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1 Introduction

Using localization, several exact results have by now been obtained for supersymmetric
gauge theories, such as the computation of indices, partition functions and Wilson loops,
among others. In many cases these exact computations have provided us with checks of
non-trivial dualities, including AdS/CFT.

In the present paper we apply the localization procedure to the most general, classically-
conformal, three-dimensional N/ = 1 Chern-Simons-matter theory with global symmetry
Sp(2) and gauge group U(N) x U(N). Previously, localization had mainly been used to
study theories on curved spacetimes with non-trivial R-symmetry [1-11]. We show that
the A/ = 1 theory on a flat three-dimensional torus 7° can also be formally localized.

The N =1 theory we consider here is not in general superconformal on the quantum
level, except for special points in its moduli space where supersymmetry may be enhanced.
In particular the ABJM model [12] is one such special point where supersymmetry is
enchanced to N' = 6. By considering a classically-conformal N = 1 theory with unequal
Chern-Simons (CS) levels which is in a certain sense a small deformation of the ABJM
model [12], it was argued in [13] that the theory flows to an RG fixed point in the infrared.
These CFT’s were then conjectured in [13] to be dual to certain (massive) ITA supergavity
solutions [14, 15] which fall within the general class of [16].

The outline of the paper is as follows. In section 2 we give the on-shell formulation of
the most general classically-conformal N'=1 U(N) x U(N) CS-matter theory with Sp(2)
global symmetry. We then introduce auxiliary fields and formulate the theory off-shell, as
required by the localization procedure. An interesting observation is that the Lagrangian
in the on-shell formulation of the theory admits one more free parameter as compared to
the theory formulated in off-shell N = 1 superspace.

In section 3 we formulate the theory on a curved manifold. One notable difference
from the CS theories with /' = 2 supersymmetry studied in [2] is that the requirement of
localization excludes positive-curvature manifolds such as S3. Formulating the theory on
T3 or the hyperbolic three-dimensional space Hs3 preserves superconformal symmetry at
the classical level. In this paper we shall focus on the theory on 773.1

We next carry out the localization procedure for the theory on 72 with periodic bound-
ary conditions. As an illustration of the formalism we compute the contributions to the
partition function from the locus of saddle points with vanishing gauge connection. We
show that restricting to this locus gives a trivial contribution to the partition function,
i.e. the bosonic and fermionic contributions exactly cancel each other. We conclude with
a discussion of our results in section 4. Further technical details can be found in the

appendices.

!Demanding that the manifold should be compact, in order to ensure that the partition function is well-
defined, leads us to exclude H3. Compact quotients thereof may still preserve superconformal symmetry
but we shall not examine this possibility here.



2 N =1 Superconformal Chern-Simons-matter theory

2.1 On-Shell

The general component form of the on-shell N/ = 1 classically-superconformal CS La-
grangian with Spin(5) ~ Sp(2) global symmetry and gauge group U(N) x U(N) is given
in [17]:

L=Lcs+ Liin+ L4+ Ls , (2.1)

where Log is the pure CS Lagrangian, Ly;, is the matter kinetic term, L4 is the quartic
interaction and Lg is the sextic potential. More specifically,?

k 1 : k 1. i
Los = Fetr {iAuayAp + %AMA,,Ap} — oot {iAua,,Ap + %AMAVAp} . (22)

where the normalization above was chosen to facilitate the derivation of the superconformal
invariance; A, flu are gauge fields in the adjoint of U(N). The matter kinetic terms read:

1 N
Liin = 5-tr {—D“XADMXA n NAWDM\I/A} , (2.3)

where A = 1,...,4 is an Sp(2) index; X4 is in the bifundamental (N, N) while X4 is in
the (N, N), and similarly for ¥4, ¥4, The most general quartic interaction terms can be
written in the form £4 = Ly + Lap + L4 + L', where:

1 - ~
L4, = %itr{dlsABCD\I/AXB\PcXD — a1eapep VAXPUOXP)

1 - ~
Ly = %itr{ag,ﬁI’A\D AXBXE — g0 UAXBXpY

1 . = I
Lic = 5-2itr{ag WaP XA Xp — a3 s WP W4 Xp X"} (2.4)
7 ) )
£ = r{a QP Qpo ¥V X Xp + ax2ap QP U p X X
T

+ asQCAPPU U X U Xp + a3QucQpp VA X BUC X P
+ a4QABQCD\TfAXB\IchD + d4QABQCD\I~/AXB\IJCXD} .

The sextic potential consists of two terms Lg = Lo + L”, where:
11
Lot :2—§tr{a471XAXAXBXBXCXC + o Xa XA XpXB X XY
Y
+ 4y 3XaXPXoXAXp XY — 6044 XA XpXPX 4 X X0}
1
L’ :2—930 Qpptr{nXp X4 Xc XP X, XF} (2.5)
Y
1
+ 2—930 Qpptr{mXp XA X XPXc XFY
s

1
+ %QBCQDEtr{mXBXAXAXDXcXE} .

2We follow closely the notation of [17], to which the reader is referred for more details; our spinor
notation is explained in appendix A.



Here Qup is the Sp(2)-invariant antisymmetric tensor, which satisfies Q48O 0 = 55 .
As shown in Appendix B, the theory is invariant under the following N' = 1 Poincaré
supersymmetry:

60X 4 =iQypels
XA =i0ABewy
00 4 =Qapy"eD, X B + {Qap(a22 X Xo X P
— 1 XBXe X)) — 20300 XX 41X e

50 =0AByHeD, X + {QP (a1 Xc X X5 (2.6)
+ a2 XX Xe) + 20308 Xp XA X0 Le
1 : 3
5A, :k_l[QAB%\pAXB + QB XU 4,
. 1 ~ -
5A, :k—2[Q ApXBey, 04 + QAP 4y, eXp]

provided that the coefficients satisfy the relations:

1 1
a] = —Q’i(— + 5[1) , Qg = 21(— —|—Oél) ,

kl k2
a3 = —ag — i(Oél — 5[1) , a4 = i(Oél — 5[1) ,
1 _ _
Qg1 = _k_l — 20&1 , Qg9 = —k—2 — 2041 , Q3 =1a3 — Qg , (27)
Q1 = —304%72 + 404272063 +m, oy = —30&%,1 + 404272043 +m,
Q43 = Q2203 + Q44 = —Q 1029 + 209 0003 + n )

4 2
m = 4(0&272 — 04271)043 +m, n= 4(0&3 — 04272)043 —-m .

In addition to the CS levels kq, ko, the theory has four independent parameters. One can
choose them to be aq, @1, ag and m.

2.2 Off-Shell

In the previous section we studied the on-shell formulation of the theory. However to
carry out the localization procedure one needs off-shell supersymmetry. For that purpose
we introduce the auxiliary scalar fields F' and the gaugini A, A in the scalar and gauge
multiplets, respectively. The off-shell action reads:

L= ﬁC’S + ﬁkln + ﬁpotential ) (28)

where:



1 ~
Liim = 5t {—D“XADMXA + il "D, A — FAFA} , (2.10)

1.
L potential =§tr{z[(—a2,1XBXBXA + g2 XA XBXp) - 2030450P X XB X p]FA

+iFA[(—ao 1 XA XX P + g o XBXpXA) 4 2030PQ0p XC Xp X))
1 ~ ~ ~ 4 a X

+ %tr{QAB)\\IJAXB — QABXpU AN — QupXBOAN + QABAD 4 X 5}
1 - -

+ %tr{ia;lQADQBC\II AVBXOX D — g 9Qap QP U p X o X P

- %aQ,QQABQC%AXB\yCXD n %az,lgABQCD\ifAXBqJCXD
+ia3QCOPPU A X U X — iasQacQppPAXBwC X P

. .

