb at fi=546 (1800) GeV. 

Our results on e-r and U~/QT are compared with other experiments ([9)-116)) in Fig. 5. 

CONCLUSIONS 

We have tu&mred the B total cross section, q-, at &=546 and 1800 GeV. At 

4 = 546 GeV, our measured value q=61.2&bO.93 mb agrees with the UA4 re- 

sult ar=61.9f1.5 mb at the same energy, assuming in both cases the ratio of the 

real to imaginary part of the elastic scattering amplitude to be p=O.15. Our ratio 

T = u,~/u~=0.210f0.002 also agrees with the UA4 value r=0.215rb0.005. 
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At J;=1800 GeV, our result or=80.03f2.24 mb is larger than the E710 result ~=72.8%3.1 

mb [16]; our result r = o;1/~=0.246f0.004 agrees with the E710 value 0.23hO.012. 

The continuing rise of r up to &=I800 GeV is in qualitative agreement with the basic 

hypothesis of various optical models [17] in which the nucleon opacity increases with s, 

but the present energy is still far below the asymptotic regime of black&k maximum 

absorption at which r=0.5. However, the central opaqueness of the nucleon, defined 

as Imf(a,b) at b=O, where f(s, b) is the elastic scattering amplitude in terms of the 

impact parameter b [18], has increased from 0.36 at the ISR [19] to 0.492fO.008 at 

&=I800 GeV and is dose to the unitarity bound of 0.5 corresponding to complete 

absorption. 

From &=546 to fi=lSOO [.se/si=10.9, in(sr/ai)=2.4 and In* se - Inrai=65.8] the 

total cross section increases by 18.83t2.5 mb. For comparison, a similar 17.6fl.O mb 

increase of ur is observed from the ISR energy fiz52.8 GeV to A=546 GeV [but 

si/so=lO7, b~(si/so)=4.7 and In2 si-in* sc)=95.9]. Interpreting the rise of crT observed 

in our energy range in the framework of models based on a supercritical pomeron [20], 

we derive a pomeron trajectory ~(t)]~=s = 1 + e with e=0.112f0.013. 

In our energy range, while the inelastic cross section increases by a factor 1.25f0.03, 

the single diffraction cross section increases by 1.2OrbO.07. 
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APPENDIX A: EVENT VERTEX RECONSTRUCTION 

AND CHECKS ON DETECTOR EFFICIENCY 

Fig. 6 shows z-distributions of the interaction vertex as reconstructed by the VTPC 

(zy~pc), by the forward telescopes (zm), or by using the timing information of the 

trigger cot&era (-0~). When possible, the vertex was reconstructed using the VTPC. 

The VTPC qatern and the related vertex finding and track reconstruction algorithms 

have been described in previous publications [21,22]. For events with only a few or no 

tracks in the VTPC, the vertex was reconstructed from tracks in the forward telescopes. 

In the FTF and FTB detectors, particles generate one x-drift and one y-drift hit at 

four z-locations. On both (x-z) and (y-z) planes, straight lines were drawn through 
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every first and last hit along the z-axis . A “track” required the presence of at least 

one hit in each of the two internal chambers within a region of 2 mm radius around 

the straight line. If more than one hit was available, the closest to the line was chosen. 

Every particle produced one track in the (x-z) plane and one in the (y-z) plane. Since 

one projection was enough to determine a vertex by determining its z-position at which 

x(y)=O, good detection efficiency was assured. 

Tracks in the S4 and S5 detectors were reconstructed as in the elastic scattering spec- 

trometer [3]. First, spatial points were determined in every chamber by requiring at 

least two out of the four drift hits. Tracks were then reconstructed by connecting by 

a straight line all spatial points of the two chambers covering the same polar angle at 

the different z-positions. 

All tracks found by S4, FTF, FTB and S5 were projected to the z-coordinates (z~.,,~x) 

where x=y=O. To determine the vertex, only those atrocrt’s values that were within 

three sigma from .ZTOF were used, where sigma is the convolution of the error on ZTOF 

with the error on z~,,&. The z-position of the vertex was calculated by averaging the 

ztrack’s values weighted by their errors. 

