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Abstract
We discuss the possible role of non-topological solitons (Q-balls)
during first-order phase transitions in the early Universe. We argue that
Q-balls cannot mediate such a transition unless the self-coupling in the
effective potential is large, in which case the tunnelling probability is in
any case high. A corocllary of our analysis is that Q-balls do not solve the
entropy problems of flat potentials such as those of Coleman and Weinberg,

no-scale models and superstring models with intermediate scales. We also

comment on other problems of superstring models with intermediate scales.
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A recurrent cosmological problem for particle physics models is the
generation of excess entropy at a phase transition. This arises in models
with a first-order phase transition, and is particularly serious when the
effective potential is very flat and the scalar fields self-interact weakly.

)

Examples of such flat potentials include Coleman-Weinbergl

2)

models in gauge
theories, and no-scale supersymmetric models Examples of the latter are
effective supergravity or superstring models with a large symmetry-breaking

scale m_ intermediate between m and m 3) (the electroweak and Planck mass

I P

scales respectively). A large intermediate scale m. >> m is assumed to

I
arise because of the absence of renormalizable self-interactions along the
direction of symmetry breaking. Such flatness is required because the
gupersymmetry-breaking scalar masses must be 0(1l TeV). The flatness is
broken only by those masses, which have scale-dependent radiative
corrections, and possibly by non-renormalizable terms in the effective
potential. In such intermediate-scale models, the phase transitions only
occurs after the temperature falls to T ~ O(mw), and results in excess
entropy production unlessh's) m, X 1012 GeV.*

The problem of excess entropy release during the phase transition
appears because the probability of tunnelling from the false vacuum to the
true vacuum is negligible when T >> ;. The question therefore arises
whether some other mechanism could complete the transition more rapidly and
avoid the excess entropy production. It is known that under certain
conditions the spectrum of a scalar field theory with a global U(l) symmetry

*
As we comment later, this is only one of many problems with intermediate

scales in superstring models.



contains classically stable non-topological soliton states called
Q-ballss). It has been suggested that these could play an important role in
mediating a symmetry-breaking phase transition, and the rate of cosmological
production of non-topological solitons has been discussedT). However, the
role Q-balls might plays) in mediating a transition has not been worked out
in detail, and the possibility that they might avoid the entropy problems of
intermediate-scale models has not been addressed.

In this paper we explore general necessary conditions for Q-balls to be
able to mediate a cosmological phase transition, taking into account the
fact that they have a minimum possible charge Qmin determined by surface

8)

effects, and a maximum possible charge Qmax if the global symmetry is

gauged as in most models of interest. We find that Q-balls can be important

only if the scalar self-coupling A is large, which is not the case for

1) 2,3)

Coleman-Weinberg ’ and intermediate-scale models Indeed if A is large

enough for Q-balls to be important, the tunnelling amplitude is also large,

5,9

so that the entropy problem does not arise. We conclude by reminding

3,10)

the reader that the intermediate-scale models whose entropy problem is

not solved by Q-balls alse have many other phenomenological difficulties.

6)

We consider ’ an effective field theory with a global U(l) symmetry,

given by the lagrangian
* B .
- 3“¢ "¢ - U(D) (L)

*
where & = J¢ ¢, If

2 ) 2 2 .02 cwioy - 2 |
wo = min(2U/7) = 20 /@ < u° = U"(0) - 2U/® |¢ -0 (2)
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then the model has a stable non-topological soliton, the Q-ball, with & =

@(r)e-lwt where ®(r) is approximately a step function &(r) = QOB(R-r) and R
is the radius of the soliton.. The conserved charge is Q = 2w [ d3x[@(r)|2,
where w - w  as |¢| -+ «, The energy of the Q-ball can be written in the
form

E = A/R> + BR> + CR? (3)

