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1 Introduction

Using localization, several exact results have by now been obtained for supersymmetric

gauge theories, such as the computation of indices, partition functions and Wilson loops,

among others. In many cases these exact computations have provided us with checks of

non-trivial dualities, including AdS/CFT.

In the present paper we apply the localization procedure to the most general, classically-

conformal, three-dimensional N = 1 Chern-Simons-matter theory with global symmetry

Sp(2) and gauge group U(N) × U(N). Previously, localization had mainly been used to

study theories on curved spacetimes with non-trivial R-symmetry [1–11]. We show that

the N = 1 theory on a flat three-dimensional torus T 3 can also be formally localized.

The N = 1 theory we consider here is not in general superconformal on the quantum

level, except for special points in its moduli space where supersymmetry may be enhanced.

In particular the ABJM model [12] is one such special point where supersymmetry is

enchanced to N = 6. By considering a classically-conformal N = 1 theory with unequal

Chern-Simons (CS) levels which is in a certain sense a small deformation of the ABJM

model [12], it was argued in [13] that the theory flows to an RG fixed point in the infrared.

These CFT’s were then conjectured in [13] to be dual to certain (massive) IIA supergavity

solutions [14, 15] which fall within the general class of [16].

The outline of the paper is as follows. In section 2 we give the on-shell formulation of

the most general classically-conformal N = 1 U(N)× U(N) CS-matter theory with Sp(2)

global symmetry. We then introduce auxiliary fields and formulate the theory off-shell, as

required by the localization procedure. An interesting observation is that the Lagrangian

in the on-shell formulation of the theory admits one more free parameter as compared to

the theory formulated in off-shell N = 1 superspace.

In section 3 we formulate the theory on a curved manifold. One notable difference

from the CS theories with N = 2 supersymmetry studied in [2] is that the requirement of

localization excludes positive-curvature manifolds such as S3. Formulating the theory on

T 3 or the hyperbolic three-dimensional space H3 preserves superconformal symmetry at

the classical level. In this paper we shall focus on the theory on T 3.1

We next carry out the localization procedure for the theory on T 3 with periodic bound-

ary conditions. As an illustration of the formalism we compute the contributions to the

partition function from the locus of saddle points with vanishing gauge connection. We

show that restricting to this locus gives a trivial contribution to the partition function,

i.e. the bosonic and fermionic contributions exactly cancel each other. We conclude with

a discussion of our results in section 4. Further technical details can be found in the

appendices.

1Demanding that the manifold should be compact, in order to ensure that the partition function is well-

defined, leads us to exclude H3. Compact quotients thereof may still preserve superconformal symmetry

but we shall not examine this possibility here.
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2 N = 1 Superconformal Chern-Simons-matter theory

2.1 On-Shell

The general component form of the on-shell N = 1 classically-superconformal CS La-

grangian with Spin(5) ≃ Sp(2) global symmetry and gauge group U(N) × U(N) is given

in [17]:

L = LCS + Lkin + L4 + L6 , (2.1)

where LCS is the pure CS Lagrangian, Lkin is the matter kinetic term, L4 is the quartic

interaction and L6 is the sextic potential. More specifically,2

LCS =
k1
2π
εµνρtr

{
1

2
Aµ∂νAρ +

i

3
AµAνAρ

}
− k2

2π
εµνρtr

{
1

2
Âµ∂νÂρ +

i

3
ÂµÂνÂρ

}
, (2.2)

where the normalization above was chosen to facilitate the derivation of the superconformal

invariance; Aµ, Âµ are gauge fields in the adjoint of U(N). The matter kinetic terms read:

Lkin =
1

2π
tr
{
−DµXADµXA + iΨ̃Aγ

µDµΨ
A
}
, (2.3)

where A = 1, . . . , 4 is an Sp(2) index; XA is in the bifundamental (N̄ ,N) while XA is in

the (N, N̄ ), and similarly for ΨA, Ψ
A. The most general quartic interaction terms can be

written in the form L4 = L4a + L4b + L4c + L′, where:

L4a =
1

2π
itr{ᾱ1ε

ABCDΨ̃AXBΨCXD − α1εABCDΨ̃
AXBΨCXD}

L4b =
1

2π
itr{α2,1Ψ̃

AΨAXBX
B − α2,2Ψ̃AΨ

AXBXB}

L4c =
1

2π
2itr{α3,1Ψ̃AΨ

BXAXB − α3,2Ψ̃
BΨAXBX

A}

L′ =
1

2π
tr{a1ΩADΩBCΨ̃AΨ

BXCXD + a2ΩADΩ
BCΨ̃AΨBXCX

D

+ a3Ω
ACΩBDΨ̃AXBΨCXD + ā3ΩACΩBDΨ̃

AXBΨCXD

+ a4Ω
ABΩCDΨ̃AXBΨCXD + ā4ΩABΩCDΨ̃

AXBΨCXD} .

(2.4)

The sextic potential consists of two terms L6 = Lpot + L′′, where:

Lpot =
1

2π

1

3
tr{α4,1X

AXAX
BXBX

CXC + α4,2XAX
AXBX

BXCX
C

+ 4α4,3XAX
BXCX

AXBX
C − 6α4,4X

AXBX
BXAX

CXC}

L′′ =
1

2π
ΩBCΩDEtr{nXBX

AXCX
DXAX

E}

+
1

2π
ΩBCΩDEtr{mXBX

AXAX
DXCX

E}

+
1

2π
ΩBCΩ

DEtr{m̄XBXAX
AXDX

CXE} .

(2.5)

2We follow closely the notation of [17], to which the reader is referred for more details; our spinor

notation is explained in appendix A.
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Here ΩAB is the Sp(2)-invariant antisymmetric tensor, which satisfies ΩABΩAC = δBC .

As shown in Appendix B, the theory is invariant under the following N = 1 Poincaré

supersymmetry:

δXA =iΩAB ǫ̃Ψ
B

δXA =iΩAB ǫ̃ΨB

δΨA =ΩABγ
µǫDµX

B + {ΩAB(α2,2X
CXCX

B

− α2,1X
BXCX

C)− 2α3ΩBCX
BXAX

C}ǫ
δΨA =ΩABγµǫDµXB + {ΩAB(−α2,1XCX

CXB

+ α2,2XBX
CXC) + 2α3Ω

BCXBX
AXC}ǫ

δAµ =
1

k1
[ΩAB ǫ̃γµΨ

AXB +ΩABXBΨ̃Aγµǫ]

δÂµ =
1

k2
[ΩABX

B ǫ̃γµΨ
A +ΩABΨ̃AγµǫXB ] ,

(2.6)

provided that the coefficients satisfy the relations:

a1 = −2i(
1

k1
+ ᾱ1) , a2 = 2i(

1

k2
+ α1) ,

a3 = −ā3 − i(α1 − ᾱ1) , a4 = i(α1 − ᾱ1) ,

α2,1 = − 1

k1
− 2ᾱ1 , α2,2 = − 1

k2
− 2α1 , α3 = iā3 − α1 ,

α4,1 = −3α2
2,2 + 4α2,2α3 +m , α4,2 = −3α2

2,1 + 4α2,2α3 +m ,

α4,3 = α2,2α3 +
m

4
, α4,4 = −α2,1α2,2 + 2α2,2α3 +

m

2
,

m̄ = 4(α2,2 − α2,1)α3 +m , n = 4(α3 − α2,2)α3 −m .

