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Abstract

Background: Mating behaviors in simple invertebrate model organisms represent tractable paradigms for understanding
the neural bases of sex-specific behaviors, decision-making and sensorimotor integration. However, there are few examples
where such neural circuits have been defined at high resolution or interrogated.

Methodology/Principal Findings: Here we exploit the simplicity of the nematode Caenorhabditis elegans to define the
neural circuits underlying the male’s decision to initiate mating in response to contact with a mate. Mate contact is sensed
by male-specific sensilla of the tail, the rays, which subsequently induce and guide a contact-based search of the
hermaphrodite’s surface for the vulva (the vulva search). Atypically, search locomotion has a backward directional bias so its
implementation requires overcoming an intrinsic bias for forward movement, set by activity of the sex-shared locomotory
system. Using optogenetics, cell-specific ablation- and mutant behavioral analyses, we show that the male makes this shift
by manipulating the activity of command cells within this sex-shared locomotory system. The rays control the command
interneurons through the male-specific, decision-making interneuron PVY and its auxiliary cell PVX. Unlike many sex-shared
pathways, PVY/PVX regulate the command cells via cholinergic, rather than glutamatergic transmission, a feature that likely
contributes to response specificity and coordinates directional movement with other cholinergic-dependent motor
behaviors of the mating sequence. PVY/PVX preferentially activate the backward, and not forward, command cells because
of a bias in synaptic inputs and the distribution of key cholinergic receptors (encoded by the genes acr-18, acr-16 and unc-
29) in favor of the backward command cells.

Conclusion/Significance: Our interrogation of male neural circuits reveals that a sex-specific response to the opposite sex is
conferred by a male-specific pathway that renders subordinate, sex-shared motor programs responsive to mate cues. Circuit
modifications of these types may make prominent contributions to natural variations in behavior that ultimately bring
about speciation.
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Introduction

Courtship and mating are among the most elaborate of

behaviors displayed in the animal kingdom [1]. The ultimate goal

of the male in these behaviors is to fertilize oocytes. However,

achieving this goal often requires the execution of a behavioral

sequence, progression through which depends on detection of

appropriate conspecific cues and the expression of appropriate

behavioral responses [2]. These sequences serve to ensure that

copulation occurs between conspecifics and that unworthy or

inappropriate partners are rejected. As such, the study of mating

behavior can provide valuable insight into understanding not only

the neural bases of sex-specific behaviors, but also mechanisms

underlying decision-making, sensorimotor integration and the

coordinated timing of sequenced motor behaviors. In many

species, delineation of the underlying circuitry and its functional

interrogation are hampered, however, by nervous system com-

plexity and relative genetic intractability.

The nematode C. elegans is an attractive model for exploring the

circuits controlling sex-specific behaviors. The two sexes, male and

hermaphrodite, have comparatively simple nervous systems,

consisting of only 302 and 383 neurons, respectively 294 of which

are sex-shared (a.k.a. core neurons) [3–5]. The connectivity of the

hermaphrodite nervous system has been described with single cell

resolution [6,7] and, recently, an equally detailed map of the male

posterior nervous system has been completed [3]. These wiring

diagrams, combined with the amenability of C. elegans to genetic
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and optogenetic manipulation, enables the functional dissection of

circuits supporting specific behaviors, with single cell resolution

and in the context of a freely behaving animal (reviewed in Xu and

Kim, 2011 [8]).

The C. elegans hermaphrodite is essentially a female that can

make a limited supply of sperm for self-fertilization. The

hermaphrodite can also fertilize her oocytes using sperm acquired

through copulation with a male [9]. The C. elegans male mates the

hermaphrodite using a goal-oriented behavioral sequence that is

composed of sex-specific motor behaviors [10,11]. In this study,

we explore the circuitry controlling the male’s decision to initiate

mating in response to physical contact with a mate. Prior to a mate

encounter, the locomotory patterns of the male are similar to that

of the hermaphrodite. He moves through his environment with a

predominantly forward directional bias and his movement is

powered by propagation of a dorsal-ventral sinusoidal wave along

the body (Fig. 1A). If mate contact prompts the mating choice, the

male initiates a contact-based search of the hermaphrodite’s

surface for the vulva region, the vulva search. External sensilla on

the male tail, the male sensory rays, are responsible for inducing

vulva search behavior and guiding its trajectory in response to

hermaphrodite surface cues (Fig. 1B–1C) [12]. Ray stimulation

causes the male to abruptly cease forward movement and reverse

onto the hermaphrodite, apposing his tail against her surface

(Fig. 1B). This action brings the rays and the vulva-sensing sensilla

of the tail (the hook and the post-cloacal sensilla – p.c.s.) into direct

contact with the hermaphrodite cuticle. With his tail apposed, the

male moves systematically over the hermaphrodite’s surface with a

backward directional bias so that his sensilla-laden tail leads the

way (Fig. 1C). Both this extended bout of backward movement

and tail apposition posture are male-specific motor behaviors.

Their induction also sex-specifically alters propagation of the

sinusoidal wave, such that it does not progress to the tail region

and may be variably absent from the posterior half of the body

during mating. The vulva search continues until the hook and

p.c.s. sense the vulva area and induce the male to pause there and

begin to prod for the vulva slit with his copulatory spicules

[11,13,14].

The hermaphrodite locomotory system has been extensively

studied and homologous cellular components are present in the

male nervous system, raising the possibility that male movement

during mating may be supported by this sex-shared circuitry

[4,5,7]. However, the male nervous system also contains 89

additional neurons that are male-specific, mainly distributed

through the tail and the ventral nerve cord [3–5]. The extent to

which these male-specific cells contribute to locomotory control

during mating is the question of current interest. In this study, we

show that the rays regulate directional movement during the vulva

search using a male-specific pathway that converges on the sex-

shared locomotory system, rendering it responsive to mate-derived

sensory signals. Our data suggest that ray activation triggers the

forward-to-backward directional switch by preferentially upregu-

lating the activity of backward command interneurons in this

system. The rays act through male-specific decision-making

interneuron PVY and its auxiliary cell PVX. These interneurons

define the convergence point for multiple sensory pathways, both

sex-shared and male-specific, suggesting that PVY and PVX may

be a pivotal site for integrating and prioritizing various sensory

cues to generate the appropriate behavioral response.

Results

Backward Locomotion during Mating Depends on Sex-
shared Command Interneurons

In the C. elegans hermaphrodite considerable progress has been

made in understanding the cellular and molecular bases for

directional control of movement. Laser ablation experiments have

uncovered a small group of interneurons that play a prominent role

in the choice between backward and forward locomotion [15–18].

These interneurons, termed command interneurons, can be divided

into two functional classes. The backward command interneurons,

Figure 1. Male mating behavior is characterized by distinct
patterns of locomotion. A cartoon depicting the key changes
observed in male movement and body posture that are triggered by
mate contact. A. In the absence of mate contact, male locomotion
resembles that of the hermaphrodite: the male moves with a forward
locomotion bias and the sinusoidal body wave driving movement
propagates along the full length of the body. B. Contact with a mate via
the male tail induces contact response: the male presses his tail against
the hermaphrodite surface and commences backward movement. C.
Backward locomotion continues until the vulva is sensed, whereupon
the male pauses and prods for the vulva slit opening with his
copulatory spicules. The male sensory rays (shown in the inset for B),
which sense hermaphrodite contact, are essential for the induction and
maintenance of tail apposition and for directional control on the
hermaphrodite surface.
doi:10.1371/journal.pone.0060597.g001
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AVA, AVD and AVE left/right (L/R) bilateral pairs, promote

backward locomotion. The forward command interneurons, AVB

and PVC L/R bilateral pairs, promote forward movement. The

forward and backward command interneurons confer movement

directionality by stimulating distinct pools of ventral nerve cord

motor neurons (Fig. 2A), dedicated to forward and backward

movement, respectively [15,19–21]. Motor neuron activity, in turn,

regulates the sex-shared body wall muscles to produce the sinusoidal

wave. The command interneurons are the postsynaptic targets of a

number of sensory pathways that promote movement either towards

or away from specific stimuli by preferentially stimulating forward or

backward command cells, respectively [7,22–25]. During sponta-

neous locomotion (locomotion in the absence of specific stimuli), the

worm moves with a forward directional bias but occasionally moves

backward (i.e. makes reversals) to change trajectory [26]. It is

proposed that this forward locomotion bias is produced by an

intrinsic imbalance of ventral nerve cord motor neuron activities

favoring the forward motor pathway. This imbalance is established

in part by gap junction connections [21] and in part by descending

inputs from a second directional control pathway, the disinhibitory

pathway [25].