2

1 - -
+ %itr{aZl\IfA\I’ AXBXE — g, U UAXBXp)

042719ADQBC¢/AXB\I/0XD + %(XQ,QQADQBC\T/AXB\I/CXD}

1 - y
+ %%tr{agllfA\IfBXAXB —a3UBU, Xp X4} .
(2.11)

This can be rewritten compactly in superspace formalism, see e.g. (3.8) of [13] which we
reproduce here:

- 1
S :ﬂSCS(A) _ @Scs(/l) + — /dzatr{Da<1>f4D“<I>A
27 27 27

(2.12)
+ (1@ DL 0P + 0" 8P 0L 04 4 304800 pd!, e L o)}

where ® 4 is a superfield, and the connection with the component formulation discussed
previously is provided by the relations:

Clz—iél—i; czzial—i—i; c3 = iqq +as . (2.13)
The action is invariant under the off-shell supersymmetry transformations:
6X 4 = iQapelP
oX4 =it Bery
0U 4 = Qapy'eD, XP —iQapFPe
504 = QABykeD , Xp — QP Fre
§FA = —Qapey" D, WP —iX 4 (EN) +i(eN) X4

SFA = —QABe D, W — iXA(EN) +i(EA) XA (2.14)
0A, = —iéy, A
§A, = —iey,A
1 17
o\ = —5’)/“ 6F/J,l/
~ 1 L or
O\ = _57“ eF, .



We note that besides k1, ko the off-shell theory has only three free parameters, as can be
seen from (2.13). This is one fewer parameter than in the on-shell formulation. Specifically,
after replacing the auxiliary field F' and gaugini A, A by the solutions of their respective
equations of motion, the Lagrangian (2.8) goes back to (2.1), but with ay3 = 0in L,n. In
other words, for the on-shell theory obtained by starting from (2.8) and then eliminating
the auxiliary fields, m is not an independent parameter but is equal to —4a 2cr3, which in
its turn can be expressed in terms of o, @ and a;. This can be understood from the fact
that the sextic potential X 4 XZ X X4 X5 X% in Lot cannot be obtained from the off-shell
Lagrangian by replacing F' by its solution.

In the following we will put the theory on a curved manifold. More specifically, to go
from flat to curved spacetime one needs to:

e covariantize all derivatives,

e introduce additional terms %QABXBWMVHG and %QABXB’VMVﬂE in the transforma-
tions of ¥4 and U4, respectively,

e have € satisfy the conformal Killing spinor equation:
Ve =vu1m , (2.15)
where 7 is some arbitrary spinor,
e add a scalar-curvature coupling term, —%RX 4X 4, to the Lagrangian.
Explicitly:
B, 1 B . B
oWy — oWy = QAB’)/MGDMX + gQABX fy“VMe —iQaF 7€,
2.16)
1 (
S0 — s0t = QAPyreD, X5 + §QABXBV"VM6 — Q4B Fge |
1 1 -
Lrin = Lrin = 5t {—D“XADMXA — gRXAXA + WD, WA FAFA} . (2.17)
T

The resulting curved-space Lagrangian will be used in the next section.

3 Localization

In order to apply the localization procedure, the theory must be invariant under the action
of a fermionic symmetry § which is nilpotent, 6> = 0, or more generally squares to a
symmetry of the theory. Deforming the action by a J-exact term,

S — S+t5V | (3.1)

leaves invariant the expectation values of d-closed operators. Hence we may take the limit
t — oo, upon which the theory localizes to the set ¥ of critical points of §V [18]. In this



limit the path integral can be performed by restricting S to > and computing a one-loop
determinant describing the fluctuations normal to 3. This procedure was first carried out
in detail in [1] for the case of SYM on the round S*.

In order for the path integral to be well-defined, we will consider the theory in Eu-
clidean signature. All fields are then complexified, while the action becomes a holomorphic
functional in the space of complexified fields. This procedure is known under the name
of “holomorphic complexification” and ensures that supersymmetry is preserved, see e.g.
[19]. Following [1] our strategy will be to choose a path-integration contour in the space
of fields, such that when restricted to that contour the deformation §V becomes a sum of
positive semi-definite terms. The locus ¥ will then be determined by the condition that
each term in the sum vanishes.

3.1 Setup

As explained above, in order to apply the localization procedure we need to pass from
Lorentzian to Euclidean signature, where all fields become complex. Moreover ¢**? in the

CS piece of the Lagrangian becomes ie/**.

We then deform the action by adding a term t§V such that 62V = 0. For theories with
N > 2 supersymmetry, one can have 6> = 0 on all fields of the theory. However, this is
not possible for the N’ = 1 superalgebra. Instead, as we will show later, for N' =1 we can
require that § squares to a transformation in the isometry group of the manifold, which in
turn leads to 62V = 0 upon volume integration.

Furthermore we must restrict the supersymmetry parameter € to satisfy the Killing
spinor equation:?

Ve = Syue, (3.2)

where S is in general a complex function. The reason for restricting to this Killing spinor
equation instead of the more general one (2.15) is the following. Equation (2.15) would in
general imply that 62 induces not only a translation, a rotation and a gauge transformation
but also a dilatation, which would break the invariance of the deformation dV .

Under the assumption of smoothness, any solution to the Killing spinor equation which
is not identically zero is nowhere-vanishing on the manifold. This follows from the fact that
(3.2) is a first-order differential equation, hence if the Killing spinor vanishes at any one
point it must vanish everywhere.

Given a nowhere-vanishing Killing spinor €, any spinor ¥ can be decomposed as follows:
U=U,e+ WV e, (3.3)

where W are anticommuting scalars; our conventions are explained in appendix C. From
now on we require the supersymmetry parameters to be commuting. The off-shell La-

grangian given in section 2 remains invariant under supersymmetry with these commuting

3A detailed analysis of this Killing spinor equation in Lorentzian signature is given in section 3 of [20].



parameters. With the above definitions the supersymmetric transformations can be rewrit-
ten as:

0X 4 :Z'CLQAB\I’];3
XA =iaA B 5

1
004 =—QupV*+D, X"
a
1
6 s == QupUPD, XP + SQupXP —iQapFP
a

1
s :EQABV“DMXB

(3.4)
1
S :aQABU“DﬂXB + S0P Xp — QAP Fp
§Fy = — QapV*D, 9% + QupU"D, ¥
+35%aQapWP —iaX A +iad_X 4
SF4 = - Q*BVED, W, + QAPUMD, U
+ 355 a0 U —iaXAA_ +iad_ XA,
and for the gauge multiplets:
§A, = — iV, Ay + iU
§A, = — iV, Ay + iU
1
5)\+ - — %’LEHVPUPFHV
1 (3.5)
O == iV, Fyy
. 1 .
Oy == 5iePUp L
. L. =
O == ooV,
where:
a=ele=¢c® = —cc, VF=eye,
(3.6)

UF = efyte = —eyHec | V€ = =5 y,e .

Note that U4, \Iff, Wy, Uyuy, Ao and Ay are anticommuting; so is the supersymmetry
transformation 9. With the above setup, we find:

8 Xa = —iV"'D,Xa

5?04 = —v+D, vl

5?0 = —ivrD, 4 — 2a(S - S*)u4
6°Fa = V"D, Fs+V"9,5X4 ,

(3.7)



and:
6°A, = —iV"F,,
0?A, = —iV'E,
A = —iVFD A
M = —iVFDL Ay — 2ia(S — S*)A-
8N = —iVFD, A
§2M = —iVIED, A, — 2ia(S — S*)A_ .

Equivalently, written in terms of the original fields, two supersymmetry transformations

give:
§’Xa = —iVF'D,Xa
520 = —iVID, WA — SV iy, oA (3.9)
§*Fy = —iVF'D,Fa+V*"9,SX 4 ,

and:

§*A, = —iV'F,,

§%A, = —iV'F,,
&N\ = —iVFED A — iSVHy,\
82\ = —iVED, A — iSVEy,A .