(2.7)

In addition to the CS levels k1, k2, the theory has four independent parameters. One can

choose them to be α1, ᾱ1, ā3 and m.

2.2 Off-Shell

In the previous section we studied the on-shell formulation of the theory. However to

carry out the localization procedure one needs off-shell supersymmetry. For that purpose

we introduce the auxiliary scalar fields F and the gaugini λ, λ̂ in the scalar and gauge

multiplets, respectively. The off-shell action reads:

L = LCS + Lkin + Lpotential , (2.8)

where:

LCS =
k1
2π

tr

{
εµνρ(

1

2
Aµ∂νAρ +

i

3
AµAνAρ) +

i

2
λ̃λ

}

− k2
2π

tr

{
εµνρ(

1

2
Âµ∂νÂρ +

i

3
ÂµÂνÂρ) +

i

2
˜̂
λλ̂

}
,

(2.9)
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Lkin =
1

2π
tr
{
−DµXADµXA + iΨ̃Aγ

µDµΨ
A − FAFA

}
, (2.10)

Lpotential =
1

2π
tr{i[(−α2,1XBX

BXA + α2,2XAX
BXB)− 2α3ΩABΩ

CDXCX
BXD]F

A

+ iFA[(−α2,1X
AXBX

B + α2,2X
BXBX

A) + 2α3Ω
ABΩCDX

CXBX
D]}

+
1

2π
tr{ΩABλ̃Ψ

AXB − ΩABXBΨ̃Aλ− ΩABX
BΨ̃Aλ̂+ΩAB ˜̂λΨAXB}

+
1

2π
tr{iα2,1Ω

ADΩBCΨ̃AΨ
BXCXD − iα2,2ΩADΩ

BCΨ̃AΨBXCX
D

− i

2
α2,2Ω

ABΩCDΨ̃AXBΨCXD +
i

2
α2,1ΩABΩCDΨ̃

AXBΨCXD

+ iα3Ω
ACΩBDΨ̃AXBΨCXD − iα3ΩACΩBDΨ̃

AXBΨCXD

− i

2
α2,1Ω

ADΩBCΨ̃AXBΨCXD +
i

2
α2,2ΩADΩBCΨ̃

AXBΨCXD}

+
1

2π
itr{α2,1Ψ̃

AΨAXBX
B − α2,2Ψ̃AΨ

AXBXB}

+
1

2π
2itr{α3Ψ̃AΨ

BXAXB − α3Ψ̃
BΨAXBX

A} .
(2.11)

This can be rewritten compactly in superspace formalism, see e.g. (3.8) of [13] which we

reproduce here:

S =
k1
2π
SCS(A)−

k2
2π
SCS(Â) +

1

2π

∫
d2θtr{DaΦ

†
AD

aΦA

+ (c1Φ
†
AΦ

AΦ†
BΦ

B + c2Φ
†
AΦ

BΦ†
BΦ

A + c3Ω
ABΩCDΦ

†
AΦ

CΦ†
BΦ

D)} ,
(2.12)

where ΦA is a superfield, and the connection with the component formulation discussed

previously is provided by the relations:

c1 = −iᾱ1 −
i

2k1
; c2 = iα1 +

i

2k2
; c3 = iα1 + ā3 . (2.13)

The action is invariant under the off-shell supersymmetry transformations:

δXA = iΩAB ǫ̃Ψ
B

δXA = iΩAB ǫ̃ΨB

δΨA = ΩABγ
µǫDµX

B − iΩABF
Bǫ

δΨA = ΩABγµǫDµXB − iΩABFBǫ

δFA = −ΩAB ǫ̃γ
µDµΨ

B − iXA(ǫ̃λ̂) + i(ǫ̃λ)XA

δFA = −ΩAB ǫ̃γµDµΨB − iXA(ǫ̃λ) + i(ǫ̃λ̂)XA

δAµ = −iǫ̃γµλ
δÂµ = −iǫ̃γµλ̂

δλ = −1

2
γµνǫFµν

δλ̂ = −1

2
γµνǫF̂µν .

(2.14)
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We note that besides k1, k2 the off-shell theory has only three free parameters, as can be

seen from (2.13). This is one fewer parameter than in the on-shell formulation. Specifically,

after replacing the auxiliary field F and gaugini λ, λ̂ by the solutions of their respective

equations of motion, the Lagrangian (2.8) goes back to (2.1), but with α4,3 = 0 in Lpot. In

other words, for the on-shell theory obtained by starting from (2.8) and then eliminating

the auxiliary fields, m is not an independent parameter but is equal to −4α2,2α3, which in

its turn can be expressed in terms of α1, ᾱ1 and āi. This can be understood from the fact

that the sextic potential XAX
BXCX

AXBX
C in Lpot cannot be obtained from the off-shell

Lagrangian by replacing F by its solution.

In the following we will put the theory on a curved manifold. More specifically, to go

from flat to curved spacetime one needs to:

• covariantize all derivatives,

• introduce additional terms 1
3ΩABX

Bγµ∇µǫ and
1
3Ω

ABXBγ
µ∇µǫ in the transforma-

tions of ΨA and ΨA, respectively,

• have ǫ satisfy the conformal Killing spinor equation:

∇µǫ = γµη , (2.15)

where η is some arbitrary spinor,

• add a scalar-curvature coupling term, −1
8RX

AXA, to the Lagrangian.

Explicitly:

δΨA → δΨA = ΩABγ
µǫDµX

B +
1

3
ΩABX

Bγµ∇µǫ− iΩABF
Bǫ ,

δΨA → δΨA = ΩABγµǫDµXB +
1

3
ΩABXBγ

µ∇µǫ− iΩABFBǫ ,

(2.16)

Lkin → Lkin =
1

2π
tr

{
−DµXADµXA − 1

8
RXAXA + iΨ̃Aγ

µDµΨ
A − FAFA

}
. (2.17)

The resulting curved-space Lagrangian will be used in the next section.

3 Localization

In order to apply the localization procedure, the theory must be invariant under the action

of a fermionic symmetry δ which is nilpotent, δ2 = 0, or more generally squares to a

symmetry of the theory. Deforming the action by a δ-exact term,

S −→ S + tδV , (3.1)

leaves invariant the expectation values of δ-closed operators. Hence we may take the limit

t → ∞, upon which the theory localizes to the set Σ of critical points of δV [18]. In this
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limit the path integral can be performed by restricting S to Σ and computing a one-loop

determinant describing the fluctuations normal to Σ. This procedure was first carried out

in detail in [1] for the case of SYM on the round S4.

In order for the path integral to be well-defined, we will consider the theory in Eu-

clidean signature. All fields are then complexified, while the action becomes a holomorphic

functional in the space of complexified fields. This procedure is known under the name

of “holomorphic complexification” and ensures that supersymmetry is preserved, see e.g.

[19]. Following [1] our strategy will be to choose a path-integration contour in the space

of fields, such that when restricted to that contour the deformation δV becomes a sum of

positive semi-definite terms. The locus Σ will then be determined by the condition that

each term in the sum vanishes.

3.1 Setup

As explained above, in order to apply the localization procedure we need to pass from

Lorentzian to Euclidean signature, where all fields become complex. Moreover ǫµνρ in the

CS piece of the Lagrangian becomes iǫµνρ.

We then deform the action by adding a term tδV such that δ2V = 0. For theories with

N > 2 supersymmetry, one can have δ2 = 0 on all fields of the theory. However, this is

not possible for the N = 1 superalgebra. Instead, as we will show later, for N = 1 we can

require that δ squares to a transformation in the isometry group of the manifold, which in

turn leads to δ2V = 0 upon volume integration.