The command interneurons and motor components of the

locomotory system are also present in the male nervous system [3–

5]. In the pre-anal ganglion (PAG) of the male tail, the command

cell processes receive direct inputs from a number of male-specific

interneurons that are postsynaptic targets of the ray neurons

(Fig. 2A). Although these male inputs target both backward and

forward command interneurons, these connections are heavily

weighted in favor of the backward command interneurons, in

particular AVA. This suggests that the rays may promote reversal

by preferentially activating AVA. To test this, we eliminated the

AVA interneurons in males using laser-mediated cell-specific

ablation then examined its impact on male mating behavior

(Materials and Methods). AVA interneurons are born in the

embryo, however, presynaptic male-specific neurons (born in the

third larval stage (L3)) do not connect with AVA until the stage

prior to adulthood and sexual maturation, L4. Therefore, we

performed these AVA ablations on L4 males. Mock-ablated

(Control) and AVA-ablated L4 males were allowed to mature into

adults overnight in the absence of hermaphrodites, so they were

virgin, 1-day old adults at the time of assay. All male populations

examined in this study were isolated in this way to ensure that they

were sexually inexperienced and of the same age as, anecdotally,

we have observed that these factors significantly affect the

probability of vulva search initiation. Mating behavior assays

were performed as follows: a single mock- or cell-ablated virgin

adult male was placed on a bacterial mating lawn with five virgin,

1-day old adult hermaphrodites. Genetically wild type hermaph-

rodites often dart or move during the male’s mating attempts [27],

making quantification of male locomotory behavior difficult. To

reduce hermaphrodite movement during mating, we used unc-64

hermaphrodites as mating partners, which are sluggish due to a

mutation in the C. elegans syntaxin gene [28]. Male behavior during

mating was digitally recorded for 15 mins or until ejaculation

occurred, which ever happened first [12]. We paid particular

attention to three aspects of vulva search behavior that would

indicate the efficiency of forward to backward switching: the

frequency with which backward movement was induced by initial

contact (a.k.a. contact response; Fig. 2B) and the strength and

duration of the backward movement during the search (scanning

speed and sustained tail contact, respectively; Fig. 2C, 2D).

Mock-ablated males typically responded on the first or second

contact by placing their tail, ventral side down, against the

hermaphrodite and commencing backing (Video S1). Conse-

Figure 2. Male movement during mating depends on sex-
shared and male-specific interneurons. A. Schematic of an adult
male (lateral view, left side) showing the anatomical location of cells
ablated in experiments shown in B–D and in Fig. 3. Sex-shared cells
(pink); male-specific cells (blue). The backward command interneurons
(only the left AVA neuron is shown) have cell bodies in the head and
send a process along the ventral nerve cord (VNC) where they synapse
with motor neurons required for locomotion (the distribution of cell
bodies for only a single motor neuron class is shown). PVY and PVX
(located in the male pre-anal ganglion) receive inputs from the ray
sensory neurons and have outputs onto the command interneuron
processes. B–D. The impact of cell-specific ablations on three aspects of
vulva search behavior related to locomotory control. B. Contact
response efficiency. C. Scanning speed. D. The number of times tail
contact was lost per mating. The X-axis indicates the cells ablated in
each treatment. A box plot representation of the data is shown, with
median and mean values indicated by the line and the black dot within
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quently these control males had a median contact response success

rate of 100% (i.e. 1 out of 1 contacts resulted in a complete contact

response, namely both tail apposition and initiation of backward

movement; Fig. 2B). Using these motor behaviors, control males

then moved along the hermaphrodite’s anterior-posterior axis, a

behavior referred to as scanning (Fig. 1C). If males reached the

hermaphrodite head or tail without sensing the vulva, they made a

sharp turn, without losing tail contact, and scanned along the

other side of the hermaphrodite, again moving with backward

locomotion but in the opposite direction. We calculated the

scanning speed of control males (in mm/sec) by dividing the length

of the hermaphrodite by the time required for a male to scan the

length (see Materials and Methods for details). As encountering the

vulva can induce pausing (and consequently affect scanning time),

scanning speed measurements were obtained from only the non-

vulva side. Control males scanned a hermaphrodite length at a

median speed of 180 mm/sec (Fig. 2C). Control males typically

maintained tail contact with the hermaphrodite for the entire

search (Fig. 2D; median number of lost contacts during

scanning = 1).

Ablation of AVA caused locomotion defects in males that were

apparent even when males were not engaged in mating. These

defects resembled those reported for AVA-ablated hermaphrodites

[15]. Specifically, during spontaneous locomotion, AVA-ablated

males had difficulty switching from forward to backward

movement and consequently reversed only a short distance before

reverting to forward movement. Backward movement defects were

also evident in vulva search behavior. AVA-ablated males

exhibited highly variable contact response efficiency (-AVA

treatment, Fig. 2B). When scanning was initiated successfully,

the scanning speed of AVA-ablated males was significantly slower

than that of control males (-AVA treatment: median scanning

speed = 140 mm/sec cf. control males = 180 mm/sec; Fig. 2C). In

addition, AVA-ablated males lost tail contact during scanning at a

significantly higher rate than controls, possibly because the

uncoordinated phenotype resulting from AVA ablation interferes

with tail apposition (-AVA treatment: median number of lost

contacts = 5 cf. control males = 1; Fig. 2D). These results suggest

that the rays depend significantly on the sex-shared AVA

command interneurons to induce backward movement during

the vulva search. However, our observation that AVA-ablated

males can exhibit limited and stochastic backward movement

during mating also reveals that the rays may additionally act

through other interneurons involved in directional control. The

stochastic nature of ablated-male defects suggests that, in some

instances, activity of these alternative pathways is sufficient to drive

backward movement, whereas at other moments it is not.

Male-specific Interneuron PVY Promotes Backward
Locomotion during Mating

We next investigated the neural pathways by which the rays

control AVA. In the male PAG, two major ray neuron targets, the

male-specific interneurons PVY and PVX, have significant inputs

onto command interneuron processes (Fig. 2A; [3]). These inputs

are biased in favor of the AVA backward command interneurons

such that the ratio of synaptic inputs onto AVA, relative to the

AVB forward command interneurons is 2:1 [3]. To test whether

PVY and/or PVX represent the major route by which the rays

control the command cells, we ablated one or both male-specific

interneurons and assessed the impact on mating behavior. In

males where only PVY was ablated, contact response efficiency

and scanning speed were significantly reduced compared to

control males (-PVY treatment: median % contact re-

sponse = 30%, Fig. 2B; median scanning speed 135 mm/sec,

Fig. 2C; Video S2). PVY-ablated males also lost tail contact at a

significantly higher frequency than control males during the search

(median number of contacts lost = 5; Fig. 2D). These various

locomotion defects and their stochastic expression resembled the

behavioral phenotype of AVA-ablated males, consistent with the

model that PVY promotes backwards movement by acting

through AVA neurons. However, in contrast to AVA-ablated

males, PVY-ablated animals had no obvious defects in reversal

when not engaged in mating (data not shown). Thus, PVY is only

required for locomotory control in response to ray-mediated mate

contact. Although PVX also has inputs onto AVA, its ablation had

no obvious affect on vulva search behavior. Males lacking PVX

had superficially wild type mating behavior (-PVX treatment,

Fig. 2B–2D) and males lacking both PVX and PVY (-PVY-PVX

treatment, Fig. 2B–2D) were not significantly different from males

lacking PVY only. Together, these ablation experiments reveal

that PVY promotes backward movement during the vulva search,

while PVX may have a functionally redundant or subtle role in the

process. Like the AVA-ablated males, males lacking PVY could

still reverse along the hermaphrodite, albeit erratically and slowly.

Thus, although PVY and AVA are important for backward

moment during mating, other ray neuron targets may be able to

partially compensate for their absence.

Optogenetic Manipulation of PVY and PVX Activity
Affects Male Movement

To gain further insight into the functional properties of PVY

and PVX, we artificially activated these interneurons in solitary

males using the heterologous light-inducible cation channel

ChannelRhodopsin-2 (ChR2) from Chlamydomonas reinhardtii [29].