(3.10)

As explained in Appendix C, V# can be identified as part of the orthonormal frame that
trivializes the tangent bundle of the manifold. Therefore, apart from additional terms
which can be interpreted as gauge transformations or rotations, §2 acting on each field
gives a translation along V#.

In the next section we will ultimately set @ = 1 and S = 0, upon which the above
equations simplify further.

3.2 Deformations
3.2.1 Matter Sector

To localize the matter sector, we first consider the deformation,

5V = /\/gd%a[((quA)T\yA] , (3.11)
where we have defined:
(6WA) = QB D, X5 + S QAP X el +iQAP Frel . (3.12)

Note that at generic points in field space (§U4)7 is not the adjoint of §¥ 4, and §V as
defined in (3.11) is a holomorphic functional in the space of complexified fields.



As explained in section 3, we will choose a path-integration contour C in the space
of fields such that when restricted to C the deformation JV becomes a sum of positive
semi-definite terms. This requirement selects C as the subspace where the fields satisfy the
reality condition:

XM =Xy, P =Fy,
Contour C : ’ o (3.13)
A=A, Au=A4A,.
Moreover the integrand in (3.11) is given by:
O[(0W ) W 4] = 6(6T )W 4 + (5T 4) 6T 4 . (3.14)
Recall that the supersymmetry transformation 4 is anticommuting; the relative sign on the
right-hand side is positive since (6% 4) is bosonic.

Let us now verify that the deformation is d-closed. From (3.14) we obtain:

SH(6W )W 4] =02(6W )W 4 — 5(6W 4) 06U 4 + 56T 4) 0T 4 + (6T 4)T62T 4

3.15
=52(0W ) WA + (6T 4)16°W 4 . (3.15)

The second term in the second line can be read off from (3.9). One can obtain the first
term in the second line from (3.9) and (3.12):

520V A) Wy = —iVFED, (60 )W 4 + IS VH(6T 4) 17, W 4 (316)
+2iS* QAP D, Xpely" W 4 — 2iSQAPV, D, XpelyM' W 4 '

where we used V,e® = —5%y,€° and chose S to be a constant. Finally,

S0V )W 4] = — iVH,[(6W )W 4]
+ QS V(W) 7, U g — iSVH(SW 2) T, T 4 (3.17)
+2iS*QAPV, D, Xpely" W 4 — 2iSQAPV, D, X ety W 4
This vanishes under the volume integration if and only if S is real constant. On the other
hand the integrability condition of the Killing spinor (3.2) relates the constant S to the

curvature scalar of the manifold:
R = —245% . (3.18)
If S is nonvanishing, this would allow hyperbolic space as a solution. In the following we

will discard this possibility and instead demand that the manifold should be compact, in

order to ensure that the partition function is well-defined.

On T3, the curvature scalar vanishes and so does S. This implies that the Killing
spinor is constant and nowhere-vanishing. Moreover, in (3.9) and (3.10), with vanishing
S terms, 62 gives a translation and a gauge transformation on all fields. J-exactness and

d-closedness of the deformation are thus guaranteed.

We will henceforth restrict the manifold to be 7. We normalize the constant Killing
spinor such that ée® = 1. The bosonic part of the deformation (3.14) is:
(0WA) 1604 =D, XAD" XA 4+ ie""PU,D, X aD, X" + FyF4

3.19
+iUPD, XA Fy —iU"D, X aF* (3.19)

,10,



where U, is a real unit vector, which we may choose to be along the third direction of T3
without loss of generality. When restricted to the contour C, cf. (3.13), the bosonic part of
the deformation is positive semi-definite, and the saddle points where it vanishes are given
by:

D1 Xa+iDsX4=0, D3X—iF=0. (3.20)

Hence with this deformation alone the theory does not reduce to an ordinary integral with
discrete saddle points: one can always choose some nontrivial functions for X4 and F
so that (3.20) is satisfied. We therefore add another term 6[(6¥4)1¥4] to the original
deformation:

(60 )60 4 + (00N 6WA =D, XA D' XA 4+ ie"PU, D, X s Dy XA + FyF 4
+iUPD, XAFy —iU" D, X s F#
+ D, XAD'XA —ietPU,D, XD, X* + FAF*  (3.21)
— iU"D, X" Fy +iU" D, X s F*
=2{D, XsD"X* + FyF1} .

When restricted to the contour C, the two terms in the last line are both positive semi-
definite, and the critical points are given by:

D,Xa=Fy=0. (3.22)

3.2.2 (Gauge Sector

A d-closed deformation for the gauge sector is:

/ @ {5 N +5(63) A} (3.23)

where we have defined:
(N = —elu P ()] = — el B0 (3.24)
so that the deformation (3.23) is a holomorphic functional of the complexified fields. Note

in particular that (6A\)" is not the adjoint of §A at generic points in field space, but only
when restricted to the contour C, cf. (3.13).

The bosonic part of the deformation (3.23) is given by:
T Wish - L Lo
(ON)TON+ (ON)TON = §F F, + §F F . (3.25)
When restricted to the contour C this becomes a sum of positive semi-definite terms, with

critical points given by:

Fu=F,=0. (3.26)

— 11 —



3.3 (Gauge Fixing

We now introduce the usual ghost and anti-ghost action to fix the infinite degrees of freedom
of the gauge fields. The ghost term is not invariant under supersymmetry, so one cannot
immediately proceed to do localization. To deal with this, we follow [1, 2], and introduce
a new fermionic symmetry A:

A=bg+05, (3.27)

where d¢g stands for supersymmetry and dp for BRST transformation.

Under a BRST transformation, we have:
dpA, = 0,C +i[A,,C], dpr=—i{\,C} . (3.28)

and similarly for A, \. Here C is the usual anti-commuting ghost field. It transforms under
supersymmetry and BRST as:

5oC =0, ACz(SBC:aO—%{C,C}, Aag =0, (3.29)

where ag is a constant ghost-for-ghost field that takes care of the zero mode of C'. With
this combined transformation, one can verify that:

A2Au = - iVVFuu + ’L'[A“, CL(]] )
AN = — iVEDLA + i\ ao) (3.30)
A2C =i[C, ag] .

The rest of the ghost complex transforms under A as:

AC=b, Ab=—iV-DC +i[C,ag],
Aag = C_'o R AC_'O = i[do, ao] R (3.31)
Abg=Cy, ACH= [V CA, b()] + [Aﬂ, 6“(V . A)] - ZD(V . A) + i[bo, CL()] R

where C is the anti-ghost, and b is the Lagrangian multiplier; ag,by,Co and Cy are constant
fields needed to fix the zero modes of the ghosts and b.

The gauge-fixing action is:
i / Bate{A[C(O" A, + by) — Cag)}
=i / datr{b(0" A, + by) — C(0"D,C + 0"5g A, + Co) (3.32)
~ (a— ${C,CY)ag + CCo}

Note that the ghost, the anti-ghost and the transformation A are all anti-commuting. In
Appendix D we show that the integration over all fields in the ghost complex gives the

- 12 —



Lorentz gauge. Now this action is invariant under A transformation:

A?[C(9" A, + by) — Cag)
=A?(C) (0" A, + by) + C(O"A*(A,) + A% (b))

— A*(C)ag — CA*(ag) (3.33)
=A?(C) (0" A, + by) + C(O"A*(A,) + A%(bg))

— Z[C, ao]do — iC[(lo, ao] .
The last two terms cancel under the trace. The first two can also be shown to cancel:
/ Batr{A2(C) (9P A, + bo) + C(OPA2(A,) + A2 (b))}

_ / Patr{(—iV - DC +i[C, ag)) (9" A,, + bo)

+ COM(—iVVF,,, + i[A,, ag))
+ OV - Abo] + [Ay, 0P(V - A)] — i OV - A) + i[bo, ao])}
3.34
:/dgxtr{z[C,ao](aA+b0)+zC([8A+b0,a0]) ( )

—iV-9[C(0- A+by)]+ [V -A,C)(0- A+ by)
+C[V-A,0-A+b] +iCOWV - A) —iCO(V - A)
ClOM(V - A), Au) + C[A,,0"(V - A)]}

=0 .