Furthermore we must restrict the supersymmetry parameter ǫ to satisfy the Killing

spinor equation:3

∇µǫ = Sγµǫ , (3.2)

where S is in general a complex function. The reason for restricting to this Killing spinor

equation instead of the more general one (2.15) is the following. Equation (2.15) would in

general imply that δ2 induces not only a translation, a rotation and a gauge transformation

but also a dilatation, which would break the invariance of the deformation δV .

Under the assumption of smoothness, any solution to the Killing spinor equation which

is not identically zero is nowhere-vanishing on the manifold. This follows from the fact that

(3.2) is a first-order differential equation, hence if the Killing spinor vanishes at any one

point it must vanish everywhere.

Given a nowhere-vanishing Killing spinor ǫ, any spinor Ψ can be decomposed as follows:

Ψ = Ψ+ǫ+Ψ−ǫ
c , (3.3)

where Ψ± are anticommuting scalars; our conventions are explained in appendix C. From

now on we require the supersymmetry parameters to be commuting. The off-shell La-

grangian given in section 2 remains invariant under supersymmetry with these commuting

3A detailed analysis of this Killing spinor equation in Lorentzian signature is given in section 3 of [20].
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parameters. With the above definitions the supersymmetric transformations can be rewrit-

ten as:

δXA =iaΩABΨ
B
−

δXA =iaΩABΨB−

δΨA− =
1

a
ΩABV

µDµX
B

δΨA+ =
1

a
ΩABU

µDµX
B + SΩABX

B − iΩABF
B

δΨA
− =

1

a
ΩABV µDµXB

δΨA
+ =

1

a
ΩABUµDµXB + SΩABXB − iΩABFB

δFA =− ΩABV
µDµΨ

B
+ +ΩABU

µDµΨ
B
−

+ 3S∗aΩABΨ
B
− − iaXAλ̂− + iaλ−XA

δFA =− ΩABV µDµΨB+ +ΩABUµDµΨB−

+ 3S∗aΩABΨB− − iaXAλ− + iaλ̂−X
A ,

(3.4)

and for the gauge multiplets:

δAµ =− iVµλ+ + iUµλ−

δÂµ =− iVµλ̂+ + iUµλ̂−

δλ+ =− 1

2a
iǫµνρUρFµν

δλ− =− 1

2a
iǫµνρVρFµν

δλ̂+ =− 1

2a
iǫµνρUρF̂µν

δλ̂− =− 1

2a
iǫµνρVρF̂µν ,

(3.5)

where:

a ≡ ǫ†ǫ = ǫ̃ǫc = −ǫ̃cǫ , V µ ≡ ǫ̃γµǫ ,

Uµ ≡ ǫ†γµǫ = −ǫ̃γµǫc , ∇µǫ
c = −S∗γµǫ

c .
(3.6)

Note that ΨA
−, Ψ

A
+, ΨA−, ΨA+, λ− and λ+ are anticommuting; so is the supersymmetry

transformation δ. With the above setup, we find:

δ2XA = −iV µDµXA

δ2ΨA
− = −iV µDµΨ

A
−

δ2ΨA
+ = −iV µDµΨ

A
+ − 2ia(S − S∗)ΨA

−

δ2FA = −V µDµFA + V µ∂µSXA ,

(3.7)
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and:

δ2Aµ = −iV νFνµ

δ2Âµ = −iV ν F̂νµ

δ2λ− = −iV µDµλ−

δ2λ+ = −iV µDµλ+ − 2ia(S − S∗)λ−

δ2λ̂− = −iV µDµλ̂−

δ2λ̂+ = −iV µDµλ̂+ − 2ia(S − S∗)λ̂− .

(3.8)

Equivalently, written in terms of the original fields, two supersymmetry transformations

give:

δ2XA = −iV µDµXA

δ2ΨA = −iV µDµΨ
A − iSV µγµΨ

A

δ2FA = −iV µDµFA + V µ∂µSXA ,

(3.9)

and:

δ2Aµ = −iV νFνµ

δ2Âµ = −iV νF̂νµ

δ2λ = −iV µDµλ− iSV µγµλ

δ2λ̂ = −iV µDµλ̂− iSV µγµλ̂ .

(3.10)

As explained in Appendix C, V µ can be identified as part of the orthonormal frame that

trivializes the tangent bundle of the manifold. Therefore, apart from additional terms

which can be interpreted as gauge transformations or rotations, δ2 acting on each field

gives a translation along V µ.

In the next section we will ultimately set a = 1 and S = 0, upon which the above

equations simplify further.

3.2 Deformations

3.2.1 Matter Sector

To localize the matter sector, we first consider the deformation,

δV =

∫ √
gd3xδ[(δΨA)

†ΨA] , (3.11)

where we have defined:

(δΨA)
† ≡ ΩABǫ†γµDµXB + S∗ΩABXBǫ

† + iΩABFBǫ
† . (3.12)

Note that at generic points in field space (δΨA)
† is not the adjoint of δΨA, and δV as

defined in (3.11) is a holomorphic functional in the space of complexified fields.
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As explained in section 3, we will choose a path-integration contour C in the space

of fields such that when restricted to C the deformation δV becomes a sum of positive

semi-definite terms. This requirement selects C as the subspace where the fields satisfy the

reality condition:

Contour C :
XA† = XA , FA† = FA ,

A†
µ = Aµ , Â

†
µ = Âµ .

(3.13)

Moreover the integrand in (3.11) is given by:

δ[(δΨA)
†ΨA] = δ(δΨA)

†ΨA + (δΨA)
†δΨA . (3.14)

Recall that the supersymmetry transformation δ is anticommuting; the relative sign on the

right-hand side is positive since (δΨA)
† is bosonic.

Let us now verify that the deformation is δ-closed. From (3.14) we obtain:

δ2[(δΨA)
†ΨA] =δ

2(δΨA)
†ΨA − δ(δΨA)

†δΨA + δ(δΨA)
†δΨA + (δΨA)

†δ2ΨA

=δ2(δΨA)
†ΨA + (δΨA)

†δ2ΨA .
(3.15)

The second term in the second line can be read off from (3.9). One can obtain the first

term in the second line from (3.9) and (3.12):

δ2(δΨA)
†ΨA =− iV µDµ[(δΨA)

†]ΨA + iS∗V µ(δΨA)
†γµΨA

+ 2iS∗ΩABVµDνXBǫ
†γµνΨA − 2iSΩABVµDνXBǫ

†γµνΨA ,
(3.16)

where we used ∇µǫ
c = −S∗γµǫ

c and chose S to be a constant. Finally,

δ2[(δΨA)
†ΨA] =− iV µ∂µ[(δΨA)

†ΨA]

+ iS∗V µ(δΨA)
†γµΨA − iSV µ(δΨA)

†γµΨA

+ 2iS∗ΩABVµDνXBǫ
†γµνΨA − 2iSΩABVµDνXBǫ

†γµνΨA .

(3.17)

This vanishes under the volume integration if and only if S is real constant. On the other

hand the integrability condition of the Killing spinor (3.2) relates the constant S to the

curvature scalar of the manifold:

R = −24S2 . (3.18)

If S is nonvanishing, this would allow hyperbolic space as a solution. In the following we

will discard this possibility and instead demand that the manifold should be compact, in

order to ensure that the partition function is well-defined.