The efficiency of the forward telescopes ww studied at length in several ways. The 

efficiency of the reconstruction code was tuned and checked with the simulation de- 

scribed in Appendix B. The forward telescopes reconstructed 99.8 % of all events with 

a zV~pc vertex (Fig. 7). For the few events for which no tracks were reconstructed in 

the VTPC or in the forward telescope (see Table 5), a special reconstruction code was 

used requiring only three out of the four drift planes in the FTF and FTB telescopes. 

This procedure resulted in 0.2% additional events with flat vertex z-distribution. 

Particular attention was paid to checking the efficiency of the trigger counters. The task 
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was straightforward for the S4 and S5 counters, which were close to the correspond- 

ing tracking chambers. We looked at events that triggered otherwise and, whenever 

a track segment was detected in one of the 54 or 55 chambers, we checked the pulse 

height of the corresponding counter. We found that, overall, the efficiency of all S4 and 

S5 counters was larger than 99.9%. The multi-counter BBC hodoscopes were located 

far from all tracking chambers, in a region where the majority of the particles in an 

event did not come from the interaction point but from secondary interactions in the 

beam pipe and leakage/albedo from the surrounding CDF calorimeters (41. We found it 

hard to determine the efbciency of the BBC counters by using the data. However, the 

simulation showed that every single BBC counter was blasted by several particles per 

event and that, even under the unrealistic assumption that the BBC cpunters were 50% 

efficient, our inelastic and diffractive triggers would be fully efficient in all triggerable 

events. As shown in Table 5, the fractions of inelastic triggers contributed by different 

trigger counter combinations compare well with the prediction of the simulation in 

which the BBC counters were assumed fully efficient. 

APPENDIX B: MONTE CARLO SIMULATION OF 

INELASTIC EVENTS 

In our in&&c event simulation, at each energy we generate a system of mass M = 

4. When generating single diffraction dissociation, M is the excited mass. The 

msss M (GeV) decays into n’ fictitious intermediate neutral objects with average 

multiplicity 

< n* >= 2 + O.l3ln(M - mp)* + O.l75lu*(M - mp)* 
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As described in Ref. [23], the multiplicity distribution of these objects is a gamma 

distribution, 

< n’ > P(n-) = P@ -du-le-Pr 
r(P) 

where z = n*/ < n* > and p-r = -0.104 + O.O58ln(M -m, + 6.0). Each neutral 

object has equal probability of turning into a single neutral hadron or a pair of charged 

hadrons. 

The rapidity (y) distribution of each hadron is generated in the interval - ln( M/m,) = 

Ymin < Y < Ymmz = ln(M/m,,). The distribution is flat for ]y] 5 yd = 0.4 . ymar and 

decreases linearly to zero from ye to y,i”(,.,). The transverse momentum pt (GeV) 

of each hadron is generated with a probability 

‘(Pt) = (1 + p~,1.27~~~.a3,~~(M/~.~~ 

This procedure defines the four-momentum (pI,pv,p., E) of each generated hadron. 

In our simulation, we balance the total momentum, conserve the energy fi and re- 

produce the measured dnd/dr) distributions at fi=ZOO, 546, 900 and 1800 GeV as a 

function of the event multiplicity [22, 241. The momentum is balanced by redefining 

the momentum of the i” particle as 

‘i , 
Ps,y = PI.” 

cya=, Pi., 
- ‘peon’& I&] 

p:i = pi - Ip:I.=E~~=T& 
,I 
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We then define 

P$-) = C Ip2]a , E = e&j 

j,,:'>(i)0 
j=l 

and calculate in a few iterations the final longitudinal momenta 

/i=g* tMmE) 'in 
I I 2p: Ipz 1 * 

The parameter Q is an empirical function of the event total multiplicity n 

i 

1.5 ‘f?% < 0.1 

a = 3.0 if* > 0.8. 

1.71 - 1.83-& t 4.22(*)” otherwise 

where < n >= 1.5 < n* >. When generating single diffraction events, we always 

assume a=3. 

In Table 5, fractions of inelastic triggers contributed by different trigger counter com- 

binations and fractions of number of vertices detected by the different vertex detectors 

are compared with the simulation. The simulation is in good agreement with the data 

at ,/X=546, and with the data at fi=lSOO after background subtraction. 