3.4 Saddle Points

For the gauge sector we replace § by A in (3.23) and modify the deformation as follows:

1

AVgauge = / dm?’Atr{ieTnyFW)\}
L1 o (3.35)

= [ dx tr{iFH,,F“ —iIADA}

and similarly for the hatted fields. This deformation is A-exact and A-closed. For the
matter sector, A is defined to be the same as J, and the deformation is:

AVnatter Z/dﬂ:Btr{A[(A\IIA)T\I/A + (AU 1) W 4]}
=2 / dx?’tr{DuXADNXA L P FA i DU, (3.36)

T OABAX U4 + QupAXBUA — QABX AT, — QupXPATAY

The gauge sector localizes to:
F,=0; A=0, (3.37)

where we have restricted to the contour C, cf. (3.13). In particular the saddle points of

the gauge field correspond to flat gauge connections over the Euclidean three-torus. For a
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simply-connected gauge group m1(G) = 0, such as G = SU(N) x SU(N), this implies that:
A, =, H; (3.38)

where ¢”’s are constants and {H;}, i = 1,--- ,rank(G), is the Cartan subalgebra of G.
This can be seen as follows (see e.g. [21, 22]): Since A, is a flat connection there exists
a group element U € G such that A, = —i(?HUU_l, at least locally. I.e. U need not
be globally defined but is allowed to undergo G-valued jumps as we wind around each of
the three circles of the torus. More explicitly, suppose we have a square torus of radius
L parameterized by {z* € [0,L]}. The group element U(z!, 2%, 23) obeys nontrivial, in
general, boundary conditions which may be parameterized as follows,

Uz 4+ L, 2%, 23) = Uz, 2%, 23)Qy ;
Uz, 2 + L,2%) = Uzt 2%, 2%)Qy ; (3.39)
Uzl 2?23 + L) = Uzt 2%, 2%)Q3

for some constant €2, € GG. In addition, for consistency, {2, must mutally commute. In-
deed going once around the circle parameterized by x* and then once around the circle
parameterized by z¥ must produce the same jump in U as when going first around the ="
direction and then along z*. This implies, taking (3.39) into account,

[2,,9,] =0 (3.40)

For a unitary group G, as is the case in the present paper, this implies that €2, can be put
in the form:
Q, = exp(iLc), H;) | (3.41)

up to similarity transformation. Recalling the relation between A, and U we are thus led
to the result cited in (3.38), provided we can show that for any set of mutally commuting
Q,’s we can always construct a group element U ~ exp(iz*c/ H;) obeying (3.39).

The proof of the last step proceeds by showing that there is no obstruction in construct-
ing an element U(x'2%,23) on the edges of a cube of side L such that (3.39) is satisfied.
Then U can be continued on the faces of the cube provided 71 (G) = 0, and finally in the
interior provided m2(G) = 0, which holds true for G = SU(N) x SU(N).

An important observation is that the constants cL should be understood as periodic
variables with periodic identification,

. . 9r

( 2

¢~ eyt T (3.42)
This can be seen by performing a gauge transformation generated by U = exp(%x“ﬂ}),
which shifts A4,, in accordance with (3.42). On the other hand the element U thus defined
is periodic?, i.e. as we wind around the z# direction of the torus it forms a closed loop in

group space. But since the group is simply connected U may be continuously deformed to

4We are adopting the normalization exp(2riH;) = 1.
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the identity, and the gauge transformation generated by U should act trivially on all fields
of the theory. We thus arrive at the identification (3.42).

It follows from the above that the CZ’S can be constrained to take values in [0, 2%]
In particular taking the infinite-volume limit of the torus, . — oo, we conclude that the
only solution to (3.37) is the trivial flat connection A, = 0. Of course on R? there is no
obstruction to gauging away any flat connection of the form (3.38). The point is that we

can formally reproduce this result by considering R3 as the infinite-volume limit of 7°3.

The case of G = U(N) x U(N) presents one crucial difference: m(U(N)) = Z and
thus G is not simply connected. By considering the decomposition of the algebra-valued
connection along the G-generators it is not very difficult to see that we may still put the

most general flat connection in the form (3.38),
Ay =cHi+d,J + e, K (3.43)

where the first term on the right-hand side is as in the case of SU(N) x SU(N); d,,
ey are constants; J, K are the two additional u(1) Cartan generators coming from the

decomposition:
w(N) @ u(N) = su(N) @ su(N) @ u(l) @u(l) . (3.44)

Now the previous argument which allowed us to conclude that cz are periodic does not go
through for the variables d,,, e,. The reason is that the gauge transformations generated
by U = exp(Zz#J) and U = exp(Za#K) form closed loops in the group space which
are not contractible to the identity. Hence the gauge transformations generated by U need
not act trivially on all fields of the theory.

In particular our argument that in the infinite-volume limit the only flat connection
is the trivial one, does not go through in this case without additional assumptions. If
we wish to recover A = 0 as the unique (up to gauge transformations) solution to (3.43)
in the infinite-volume limit, we must impose by hand that U = exp(%x‘ﬁ] ) and U =
exp(%x“[( ) act trivially on all fields of the theory.

Finally, the matter sector localizes to the following field configurations:
Fi=0; Uy=04=0; X4 =const, (3.45)

where we have restricted to the contour C, cf. (3.13).

3.5 One-loop Determinant
We will now compute the one-loop determinant from the quadratic fluctuations around the
following saddle points,

A,=0; A=0;

o A B (3.46)
Fy=0; Uy4=0"=0; X4 =const,

and similarly for fl, A Le. we will ignore the contributions from non-vanishing flat gauge

connections, as discussed in the previous section.
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The full path integral is of the form:
. . 1
/dgo exp{iS +iSg ¢ — t(AVgauge + §Avmatter)} , (3.47)
where Sy ¢ is the gauge-fixing action (3.32), and [ dy stands for integrations over all fields

and ghosts; AVgauge contains deformations for both hatted and unhatted gauge multiplets.

Next we expand the fields around the saddle points:

1 1

—X' -0+ —0. 3.48
Here Xgl is a constant field and X', represents the nonzero mode of X 4; ¢ stands for all
fields other than X 4. The path integral (3.47) is t-independent thanks to localization.
On the other hand, taking t — oo allows us to keep only the quadratic terms in the

X4 — X%+

deformation:
TINRE TN
_ / dx%r{épng — AN + / dx?»tr{%ﬁgﬁw —AIA
+ / dzbtr{9, X, 0" X' + XA, AP XY + XA, A X4 —2XG A, X04 Ar
4 FLFA 0490, + QABAXGW, + QupAXCBUA — QABXOAW, — QupXOBAUAY |

(3.49)

A

where F = 0, Ay, — 0, A, is the linearized field strength; some terms have been eliminated

using Lorentz gauge.

3.5.1 Determinant from Bosons

We start with the calculation of the one-loop determinant of the bosonic part. Under

Lorentz gauge, we have:
1 1 .
/d3xtr{§F£/FA‘“’} + /dx?’tr{iFAWFA‘“’} + /d?’mtr{@MX;lB“X’A
+ X404, A0 X% + XGA, A XA 92X A, X041 + FAFAY
= / dBrtr{—A, OA"} + /dmgtr{—flu OA*} + /d3xtr{—Xf4 ox’4

+ X4, A XS + XGA, A XA —2XG A, XA + FAFAY

(3.50)

On T2 with periodic conditions, any field ¢ can be expanded in terms of Fourier modes:

w = Z i exp{i2nii - T}, (3.51)

n

where 77 = (ng,ny,n.) and each n, runs over all integers. In addition, for the gauge field

the Lorentz gauge implies that for each 7,

nIAJ:,ﬁ + nyAy,ﬁ + nzAz,ﬁ =0. (352)
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Let us first assume n, # 0. (We will come back to the case n, = 0 in the following). Then
the previous equation can be used to eliminate A, 5 via:
Ny

n
Aa=——Aq7—2A,;. (3.53)
Ny

z

The gauge fields are in the adjoint representation, A, = AZta, where the generators t, are
normalized so that tr{t,t,} = d4,. The gauge kinetic action becomes:

/ datr{—A, DA}
n2 + n?