On T 3, the curvature scalar vanishes and so does S. This implies that the Killing

spinor is constant and nowhere-vanishing. Moreover, in (3.9) and (3.10), with vanishing

S terms, δ2 gives a translation and a gauge transformation on all fields. δ-exactness and

δ-closedness of the deformation are thus guaranteed.

We will henceforth restrict the manifold to be T 3. We normalize the constant Killing

spinor such that ǫ̃ǫc = 1. The bosonic part of the deformation (3.14) is:

(δΨA)
†δΨA =DµXAD

µXA + iǫµνρUρDµXADνX
A + FAF

A

+ iUµDµX
AFA − iUµDµXAF

A ,
(3.19)
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where Uµ is a real unit vector, which we may choose to be along the third direction of T 3

without loss of generality. When restricted to the contour C, cf. (3.13), the bosonic part of
the deformation is positive semi-definite, and the saddle points where it vanishes are given

by:

D1XA + iD2XA = 0 , D3X − iF = 0 . (3.20)

Hence with this deformation alone the theory does not reduce to an ordinary integral with

discrete saddle points: one can always choose some nontrivial functions for XA and F

so that (3.20) is satisfied. We therefore add another term δ[(δΨA)†ΨA] to the original

deformation:

(δΨA)
†δΨA + (δΨA)†δΨA =DµXAD

µXA + iǫµνρUρDµXADνX
A + FAF

A

+ iUµDµX
AFA − iUµDµXAF

A

+DµXAD
µXA − iǫµνρUρDµXADνX

A + FAF
A

− iUµDµX
AFA + iUµDµXAF

A

=2{DµXAD
µXA + FAF

A} .

(3.21)

When restricted to the contour C, the two terms in the last line are both positive semi-

definite, and the critical points are given by:

DµXA = FA = 0 . (3.22)

3.2.2 Gauge Sector

A δ-closed deformation for the gauge sector is:

∫
d3x

{
δ[(δλ)†λ] + δ[(δλ̂)†λ̂]

}
, (3.23)

where we have defined:

(δλ)† ≡ −ǫ†γµνFµν ; (δλ̂)† ≡ −ǫ†γµνF̂µν , (3.24)

so that the deformation (3.23) is a holomorphic functional of the complexified fields. Note

in particular that (δλ)† is not the adjoint of δλ at generic points in field space, but only

when restricted to the contour C, cf. (3.13).
The bosonic part of the deformation (3.23) is given by:

(δλ)†δλ+ (δλ̂)†δλ̂ =
1

2
FµνFµν +

1

2
F̂µνF̂µν . (3.25)

When restricted to the contour C this becomes a sum of positive semi-definite terms, with

critical points given by:

Fµν = F̂µν = 0 . (3.26)
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3.3 Gauge Fixing

We now introduce the usual ghost and anti-ghost action to fix the infinite degrees of freedom

of the gauge fields. The ghost term is not invariant under supersymmetry, so one cannot

immediately proceed to do localization. To deal with this, we follow [1, 2], and introduce

a new fermionic symmetry ∆:

∆ ≡ δQ + δB , (3.27)

where δQ stands for supersymmetry and δB for BRST transformation.

Under a BRST transformation, we have:

δBAµ = ∂µC + i[Aµ, C] , δBλ = −i{λ,C} . (3.28)

and similarly for Â, λ̂. Here C is the usual anti-commuting ghost field. It transforms under

supersymmetry and BRST as:

δQC = 0 , ∆C = δBC = a0 −
i

2
{C,C} , ∆a0 = 0 , (3.29)

where a0 is a constant ghost-for-ghost field that takes care of the zero mode of C. With

this combined transformation, one can verify that:

∆2Aµ =− iV νFνµ + i[Aµ, a0] ,

∆2λ =− iV µDµλ+ i[λ, a0] ,

∆2C =i[C, a0] .

(3.30)

The rest of the ghost complex transforms under ∆ as:

∆C̄ = b , ∆b = −iV ·DC̄ + i[C̄, a0] ,

∆ā0 = C̄0 , ∆C̄0 = i[ā0, a0] ,

∆b0 = C0 , ∆C0 = [V · A, b0] + [Aµ, ∂
µ(V · A)]− i�(V ·A) + i[b0, a0] ,

(3.31)

where C̄ is the anti-ghost, and b is the Lagrangian multiplier; ā0,b0,C0 and C̄0 are constant

fields needed to fix the zero modes of the ghosts and b.

The gauge-fixing action is:

i

∫
d3xtr{∆[C̄(∂µAµ + b0)− Cā0]}

=i

∫
d3xtr{b(∂µAµ + b0)− C̄(∂µDµC + ∂µδQAµ + C0)

− (a0 −
i

2
{C,C})ā0 +CC̄0} .

(3.32)

Note that the ghost, the anti-ghost and the transformation ∆ are all anti-commuting. In

Appendix D we show that the integration over all fields in the ghost complex gives the
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Lorentz gauge. Now this action is invariant under ∆ transformation:

∆2[C̄(∂µAµ + b0)− Cā0]

=∆2(C̄)(∂µAµ + b0) + C̄(∂µ∆2(Aµ) + ∆2(b0))

−∆2(C)ā0 − C∆2(ā0)

=∆2(C̄)(∂µAµ + b0) + C̄(∂µ∆2(Aµ) + ∆2(b0))

− i[C, a0]ā0 − iC[ā0, a0] .

(3.33)

The last two terms cancel under the trace. The first two can also be shown to cancel:
∫
d3xtr{∆2(C̄)(∂µAµ + b0) + C̄(∂µ∆2(Aµ) + ∆2(b0))}

=

∫
d3xtr{(−iV ·DC̄ + i[C̄, a0])(∂

µAµ + b0)

+ C̄∂µ(−iV νFνµ + i[Aµ, a0])

+ C̄([V ·A, b0] + [Aµ, ∂
µ(V ·A)]− i�(V · A) + i[b0, a0])}

=

∫
d3xtr{i[C̄, a0](∂ ·A+ b0) + iC̄([∂ · A+ b0, a0])

− iV · ∂[C̄(∂ · A+ b0)] + [V ·A, C̄ ](∂ ·A+ b0)

+ C̄[V · A, ∂ ·A+ b0] + iC̄�(V ·A)− iC̄ �(V ·A)
C̄[∂µ(V ·A), Aµ] + C̄[Aµ, ∂

µ(V ·A)]}
=0 .

(3.34)

3.4 Saddle Points

For the gauge sector we replace δ by ∆ in (3.23) and modify the deformation as follows:

∆Vgauge =

∫
dx3∆tr{1

2
ǫ†γµνFµνλ}

=

∫
dx3tr{1

2
FµνF

µν − iλ̃ /Dλ} ,
(3.35)

and similarly for the hatted fields. This deformation is ∆-exact and ∆-closed. For the

matter sector, ∆ is defined to be the same as δ, and the deformation is:

∆Vmatter =

∫
dx3tr{∆[(∆ΨA)†ΨA + (∆ΨA)

†ΨA]}

=2

∫
dx3tr{DµXAD

µXA + FAF
A − iΨ̃A /DΨA

+ΩABλ̃XBΨA +ΩAB
˜̂
λXBΨA − ΩABXB

˜̂
λΨA − ΩABX

Bλ̃ΨA} .