Simulated PmwLrapidity distributions as seen by the VTPC and by the forward tele- 

scopes are compared with the data at &546 in Fig. 8. The same comparison at 

&=lSOO is shown in Fig. 9; differences in the forward telescope are due to unsub- 

tracted background contamination (see Table 3). The total number of measured tracks 

in all detectors compares weU to the simulation at both energies (Fig. 10). However, 

the average track multiplicity in the data is about 10% larger than in the simulation, 
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eq.(4), which in turn generates an average charged multiplicity 10% larger than the 

value < IQ >= -7.0 $ 7.2 . so,‘27 measured by UA5 [25]. The average multiplicity 

in the simulation is the average between our finding and that of UA5, and work is 

in progress to extract from our data more accurate multiplicities and pseudorapidity 

distributions. As far as the total inelastic rate measurement is concerned, a *lo% 

change in the average multiplicity does not influence our extrapolated loss of inelastic 

events. 

APPENDIX C : NON-DIFFRACTIVE CONTRIBUTION 

MEASURED BY THE INELASTIC @E) TRIGGER 

As reported in our paper on single diffraction dissociation [7], 24483f3926 events at 

&=546 and 10276f1712 at fi=l800 were accounted for as non-diffractive contribu- 

tion to the (POE) trigger at w 20.85. By excluding events detected aLso by the (WsE) 

trigger, 20241b332 and 131M222 events are left at J;i=546 and 1800, respectively (see 

Table 4). At both energies, these events amount to ~0.4% of the total inelastic rate, 

for which the simulation predicts a 1% loss. 

At fi=lSOO, we simulated 70400 inelastic events; the antiproton recoil spectrometer 

was included iu the simulation. We found that 337 events produced a (POE) trigger 

and 102 dao &wed aU our fiducial cuts [7]. Fig. 11 shows the leading particle 

momentum spectrum for these events. The momentum distribution extends to values 

larger than 900 GeV, clearly indicating that in inelastic events apparent production of 

particles at z 2: 1 can be mistakenly achieved by reconstructing as high momentum 

recoils the products of secondary interactions wrongly assumed to come from the inter- 
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action point. With our fiducial cuts, we selected the simulated events with a particle 

at 2 El. 

These “recoils” were fit with the form (4) of [7], bu/dtdx = 1. e”V,l - 2)‘. In good 

agreement with [7], we found b’ = 5.3 f 1.6 GeV-s and 7 = 0.1 & 0.1. The number of 

simulated events with a particle at + 10.85, corrected by the spectrometer acceptance 

and normalized to the measured number of inelastic events, was 5510~2120 (775f246 

when requiring the inelastic trigger veto). The simulation, without any special tuning 

at z -1, supports the functional form we used to fit the non-diffractive contribution 

in the data (an analogous z-distribution for the leading particle in inelastic events was 

also found in the UA5 simulation [26]). The simulation reproduces weII the E and t 

behaviour observed in the inelastic (non-diffractive) data at z ~1; within the large sta- 

tistical errors, it also predicts the correct number of measured non&&active events. 

The 1.7~ discrepancy between simulation and data could be adjusted by modifying by 

about a factor of two the y-distribution of the leading partide at y N ynor. In doing 

so, our simulation extrapolated losses (cxl%, see Table 2) change by much less than 

the 0.4% assigned systematic error. 
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Table 1: Event flow through filters 

d/ii=546 l’* run at fi =1800 2” run at fi =1800 

Number of Events 

Triggers 45770 24123 205202 

TOF FILTER 32252 6740 16605 

VTPC FILTER 31717 5953 9638 

Table 2: Corrections to the measured (WOE) inelastic rate 

Loss corrections fi=546 1” run at 4 =1800 2” run at fi =1800 

TOF FILTER 1.000f0.003 1.007f0.001 1.007f0.005 

VTPC FILTER 1.005f0.0007 1.0033f0.0007 1.005ctO.002 

Event-bnildar 1.100 ~0.004 1.0 1.094*0.004 

MonteCarlo correction 1.016f0.005 

Prescaling factor 23.90*0.10 

1.013f0.004 1.013f0.004 

11.43f0.02 15.34f0.02 
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Table 3: Vertex analysis event flow 

fi=546 1” run at fi =I800 
Vertex by all events pp interactions all 

P run at fi ~1690 
all VTPC 28229 507L4 PP 

28229 5145 6085 7634*92 
Forward telescopes 3353 3353 679 436k56 1251 555k76 
No vertex 135 129 302 
Total 31562rt178 5514f93 8389k119 

Tab, 1: Contributions of the various tri 

Inelastic (WOE) 1 

Inel. (POE): single diffr. 