6)

where the constants are given by

A/R3 - 3Q%/8n J s2a’x, BR3 - %ﬂ J &% U@), C = 4n [ d¢ J2u (4)
and U = U - % wg §2. The values of these constants for the lowest energy

configurations are determined by minimizing Eq. (3) with respect to R,
yielding the stable Q-ball solution. A generic potential U(®) which would

have a stable Q-ball is shown in the figure. We parametrize it as

U =22 f(@/@A)Q: (3)

where X is an overall scale which may be very small, ¢A is the location of

the asymmetric minimum of U(®), and we assume there are no other very small
(or large) parameters in the reduced function f(x = @/@A). The scalar
potential U(®) is temperature-dependent, and we will be using the generic

form (5) slightly above the critical temperature TC at which U(0) = US =

U(@A) = U ., As the temperature falls, UA falls below U

A and the asymmetric

S

minimum becomes energetically favoured. Since the Q-ball interpolates

between & = 0 and & = @o which approaches @A as UA -+ US’ our question is



whether the Q-ball could mediate the phase transition & = 0 - @A, which omne
would normally expect to be first order and to generate large entropy if X

' 3 . . .
1,2,3) which motivate our interest,

<< 1 as in the models
We must first determine the probability of Q-ball formation in the

cooling Universe. We recall that in normal thermal equilibrium the relative

probability of finding a given value of ¢ is P ~ exp(-F/T) where F is the

free energy. However, when the transition rate between two vacua falls

below the expansion rate of the Universe, which occurs at the Ginzburg

temperature TGll), the relative probabilities freeze. We learn from ref. 7
that then

where UM is the local maximum of the potential indicated in the figure. If

PA > 0.31, the formation of the symmetric vacuum state is so commonplace

that there are infinite domains where ® = ®,, according to percolation

A!
12). This would occur if UA = 0.8UM at the Ginzburg temperature.

studies
Even in the limiting qase where UA/UM - 1', equation (6) tells us that PA -
0.26, suggesting that the formation of a Q-ball could be a likely event,
even though each one would be surrounded by an infinite volume of symmetric
vacuum.

Once a bubble of the asymmetric vacuum, i.e., a Q-ball, has formed, it
tends to grow without limit as the temperature falls to Tc' To see this,
neglect the last (surface) term in equation (3), in which case the energy

6)

for fixed Q is minimized by a configuration with volume
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as T - Tc and UA + 0. Thus one might hope that even the bubbles generated
by the minimum probability PA = (.26 for the asymmetric vacuum would expand
to take over the Universe as T —+ Tc'

However, this first guess ignores the question whether the
corresponding Q-balls have charges within the allowed range. When a domain
of asymmetric vacuum forms at T,, 1its characteristic size is given by the
correlation volume Vs = (25)3, where £ is the correlation length. We

estimate V$ by identifying the transition rate I', = T exp(-UMvg/T) with the

T

Hubble expansion rate H to obtain

Vf = TGL/UM: L = £n(TG/H) (8)

In cases of interest where H ~ Té/mP and my, >> T, > 1 MeV we expect L < 50.

G

Since the number density n ~ T3 for each particle species, we expect N ~

T3V charged particles in each correlation volume, and hence a net charge

G ¢

Q = §/% o /L2 vg v 27 (9)

G ¢

in each bubble of new asymmetric vacuum. The desired Q-ball will indeed be
stable if Qmin < Q< Qmax’ where we now specify these limits on the Q-ball
charge.

A lower limit Qmin comes from taking account of the last (surface) term

)

in the expression (3) for the energy for the Q-ball7 . E is minimized by



E . = 2BQR2 + cq%/ 3R§ (10)

min
where

Ri - (A/BQZ) 1/3 (11)

and ZBRz = w0 would have been the energy per unit charge in the absence of

any surface energy. The condition for a Q-ball to exist is

Emin <Qu (12>

which requires

2
CRo 3

@2 Cpin = G0 (13)

We note that this result was obtained by assuming as a first approximation
that the surface energy was much smaller than the volume energy. If this
were not so, Q-balls probably would not exist. The surface energy would
start to dominate when CR2 > BR3 or Q > ZCZ/Bwo = Q.. It is clear that Q >
Qmin if pw > 3/2 @ in which case the following analysis would need to be
modified somewhat. However, it is reasonable to assume that @ is not much
smaller than u at the Ginzburg temperature when the Q-ball would be formed.