(3.36)

The gauge sector localizes to:

Fµν = 0 ; λ = 0 , (3.37)

where we have restricted to the contour C, cf. (3.13). In particular the saddle points of

the gauge field correspond to flat gauge connections over the Euclidean three-torus. For a
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simply-connected gauge group π1(G) = 0, such as G = SU(N)×SU(N), this implies that:

Aµ = ciµHi , (3.38)

where ci’s are constants and {Hi}, i = 1, · · · , rank(G), is the Cartan subalgebra of G.

This can be seen as follows (see e.g. [21, 22]): Since Aµ is a flat connection there exists

a group element U ∈ G such that Aµ = −i∂µUU−1, at least locally. I.e. U need not

be globally defined but is allowed to undergo G-valued jumps as we wind around each of

the three circles of the torus. More explicitly, suppose we have a square torus of radius

L parameterized by {xµ ∈ [0, L]}. The group element U(x1, x2, x3) obeys nontrivial, in

general, boundary conditions which may be parameterized as follows,

U(x1 + L, x2, x3) = U(x1, x2, x3)Ω1 ;

U(x1, x2 + L, x3) = U(x1, x2, x3)Ω2 ;

U(x1, x2, x3 + L) = U(x1, x2, x3)Ω3 ,

(3.39)

for some constant Ωµ ∈ G. In addition, for consistency, Ωµ must mutally commute. In-

deed going once around the circle parameterized by xµ and then once around the circle

parameterized by xν must produce the same jump in U as when going first around the xν

direction and then along xµ. This implies, taking (3.39) into account,

[Ωµ,Ων ] = 0 . (3.40)

For a unitary group G, as is the case in the present paper, this implies that Ωµ can be put

in the form:

Ωµ = exp(iLcjµHj) , (3.41)

up to similarity transformation. Recalling the relation between Aµ and U we are thus led

to the result cited in (3.38), provided we can show that for any set of mutally commuting

Ωµ’s we can always construct a group element U ∼ exp(ixµcjµHj) obeying (3.39).

The proof of the last step proceeds by showing that there is no obstruction in construct-

ing an element U(x1x2, x3) on the edges of a cube of side L such that (3.39) is satisfied.

Then U can be continued on the faces of the cube provided π1(G) = 0, and finally in the

interior provided π2(G) = 0, which holds true for G = SU(N)× SU(N).

An important observation is that the constants ciµ should be understood as periodic

variables with periodic identification,

ciµ ∼ ciµ +
2π

L
. (3.42)

This can be seen by performing a gauge transformation generated by U = exp(2πi
L
xµHi),

which shifts Aµ in accordance with (3.42). On the other hand the element U thus defined

is periodic4, i.e. as we wind around the xµ direction of the torus it forms a closed loop in

group space. But since the group is simply connected U may be continuously deformed to

4We are adopting the normalization exp(2πiHi) = 1.
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the identity, and the gauge transformation generated by U should act trivially on all fields

of the theory. We thus arrive at the identification (3.42).

It follows from the above that the ciµ’s can be constrained to take values in [0, 2π
L
].

In particular taking the infinite-volume limit of the torus, L → ∞, we conclude that the

only solution to (3.37) is the trivial flat connection Aµ = 0. Of course on R3 there is no

obstruction to gauging away any flat connection of the form (3.38). The point is that we

can formally reproduce this result by considering R3 as the infinite-volume limit of T 3.

The case of G = U(N) × U(N) presents one crucial difference: π1(U(N)) ∼= Z and

thus G is not simply connected. By considering the decomposition of the algebra-valued

connection along the G-generators it is not very difficult to see that we may still put the

most general flat connection in the form (3.38),

Aµ = ciµHi + dµJ + eµK , (3.43)

where the first term on the right-hand side is as in the case of SU(N) × SU(N); dµ,

eµ are constants; J , K are the two additional u(1) Cartan generators coming from the

decomposition:

u(N)⊕ u(N) ∼= su(N)⊕ su(N)⊕ u(1)⊕ u(1) . (3.44)

Now the previous argument which allowed us to conclude that ciµ are periodic does not go

through for the variables dµ, eµ. The reason is that the gauge transformations generated

by U = exp(2πi
L
xµJ) and U = exp(2πi

L
xµK) form closed loops in the group space which

are not contractible to the identity. Hence the gauge transformations generated by U need

not act trivially on all fields of the theory.

In particular our argument that in the infinite-volume limit the only flat connection

is the trivial one, does not go through in this case without additional assumptions. If

we wish to recover A = 0 as the unique (up to gauge transformations) solution to (3.43)

in the infinite-volume limit, we must impose by hand that U = exp(2πi
L
xµJ) and U =

exp(2πi
L
xµK) act trivially on all fields of the theory.

Finally, the matter sector localizes to the following field configurations:

FA = 0 ; ΨA = ΨA = 0 ; XA = const , (3.45)

where we have restricted to the contour C, cf. (3.13).

3.5 One-loop Determinant

We will now compute the one-loop determinant from the quadratic fluctuations around the

following saddle points,

Aµ = 0 ; λ = 0 ;

FA = 0 ; ΨA = ΨA = 0 ; XA = const ,
(3.46)

and similarly for Â, λ̂. I.e. we will ignore the contributions from non-vanishing flat gauge

connections, as discussed in the previous section.
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The full path integral is of the form:
∫
dϕ exp{iS + iSg.f. − t(∆Vgauge +

1

2
∆Vmatter)} , (3.47)

where iSg.f. is the gauge-fixing action (3.32), and
∫
dϕ stands for integrations over all fields

and ghosts; ∆Vgauge contains deformations for both hatted and unhatted gauge multiplets.

Next we expand the fields around the saddle points:

XA → X0
A +

1√
t
X ′

A , φ→ 0 +
1√
t
φ . (3.48)

Here X0
A is a constant field and X ′

A represents the nonzero mode of XA; φ stands for all

fields other than XA. The path integral (3.47) is t-independent thanks to localization.

On the other hand, taking t → ∞ allows us to keep only the quadratic terms in the

deformation:

t(∆Vgauge +
1

2
∆Vmatter)

=

∫
dx3tr{1

2
FA
µνF

Aµν − iλ̃/∂λ}+
∫
dx3tr{1

2
F̂A
µν F̂

Aµν − i
˜̂
λ/∂λ̂}

+

∫
dx3tr{∂µX ′

A∂
µX ′A +X0AAµA

µX0
A +X0

AÂµÂ
µX0A − 2X0

AÂµX
0AAµ

+ FAF
A − iΨ̃A/∂ΨA +ΩABλ̃X0

BΨA +ΩAB
˜̂
λX0BΨA − ΩABX0

B
˜̂
λΨA − ΩABX

0B λ̃ΨA} ,
(3.49)

where FA
µν ≡ ∂µAν−∂νAµ is the linearized field strength; some terms have been eliminated

using Lorentz gauge.

3.5.1 Determinant from Bosons

We start with the calculation of the one-loop determinant of the bosonic part. Under

Lorentz gauge, we have:
∫
d3xtr{1

2
FA
µνF

Aµν}+
∫
dx3tr{1

2
F̂Aµν F̂

Aµν}+
∫
d3xtr{∂µX ′

A∂
µX ′A

+XA0AµA
µX0

A +X0
AÂµÂ

µXA0 − 2X0
AÂµX

A0Aµ + FAF
A}

=

∫
d3xtr{−Aµ�A

µ}+
∫
dx3tr{−Âµ�Â

µ}+
∫
d3xtr{−X ′

A �X ′A

+XA0AµA
µX0

A +X0
AÂµÂ

µXA0 − 2X0
AÂµX

A0Aµ + FAF
A} .