3 2 -2 n:%—i_ng a a Y z a a
:/d wy L D AT )AL AL+ ( VAy 7 A (3.54)

) n2 y, =iy i
a i,n.#0

z

Ngly a a NzNy g a
+— 3 Aoadys +— 5 Ay adan
z z

By symmetrizing 7 and —1i, for each pair of (i, —77) and each a, this can be written in

matrix notation as follows:

x,n T,—n y,n Y,—n
a nz+n? 0 NNy
x,7 n2 n2
2 2
ni+n Nagn
Aa - T 5 z 0 129 0 (355)
T,—n ns nz % 4 2(7 . =
o 2 n2 (1 - 1) .
Y, 7 n2 by n2
a NNy nynz
Ar o\ "m0 "E 0

S
[
S

Similarly, for each ( ) and a, b, the potentials involving the gauge fields are:

)

X949 A% 4, X9 0 T x X%, X9 ,
XQA® . Ab b, XA T ox XG0, X40 (3.56)
—2XQ AUt XA - T x —2X5£, X0,

where:
0 nngng 0 Nz Ny
n?2 n?2
z 4
nﬁ-{—ng Nz Ny
n?2 0 n?2 0
r=| = oo e (3.57)
0 x 'ty 0 Yy z
n2 n2
z 2 o 4
NgNy nyny
2 0 ) 0
nz nZ

The matter fields are in the bifundamental representation of the gauge group U(N)x U (N).
Moreover X = 3_, 5 X0 |p) @ |p), where |p), |p) are representatives of the weights in
each weight space; we choose the normalization so that (p|p') = 0, and (p|p') = 0, 5, in
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some gauge-invariant contraction of the relevant color indices. We then have:

~ R R 0 l7"l
XX =37 37 X0 (| @ {pl tati] ') 9 X377

(p.p) (')
R 005
= 3 X0 (plty o) (|1 |0) X3P
psppsp"
= A0(p.p) (p.p"") (P"p") x-0(p".P)
— Z X (pp)ac(lpp )pr ) xS0 (3.58)
psp’psp"
ngabeAOZ Z Xgl(p,f))5C(Lﬁ,ﬁ”)&Igﬁ”,ﬁ’)XAo(p,,a')’
p.p P,
X%, X0 = N XJPP5P00 x A g #50)
PP DP

where o) = (pltalp’) and we used the fact that 3 [p) (p| = 1. We then define the
following matrices:
Bay = X%ty X5
Cap = X1ty X0, (3.59)
Dy, = — X5, X%, ,

and the deformations that are quadratic in gauge fields can be represented as:

A A
A [B+4r*(i7-7) x 1 DN g (3.60)
A D C+4n2(ii - 77) x 1 '

The determinant of the tensor product of two matrices A and B is given by:
det(A ® B) = (det A)m B (det B)HmA | (3.61)
Therefore, when n, # 0, we have:

det(A, Ao =[] {(det A)* x (J] detT)?}
(7,—7),n-7£0 a

e " (3.62)
_ A 4 (4m?)4(i - 1) '
= I {@etlmi < AT

(7,—1),n-#0 a
B A ) 1674 (77 - )3 4
- B {(det[4ﬂ_2(ﬁ ﬁ)]) X (H ng ) } ’

,n 270 a

where:
B+ 472(7 - 7)) x 1 DT

g BT . (3.63)
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For the case where n, = 0, but n, or n, are not equal to zero, the procedure is similar.
The determinant coming from integrating over A, reads:

det(4, 4) =[J(et( =) [T I o 4T;)3]2

a  fin,#0

i - i) i - i)
< 1 [16774%]2 11 [167* %}2}.

7,n,=0,n57#0 11,n2=nz=0,ny7#0

(3.64)

The contribution to the one-loop determinant coming from the terms involving gauge fields
is thus:

H {Hnnﬁéo Hnnzfongﬁéo mHnnz nxfonwéony}
T, [T 167G - )?

deet A;L, ﬁ)])—l.

One may worry about regularizing the numerator. However, we note that the gauge-fixing

Zl loop(A A)
(3.65)

delta function also gives a Jacobian factor to the one-loop determinant. Indeed in the ghost
action we have:

exp{i / d?’xtr(ba“AH)}

=exp{i27 Z Z b (7 - A%)}

After integrating out b% we obtain:

(3.66)

H [Io6 A2 . (3.67)

This product of delta functions imposes the gauge-fixing Lorentz condition and, upon
integrating out A, flﬂ, gives a Jacobian factor which cancels the numerator of (3.65).

The integral over F4 simply contributes an overall constant factor. Finally we are left
with the integration over X',:

/ dBrtr{-X', 0X"4}
= antite{ X)) ;X5
n
= om?ittr{ X)) G XF + XX, ) (3.68)

= Y omtitte{X)y X5+ X)X
(ﬁvfﬁ)
A A
+ XX, i+ XX a)
This integration is Gaussian, and the corresponding determinant is:

det X = [T I] []2=*7*)? . (3.69)

A (pp) 7
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where (p, p) runs over the weights of the bifundamental representation. Therefore, the total

contribution of the bosonic part to the one-loop determinant reads:
1

1L, T 167 (727 H g 4T Ty L 275720
Ay

H(det[ﬁ

. - 1)
1

Z1—1oop(Boson) =

/\

(3.70)

([T 167 (72)3) T 4 T 1 (2 %72) " }
deet A; )]) L

Here d is the dimension of the gauge group and w is the dimension of its fundamental

‘_.

representation. For U(N) in particular we have d = N2, w = N.

3.5.2 Determinant from Fermions
The fermionic part of the deformation is:
/dwgtr{—ij\@)\} + /dx?’tr{—ijxfﬁj\} + /dmgtr{—i@A(‘ﬁ\I/A

FOABAXYW 4+ QupAX P4 — QABXOAD , — Qs XOBATA) .

(3.71)

Using the expansion A = A e+ A_€€ for the gaugino kinetic term, cf. appendix C, we have:
/dwgtr{—ij\(‘ﬁ)\}

:/d$3tr{—l()\+v . (9)\+ — )\7‘7 . 6)\, - >\7U . 6)\+ - )\JFU . (9)\,)}

=21 Y N AV AN N = VA A = U AN N

3.72
v e (372

_27'('2 Z {(V N XY = VA A\ o — Ui o\
(7,—m)
—U -\ AL 5) + (VX gAY+ V-aA Al
+ U . ﬁ)\g,ﬁ)\j,’fﬁ + U . 'I’L)\i ﬁ)\g ,ﬁ)} 5
where we symmetrized the indices 4+, — and 7, —7 of the gaugini in the last equation. For
each pair of (7i, —77) and each a, this can be written in matrix notation as:

D D R
AL 0 0 =27V -7 27U -1
AL G 0 0 27U -7 2V - i (3.73)
Mo | eV —2nU i 0 o |
A _p \-2nU -7 =27V - 0 0
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Similarly for the matter fermion kinetic term:

o > r{(V AW Uy g Vil Uy - Uit W
(ﬁvfﬁ)
—U i U g)+ (=V a0 Uy i+ Vid®A Wy
+U AU Wy i+ Uil 0, o))
= Y w{(VAl] Uy q - Vil Uy - Uit Wy
(ﬁvfﬁ)
—U -0 Uy 5)+ (=V al Wy 5+ V-0 Wy g
HU -0 Wy a4 U -4 Uy g)h+ (1) 6 Uy