For a potential of the generic form (5), we have

3
C = 0(1) x 4m) @A, Bo-ow o= 0(1) x A@A (14)

so that



|

8
Qmin = 0(1) x 2 (15

St

which we will shortly compare with the estimate of Q in equation (9).

However, before doing so we recall that there is also an upper limit

8)

Qmax on the charge which holds if the U(l) symmetry is gauged °. 1In this
case we must impose
2
e Q
“s S B 4 R (16)

which has the physical interpretation that it is energetically disfavored to
bring a charged particle in from infinity and add it on the surface of the
Q-ball (e = J4xa is the U(l) gauge coupling). Equality in equation (16)

gives

oo ow 3 1/2

> ) (173
4«J2¢AUa

where we have used equation (7), as is appropriate for large Q-balls. For

the generic potential (5), the upper bound (17) can be written as

A 3
Qax = 01 = 3/2 Yanfo (18)

which we will also compare with the estimate of Q in equation (9).
The correlation length £ appearing in (9) is simply given by € =

l/m(TG), where m(T) is the effective temperature-dependent mass:



m?(T) = mi + o35 1? + o(ghyT? (19)

where g is a generic gauge coupling constant that need not necessarily be
identified with the U(l) coupling e. Since our motivation is the case where
A << 1, we assume that the last term in equation (19) dominates, in which

case
3 -3 -
V& = £ = (m(T,)) ~ =g T, (20)

Substituting this into equation (8), we find

A1/2
T, =0(1) x —5 =+ {21)
G Ll/l;-g3/4
and
- L1 .3/4
V§ (L) x 3/2 3/{4 L (22)
so that from equation (92)
Q- 0(1) x . - (23)
3/2
g
The double condition O‘min < Q< Qmax therefore becomes
18n _(_)_ 3
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The first Inequality cannot be evaded by deciding not gauge the U(l): it

imposes

32 > 001) x 18r g2 (25)

which conflicts with the expectation that A << 1, and is not satisfied by

1,2,3,10)

any of the flat potentials of interest to us If we were to

suppose that the ¢ fileld has no gauge interactions at all, we would have ¢ ~

9/4

1/ TG and hence T, = 0(1) = = O(1l) x L3/&/A , and Q =

—L1 v
e VR VAN

O(l)/l3/2. Even in this case the Qmin < Q condition would impose

1/2

A > 0(1) x (18xn) (25")

which is not wvery small! The requirement Q < Qmax’ which need be imposed

only if the U(l) is gauged, entails

/2

3
A > 0() x J%Elg 9375 (26)
g

if the ¢ field has other gauge interactions, which becomes

3/2
01 2 e '
A > 4m /3 (26")

if it has no other gauge Interactions.
We conclude from the inequality (25) [or (25')] that Q-balls would be

copiously produced and hence able to facilitate the phase transitiom only if
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X is large, in which case the phase transition could in any case proceed via
other mechanisms, such as quantum tunnelling, without generating excess
entropy. If X is 0(l), the gauged U(l) requirement (26) {or (26')] is
likely to be satisfied. We have seen that Q-balls are not useful for
alleviating the cosmological problems of theories with flat potentials, such
as Coleman-Weinbergl), no-scalez), or intermediate-scale modelsB’lo).

For completeness, we also remind the reader that intermediate-scale
modelsB’lo) have many other problems too. As we have already emphasized,
the fact that a large intermediate scale is generated along an almost flat
direction of the effective potential brings the danger of excessive entropy
generation when the Universe makes the transition to the asymmetric

4,3)

phase The only clear solution we know to this problem is that of ref.