(3.50)

On T 3 with periodic conditions, any field ϕ can be expanded in terms of Fourier modes:

ϕ =
∑

~n

ϕ~n exp{i2π~n · ~x} , (3.51)

where ~n = (nx, ny, nz) and each nµ runs over all integers. In addition, for the gauge field

the Lorentz gauge implies that for each ~n,

nxAx,~n + nyAy,~n + nzAz,~n = 0 . (3.52)
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Let us first assume nz 6= 0. (We will come back to the case nz = 0 in the following). Then

the previous equation can be used to eliminate Az,~n via:

Az,~n = −nx
nz
Ax,~n − ny

nz
Ay,~n . (3.53)

The gauge fields are in the adjoint representation, Aµ = Aa
µta, where the generators ta are

normalized so that tr{tatb} = δab. The gauge kinetic action becomes:

∫
d3xtr{−Aµ �A

µ}

=

∫
d3x

∑

a

∑

~n,nz 6=0

4π2~n2{(n
2
x + n2z
n2z

)Aa
x,−~nA

a
x,~n + (

n2y + n2z
n2z

)Aa
y,−~nA

a
y,~n

+
nxny
n2z

Aa
x,−~nA

a
y,~n +

nxny
n2z

Aa
y,−~nA

a
x,~n} .

(3.54)

By symmetrizing ~n and −~n, for each pair of (~n,−~n) and each a, this can be written in

matrix notation as follows:

Aa
x,~n Aa

x,−~n Aa
y,~n Aa

y,−~n

Aa
x,~n

Aa
x,−~n

Aa
y,~n

Aa
y,−~n




0 n2
x+n2

z

n2
z

0
nxny

n2
z

n2
x+n2

z

n2
z

0
nxny

n2
z

0

0
nxny

n2
z

0
n2
y+n2

z

n2
z

nxny

n2
z

0
n2
yn

2
z

n2
z

0




× 4π2(~n · ~n) .
(3.55)

Similarly, for each (~n,−~n) and a, b, the potentials involving the gauge fields are:

XA0Aa ·AbtatbX
0
A : Γ×XA0tatbX

0
A ,

X0
AÂ

a · Âbt̂at̂bX
A0 : Γ×X0

At̂at̂bX
A0 ,

−2X0
AÂ

a
µt̂aX

A0Abµtb : Γ×−2X0
A t̂aX

A0tb ,

(3.56)

where:

Γ ≡




0 n2
x+n2

z

n2
z

0
nxny

n2
z

n2
x+n2

z

n2
z

0
nxny

n2
z

0

0
nxny

n2
z

0
n2
y+n2

z

n2
z

nxny

n2
z

0
n2
yn

2
z

n2
z

0




. (3.57)

The matter fields are in the bifundamental representation of the gauge group U(N)×U(N).

Moreover X =
∑

(ρ,ρ̂)X
(ρ,ρ̂) |ρ〉 ⊗ |ρ̂〉, where |ρ〉, |ρ̂〉 are representatives of the weights in

each weight space; we choose the normalization so that 〈ρ|ρ′〉 = δρ,ρ′ and 〈ρ̂|ρ̂′〉 = δρ̂,ρ̂′ , in
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some gauge-invariant contraction of the relevant color indices. We then have:

XA0tatbX
0
A =

∑

(ρ,ρ̂)

∑

(ρ′,ρ̂′)

XA0(ρ,ρ̂) 〈ρ̂| ⊗ 〈ρ| tatb |ρ′〉 |ρ̂′〉X0(ρ′,ρ̂′)
A

=
∑

ρ,ρ′,ρ̂,ρ′′

XA0(ρ,ρ̂) 〈ρ| ta |ρ′′〉 〈ρ′′| tb |ρ′〉X0(ρ′,ρ̂)
A

=
∑

ρ,ρ′,ρ̂,ρ′′

XA0(ρ,ρ̂)σ(ρ,ρ
′′)

a σ
(ρ′′,ρ′)
b X

0(ρ′,ρ̂)
A ,

X0
At̂at̂bX

A0 =
∑

ρ̂,ρ̂′,ρ,ρ̂′′

X
0(ρ,ρ̂)
A σ̂(ρ̂,ρ̂

′′)
a σ̂

(ρ̂′′,ρ̂′)
b XA0(ρ,ρ̂′) ,

X0
At̂aX

A0tb =
∑

ρ,ρ′,ρ̂,ρ̂′

X
0(ρ,ρ̂)
A σ̂(ρ̂,ρ̂

′)
a XA0(ρ′,ρ̂′)σ

(ρ′,ρ)
b ,

(3.58)

where σ
(ρ,ρ′)
a ≡ 〈ρ| ta |ρ′〉 and we used the fact that

∑
ρ |ρ〉 〈ρ| = 1. We then define the

following matrices:

Bab = XA0t(atb)X
0
A ,

Cab = X0
At̂(at̂b)X

A0 ,

Dab = −X0
At̂aX

A0tb ,

(3.59)

and the deformations that are quadratic in gauge fields can be represented as:

A Â

A

Â


B+ 4π2(~n · ~n)× 1 DTr

D C+ 4π2(~n · ~n)× 1


 ⊗ Γ .

(3.60)

The determinant of the tensor product of two matrices A and B is given by:

det(A⊗B) = (detA)dimB(detB)dimA . (3.61)

Therefore, when nz 6= 0, we have:

det(A, Â)|nz 6=0 =
∏

(~n,−~n),nz 6=0

{(detA)4 × (
∏

a

det Γ)2}

=
∏

(~n,−~n),nz 6=0

{(detA)4 × (
∏

a

(~n · ~n)2
n4z

)2}

=
∏

(~n,−~n),nz 6=0

{(det[ A

4π2(~n · ~n) ])
4 × (

∏

a

(4π2)4(~n · ~n)6
n4z

)2}

=
∏

~n,nz 6=0

{(det[ A

4π2(~n · ~n) ])
2 × (

∏

a

16π4(~n · ~n)3
n2z

)2} ,

(3.62)

where:

A ≡


B+ 4π2(~n · ~n)× 1 DTr

D C+ 4π2(~n · ~n)× 1


 . (3.63)
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For the case where nz = 0, but nx or ny are not equal to zero, the procedure is similar.

The determinant coming from integrating over Aµ reads:

det(A, Â) =
∏

~n

(det(
A

4π2(~n · ~n) ))
2
∏

a

{
∏

~n,nz 6=0

[16π4
(~n · ~n)3
n2z

]2

×
∏

~n,nz=0,nx 6=0

[16π4
(~n · ~n)3
n2x

]2
∏

~n,nz=nx=0,ny 6=0

[16π4
(~n · ~n)3
n2y

]2} .
(3.64)

The contribution to the one-loop determinant coming from the terms involving gauge fields

is thus:

Z1−loop(A, Â) =

∏
a{
∏

~n,nz 6=0 n
2
z

∏
~n,nz=0,nx 6=0 n

2
x

∏
~n,nz=nx=0,ny 6=0 n

2
y}∏

a

∏
~n 16π

4(~n · ~n)3

×
∏

~n

(det[
A

4π2(~n · ~n) ])
−1 .