To target expression of ChR2 to PVY and PVX, we placed a YFP-

tagged ChR2 transgene (ChR2-YFP) under the control of the nlp-

14 promoter (Pnlp-14; [30]). Previous studies have shown that this

particular nlp-14 promoter sequence drives expression of GFP

reporters to a subset of nervous system cells common to both sexes:

the sensory neurons ASI, ASK, ASE, PHA, two retrovesicular

ganglion neurons, ventral nerve cord motor neurons and the

interneuron PVT [30]. We find that in the male Pnlp-14::GFP

reporters are additionally expressed in male-specific PVY, PVX

and two male-specific dorsal rectal ganglion cells. However, we

observed that the ChR2-YFP transgene, when placed under the

control of this same nlp-14 promoter region, is expressed in only a

fraction of these cells, being notably absent from the ventral nerve

cord motor neurons, PHA and often the male dorsal rectal

ganglion neurons. The limited expression of CHR2-YFP, com-

pared to GFP, may be because the former lacks introns and

consequently may be less efficiently processed in some cell types.

Retinal is an essential co-factor for ChR2 and as C. elegans does not

endogenously synthesize this compound, it must be provided in

their food in the form of all-trans-retinal (ATR) in order for the

animal to generate functional ChR2 (Materials and Methods). To

perform the artificial activation assays, 1-day old adult, virgin Pnlp-

14::ChR2-YFP males were individually exposed to a 500 msec flash

of blue light (470/40 nm wavelength) while moving forward. Since

blue light is an aversive stimulus for C. elegans and can alone elicit

an avoidance response (either forward or backward movement

away from the source), these transgenic animals also carried a

mutation in the lite-1 gene (lite-1(ce314)), which encodes a putative

the box, respectively. Comparisons to the control (mock-ablated) were
made using a ranksum test. The number of males assayed for each
treatment, n: Control = 63; -PVY-PVX = 15; -PVY = 19; -PVX = 8; -AVA = 22.
Significance, *p,0.05; **p,0.005.
doi:10.1371/journal.pone.0060597.g002
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ultraviolet receptor [31]. Animals carrying lite-1(ce314) are

substantially less avoidant of blue light. The behavior of transgenic

animals was digitally recorded during the assay and the distance

they traveled (either forward or backward) from the time of the

flash was determined by analyzing video frames (as described in

Materials and Methods). When exposed to the light flash, 90% of

Pnlp-14::ChR2-YFP males immediately reversed and traveled a

median distance of -5 mm, with the negative value indicating that

they reversed away from their position at the time of the flash (M

treatment, Fig. 3A, Video S3). Through a series of control

experiments we determined that this reversal response was

specifically due to activation of male-specific interneurons PVY

and PVX. First, this robust reversal behavior was not a non-

specific response to the light flash, as the substantial majority of

males expressing non-functional ChR2 did not alter their behavior

and continued moving forward (-ATR, M treatment, Fig. 3A,

Video S4). Second, Pnlp-14::ChR2-YFP transgenic hermaphrodites,

which lack PVY and PVX, did not respond to the light flash (H

treatment, Fig. 3A). Moreover, Pnlp-14::ChR2-YFP males lacking

PVY and PVX cells, due to their specific ablation with the laser,

did not reverse in response to the light flash and continued moving

forward (-PVY-PVX treatment, Fig. 3B). These experiments

demonstrate that artificial activation of PVY and PVX is sufficient

to overcome the forward directional bias and induce backward

movement.

We next used the ChR2 artificial activation system to further

explore the relative contribution of PVY and PVX to male reversal

behavior. In the mating assays discussed above, eliminating PVY

alone significantly disrupted backward locomotion during the

vulva search (Fig. 2B–2D). Consistent with this, few Pnlp-14::ChR2-

YFP males ablated for PVY reversed when exposed to the light

flash (16%, -PVY treatment, Fig. 3B), even though PVX was

present and presumably activated. While activation of PVX alone

had little impact, PVX co-stimulation with PVY enhanced the

robustness of the reversal response, as males with only PVY (-

PVX) showed greater variability in their response. Thus, while

these experiments confirm that PVY is a crucial effecter of

backward locomotion, they also reveal a function for PVX as an

auxiliary cell, a role that may be readily compensated for by other

ray targets in the context of mating if PVX is absent (Fig. 2).

The ChR2 experiments above showed that PVY+PVX

activation is sufficient to induce the switch from forward to

backward locomotion. We next asked whether PVY and PVX

activity were required continuously during the vulva search to

drive backward movement. To test this, we used the heterologous

light-inducible hyperpolarizing channel NpHR, from Natronomonas

pharaonis [32,33], to inhibit PVY and PVX while the male was

performing the search. These experiments were performed on lite-

1(ce314) transgenic males in which NpHR expression was targeted

to PVY and PVX by placing an NpHR-EYFP transgene under the

control of the nlp-14 promoter. Under the control of this promoter,

NpHR-YFP is expressed in the same constellation of cells as

ChR2-YFP (described above). Like ChR2, NpHR function

depends on the presence of ATR so males grown in the absence

of ATR provide a convenient negative control for any non-specific

effect of light exposure. In each mating assay, a single virgin 1-day

old adult transgenic male was placed with 5 virgin adult unc-64;

lite-1 hermaphrodites on a mating lawn and allowed to initiate

mating. We activated NpHR during scanning by exposing the

male to a 500 msec flash of yellow light (540/25 nm wavelength)

at 5, evenly spaced, time intervals and counted the number of

times pausing coincided with a pulse (Fig. 3C). Pnlp-14::NpHR-

EYFP males, grown in the presence of ATR, paused in response to

4 out of 5 flashes, on average (+ ATR+mating treatment: mean

pausing frequency = 80%, Video S5). In contrast, Pnlp-14::NpHR-

EYFP control males, grown in the absence of ATR, largely ignored

the light pulses and continued scanning, pausing at a mean

frequency of only 1% (-ATR+mating treatment, Fig. 3C, Video

S6). These data therefore argue that PVY and PVX function is

required continuously during the vulva search to maintain

backward movement. To test whether NpHR activation could

induce pausing when males were not engaged in mating, we

flashed Pnlp-14::NpHR-EYFP males (grown in the presence of

ATR) during spontaneous locomotion while they were reversing.

These males rarely paused suggesting that the pausing induced

during mating was due to hyperpolarization of cells that are

normally active only when the rays sense mate contact (+ATR+no

mating treatment: mean pausing frequency = 10% Fig. 3C). The

most likely candidates for these cells are PVY and PVX. Taken

together, these optogenetic data indicate that PVY promotes and

sustains backward movement in the context of mating, and that

PVX functions as an auxiliary cell that is largely redundant in the

circumscribed mating assays used here with Unc hermaphrodites,

but which under certain circumstances might enhance PVY-

induced motor output.

PVY+PVX-induced Reversal is Dependent on Activity of
AVA

Our cell ablation experiments show that AVA is required for

backward movement during the vulva search. If PVY and PVX

act through AVA, as the wiring diagram implies [3], then ablation

of AVA should block PVY+PVX-induced reversals in our ChR2

assay system. We observed that this was indeed the case. When

exposed to a 500 msec flash of blue light, Pnlp-14::ChR2-YFP

AVA-ablated males were severely impaired in reversal behavior

with a significant proportion either pausing, unable to reverse

(25%), or reversing a median distance of 21 mm (56%) (Fig. 3B).

Thus, PVY+PVX-induced reversal is dependent on AVA func-

tion.

AVA interneurons stimulate backward movement by activating

the VA and DA backward motor neurons of the ventral nerve cord

[15,20,21]. Consistent with this, we observed that males defective

in VA neuron connectivity (unc-4 mutants; [34]) were defective in

PVY+PVX-induced reversal response and, like AVA-ablated

animals, a significant proportion of unc-4 males either paused

(41%) or backed less than a micrometer (27%) (-VA treatment,

Fig. 3B). Thus, PVY+PVX-induced backward movement is

ultimately dependent on sex-shared backward motor neurons of

the ventral cord. Taken together, these experiments delineate a

simple neural pathway that consists of the sensory ray neurons,

PVY and PVX, AVA and the backward motor neurons.

PVY+PVX-induced Reversal Depends on Cholinergic
Neurotransmission

PVY and PVX express cholinergic markers (Fig. S1A),

suggesting that these male-specific interneurons stimulate the

command cells using cholinergic transmission. Consistent with this

possibility, the command interneurons express several genes

encoding cationic acetylcholine receptor (acr) subunits. acr-15 and

acr-16 encode alpha nicotinic acetylcholine receptor subunits

(nAChRs). acr-15 is expressed in both AVA and AVB, while acr-16

is expressed only in AVA [35,36]. We observed that acr-18, which

encodes a DEG-3 type acetylcholine receptor, is also expressed in

AVA, as well as unc (uncoordinated)-29, which encodes a non-

alpha receptor subunit (Fig. S1B, S1C). To test whether any of the

cholinergic receptors encoded by these genes are required for

PVY+PVX-induced reversal behavior, we artificially activated

Directional Movement Control in C. elegans Mating
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PVY+PVX in single mutants and in various double and triple

mutant combinations of these receptor genes. Mutations in three

of these genes (acr-18, unc-29 and acr-16) disrupted reversal

behavior and are discussed below (for other mutant combinations

tested see Fig. S2).

