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We consider the conditions under which nuclei will fragment into smaller pieces. We argue that fragmentation will occur 
when the nuclear matter has expanded adiabatically to the onset of hydrodynamic instability, ~P/b VIs = 0. We discuss the 
conditions of initial heating and/or compression which lead to fragmentation, and argue that the resulting fragmented mat- 
ter will be composed mainly of alpha-particles and nucleons. 

When enough energy is brought into a nucleus, it 
will break up into smaller pieces. This process is an 
important  part of  the cross section for reactions in- 
duced by high energy protons [1,2].  It is also seen in 
heavy ion collisions at projectile energies of  the order 
of  20 MeV per nucleon and higher [3,4].  However, 
there has been little theoretical work to date on the 
breakup process itself in the region of  its threshold. 
Our present understanding of  fragmentation is quite 
l imited, being guided primarily by the numerical re- 
sults of  t ime-dependent H a r t r e e - F o c k  theory. 

In this note we analyze the bulk dynamics of  nu- 
clear matter  under various conditions of  density and 
internal energy, as a theoretical framework for describ- 
ing the onset of  fragmentation. We begin with the rela- 
tion between the energy per particle o f  nuclear matter ,  
E, the particle number density n, and the excitation 
energy per particle I ,  

E = f ( n )  + I .  (1) 
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We call this the equation of  state, although purists 
would reserve that designation for eq. (4) below. A 
typical example o f  an equation of  state is given by the 
Skyrme paranletrization, 

E = 22.5(n/no)2/3  - 62(n /no)2  + 23 .5(n /no)  3 + I M e V  
(2) 

This is graphed in fig. 1. The parameters have been ad- 
justed to reproduce the binding energy of  nuclear mat- 
t e r , E  = - 1 6  MeV when n = n o ~ 0.16/fm 3. The only 
additional information we need for the dynamics is the 
dependence of  E on n at fixed entropy.  In a non-inter- 
acting Fermi gas, the excitation energy behaves exact- 
ly the same way as does the total kinetic energy, i.e. it 
varies as the 2/3 power of  the density under isentropic 
changes in state. 

l (s ,  n)  = l (s ,  n ' ) (n /n ' )2 /3  . (3) 

In this respect, there is no difference between a Fermi 
gas and a classical Maxwel l -Bol tzmann gas of  mono- 
atomic particles. Some isentropes in the (n, E )  plane 
are shown as dashed lines in fig. I.  The Skyrme inter- 
action would modify the excitation energy of  eq. (3) 
with an extra factor m/rn , where m is the density- 
dependent  effective mass. We suppose that  m .~ m 
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Fig. 1. Isentropes of nuclear matter in the (n, E) plane [see 
text, eqs. (2) and (3)]. 

from the density of  states at the Fermi surface. 
Nuclear matter will be in equilibrium if it is at an 

energy minimum of a isentrope. Otherwise, the pres- 
sure will be nonzero and the system will expand or 
contract. It is plausible to assume that the volume 
change takes place isentropically, in other words, that 
there is little dissipation associated with the expansion 
process. This result becomes exact both in the collision- 
less limit of  mean-field theory, and when collisions are 
so frequent as to maintain local thermal equilibrium. 
Some evidence for this assumption is given by the 
existence of  the giant monopole vibration, having a 
damping width much smaller than its frequency. Also, 
classical cascade calculations of high energy heavy ion 
collisions show not much entropy generation during 
the expansion phase of the collision [5]. 

The pressure of  the system is defined by 

P = n 2 OE/Onls • (4) 

We now examine what happens to the system if we 
start it at some point in the (n, E)  plane with positive 
pressure. The system expands along the isentrope, con- 
verting internal energy E into translational kinetic en- 
ergy of the collective flow. For high enough initial en- 
ergies, the pressure remains positive for all densities, 
and we may describe the process as an instantaneous 
vaporization. The pressure is always positive, starting 
from nuclear matter density, if the excitation energy 

is of  the order of  20 MeV/n or higher. The dynamics 
here will be featureless, with a relatively small fraction 
of  composite particles in the final state. 

At lower energies, the isentrope has a negative pres- 
sure portion. The expansion will be slowed down in 
this region, and will come to a halt when the kinetic 
energy of expansion has been converted back to inter- 
nal energy. Thus the system will oscillate back and 
forth along the isentropes; starting from point A in 
fig. 1 it will reach point B and no farther. This simple 
argument applies only if there are no phase transitions. 
If there is a separation between a condensed phase 
and a vapor phase, the thermodynamics becomes com- 
plicated. The usual gas-liquid phase transition is a 
first order transition thta applies to processes that oc- 
cur slowly enough for an equilibrium to be established 
across a phase boundary. As we envision it, the nuclear 
expansion process is rapid on the time scale required 
to establish such an equilibrium, so the usual gas-liq- 
uid equilibrium is not relevant to our considerations. 