(3.74)

The last term arises due to the symmetrization of ¥4 and ¥ 4. When decomposed into the
weight spaces, this becomes:

o> S AW Al v et el v et e
(p7ﬁ) (ﬁ77ﬁ)

—U RGO (v et Ay e Ly gt gd) (3.75)

T O T DA S N Gl N | S S L PR

For each pair of weights (p, p) and each pair of (7, —7i), these terms can be written with
the help of two matrices:

O TR T
\I’ﬂg’ﬁ) 0 0 —aV - wU -7l
phed g 0 aU-7 7V i (3.76)
vl | avei —xU-7 0 o |
\I/fff’g) —nU -t =7V -7 0 0

and:
\I,ffgﬁ) \I,z:lfgﬁ) ‘I’ﬂf’? \Iffff’?

v 0 0 —aV-@xU-i
v 0 0 —aV-iaU-ii (3.77)
v | aVei —xU-7 0 o |
\I/(Ap’f’)fﬁ —nU -7 =7V -ii 0 0
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Similarly, the Yukawa interactions can be written as:

/ At {QABAXOU 4 + QupAX BUA — QABXOAT 4 — Q45X P04

=a Y tr{(War _ad_ g — Va_ A )X+ (U A5 -0 AL 50X 0P
7
— XA aVa s — A _aWarg) — QX P (O 0 - AL 50 )
—a Y w{(Vayadoi— Pa _ahy ) QXG4 (U A -0 AL ) QapX 0P
(7t,—)
—OABXYOL aVa A i Uaya) —Q ABXOB()\+ P SO W )
T (Pay i i —Vaahy @) QBXY (WA A WA N, )QABXOB

—OMBXYOA aVa =AUy ) —Q ABXOB (A+ﬁqzi‘ ) i o
(3.78)

Each term, such as tr{W¥ A+7_ﬁ)\_7ﬁQABX%} for example, can be written in terms of the

algebra representations as follows:

Z Z Z A+ a2 (PPl AL sta lp) 10) QABXg(p’vﬁ’)

(p,p) (p'p) @
3.79
_ Z Z\I,(pp B (pp)QABXO(P P) : ( )

pp'p @

where 0(pp = (p|tq|p’) (64 () — (p| o |p')). Therefore the matrix elements for each \I’(X’f))

and each \* are:

Apa Ala Aos Al RN U A
vy 0 0 0 [oX] . 0 0 0 [oX]
vy 0 0 —[0X] 0 A 0 0 —[oX] 0
v ol o ex] 0 o | x| 0 fex] 0 0 |
vp? o \-X] 0 0 0 A \-lX] 0 0 0

(3.80)

where [0 X] = l (p’pl)QAB Xg 0("P) and A, ¥ are symmetrized. This explains the factor % in
each entry. A summation over p’ is understood in 0(p PAB Xp 0060,

The fermionic part of the deformation for each pair of (77, —77) can be written in matrix

notation as:

/

@ j\a PpAP:P) ‘I’%ﬁ)

@ M 0 (Xo)a —(0X)4

A 0 M —(xX), Xo) (3.81)
vACH) | (Xo)s —(0X), O N ’

v \ x4 Xo) N 0
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where:

0 0 =27V -n 27U -1
M oN - 0 0 2rU -7t 2mV -t
| 2V —20U - 0 0 ’
—2rU -7t =27V -1 0 0
(O‘X)A = %Uép’p/)QABX%(pl’ﬁ) X9, (382)
1 - /
(Xo)a = §QABXBO(P Pglr'r) % §
— 1 A ar A
(0X), = §&C(vap )QapX B0 g
—A 1 1 JYRR
(Xo) = §QABX%(”’” V602 «
and:
00 0-1
0010
$ = . (3.83)
0-100
1000
As before we have a,a’ =1,...,d; p,p=1,...,w; A=1,...,4, where d is the dimension

of the gauge group and w is the dimension of its fundamental representation. Therefore
(3.81) is a 2d + 8w? by 2d + 8w? block matrix: each entry is given by one of the above four
by four matrices.

The matrix (3.81) can be partitioned into four blocks:

M 0 | (Xo)a —(oX)4
! — _—A
A B 0 M —(cX X
8dx8d 8dx32w? | _ | T S (U)A(U) 7 (3.84)
Cs2u2x8d D32wx3202 (Xo)a —(0X),: 0 N
—@X)4 (Xo) | N 0
so that the determinant reads:’
A B 1 1
det =det Adet Ddet[1 — D "CA "BJ. (3.85)
C D
The determinants det A and det D are straightforward to compute:
det A = (det M)** = [1674(7%)?]*¢ | (3.86)
det D = [J(det N)** = [i=* (@)% . (3.87)
A A

®We use the notation A, B,C,D for the matrices in the bosonic sector, while the matrices A, B,C, D
are used for the fermion fields. We hope this does not cause any confusion with the Sp(2) indices.
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Their combined contribution to the one-loop determinant is:
[Tt@r?a)? [ (=*a2)="} . (3.88)
7 A

Furthermore the integrations over the ghosts and anti-ghosts for the two gauge groups
contribute (det J)? = {]5(4727?)?}2. When combined with (3.88) this gives:

[Tt ] (272"} . (3.89)
n A

Up to a constant factor, this partially cancels the one-loop determinant from the boson
sector, (3.70). We are thus left with only X"-dependent contributions from both boson
and fermion sectors.

Inserting the localization conditions (3.46) into the off-shell Lagrangian (2.8) gives a
vanishing classical contribution. Therefore the partition function is given purely by the
one-loop determinant:

i Tl {det[l — D-1CA-1B]}z
_ 0(p,p) Bo(p/, /)H( ,*n){

Z_/””dXA [T T ax?¢~ T —— . (3.90)
(p,p) "

A (pp B (7)) an? (7i-11)

We now make use of the Sylvester identity:
det[l — D'CA™'B] = det[l — BD'CA™'], (3.91)

where the matrix on the left-hand side above is 32w? x 32w?, while the matrix on the
right-hand side is 8d x 8d. Using the definitions in (3.82) and (3.83), one can show that:

det[1 — BD™'CA™]
=det[1 + CT"DICA™Y

B DT o SNTISM

=det[1 + 5 ]
b ¢ (3.92)
B D" T4

=det[1 + ® —5—— ]
D C A2 (i - )
A

—{det 4

et o))

Putting this back into the one-loop determinant, we see that the fermion and boson deter-
minants cancel exactly against each other.
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4 Discussion

We have partially carried out the localization procedure for the N/ = 1 Chern-Simons-
matter theory on 7% with periodic boundary conditions. In particular we computed the
contributions to the partition function from the locus of saddle points with vanishing
gauge connection. As expected, restricting to this locus gives a trivial contribution to
the partition function, i.e. the bosonic and fermionic contributions exactly cancel each
other. Indeed evaluating the partition function on the flat torus at the trivial vacuum
(vanishing gauge connection) simply counts the degrees of freedom of the theory, and for
a supersymmetric theory one expects a complete cancellation. Of course the full partition
function should receive contributions also from saddle points with nonvanishing flat gauge
connections, which we have not computed here. We hope to return to this in the future.

Another potentially interesting direction in which this paper may be generalized is by
allowing for a more general Killing spinor equation than the eq. (2.15) which was used for
the present analysis. This may be achieved by coupling to a supergravity background and
could provide additional possibilities for spaces on which the theory localizes.

The authors of [23] considered Euclidean 4d A/ = 1 theories without R-symmetry, and
concluded that no localization is possible in this case. Our results are not in contradiction
with their conclusions. Indeed it is possible to construct 3d theories without R-symmetry
by dimensional reduction and further truncation of 4d theories with R-symmetry.