In acr-18 null mutants, only 28% of males reverse in response to

PVY+PVX activation (Fig. 4). The remainder either continued to

Figure 3. Optogenetic manipulation of PVY and PVX activity affects male movement. A, B. PVY and PVX artificial stimulation, using ChR2,
induces backward locomotion that is male-specific and depends on sex-shared locomotory system cells. The graphs show the impact of ChR2
activation on Pnlp-14::ChR2-YFP transgenic animal locomotion. Except for H (hermaphrodites) in (A), all animals tested were transgenic males (in (A),
male treatments are designated ‘‘M’’). Except for the ‘‘-ATR M’’ control treatment in (A), all animals were cultured and assayed in the presence of OP50
E.coli food supplemented with ATR. The X-axis indicates the food supplementation conditions (+ATR or –ATR), animal sex or which cells were ablated.
The controls in (B) correspond to mock-ablated animals. The Y-axis shows the distance traveled (in mm) in response to the flash, with the negative
values indicating backward (BK) movement and the positive values indicating forward (FWD) movement (see Materials and Methods). Statistical
comparisons to the relevant controls were made using a ranksum test for differences in the median. Tabled below each graph is the percentage of
animals in each treatment that backed, paused or continued to move forward (see Materials and Methods for the mm range of each category). n is the
number of worms assayed in each treatment. C. Artificial hyperpolarization of PVY and PVX blocks backing in the context of mating. Shown is the
pausing frequency of Pnlp-14::NpHR-EYFP males in response to yellow light flashes. The X-axis shows the food supplementation and mating (Mating
or Not Mating) conditions used. The Y-axis indicates the percentage of light flashes (out of 5) that induced pausing. n: -ATR Mating, 26; +ATR Mating,
28; -ATR Not Mating, 10; +ATR Not Mating, 10. Comparisons between –ATR and +ATR treatments were made using a ranksum test. Significance,
*p,0.05; **p,0.005.
doi:10.1371/journal.pone.0060597.g003
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move forward (56%) or paused (16%). acr-18 reporter expression is

not limited to AVA. In both sexes, acr-18 expression is apparent in

a number of sex-shared head and ventral nerve cord neurons and,

in the male, in a subset of ray and pre-anal ganglion neurons (Fig.

S1B) [37]. To determine whether the absence of acr-18 function

specifically in the backward command cells was responsible for the

mutant reversal defect, we targeted expression of a wild type acr-18

transgene to AVA in acr-18 mutant males and asked whether this

was sufficient to rescue the reversal defect. To this end, we placed

a promoterless fragment of the wild type acr-18 gene (a

cDNA::genomic hybrid gene and its 39 UTR) under the control

of the nmr-1 gene promoter, which is expressed in backward

command cells AVA, AVD, AVE and in AVG, RIM and PVC

([38]; Materials and Methods). The Pnmr-1(AVA)::acr-18(+) trans-

gene was co-injected with a Pflp-18::mCherry construct. flp-18 is

expressed in AVA and we used the presence of mCHERRY in

AVA as a proxy for the presence of the Pnmr-1(AVA)::acr-18(+)

transgene because in C. elegans, transgenic arrays typically contain

copies of all injected constructs. We observed that the presence of

the acr-18(+) transgene in the nmr-1-expressing cells was sufficient

to rescue the acr-18 mutant defect: 76% of acr-18 males carrying

the rescuing transgene in AVA reversed in response to PVY+PVX

activation, whereas only 28% of acr-18 control males, which lacked

this transgene, reversed (Fig. 4). These data suggest that

PVY+PVX-induced reversal depends on an ACR-18-containing

cholinergic receptor that functions in nmr-1-expressing cells, most

likely the backward command cells as these are direct targets of

cholinergic PVY and PVX.

While the absence of acr-18 function in AVA significantly

impairs reversal behavior in our ChR2 assays, acr-18 male

populations can still reverse at an appreciable frequency (28%).

This suggests that other receptors must be involved in mediating

transmission. Loss of acr-16 function alone, or in combination with

acr-18 mutations, caused a modest, but not significant, decrease in

reversal frequency, suggesting that acr-16 contributes to reversal

response but is not pivotal (Fig. 4). acr-16 has been shown to

function redundantly with channels containing the non-alpha

subunit encoded by unc-29 in two other tissues in the worm: in the

body wall muscles, required for locomotion, and in male-specific

muscles that facilitate spicule insertion during copulation [37,39].

During our analyses of unc-29; acr-16 spicule insertion behavior, we

noticed that double mutant males exhibit reduced scanning speed

during the vulva search, a phenotype also exhibited by PVY-

ablated males (Fig. 2C) [37,39]. This prompted us to test whether

unc-29 and acr-16 might also have partially redundant roles in

mediating PVY+PVX-induced reversal behavior. The absence of

both unc-29 and acr-16 function in body wall muscle renders

double mutants severely paralyzed [39–41], a defect that precludes

mating behavior analyses. However, this locomotion defect can be

rescued by expressing an unc-29 wild type cDNA (unc-29(+))

specifically in muscles, using the acr-8 promoter, which is

additionally expressed in neurons of the ventral nerve cord

[37,41]. We therefore performed all male behavioral assays

involving unc-29 mutant alleles with strains carrying an integrated

version of the muscle-function rescuing transgene, rgIs1[Pacr-

8::unc-29cDNA::SL2::GFP] [37,41]. In this transgenic array, unc-

29(+) is expressed from a polycistronic message that additionally

encodes GFP. This provides a convenient means of visualizing unc-

29(+)-expressing cells as tissues that express GFP should also

express unc-29(+). In the PVY+PVX artificial activation assays, the

muscle-rescued unc-29; acr-16 males showed impaired reversal

response with only 31% of males reversing (Fig. 4). Thus, unc-29

loss of function significantly enhances the severity of reversal

defects caused by loss of acr-16 function. As mentioned above, an

unc-29 full-length translational reporter is co-expressed with acr-16

in AVA and in RIB (Fig. S1C). To test whether the absence of unc-

29 function from AVA might be responsible for the reversal defect

of unc-29; acr-16 males, we performed tissue-specific rescue

experiments, targeting expression of unc-29(+) to AVA. This was

achieved using an unc-29(+)::SL2::GFP transgene placed under the

control of the Pnmr-1 promoter. In ChR2-mediated PVY+PVX

activation assays, unc-29; acr-16 males expressing unc-29(+) in AVA

(indicated by GFP expression in AVA) were rescued, reversing at

frequencies comparable to acr-16 single mutants and wild type

males (83%) (Fig. 4). These results suggest that the site of action for

unc-29 in mediating this behavior may be the backward command

cells. Given that unc-29 is partially redundant with acr-16 in cells

were the two genes are co-expressed [37,39], AVA may also be the

site of action acr-16 in this behavior. As the magnitude of reversals

in unc-29(+)-rescued double mutants was consistently less than that

of acr-16 single mutant males, unc-29(+) may be additionally

required in cells downstream of the command cells to enhance the

magnitude of backward movement once initiated.

The data above suggest that unc-29, acr-16 and acr-18 act in

AVA to mediate PVY/PVX-to-AVA cholinergic transmission but

are partially redundant. If so, then animals carrying mutations in

all three receptor genes should be severely defective in reversal

when PVY+PVX are artificially activated. We observed that this

was in fact the case: only 4% of unc-29; acr-16 acr-18 triple mutant

males reversed in response to PVY+PVX activation with ChR2

(Fig. 4, Video S7). This mutant phenotype, together with the

tissue-specific rescue data, support a model in which PVY/PVX-

to-AVA transmission is mediated by three partially redundant

AChR subunits.