(3.65)

One may worry about regularizing the numerator. However, we note that the gauge-fixing

delta function also gives a Jacobian factor to the one-loop determinant. Indeed in the ghost

action we have:

exp{i
∫
d3xtr(b∂µAµ)}

=exp{i2π
∑

~n

∑

a

ba−~n(~n · ~Aa
~n)} .

(3.66)

After integrating out ba~n we obtain:
∏

~n

∏

a

δ(~n · ~Aa
~n) . (3.67)

This product of delta functions imposes the gauge-fixing Lorentz condition and, upon

integrating out Aµ, Âµ, gives a Jacobian factor which cancels the numerator of (3.65).

The integral over FA simply contributes an overall constant factor. Finally we are left

with the integration over X ′
A:
∫
d3xtr{−X ′

A �X ′A}

=
∑

~n

4π2~n2tr{X ′
A,−~nX

′A
~n }

=
∑

~n

2π2~n2tr{X ′
A,−~nX

′A
~n +X ′A

~n X ′
A,−~n}

=
∑

(~n,−~n)

2π2~n2tr{X ′
A,−~nX

′A
~n +X ′

A,~nX
′A
−~n

+X ′A
~n X ′

A,−~n +X ′A
−~nX

′
A,~n} .

(3.68)

This integration is Gaussian, and the corresponding determinant is:

detX ′
A =

∏

A

∏

(ρ,ρ̂)

∏

~n

(2π2~n2)2 , (3.69)
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where (ρ, ρ̂) runs over the weights of the bifundamental representation. Therefore, the total

contribution of the bosonic part to the one-loop determinant reads:

Z1−loop(Boson) =
1

{∏a

∏
~n 16π

4(~n2)3}|
A,Â

{∏A

∏
(ρ,ρ̂)

∏
~n 2π

2~n2}|X′

×
∏

~n

(det[
A

4π2(~n · ~n) ])
−1

=
1

{∏~n[16π
4(~n2)3]d}{∏A

∏
~n(2π

2~n2)w2}

×
∏

~n

(det[
A

4π2(~n · ~n) ])
−1 .

(3.70)

Here d is the dimension of the gauge group and w is the dimension of its fundamental

representation. For U(N) in particular we have d = N2, w = N .

3.5.2 Determinant from Fermions

The fermionic part of the deformation is:
∫
dx3tr{−iλ̃/∂λ}+

∫
dx3tr{−i˜̂λ/∂λ̂}+

∫
dx3tr{−iΨ̃A/∂ΨA

+ΩABλ̃X0
BΨA +ΩAB

˜̂
λX0BΨA − ΩABX0

B
˜̂
λΨA − ΩABX

0Bλ̃ΨA} .
(3.71)

Using the expansion λ = λ+ǫ+λ−ǫ
c for the gaugino kinetic term, cf. appendix C, we have:

∫
dx3tr{−iλ̃/∂λ}

=

∫
dx3tr{−i(λ+V · ∂λ+ − λ−V̄ · ∂λ− − λ−U · ∂λ+ − λ+U · ∂λ−)}

=2π
∑

a

∑

~n

{V · ~nλa+,−~nλ
a
+,~n − V̄ · ~nλa−,−~nλ

a
−,~n − U · ~nλa−,−~nλ

a
+,~n

− U · ~nλa+,−~nλ
a
−,~n}

=2π
∑

a

∑

(~n,−~n)

{(V · ~nλa+,−~nλ
a
+,~n − V̄ · ~nλa−,−~nλ

a
−,~n − U · ~nλa−,−~nλ

a
+,~n

− U · ~nλa+,−~nλ
a
−,~n) + (−V · ~nλa+,~nλ

a
+,−~n + V̄ · ~nλa−,~nλ

a
−,−~n

+ U · ~nλa−,~nλ
a
+,−~n + U · ~nλa+,~nλ

a
−,−~n)} ,

(3.72)

where we symmetrized the indices +, − and ~n, −~n of the gaugini in the last equation. For

each pair of (~n,−~n) and each a, this can be written in matrix notation as:

λa+,~n λa−,~n λa+,−~n λa−,−~n

λa+,~n

λa−,~n

λa+,−~n

λa−,−~n




0 0 −2πV · ~n 2πU · ~n
0 0 2πU · ~n 2πV̄ · ~n

2πV · ~n −2πU · ~n 0 0

−2πU · ~n −2πV̄ · ~n 0 0




.
(3.73)
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Similarly for the matter fermion kinetic term:

2π
∑

(~n,−~n)

tr{(V · ~nΨA
+,−~nΨA+,~n − V̄ · ~nΨA

−,−~nΨA−,~n − U · ~nΨA
−,−~nΨA+,~n

− U · ~nΨA
+,−~nΨA−,~n) + (−V · ~nΨA

+,~nΨA+,−~n + V̄ · ~nΨA
−,~nΨA−,−~n

+ U · ~nΨA
−,~nΨA+,−~n + U · ~nΨA

+,~nΨA−,−~n)}
=π

∑

(~n,−~n)

tr{(V · ~nΨA
+,−~nΨA+,~n − V̄ · ~nΨA

−,−~nΨA−,~n − U · ~nΨA
−,−~nΨA+,~n

− U · ~nΨA
+,−~nΨA−,~n) + (−V · ~nΨA

+,~nΨA+,−~n + V̄ · ~nΨA
−,~nΨA−,−~n

+ U · ~nΨA
−,~nΨA+,−~n + U · ~nΨA

+,~nΨA−,−~n)}+ (−1)ΨA ↔ ΨA .

(3.74)

The last term arises due to the symmetrization of ΨA and ΨA. When decomposed into the

weight spaces, this becomes:

π
∑

(ρ,ρ̂)

∑

(~n,−~n)

{(V · ~nΨA(ρ,ρ̂)
+,−~n Ψ

(ρ,ρ̂)
A+,~n − V̄ · ~nΨA(ρ,ρ̂)

−,−~n Ψ
(ρ,ρ̂)
A−,~n − U · ~nΨA(ρ,ρ̂)

−,−~n Ψ
(ρ,ρ̂)
A+,~n

− U · ~nΨA(ρ,ρ̂)
+,−~n

Ψ
(ρ,ρ̂)
A−,~n

) + (−V · ~nΨA(ρ,ρ̂)
+,~n

Ψ
(ρ,ρ̂)
A+,−~n

+ V̄ · ~nΨA(ρ,ρ̂)
−,~n

Ψ
(ρ,ρ̂)
A−,−~n

+ U · ~nΨA(ρ,ρ̂)
−,~n

Ψ
(ρ,ρ̂)
A+,−~n

+ U · ~nΨA(ρ,ρ̂)
+,~n

Ψ
(ρ,ρ̂)
A−,−~n

)}+ (−1)ΨA ↔ ΨA .