Our results have the following implication for the partition function of the ABJM model
on T73.% Our analysis of the saddle points shows that the classical CS action vanishes on the
locus of flat gauge connections on T3, cf. (3.43). Since the one-loop determinant around
the saddle points does not introduce any dependence on the two CS levels, it follows by the
localization argument that the partition function is independent of the level k = k; = —ks.
Hence we may compute the partition function in the limit & — oo with N fixed, which
corresponds to vanishing 't Hooft coupling. In this limit the matter sector becomes free
and decouples from the CS action. Therefore the resulting partition function factorizes
into a pure supersymmetric CS partition function and a free matter piece. The latter is
trivial, i.e. the bosonic and fermionic contributions exactly cancel each other. Moreover
our localization results can be applied to the pure CS partition function to show that the
contribution from the saddle points with vanishing gauge connection is also trivial. As
mentioned above, this is consistent with what one expects for a supersymmetric theory.
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A Spinor and gamma-matrix conventions in 3d

The charge conjugation matrix in three dimensions satisfies:
ctr=—c;, (oyWIr=cy;,  Ccr=-C7'. (A1)
For any spinor v and in any spacetime signature we define:
v=yl"C . (A.2)
Moreover in Euclidean signature we define:
Y= Cy* . (A.3)

It follows that,
Yh=—ge; @9)°=-¢. (A4)

The irreducible spinor representation in three Euclidean dimensions is two-dimensional
complex (pseudoreal).

The Gamma matrices in Euclidean signature are taken to obey:

(’YM)T = - (A.5)
Antisymmetric products of Gamma matrices are defined by:

7&?% =Vpa -+ Vo] - (A.6)

In Euclidean signature the Hodge-dual of an antisymmetric product of gamma matrices is
given by:

Lon(n—
Yy = (=1)2" Dy (A7)

B N =1 Superconformal Symmetry

B.1 Poincaré Supersymmetry

In this subsection we show the invariance of the on-shell Lagrangian (2.1) under the
Poincaré supersymmetry.
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The most general Poincaré supersymmetry transformations read:
0X 4 = Z'QABg\I’B
oX4 =inABery
SV 4 = Qapy'eD, X P + 530 4
5T = QABy1eD, X + 5304 (B.1)
1 ~
6A, = k—l[Q A&, UAXE 4+ QAP X B 4y €]

1

5A, = [QapXPey, v + QBT 4y,eX5]
where the variation d3 will be determined in the following.
e The variation of Log cancels against the variation of the matter fields in Lyg;,.

e The variation of the gauge fields in the spinor kinetic term in Ly;, cancels against
the variation of the bosonic fields in Ly, iff:

2 2
— + 201 —ta; +2ia4 =0, —— —2q7 —tas + 2iag =0,
kl k2
1 o 1 _ .
— 4201 +2ia4 + 91 =0, —-— =201 +2iag — g2 =0,
k1 ’ ko ’
1 1 _ (B.2)
—+2041+04272:0,—+2041+04271:0,
k‘Q kl
2001 — 21a3 + 204372 =0, 2a1 + 2tas + 20&371 =0,
2001 — 21a3 + 2a31 = 0, 201 + 2iag + 2032 =0,
or:
P 1
ap = —-2i(—+aq), az =2i(— + 1) ,
/{?1 k2
ag = —ag —i(a; —a1) , ag = ag =iy — aq)
(o0~ ) (o0~ ) -
= —— — 27 = —— — 2
Q21 ey a1, (22 i at o,
31 = ago = i3 —ay = —iaz — Qg ,

where all parameters are expressed in terms of ki,ko,c1,0; and as. In the following we will
set a3 = g1 = 32, and use a4 instead of ay.

e The variation of the gauge fields in the boson kinetic terms in Lg;,, together with
the variation of the fermion fields in £4 without §3¥, cancel against the d3W¥ variation of
the fermion kinetic terms in Ly;,, iff:

5304 = {Qap(22 X X XP — 31 XBXcXC) — 20300 XX 4 X e |

B.4
5304 = {QAB (—a9 1 X XX + 00 XX X0) + 20308 Xp XA X0 Je (B-4)

,27,



e The 3V variation of £4 cancels against the variation of Lg, iff:

2’L'Oé1012,1 — Z'OZ%J — a1t — 2&40[2,1 - ’L'Oé4,2 +P=0 R

20 (g0 — 2'04%2 + asqo2 + 2a40i9 0 — P04 + P=0,

— 22'5[104271 — 2021 — 2&4042,1 + 22'014,4 —-P=0 ,

— 2ivpano + ajog o + 2a400 9 + 2ty — P =0,

21'04104271 — 21'04304271 + 2@30&271 —mm+P=0,

2’L'5£10£2,2 — 2’L'04304272 — 2&30[2,2 —im+P=0 ,

— 22‘04104272 + 22‘04304272 — 2@304272 +im—-—P=0,

—2it g + 2iagag) + 2azas ) +im — P =0,

— 22‘04104271 — a1 + 21'04474 —-P=0, (B.5)
— 2idap + ajazg + 2iag s — P =0,

21'04104272 — Z‘OC%,Q + asa0 — 2‘04471 +P=0,

2icv o1 — ia%l —ajoo] — 102 + P=0,

41'04272063 +im—-—P=0, 42‘04271043 +im—P=0 ,

dicg 1o +im — P =0, 4iagsas +im— P =0,

2iag 19 + 2icg s — P =0, 2iag g + 2iaus — P =0,
4ia2 —in—P =0, 4iak —in—P =0,

diocy3 — P =0, dioyz — P =0,
and:

2a1a3 + dagas + 4asasz +1m +n =0,
2a90i3 — im + 2a1a3 + 4agas ‘—|— m ‘: 0, (B.6)
— 2a0a3 — 4dagay — dasas +1m +in =0,

2a1a3 + im + 2asa3 + dagaz —im =0,
where:

P = —4ia1a3 + 2a1a3 + 4(140[3 +1im , (B 7)
P = —4div g — 2a903 — dagas +1m .

and we made use of the identities:

eaBcp = Qapp — QacQsp + QapQpe ;. eapepQPt = 249[,435555] . (B.8)
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After some further manipulation of these equations, taking (B.3) into account, we find:

1 1
a] = —Q’i(— + 5[1), as = QZ(k—2 —{—Oél) ,

k1
a3 = —ag — i(Oél — 5[1), ay = i(Oél — 5[1) ,
1 200 2
Qo1 = —7— — 201, Qoo =—7——20
k1 ’ ko ’
a3 =1a3 — ] = —tag — Qq ,
2
g1 = —3a3 9 + 4oz a3 +m (B.9)
2
Qg2 = —3as ) +4agga3 +m
m
Q4,3 = Qg 203 + 1
m
Q44 = —Qo 1099 + 20903 + 5

m=4(az2 — ag1)asz +m
n =

4
4(0[3 — 04272)0[3 —m .

e Let us also mention that the requirement that the total Lagrangian should be real (which
we do not need to impose in the present paper) would imply the following additional
conditions on the parameters:

Q2 1,Q22,Q3,041,042,043,Q4 4,1, m, n are real )
ai,as are imaginary (B.10)
(a3 — ’idl)* =az +taq , (a4 + idl)* = —iaq , (idl)* = a4 — 107 .
When we combine the above reality conditions with (B.9), we see that «; and &; are real
and a4, a3, as are imaginary.

From the above it follows that the on-shell theory has four independent parameters
besides the CS levels k1, k3. They can be chosen to be a1, @1, ag and m.