Cholinergic Receptor Mutants Exhibit Defects in
Locomotion during the Vulva Search

We next asked whether disruption of PVY/PVX circuit

function in AChR mutants affected search behavior in the context

of mating. Surprisingly, we found that although more than 50% of

acr-18 single mutants are defective in reversal behavior in the

ChR2 assays, acr-18 males were superficially wild type for

backward locomotion in the context of mating (Fig. 5). unc-29;

acr-16 double mutants also performed this behavior reasonably

well although showed reduced scanning speed as previously

reported [37] (median scanning speed = 150 mm/sec cf. wild type

control male median = 180 mm/sec, Fig. 5). The fact that unc-29;

acr-16 mutants are affected in vulva search locomotion speed, and

acr-18 mutants are not, suggests that unc-29 and acr-16 encoded

channels may be more critical in determining locomotory speed

than the acr-18 encoded channel. The fact that neither acr-18

single- nor unc-29; acr-16 double mutants resembled PVY-ablated

males (Fig. 2) suggests that the male nervous system can

compensate for the partial disruption of PVY-dependent trans-

mission, possibly through upregulation of the remaining functional

receptors in these respective mutant backgrounds. Consistent with

this possibility, males mutant for all three receptor genes (unc-29;

acr-16 acr-18 triple mutants) were significantly affected in all

aspects of vulva search locomotion that we measured (Fig. 5;

Video S8). The triple mutant defects were, in fact, similar to those

displayed by males lacking PVY and PVX (Fig. 2). unc-29; acr-16

acr-18 mutants had a median contact response efficiency of 50%

(cf. 50% for the -PVY-PVX treatment, Fig. 2), a median scanning

speed of 140 mm/sec (cf. 110 mm/sec for the -PVY-PVX

treatment) and a median loss of contact frequency of 2 (cf. 8 for

the -PVY-PVX treatment) (Fig. 2, Fig. 5). The similarity of the

triple mutant to cell-ablated males is consistent with the ChR2

assay data, which argues that eliminating all three receptors
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essentially blocks PVY+PVX-induced backward movement. Like -

PVY-PVX males, the triple mutant can still reverse in the context

of mating, albeit inefficiently, suggesting that other ray-targeted

pathways can partially compensate for the absence of PVY/PVX

pathway activity and promote backward movement (see model in

Fig. 6).

Discussion

How animals integrate and prioritize external cues and select

the most adaptive behavioral response is a broadly relevant

question. Sensory control of directional movement in C. elegans

provides a tractable system for exploring this issue and has been

the subject of intense investigation in the hermaphrodite. Here we

examine this issue in the context of a sex-specific behavior and ask:

how do mate contact cues override the forward locomotion bias of

exploratory behavior and induce the male to pursue sex? Mate

contact, sensed by the rays, causes the male to abruptly switch

from forward to backward movement in order to conduct a

systematic, contact-based search for the vulva. Our data suggest a

simple circuit model to explain how ray stimulation by mate

contact overrides a bias for forward movement, set by intrinsic

activity of the sex-shared locomotory system or induced by

external cues that promote exploration. In this model, ray neuron

stimulation preferentially upregulates the activity of the backward

command cells and consequently resets the activity patterns of

locomotory motor neurons in favor of backward movement (Fig. 6).

Ray control of the sex-shared command interneurons is primarily

mediated via the male-specific PVY interneuron. Both the hard

wiring of this ray-to-command cell pathway and the distribution of

key molecular components within it would be predicted to induce

a high probability of reversal in response to mate contact. First, the

wiring diagram argues that the rays, PVY/PVX and the

command cells form a feedforward pathway, as there are virtually

no reciprocal connections between the rays and PVY/PVX or

between PVY/PVX and AVA. Second, although PVY and PVX

have inputs into both forward and backward command cells, this

connectivity is biased in favor of AVA. Third, the key receptors

that mediate cholinergic neurotransmission in this pathway

(encoded by acr-18, unc-29 and acr-16) appear to be preferentially

expressed on the backward command cells.

Interestingly, we find that removal of PVY, PVX and even AVA

does not completely abolish reversal in the context of mating,

indicating that although these cells are important for this behavior,

other ray neuron targets can partially compensate for their

Figure 4. Reversal induced by artificial PVY+PVX activation depends on cholinergic transmission. Males of the genotype indicated on
the X-axis and carrying the Pnlp-14::ChR2-YFP transgene were subjected to artificial activation assays. See legend for Fig. 3 for details of graph and
table format and statistical analyses. Except for the ‘‘-ATR control’’, all males were cultured and assayed in the presence of ATR. All strains carrying
unc-29 mutations also have the rgIs1 array which rescues unc-29 function in body wall muscles. WT (wild type) are him-5 males that are otherwise
genetically wild type for the loci tested. Treatments that were statistically different from WT are indicated. Significance, *p,0.05; **p,0.005.
doi:10.1371/journal.pone.0060597.g004
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absence. The interneuron ‘‘X’’ in Fig. 6 denotes this hypothetical,

alternative pathway. The ray neurons make connections with

several sex-shared interneurons that have inputs onto the

command cells and could potentially fulfill this role (PVN, AVH,

AVJ and AVF) [3–5]. It is also possible that this putative pathway

corresponds to the disinhibitory pathway, a second directional

control system that operates in parallel with the command cells in

certain behavioral contexts [25]. The use of parallel pathways

would be predicted to confer behavioral robustness and, if these

pathways have subtly different roles, behavioral acuity. In the

mating assays performed here we used Unc mating partners,

which are relatively docile. However, wild type hermaphrodites

are less compliant and dart or continue moving during the search

[27], making it necessary for the male to adjust his speed and

direction in order to maintain tail contact. In this context, robust

and accurate control of movement is essential for mating success.

By several criteria, PVY corresponds to a decision-making

neuron of the male nervous system. Its artificial activation in the

absence of upstream ray stimulation is sufficient to induce

backward locomotion in solitary males. Conversely, its hyperpo-

larization or elimination significantly impairs movement on the

hermaphrodite in the context of mating. Moreover, PVY and

PVX receive inputs from several tail sensilla [3], both male-specific

(the rays, the hook and the p.c.s.) and sex-shared (the phasmids),

consistent with the possibility that PVY (and PVX) represent a site

of sensory stimulus integration and that the outcome of this

integration determines whether contact-induced reversal is initi-

ated, maintained or terminated. Recent studies show that phasmid

and other sex-shared sensory neurons contribute to mate-

searching behavior, which is conducted with a forward directional

bias [42]. Potentially, the substantial inputs from these sensory

cells onto PVX may serve to suppress PVY+PVX-dependent

reversal until a mate is located. During mating, detection of the

vulva by the male hook and p.c.s. induces the male tail to pause at

the vulva and remain there during ensuing copulatory attempts

[11]. A simple model would be that the hook neurons induce

pausing by inhibiting PVY and PVX activity. This would result in

suppression of backward movement without affecting tail apposi-

tion. Consistent with this possibility, hook neurons have inputs

onto PVY and PVX [3]. However, these inputs are surprisingly

sparse compared to those made by hook neurons with their other

targets. These latter postsynaptic targets include several neurons

with inputs onto the command interneurons or ventral nerve cord

motor neurons (e.g., sex-shared AVG and the male-specific EF and

PVZ interneurons). Whether the hook induces pausing by

inhibiting PVY/PVX directly or indirectly is therefore an open

question. Future studies, examining the dynamics of PVY, PVX

and command cell activity in these various behavioral contexts

should provide insight into how converging sensory pathways alter

directional movement through their action on PVY and PVX.

PVY+PVX-induced reversal depends on cholinergic transmis-

sion in AVA that is mediated by partially redundant AChRs that

contain acr-18-, unc-29- and acr-16-encoded subunits. The

existence of AChRs in the command cells was initially revealed

in studies examining the impact of exogenous nicotine on worm

behavior [35]. However, to our knowledge, our study is the first to

demonstrate a role for command cell cholinergic transmission in a

natural C. elegans behavior. While the command cells have a few

inputs from sex-shared cholinergic cells (e.g., the PVC forward

command interneurons, the SDQ interneurons of the oxygen

sensing pathway and tail interneuron DVC [43,44]), many inputs

are from glutamatergic neurons and these regulate the command

cells through cationic glutamatergic receptors [25,45–47]. The use

of cholinergic transmission in the male may therefore contribute to

Figure 5. Male movement during mating depends on func-
tionally redundant cholinergic receptors. A–C. The impact of
cholinergic receptor mutations on three aspects of vulva search
locomotion. Also see legend for Fig. 2. The X-axis indicates the genetic
background examined. All strains carrying unc-29 mutations also have
the rgIs1 array which rescues unc-29 function in body wall muscles. WT
(wild type) are him-5 males. n: WT = 48, acr-18 = 12, unc-29; acr-16 = 14,
unc-29; acr-16 acr-18 = 12. Significance, *p,0.05; **p,0.005.
doi:10.1371/journal.pone.0060597.g005
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the specificity of command system control by the male nervous