Inel. (FOE): single difk. (*) 2 

Inel. (POE): non&f&. 

Inel. (FOE): non-diRr. (*) 

Total inelastic (1+2) 

Elastic 

Total 

dNd/dtlt,o (eventa/GeVZ) 

iggc 

I 

VI to the corrected total number of e 

fi=546 fi=lSOO 

847796f8302 20889Oi2558 

162836&7986 37782f1770 

150151f7364 32092+1503 

24483f3926 10276f1712 

2024f332 1311f222 

997947f11097 240982f2967 

265535f2411 78691f1463 

1263482M1356 319673f3308 

i043598f52915 1336532f40943 

vents. 

(*Iafter remopal of events triggering also (W*E) 
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Table 5: Commrison of data with simulation for events collected by the (WOE) inelastic trigger 

Trigger by 

(BBCWoBBCE)o(S4+S5) 

(S~*S~)*BBCES(S~.S~)*BBCW 

(S4oBBCE)+(S5*BBCW) 

(S4eS5) 

(BBCWeBBCE) 

No vertex 

0,.,-track in the 

VTPC 

FTFCFTB 

s4+s5 

Fraction of inelastic events (%) 

fi = 546 %/-i = 1600 

sim data sim data data (*) 

96.5 96.0 96.3 95.3 96.6 

1.2 2.1 0.8 2.1 0.9 

0.29 0.27 0.3 0.4 0.3 

0.01 0.03 0.1 0.2 0.1 

2.0 1.6 2.5 2.0 2.1 

0.4 0.4 0.1 2.3 

95.2 94.1 96.3 91.7 96.5 

4.2 5.2 3.5 5.5 3.4 

0.2 0.3 0.1 0.5 0.1 

(*) after background subtraction 
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VTPC .__ 

Figure 1: Layout of the wert tide (outgoing@) of the apparatus ured to meamrc the inelastic 
croar section (the detector is symmetric with mpect to the iutcraction point). An exploded 
view of the S4 detector is also shown. 
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Figure 2: Vertex s-distributiona -ured at \/ii=546 GeV for (0) data that peaed all cuts 
listed in Table 1, and (o) ainiulated inelestic events reconstructed (u the data and normalized 
to the number of meamred eventa. 
(a) Vertex meuared by the VTPC in units of the spread a, (2 *30 cm) of the interaction 
region. The vertex moxuhwction accuracy of the VTPC is z &I cm. 
(b) Vertex meunred by the forward telescopes for the events in (a). In this case, a. is the 
convolution of the quad of the interaction with the nconrtruction error for each vertex 
(2 *6 cm). 
(c) Vertex measured by the forward telescopes for events without a VTPC vertex Here a, is 
defined aa in (b). The a-distribution widtha of the data and aimolation are larger than in (b) 
because of the in-ing importance of secondary interactionu in the beam pipe in events 
with only forward prongs. 
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Figure k Pam&rapidity distributiona (LI measured by the different vextex detectors at 
\/r =1800 GeV. The data (a) are not corrected for the detector acceptance. The background 
(-1% in the VTPC and -36% in the forward telescopes) hu not been removed. The aimu- 
l&ion (o) is normalized to the total number of measured tracks for every detector. 
(a) q-distribution of tracks detected by the VTPC. 
(b) Iv/-distribution meanred by SI+SS. 
(c,d) lv=l and Iq&Iiatributioru measured by the FTFtFTB. 
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Figure 10: Multiplicity distribution of tracks murured in alI detectors. Data (a) and 
simulation (o) are compared at (a) ,/%546 and (b) fi=l800 GeV. 
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