B.2 Conformal supersymmetry

Provided (B.9) holds, the action possesses an additional conformal supersymmetry. To
show this, we follow [17] and replace the parameter e of the Poincaré supersymmetry by
x,v*n, while adding to the spinor variations the terms:

8, =QapXBn,

B.11
oA = Q4B Xpn . (B-11)

Most terms in the Lagrangian are then invariant by virtue of the Poincaré supersymme-
try. The term coming from the derivative acting on x of x,v#n in 63¥ of the fermion
kinetic Lagrangian cancels with 6’U of L4, if (B.9) holds. Finally terms generated by the
remaining variations of the fermions in the fermionic kinetic terms cancel against the boson
transformations in the bosonic kinetic Lagrangian and the variations of the CS terms.
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C Trivial GG-structures in 3d

The existence of a nowhere-vanishing (commuting) spinor € on a Riemannian three-manifold
implies the existence of a trivial G-structure, i.e. the trivialization of the tangent bundle.

In this section we will explore in detail the implications of this trivialization.
Since € is assumed nowhere-vanishing we can take it to be normalized:
ele == —ece=1, (C.1)
where we used the formulas in Appendix A. On the other hand,
€e=0, (C.2)

due to the antisymmetry of the charge conjugation matrix, cf. (A.1). furthermore we can

define the following e-bilinear one-forms:”
U, = eTwue = —€Cye = &’ (C.3)
where we took (A.4) into account, and:
Vi, = éyue . (C.4)

It can be seen that U is real whereas V is complex:
V= —€ey,€° = ely,ec . (C.5)
The Fierz identities can be conveniently written in terms of the bilinears above:
- 1 .1
€€’ = _5(]1 + UM%L) ; €e= 5(1 - UMVM)

(C.6)

1 ~ 1-
€€ = §V“7H ;o €fec = —EV“VH .

Using the above, the following relations can be shown:
U2=RV?2=QV?=1; U-RV=U-SV=RV-SV =0, (C.7)
where we have defined A% = AFA,, A-B = A'B,, and V = RV +iSV. In other words

the triplet (U, RV, V) is a globally-defined orthonormal frame thus trivializing the
(co)tangent bundle of the manifold.

Let us also mention the following useful identities which can similarly be shown by

fierzing:
e = Upet Ve (C.8)
Yu€® = Ve = Upye® .
From these we also obtain:
Utype =€; Ulry,e® = —€°
%V’Wﬂec =€; %V’Wue =€ (C.9)

VHye =VFEy,ec=0.

"Since we are assuming the existence of a Riemannian metric on our manifold, we can convert vectors
to one-forms and vice-versa.
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Spinor and tensor decomposition

Spinors on the manifold can be expanded on the basis of €, €¢. Explicitly, for any spinor A
we have:

A= Ape+ A€, (C.10)
where Ay are scalar coefficients given by:
A = A€ AL =@\, (C.11)
The notation is motivated by the fact that we may define a chirality operator:
Y= Uk, (C12)

which indeed squares to one as follows from (C.7). Moreover ¢, € are chiral, antichiral
respectively with respect ot «, as can be seen from (C.9).

Forms and tensors can be decomposed using the orthonormal frame provided by (U, V).
For example any one-form A can be decomposed as follows:

A=A U+AV+AV, (C.13)

where A, A4 are scalar coefficients given by:

A A,:%V-A. (C.14)

<<I

A =U-A; A, = %
The notation is motivated by the fact that one-forms can be decomposed into the subspaces
parallel and orthogonal to U, which we may call the vertical and horizontal subspaces
respectively. The horizontal subspace can then be further decomposed into directions
parallel and orthogonal to V' (equivalently: orthogonal and parallel to V'), which we may
consider as the holomorphic and antiholomorphic directions respectively.
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D Lorentz Gauge

In this section we give the details of the integration over the ghost complex. First note
that in (3.32) the integration over b and by can be performed independently:

/H db(x)dbg eXpifdetr{b(a“Aqubo)}
= / T b (2)dbg excp? /4=t (@)@ Autbo)} / b exp ] el (@ Aybo)}

g / H db/(x)dbo eXp’ifdx:gtr{b/(x)(a“‘Au-i-b())} /db/ expifdx?)tr{b/bo}
o o (D.1)
:W /Hdb/(w)dbo eszfdm tr{d’ (z) (0" A+bo) } 5(60)

— / H db/(ﬂ?)dbo eXp’ifda:gtr{b/(x)(a*‘Au-i-bo)} /dbl expz‘fdx?)tr{b/bo}

1 i [ dx3tr{d (z
:W/Hdb,(w)exp J da® et (@)om AL}

where Vol denotes the volume of T3, and we decompose b(x) = V'(z) + b'; b’ is a constant
field: it is the zero mode of b(x). The remaining integration over ¥’(x) imposes the Lorentz

gauge condition.

Next we integrate over ag, then ag:

/daodao expifdﬂﬁ%r{_(ao—%{cvc})@o}

1
Vol
!
~ Vol

dao expifdetr{%{C,C}&o} (S(C_L(]) (D2)
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The remaining integrations read:

/HdC_'(x)dC(x)dCodC_'O expifdx?’tr{_O(B“DHC+3“5QAH+CO)+CC‘O}
= / ﬁdC(m)dCodC’OdC"(m) expt/ dz?tr{—C"(z) (0" D C+d"8q Au+Co)+CCo}
% ] A0 exp' ) da*tr{~C/(0" Dy C+8"5q A+ Co)}
:/HdC(m)dCOdC’O/dC’(x) exp! [ de?tr{=C"(2)(8" DuC+0"6q AutCo)+CCo}
x /x 0" expi f dz*tr{=C"Co}

- / [[ ¢ (@)acoaco / C' () exp! [ 4= A DCH00 A o) 7O o)

(D.3)

X VOI(S(C())
—Vol / [T dc(@)acy / dC" () exp | 47 {=C @O DuCHO"q 4 +CCO)

—Vol / [1dc'@)aco / dC" (@) expt [ 47 (=C @)@ DuC ()05 4 +C' ) Co)
y / O expi ] 428 {=iC! @)[0" A C'1+C"Co}

Note that the expression above is multiplied by an overall factor §(0 - A), therefore we can

set 0 - A to zero and integrate over C:
Vol? /HdC’/(Cﬂ)dC’/(ﬂJ)dCo expifdetr{—é/(x)(a“DuC'(x)+3“5QAu)+C'($)(70}

X 5(60) (D'4)
:Volz/HdC'(:c)dC'(ﬂ:) exp! @ r{=C (@)@ DuC"(x)+0" S Au)}

Absorbing dgA,, into C’(x), restricting to the saddle point A = 0 and integrating over C’
and C’, the last line gives det [J.

To see that dgA,, can indeed be absorbed into C’(z) it suffices to show that there is a
C" such that:
o'D,C'(z) + 0"égA, = 0"D,C" . (D.5)

Equivalently in form notation:
d"(6gA +da46C) =0, (D.6)

where we have set 60C := C" —C”, ds := d+i[A,]. The Hodge decompositions of 6C, dgA
are as follows:

5C =06Cp) +d16Cq) 5 6gA = 0gAm) + dogAw) + dTégA ) , (D.7)
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where the numerical subscripts indicate the rank of the corresponding form and 6C/),
0@ A(n) are harmonic zero-, one-forms respectively; in particular 6C(3) is constant. Similarly
for the gauge field we expand:

A=dAg) + Ay, - (D.8)
The fact that there is no exact piece in the decomposition above is due to the Lorentz
gauge, d'A = 0. Furthermore equation (D.6) is equivalent to the statement that there
exist a two-form u and a harmonic one-form wy, such that:

da6C + 6gA = d'u + we) - (D.9)

On the other hand, taking the expansions (D.7),(D.8) into account, the left-hand side of
(D.6) reads:

d(6C + 6gA)) + id' ([A2), 6C] + [Agny, 6C)]) + i[Agy, C() - (D.10)
It follows that (D.9), is solved for:

6C = —=6gA«0) 3 u=1i([A«@),0C] + [An),6Cw)]) 1 wmy = i[A@w). 0Cw] . (D.11)
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