system. It could also serve to coordinate reversal with other motor

outputs associated with mating that depend on cholinergic

signaling, such as tail apposition and spicule prodding behavior

[14,48]. The rays induce tail apposition in part through

cholinergic stimulation of tail muscles [48,49] and, during vulva

penetration attempts, cholinergic neurons of the p.c.s. may further

potentiate ray action to cup the tail over the vulva [37]. Tail

apposition posture depends on sex-shared muscles that are

normally engaged in wave propagation. Therefore, the absence

of wave propagation in the tail during mating may be simply due

to the fact these muscles are otherwise engaged in tail apposition,

as a consequence of ray cholinergic transmission. The predom-

inance of cholinergic signaling in mating behavior circuits may

also relate to the rapid speed with which the male must respond to

hermaphrodite surface cues, as cholinergic transmission also

features in rapidly executed behaviors in other invertebrate

systems, such as escape response in Drosophila, crickets and snails

[50–52]. In these latter systems, the sensory neurons are

cholinergic and act on giant fibers. Giant fibers, in turn, are

electrically coupled to their motor neuron targets, a design feature

that likely contributes to rapid response. The C. elegans command

interneurons could be considered analogous to giant fibers. Like

giant fibers, their processes extend long distances and regulate an

extensive population of motor neurons, notably through gap

junction connections [7].

Although behavioral sexual dimorphism is widely observed in

the animal kingdom, identifying their neural and molecular bases

in many systems is hindered by genomic intractability and nervous

system complexity. Functional dissection of sexual behaviors in

simple, invertebrate models has provided some insights into where

and how pivotal sex differences in nervous system function are

Figure 6. A circuit model for mate contact-induced backward locomotion in the male. A model for how mate contact alters the activity of
the sex-shared locomotory system to induce directional change. Shown are the activity states of circuit components in the absence (A) or the
presence of mate contact (B), with the corresponding male behavior depicted below. Cell type and sex-specificity is indicated by the symbol and
color, respectively: sex-shared cells (pink), male-specific cells (blue), sensory neurons (triangles), interneurons (hexagons), motor neurons (circles).
Color intensity indicates a cell activity state (intense color = high; weak color = low). The arrows indicate the positive action of an activated cell on its
postsynaptic target. A. When not engaged in mating, the male moves with a forward directional bias due to high levels of activity in the forward
pathway of the sex-shared locomotory system: forward command interneurons AVB and their motor neuron targets (FWD mns). This activity bias is
conferred by the default state of this system [21], in the absence of specific cues, or by external or internal sensory cues that drive the male to explore
his environment. B. Ray neuron stimulation by mate contact activates PVY and PVX, which release acetylcholine (ACh), preferentially stimulating the
backward (AVA), and not forward, command interneurons. This is due to a bias in synaptic inputs and in cholinergic receptor expression (ACR-18,
ACR-16 and UNC-29) in favor of the backward command cells. AVA activation in turn stimulates the sex-shared backward motor neurons (BK mns).
The rays may also promote backward movement through an as yet uncharacterized PVY/PVX-independent pathway (represented as interneuron ‘‘X’’).
doi:10.1371/journal.pone.0060597.g006
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encoded and to what extent cells common to both sexes are

employed. In C. elegans, sex-shared cells contribute to several male-

specific behaviors. For example, the sex-shared DVA neuron is the

source of oxytocin/vasopressin-like peptides that enhance the

robustness and coherence of mate-searching and mating sub-

behaviors by priming activity of the underlying circuitry [53]. Sex-

shared sensory pathways also provide critical input for mate-

searching behavior, mate attraction, male-specific odor preference

and aspects of vulva search behavior [42,54–58]. Although sex-

shared sensory pathways are required for mate attraction and male

odorant preference, sexually dimorphic properties of these

neurons confer the male-specificity of the response [54,57]. In

contrast, we find that a sensory pathway composed of strictly male-

specific cell types is primarily responsible for inducing male-

specific vulva search behavior. The presence of this ray-PVY/

PVX pathway in the male renders the sex-shared locomotory

system responsive to genital contact with a hermaphrodite. It does

so by targeting key control centers in the sex-shared locomotory

system, namely AVA. In the C. elegans hermaphrodite a similar

circuit design underlies the locomotory patterns associated with

egg-laying. In this case, the Hermaphrodite-Specific motor

Neurons (HSNs) of the egg-laying system cause a burst of forward

acceleration to coincide with egg release via direct regulation of

sex-shared locomotory system interneurons [59]. Similarly, in

Drosophila the reason males produce a courtship song using wing

vibrations, and females do not, is primarily due to male-specific

modulation of sex-shared central pattern generators for wing

vibration [60–62]. These various examples, along with our own

interrogation of the PVY/PVX pathway, provide insight into how

new reproductive behaviors might evolve through relatively simple

modifications to shared circuitry. Circuit modifications of these

types may make prominent contributions to natural variations in

behavior that ultimately bring about speciation.

Materials and Methods

Strains
unc-29(e193)I [63,64], unc-64(e246)III [9], pha-1(e2123ts)III [65],

acr-15(ok1214)V, acr-16(ok789)V, acr-18(ok1285)V (C. elegans Gene

Knockout Consortium), him-5(e1490)V [66], nlp-14(tm1880)X

(National BioResource Project), lite-1(ce314)X [31], akIs3[Pnmr-

1::GFP+lin-15(+)]V [38], rgIs1[Pacr-8(muscle)::unc-29(+)::SL2::GFP],

rgEx387[Punc-29::unc-29::YFP+pha-1(+)], rgEx196[Pacr-

18:ChR2::YFP+ pha-1(+)] [37]. All strains used in this study carried

the him-5(e1490) mutation which generates a high incidence of

males [66]. pha-1(e2123ts) was grown at 15uC. All other strains

were maintained at 20uC and cultured as per Brenner (1974) [9].

Transgenic Arrays
fkEx32, fkEx77: Ex[Pnlp-14(PVY+PVX)::ChR2-YFP+Punc-

122::GFP].

fkEx63: Ex[Pnlp-14(PVY+PVX)::mCherry+Pttx-3::mCherry].

fkEx66, fkEx67: Ex[Pnlp-14(PVY+PVX)::NpHR-EYFP+pha-1(+)].

fkEx76: Ex[Pnmr-1(AVA)::mCherry+Punc-122::GFP].

fkEx71: Ex[Pflp-18(AVA)::mCherry+Pttx-3::GFP].

fkEx72: Ex[Pflp-18(AVA)::mCherry+Pnlp-14(PVY-PVX)::ChR2-

YFP].

fkEx92, fkEx93: Ex[Pnmr-1(AVA)::acr-18(+)+flp-18(AVA)::m-

Cherry].

fkEx94: Ex[Pacr-16::mCherry+Pttx3::mCherry].

fkEx94, fkEx95: Ex[Pnmr-1(AVA)::unc-29(+)::SL2::GFP+Pttx-

3::mCherry].

Transgenic lines were generated using standard microinjection

techniques [67]. Constructs were injected at the following

concentrations: Pnlp-14::ChR2-YFP (100 ng/mL); Pflp-18::mCherry

(40 ng/mL), Pacr-16::mCherry (100 ng/mL); Pnmr-1(AVA)::acr-18(+)

(50 ng/mL), Pnmr-1(AVA)::unc-29(+)::SL2::GFP (50 ng/mL). Co-

transformation markers, pBX-1(pha-1(+)), Pttx-3(AIY)::mCherry,

Pttx-3(AIY)::GFP and Punc-122(coelomocytes)::GFP were each injected

at 50 ng/mL.

DNA Constructs
All plasmids used in this study were generated using the

Gateway cloning system (Invitrogen). To make the entry vectors,

promoter fragments were PCR amplified from genomic or plasmid

DNA templates using gene-specific promoter primers containing

attB1 and attB2 sequences. The gene-specific sequences for these

primers are as follows:

nlp-14 promoter (based on Nathoo et al. (2001) [30]).

FWD: GTTTACCCAGCTTTTTTCATTGTAGAAAACAT-

CAC.

REV: TGTGCGTGTGTTACCCGGAAAG.

flp-18 promoter.

FWD: GCAAATCTGTCACATACTGCTCGAATCG.

REV: ACCGTTGCATGTCTAACCCTGAAATTATTA.

acr-16 promoter (based on Feng et al. (2006) [35]).

FWD: GATCCGAGAACATGACGATGACAATGATG.