To achieve a phase separation on a short time scale, 
the system must develop a dynamic instability, i.e. an 
instability that will grow exponentially from a small 
amplitude. We will determine the dynamically unstable 
region by means of the compressibility, 

k = n 3P /3n l s .  (5) 

The conventional nuclear physics parameter K is re- 
lated to k by K = 9k in  O. For our model equation of  
state, eq. (2), the compressibility is given by 

k /n  O = ~ (22.5 + Io ) (n /no )  5/3 - 124(n/no)  2 

+ 141(n/no)3 MeV. (6) 

Nuclear matter will be dynamically unstable when the 
compressibility is negative. The region of  the (n, E)  
plane in which this occurs is shown in fig. 2. We be- 
lieve that the occurrence of  nuclear fragmentation, as 
a dominant reaction process, depends on whether the 
system enters into this unstable region. On the left nu- 
clear matter will spontaneously form into droplets; on 
the right the mean field dynamics will preserve the 
homogeneous phase. Of course, quantum fluctuations 
will tend to smooth out sharp transitions in behavior, 
but the main processes should follow the mean field 
predictions. 

Having defined the unstable region in the (n, E)  
plane, we can ask how it is reached in a nuclear reac- 
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tion. Initially, the reaction carries the system from 
the ground state to some point with higher internal 
energy. If the energy is transferred by a small object, 
there is not immediate change in the size of  the sys- 
tem and therefore n = n o . In a heavy collision, the in- 
terpenetrating nuclei create a state of  higher density, 
n > n 0. From this excited position, the system will 
then expand along an isentrope until a point of  equal 
internal energy is reached on the left. In fig. 2, we 
have mapped out the region of  starting conditions 
which will reach the instability upon expansion. If  the 
initial condition is to the right of  the dashed line, the 
system has enough energy to expand into the unstable 
region. 

An example of  a reaction process which does not 
change the initial density very much is the fragmenta- 
tion induced by ultrarelativistic protons. Much of  the 
fragment production can be explained by evaporation 
of  the target [6] ,  but part of  the cross section is 
thought to be due to a fast fragmentation process [7, 
8].  The typical energy deposited is of  the order of  1 -  
2 GeV. Thus, forA = 100, the system would have an 
energy about 10 MeV/n, which is just at the threshold 
of  the n = n O instability region. The precise location 
of  the threshold depends on the details of  the equa- 
tion of  state; an equation of state with compressibility 
consistent with the monopole vibration frequency, K 
= 190 MeV, has a threshold a t / =  8.5 MeV. 

IO 
(.9 

ta,l 

I.u 
z J  
O ~  

~_Q: o 
X Q .  

. . a ~  - 5  

n," 
ILl 
I-- 
Z -IC 

-16  

/ /~A FRAGMENTATION 
/ / / / ~  / / ~  ZONE \ \ ,  

OVERSTRESSED 
" ZONE 

I t I I 
0.5 I 1.5 2.0 

DENSITY n /n  o 

Fig. 2. Instabilities of nuclear matter. Left grating: region of 
hydrodynamic instability, (tP/O V) S = 0. Right grating: initial 
conditions leading to breakup after expansion. Dashed line: 
hydrodynamic compression, eq. (8). 

In heavy ion collisions, bulk dynamics predicts that 
the available energy and the density compression have 
a quadratic relationship, 

E = a ( n  - no)2, (7) 

with the coefficient a depending on the equation of  
state. The stiffer the equation of  state, the closer eq. 
(8) will be to the s = 0 isentrope. The one-dimensional 
TDHF theory with an equation of  state of  the type 
eq. (2) predicts a compression to 1.4 n o with an energy 
of  10 MeV/n [9].  The curve of  eq. (8)going through 
this point is marked in fig. 2. Assuming that all of  the 
excitation energy was thermalized, this would give a 
threshold for fragmentation at 3.5 MeV/n. Of course, 
in TDHF, the excitation energy is in a coherent defor- 
mation of  the Fermi surface, and under those circum- 
stances the bulk dynamics predicts a lower threshold 
[10].  In any case, there is some rather low threshold, 
and above this energy, the system always comes apart. 

If  the unstable matter extends over a large spatial 
region, the formation of  droplets will favor those sizes 
which have wavelengths corresponding to the maxi- 
mum growth rate. This could be calculated from the 
(imaginary) frequencies of  the RPA modes; however, 
since frequencies increase for shorter wavelengths, we 
anticipate that the Fermi momentum would set the 
scale, and that alpha-particle sized drops would be 
most favored. A similar conclusion is reached if we as- 
sume that the instabilities grow chaotically, leading to 
a state of  maximum entropy in which alpha particles 
will also be the predominant fragments. 

We identify the instability of  the bulk dynamics 
with the "fusion window" predicted in TDHF [11 ]. 
For energies well above the fusion window, we ex- 
pect that heavy ion collisions will produce many alpha- 
particles in the central region. These should not be dif- 
ficult to distinguish from evaporation alpha-particles, 
and would give useful information on the equation of  
state and the thermalization in the early stages of  the 
collision. In particular, the onset of  fragmentation can 
be used to help infer the density at which thermaliza- 
tion takes place: according to fig. 2, the energy thresh- 
old for fragmentation is an increasing function of the 
initial density. 

We would like to thank H. Told and J.P. Bondorf 
for discussions. 
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