13, where strong interaction effects at a scale A ~ 1011 GeV destabilize the
symmetric vacuum. In the context of superstring models, this solution can

operatela) in the flipped SU(5) x U(l) model of ref. 15. Models with

smaller gauge group factors in the observable sector, such as [SU(3)]3’10)

or SU(4) x SU(2)x SU(2)16), cannot exploit this solution and therefore
suffer a priori from a disastrous entropy problem.

They have other difficulties as well. To be compatible with proton

stability limits, they need m, > 1016 GeVg)

1 , and renormalization group
17,10) 7

suggest that m_ > 10l GeV is needed to keep sinzﬁw < 0.235

analyses 1

as required by experiments. This requires the absence of non-renormalizable
*

terms o« (¢ ¢)n with n < 7 in the flat direction of the potential. On the

other hand, other non-renormalizable terms with lower powers n are needed to

10)

give acceptably large masses to many unseen mirror particles In the

absence of any systematic procedure for calculating such non-renormalizable



, =12-

terms, it must just be assumed ad hoc that the undesirable terms are absent

and the desirable ones are present. If this is done in the model of ref. 3

10, so that mI/mP - 10-1, the renormalization group analysislo)

!

then

indicates that the gauge couplings in the different SU(3) factors differ by
18)

factors ~ 2 at m_, which conflicts with perturbative string expectations

I H
It has also been arguedlg’lo)

that the presence of a matter parity in
the theory can guarantee the absences of proton decay and of new particle
states which could lead to severe problems with flavor-changing neutral
currents. A judicious neglect of "accidental” zeros in the quark and lepton
mass matrices was a key assumption in the analysis of ref. 10. However,
other discrete symmetries necessarily present in CP3 X CP3 Calabi-Yau models
automatically create a plethora of accidental zeros. Thus one is left with

9)

a resultant low energy spectrum”’ with extra light particles and/or light

states which are linear combinations of standard and exotic fields, the

20). Other

latter being an expected problem in any rank-6 superstring model
difficulties including the protection of the Higgs mass were addressed in
ref. 21.

b

If mI/mP is indeed 0(10 ~), it is no longer sufficient to use the

leading logarithimice approximationzz)

to the renormalization group equations
to investigate whether and when gauge symmetry breaking occurs, as was done
in ref. 23. Instead, one should use the full one-loop effective potential
as was done in ref. 24. In the leading logarithimic approximation,
renormalization group evolution led to a negative ma352 for one or more of
the standard model singlets thus triggering spontaneous symmetry breaking,

but typically only when substantial bare scalar masses are present23). When

gaugino masses are the dominant source of supersymmetry breaking, symmetry
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5,9)

breaking in general will not occur We note, moreover, that most

authorszs) favor the gaugino mass ml/2 as the dominant source of

supersymmetry breaking in the observable sector, whereas in ref. 21 it was
mostly taken to be the scalar mass m . When the full one-loop effective

potential is used, despite the fact that scalar masses still do not become

24)

negative at the origin, the phase transition proceeds via strong coupling

phenomena as was advocated in refs. 13 and 14.
In addition to these technical objections, we also feel that ref. 3,
and 10 do not resolve the problem of ambiguity in the choice of the

10)

intermediate-scale symmetry breaking direction. It is generally assumed

19)

that the fields developing large v.e.v.'s respect matter parity which is

necessary but not sufficient for approximate proton stability, the absence
of AL %0 interactions, flavor-changing neutral currents, etc.g), but this
has not been proven. Indeed, the problem of ambiguity already appears at
the compactification scale, since it is normally assumed without proof that
specific values of the Calabi-Yau manifold moduli are chosen so as to obtain
s . . . .3,10)
certain essential discrete symmetries .

We conclude that intermediate-scale models still have a host of

problems, and regret the fact that Q-balls do not solve even one of them.
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Figure Caption

The effective potential U(P) is minimized at the point §: & = 0, near

which U = pzéz. There is a local maximum at the point M: & = @M and a

local minimum at the point A: & = ¢A. The quantity 2U/<I>2 is minimized at

the point 0: & = @D.
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