REV: TACGGACATGAGAATCAGGGAAAGAAAAGC.

nmr-1 promoter (based on Brockie et al. (2001) [38]).

FWD: GACACTTTCATCTGTTCAGAATTGAGATGC.

REV: AACTAAAGTTTGTCGTGTTCCAAACAGAAG.

PCR fragments were then cloned into pDONR221 using BP

clonase to generate the entry vectors. Entry vectors were then

recombined with the appropriate destination vector using LR

clonase II. Destination vectors used in this study were ccdB

C.1::ChR2-YFP (pLR167) [12], ccdB C.1::NpHR-EYFP (pZL19)

version 2, ccdB (C.1)::mCherry (pZL19), ccdB C.1 unc-29(+)::SL2::GFP)

(pYL16) [37]. To generate ccdB C.1::NpHR-EYFP, a fragment

containing eNpHR3.0-EYFP was generated by PCR using pLenti-

hSyn-eNpHR3.0-EYFP [32,33] (http://www.stanford.edu/group/

dlab/optogenetics/sequence_info.html) as the template and prim-

ers containing BamH1 and EcoR1 ends. After restriction digestion,

this fragment was exchanged with the ChR2-YFP BamH1/EcoR1

fragment in Pmec-4::ChR2-YFP [29]. Next, the mec-4 promoter was

removed by digesting with HindIII and BamH1. The vector

fragment ends were filled, phosphatase-treated, then ligated with

the ccdB C.1 cassette. This insertion created a stop codon (TGA)

at the cassette/vector junction, which was changed to a glycine

codon (GGA) using site-directed mutagenesis to generate pZL19.

In the acr-18 tissue-specific rescue experiments, a fragment

containing the acr-18 wild type open reading frame and its 39

UTR (generated by PCR fusion of a partial cDNA sequence and

genomic DNA) was fused to an nmr-1 promoter by PCR based on

the method of Hobert (2002) [68]. The Pnmr-1::unc-

29(+)::SL2::GFP construct was generated by recombining the

Pnmr-1-containing entry vector with the destination vector pYL16

in a LR clonase reaction.

Laser-mediated Cell Ablations
Laser-mediated cell ablations (for data presented in Fig. 2 and

Fig. 3) were performed on L4 transgenic males using standard

procedures [69]. Control (mock-ablated) L4 males were mounted

with anesthetic for the same duration but not operated on. Males

were allowed to mature overnight into adults, isolated from

hermaphrodites. For males requiring ChR2 assays, the OP50 food

was supplemented with 50 mM ATR. Males were then subjected

to standard mating assays and/or ChR2 assays (described below).

To confirm that targeted cells had been killed in operated animals,
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each male was mounted on a slide after assays and examined at

6006 magnification on a Zeiss D1 compound microscope

equipped with epi-fluorescence. AVA ablations were performed

on males carrying the transgenic arrays fkEx71 or fkEx72; PVY

and/or PVX ablations were performed on strains carrying fkEx32

or fkEx77.

Mating Behavior Assays
Mating assays (for Fig. 2, Fig. 3C and Fig. 5) were carried out

based on procedures described in Liu et al. (2007) [55]. Twenty-

four hours before assays, L4 males (maximum of 10) were placed

together on a culture plate and allowed to mature overnight in the

absence of hermaphrodites. The next day, individual males were

placed on a mating lawn (a 5 mm diameter OP50 lawn, freshly

prepared) containing 5 unc-64; lite-1 virgin 1-day old adult

hermaphrodites. Their mating behavior was observed for 15 mins

or until the male ejaculated, whichever occurred first. Each assay

was digitally recorded using a Zeiss AxioCam HS digital camera

and AxioVision software (release 4.7). These videos were analyzed

for execution of the three motor behaviors presented in Fig. 2 and

Fig. 5: % of successful contact responses, scanning speed on the

non-vulva side and the frequency of lost tail contact during

scanning. % Contact Response = 100 x [the number of times the

male exhibits contact response/the number of times the male

makes contact with a hermaphrodite via the rays]. A successful

(complete) contact response requires both tail apposition and

initiation of backward locomotion [12]. Scanning speed on the

non-vulva side (mm/sec) = mean length of 1-day old adult unc-64;

lite-1 hermaphrodites (i.e., 1044 mm)/the time required for a male

to travel the length (sec). The average speed for a male was

calculated from a random selection of 5 non-vulva sides scanned,

or all non-vulva sides scanned if the number of sides completed

was less than 5. Number of tail contacts lost = the number of times

that a male lost tail contact with the hermaphrodite during the

mating trial.

ChR2 and NpHR Assays
Relates to Fig. 3, Fig. 4 and Fig. S2. Except for –ATR controls,

all strains were maintained on plates spread with OP50 E. coli

supplemented with 50 mM ATR. Except during animal transfer or

assays, plates were kept wrapped in foil. Twenty-four hours before

assaying, five L4 males were placed on a plate freshly spread with

50 mM ATR+OP50 and allowed to mature overnight. Assays were

performed on a Zeiss M2 Imager stereomicroscope equipped with

epi-fluorescence. For the ChR2 assays, individual animals were

exposed to three, evenly spaced, 500 msec flashes of blue light

(470/40 nm wavelength), while moving forward. Assays were

recorded using a Zeiss AxioCam HS camera and AxioVision

software [12]. For PVY/PVX activation, strains carrying either

array fkEx32, fkEx72 or fkEx77 were used. The presence of ChR2-

YFP in both PVY and PVX was verified post-assay at 6006
magnification on a Zeiss D1 compound microscope equipped with

epi-fluorescence.

To inhibit PVY and PVX during mating, strains of the

following genotype were used: fkEx66 or fkEx67 [Pnlp-

14(PVY+PVX)::NpHR-EYFP+pha-1(+)]; pha-1(e2123ts); him-

5(e1490)V; lite-1(ce314)X. Strains were cultured with or without

ATR as per ChR2 transgenic strains (+ATR and –ATR

treatments, respectively in Fig. 3C). Twenty-four hours before

assaying, five L4 transgenic males were placed on a plate freshly

spread either with or without ATR. The next day, individual

males were placed on a mating lawn with 5 unc-64; lite-1 1-day old

virgin hermaphrodites. Males were allowed to initiate the vulva

search with contact response and commence scanning. Males were

then exposed to a 500 msec pulse of yellow light (540/25 nm) at 5

evenly spaced time intervals during scanning. The percentage of

times a male paused when pulsed with light was scored. To test the

effect of NpHR activation in transgenic males not engaged in

mating, 1-day old, solitary virgin transgenic males (grown in the

presence or absence of ATR) were exposed to three, evenly spaced

500 msec yellow light flash, while they were moving forward. The

distance and direction travelled after the flash was measured as

described below.

acr-18 and unc-29 Tissue-specific Rescue Experiments
acr-18 rescue: acr-18; fkEx92 or fkEx93 [Pnmr-1(AVA)::acr-

18(+)+Pflp-18(AVA)::mCherry] hermaphrodites were mated with

acr-18; fkEx32 or fkEx77[nlp-14(PVY+PVX)::ChR2-YFP+-
Punc122::GFP] males. F1 L4 male progeny that were both UNC-

122::GFP- and mCHERRY-positive, were transferred to ATR-

containing plates (5 males per plate) then allowed to mature to

adulthood overnight. Individual males were then subjected to

ChR2 assays. After each male was assayed, the animal was

mounted on a slide and examined for CHR2-YFP expression in

both PVY and PVX and for the presence of mCHERRY in AVA

at 6006 or 4006 magnification. Males that were mChERRY-

positive in AVA and ChR2-YFP-postive in both PVY and PVX

correspond to the ‘‘acr-18; P(AVA)::acr-18(+)’’ treatment, Fig. 4.

unc-29 rescue: unc-29; acr-16; rgIs1[Pacr-8(muscle)::unc-

29(+)::SL2::GFP]; fkEx95 or 96[Pnmr-1(AVA)::unc-

29(+)::SL2::GFP+Pttx-3::mCherry] hermaphrodites were mated with

unc-29; acr-16; rgIs1[Pacr-8(muscle)::unc-29(+)::SL2::GFP]; fkEx32

males. F1 progeny positive for both fkEx32 and fkEx95/96 arrays

were subjected to ChR2 assays and handled as per males in the

acr-18 rescue experiments. Males that expressed ChR2-YFP in

both PVY and PVX correspond to the ‘‘unc-29; acr-16;

P(AVA)::unc-29(+)’’ treatment, Fig. 4.

Measurement of the Distance Moved in Response to
ChR2-mediated PVY+PVX Activation

Animal response after ChR2 activation was captured digitally as

described above. The frame after the light flash in which response

is first apparent (‘‘start of response’’ frame) was identified as well as

the frame in which response ended (‘‘end of response’’ frame). In

each frame, the animal’s position in the frame was determined by

measuring the distance from the animal’s head (or tail) to the

closest frame edge. The ‘‘distance moved’’ (in mm) = the position in

the ‘‘start of response’’ frame – the position in the ‘‘end of

response’’ frame, where a negative value corresponds to backward

movement and a positive value corresponds to forward movement.

Although each animal was exposed to three flashes, the first flash

usually gave the most unambiguous response and was typically

used for analysis. For animals that did not respond to the light

flashes, the distance moved was determined using the time frames

that corresponded to the average ‘‘start of response’’ and ‘‘end of

response’’ times for the positive controls (in Fig. 3A this was M; in

Fig. 3B, Control; in Fig. 4, wild type).

To calculate the % of males that backed, paused or moved

forward for each population assayed in Fig. 3, Fig. 4 and Fig. S2,

backing, pausing or forward movement were classified by the

following criteria: backing = distance travelled is ,0 mm; pau-

sing = distance is 0 to +2.5 mm; forward = distance.+2.5 mm.

Statistical Analysis
The following variables were measured:

1. Mating Behavior Assays:
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a. % Contact response (Fig. 2B, Fig. 5A)

b. Scanning speed (mm/sec) (Fig. 2C, Fig. 5B)

c. Number of tail contacts lost (Fig. 2D, Fig. 5C)

2. Directional movement in ChR2 and NpHR assays:

a. Locomotion Assays - Distance moved (mm):

i. Ablated animals and mock controls (Fig. 3A, 3B)

ii. Mutants (Fig. 4, Fig. S2)

b. Mating assays - % of times each male paused in response to a

light flash (Fig. 3C).

All groups of observations for each measurement were tested for

normality using the Shapiro-Wilks test. Most were found to be not

normal, thus the Wilcoxon-Mann-Whitney.

ranksum test was used to compare two populations. Since up to

5 speeds per male were used in the scanning speed measurements,

significance was determined by clustered bootstrapping on the

difference between the observed and expected ranks.

Supporting Information

Figure S1 PVY and PVX are cholinergic and their
command interneuron targets express cholinergic re-
ceptor genes. A. Fluorescent micrograph of an adult male tail

showing co-expression of a Pnlp-14::mCHERRY reporter and a

cholinergic marker (UNC-17::GFP) [14,44] in PVY and PVX.

The dotted line indicates the approximate boundary of the pre-

anal ganglion (PAG) in which PVY and PVX reside. The spicules

(SP) are visible due to their auto-fluorescent properties. B.
Fluorescent micrograph of an L3 male showing expression of a

Pacr-18::ChR2-YFP transgene in head neurons, including AVA.

This reporter is also expressed in neurons of the ventral nerve cord

(VNC) in both sexes and in a subset of ray and PAG neurons in the

male (data not shown). C. Fluorescent micrograph of an L3 male

showing expression of a full-length unc-29 translational reporter in

neurons of the head. *, cells in which unc-29 and acr-16 reporters

are co-expressed. The expression pattern of the unc-29 reporter in

the hermaphrodite is superficially similar to that of the male. SLs

in (B) and (C) correspond to sub-lateral neurons (possibly SMB/

Ds, SIBs or SIAs). For all images the scale bar indicates 10 mm.

(TIF)

Figure S2 The impact of acr-15 and nlp-14 mutations on
PVY+PVX-induced reversal behavior. Males of the geno-

type indicated on the X-axis and carrying the Pnlp-14::ChR2-YFP

transgene were subjected to artificial activation assays. See legend

of Fig. 3 for details of graph and table format and statistical

analyses. Except for the ‘‘-ATR control’’, all males were cultured

and assayed in the presence of ATR. acr-15 has no significant

impact on reversal behavior, either as a single mutation or in

combination with acr-18 mutations, arguing that the absence of

phenotype in acr-15 single mutants is not a consequence of

functional redundancy with acr-18. In addition to cholinergic

markers, PVY and PVX express the nlp(neuropeptide-like protein)-

14 gene, which is predicted to encode neuropeptides with

sequence similarity to orcokinin from Orconectes limosus (crayfish)

[30]. nlp-14 mutants show impaired reversal response. acr-18; nlp-

14 double mutants are phenotypically similar to acr-18 single

mutants. This suggests that NLP-14 has a neuromodulatory role in

PVY/PVX transmission and that cholinergic signaling (mediated

by ACR-18- ACR-16- and UNC-29-containing receptors) is the

rate-limiting factor. Treatments that were statistically different

from wild type (WT) are indicated. Significance, *p,0.05;

**p,0.005.

(TIF)

Video S1 C. elegans male locomotion during the vulva
search of mating has a backward directional bias. Shown

is a control (wild type) male executing all of the motor behaviors

that make up the vulva search: contact response, scanning and

turning. Related to Fig. 2.

(MOV)

Video S2 Males lacking the male-specific interneuron
PVY are defective in vulva search locomotion. This PVY-

ablated male fails to respond to contact, is unable to maintain

backward movement and tail contact and exhibits slow backward

locomotion. Related to Fig. 2.

(MOV)

Video S3 ChR2-mediated depolarization of PVY+PVX
induces reversal in solitary males. Shown is the reversal

response of a transgenic male (grown in the presence of ATR)

expressing ChR2 in the PVY+PVX neurons (genotype:

fkEx32[Pnlp-14(PVY+PVX)::ChR2-YFP+Punc-122::GFP]; him-

5(e1490); lite-1(ce314)). At the movie start, the tail is at the bottom

of the frame and the head at the top. The fluorescent spots on the

body that appear during the light flash correspond to GFP

expression in the coleomocytes (produced by the Punc-122::GFP

co-transformation marker). The movie is played at reduced speed

for clarity. Related to Fig. 3.

(MOV)

Video S4 A control male, expressing non-functional
ChR2 in PVY+PVX, does not alter his locomotion in
response to blue light. Shown is a transgenic control male of

the same genotype as the male in Video S3 (genotype: fkEx32[Pnlp-

14(PVY+PVX)::ChR2-YFP+Punc-122::GFP]; him-5(e1490); lite-

1(ce314)), but grown in the absence of ATR. The tail is to the

right; head to the left. The fluorescent spots on the body that

appear during the light flash correspond to GFP expression in the

coleomocytes (produced by the Punc-122::GFP co-transformation

marker). The movie is played at reduced speed for clarity. Related

to Fig. 3.

(MOV)

Video S5 NpHR-mediated hyperpolarization of
PVY+PVX induces pausing during the vulva search.
Shown is a transgenic male, grown in the presence of ATR,

expressing functional NpHR in PVY+PVX neurons (genotype:

fkEx66[Pnlp-14(PVY+PVX)::NpHR-EYFP+pha-1(+)]; pha-1(e2123ts);

him-5(e1490); lite-1(ce314)). The male pauses in response to a pulse

of yellow light (which induces NpHR-mediated hyperpolarization

of PVY and PVX). Related to Fig. 3.

(MOV)

Video S6 A control male, expressing non-functional
NpHR in PVY and PVX does not alter his locomotion
during mating in response to yellow light. Shown is the

behavior of a transgenic male, grown in the absence of ATR,

expressing non-functional NpHR in PVY and PVX neurons

(genotype: fkEx66[Pnlp-14(PVY+PVX)::NpHR-EYFP+pha-1(+)]; pha-

1(e2123ts); him-5(e1490); lite-1(ce314)). Related to Fig. 3.

(MOV)

Video S7 unc-29; acr-16 acr-18 males fail to reverse in
response to ChR2-mediated PVY+PVX activation. Shown

is a triple mutant male expressing functional ChR2 in PVY+PVX

(array fkEx32). In contrast to wild type (WT) control male behavior

(Video S3), the triple mutant fails to reverse in response to the light
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flash and continues forward locomotion. The tail is to the right;

head to the left. The fluorescent spots on the body that appear

during the light flash correspond to GFP expression in the

coleomocytes (produced by the Punc-122::GFP co-transformation

marker). The movie is played at reduced speed for clarity. Related

to Fig. 4.

(MOV)

Video S8 unc-29; acr-16 acr-18 males exhibit directional
movement defects in vulva search behavior. The triple

mutant males have similar locomotion defects to PVY-ablated

males (Video S2). Related to Fig. 5.

(MOV)
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