(3.75)

For each pair of weights (ρ, ρ̂) and each pair of (~n,−~n), these terms can be written with

the help of two matrices:

Ψ
(ρ,ρ̂)
A+,~n Ψ

(ρ,ρ̂)
A−,~n Ψ

(ρ,ρ̂)
A+,−~n Ψ

(ρ,ρ̂)
A−,−~n

Ψ
A(ρ,ρ̂)
+,~n

Ψ
A(ρ,ρ̂)
−,~n

Ψ
A(ρ,ρ̂)
+,−~n

Ψ
A(ρ,ρ̂)
−,−~n




0 0 −πV · ~n πU · ~n
0 0 πU · ~n πV̄ · ~n

πV · ~n −πU · ~n 0 0

−πU · ~n −πV̄ · ~n 0 0




,
(3.76)

and:

Ψ
A(ρ,ρ̂)
+,~n Ψ

A(ρ,ρ̂)
−,~n Ψ

A(ρ,ρ̂)
+,−~n Ψ

A(ρ,ρ̂)
−,−~n

Ψ
(ρ,ρ̂)
A+,~n

Ψ
(ρ,ρ̂)
A−,~n

Ψ
(ρ,ρ̂)
A+,−~n

Ψ
(ρ,ρ̂)
A−,−~n




0 0 −πV · ~n πU · ~n
0 0 −πV · ~n πU · ~n

πV · ~n −πU · ~n 0 0

−πU · ~n −πV̄ · ~n 0 0




.
(3.77)
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Similarly, the Yukawa interactions can be written as:

∫
dx3tr{ΩABλ̃X0

BΨA +ΩAB
˜̂
λX0BΨA − ΩABX0

B
˜̂
λΨA − ΩABX

0Bλ̃ΨA}

= a
∑

~n

tr{(ΨA+,−~nλ−,~n −ΨA−,−~nλ+,~n)Ω
ABX0

B + (ΨA
+,−~nλ̂−,~n −ΨA

−,−~nλ̂+,~n)ΩABX
0B

− ΩABX0
B(λ̂+,−~nΨA−,~n − λ̂−,−~nΨA+,~n)− ΩABX

0B(λ+,−~nΨ
A
−,~n − λ−,−~nΨ

A
+,~n)}

= a
∑

(~n,−~n)

tr{(ΨA+,−~nλ−,~n −ΨA−,−~nλ+,~n)Ω
ABX0

B + (ΨA
+,−~nλ̂−,~n −ΨA

−,−~nλ̂+,~n)ΩABX
0B

− ΩABX0
B(λ̂+,−~nΨA−,~n − λ̂−,−~nΨA+,~n)− ΩABX

0B(λ+,−~nΨ
A
−,~n − λ−,−~nΨ

A
+,~n)

+ (ΨA+,~nλ−,−~n −ΨA−,~nλ+,−~n)Ω
ABX0

B + (ΨA
+,~nλ̂−,−~n −ΨA

−,~nλ̂+,−~n)ΩABX
0B

− ΩABX0
B(λ̂+,~nΨA−,−~n − λ̂−,~nΨA+,−~n)− ΩABX

0B(λ+,~nΨ
A
−,−~n − λ−,~nΨ

A
+,−~n)} .

(3.78)

Each term, such as tr{ΨA+,−~nλ−,~nΩ
ABX0

B} for example, can be written in terms of the

algebra representations as follows:

∑

(ρ,ρ̂)

∑

(ρ′,ρ̂′)

∑

a

Ψ
(ρ,ρ̂)
A+,−~n

〈ρ̂| 〈ρ|λa−,~nta |ρ′〉 |ρ̂′〉ΩABX
0(ρ′,ρ̂′)
B

=
∑

ρ,ρ′,ρ̂

∑

a

Ψ
(ρ,ρ̂)
A+,−~n

λa−,~nσ
(ρ,ρ′)
a ΩABX

0(ρ′,ρ̂)
B ,

(3.79)

where σ
(ρ,ρ′)
a ≡ 〈ρ| ta |ρ′〉 (σ̂(ρ̂,ρ̂

′)
a ≡ 〈ρ̂| t̂a |ρ̂′〉). Therefore the matrix elements for each Ψ

(ρ,ρ̂)
A

and each λa are:

λa+,~n λa−,~n λa+,−~n λa−,−~n

Ψ
(ρ,ρ̂)
A+,~n

Ψ
(ρ,ρ̂)
A−,~n

Ψ
(ρ,ρ̂)
A+,−~n

Ψ
(ρ,ρ̂)
A−,−~n




0 0 0 [σX]

0 0 −[σX] 0

0 [σX] 0 0

−[σX] 0 0 0




,

Ψ
(ρ,ρ̂)
A+,~n

Ψ
(ρ,ρ̂)
A−,~n

Ψ
(ρ,ρ̂)
A−,~n

Ψ
(ρ,ρ̂)
A−,−~n

λa+,~n

λa−,~n

λa+,−~n

λa−,−~n




0 0 0 [σX]

0 0 −[σX] 0

0 [σX] 0 0

−[σX] 0 0 0




,

(3.80)

where [σX] ≡ 1
2σ

(ρ,ρ′)
a ΩABX

0(ρ′,ρ̂)
B and λ, Ψ are symmetrized. This explains the factor 1

2 in

each entry. A summation over ρ′ is understood in σ
(ρ,ρ′)
a ΩABX

0(ρ′,ρ̂)
B .

The fermionic part of the deformation for each pair of (~n,−~n) can be written in matrix

notation as:

λa λ̂a
′

ΨA(ρ,ρ̂) Ψ
(ρ,ρ̂)
A

λa

λ̂a
′

ΨA(ρ,ρ̂)

Ψ
(ρ,ρ̂)
A




M 0 (Xσ)A −(σX)A

0 M −(̂σX)A (̂Xσ)
A

(Xσ)A −(̂σX)A 0 N

−(σX)A (̂Xσ)
A

N 0




,
(3.81)
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where:

M = 2N ≡




0 0 −2πV · ~n 2πU · ~n
0 0 2πU · ~n 2πV̄ · ~n

2πV · ~n −2πU · ~n 0 0

−2πU · ~n −2πV̄ · ~n 0 0




,

(σX)A ≡ 1

2
σ(ρ,ρ

′)
a ΩABX

0(ρ′,ρ̂)
B × S ,

(Xσ)A ≡ 1

2
ΩABX

B0(ρ′,ρ̂)σ(ρ
′,ρ)

a × S ,

(̂σX)A ≡ 1

2
σ̂(ρ̂,ρ̂

′)
a ΩABX

B0(ρ,ρ̂′) × S ,

(̂Xσ)
A
≡ 1

2
ΩABX

0(ρ,ρ̂′)
B σ̂(ρ̂

′,ρ̂)
a × S ,

(3.82)

and:

S ≡




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0




. (3.83)

As before we have a, a′ = 1, . . . , d; ρ, ρ̂ = 1, . . . , w; A = 1, . . . , 4, where d is the dimension

of the gauge group and w is the dimension of its fundamental representation. Therefore

(3.81) is a 2d+8w2 by 2d+8w2 block matrix: each entry is given by one of the above four

by four matrices.

The matrix (3.81) can be partitioned into four blocks:


 A8d×8d B8d×32w2

C32w2×8d D32w2×32w2


 :=




M 0 (Xσ)A −(σX)A

0 M −(̂σX)A (̂Xσ)
A

(Xσ)A −(̂σX)A 0 N

−(σX)A (̂Xσ)
A

N 0




, (3.84)

so that the determinant reads:5

det


A B

C D


 = detAdetD det[1−D−1CA−1B] . (3.85)

The determinants detA and detD are straightforward to compute:

detA = (detM)2d = [16π4(~n2)2]2d , (3.86)

detD =
∏

A

(detN)2w
2

=
∏

A

[π4(~n2)2]2w
2

. (3.87)

5We use the notation A,B,C,D for the matrices in the bosonic sector, while the matrices A,B,C,D

are used for the fermion fields. We hope this does not cause any confusion with the Sp(2) indices.
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Their combined contribution to the one-loop determinant is:

∏

~n

{(4π2~n2)d
∏

A

(π2~n2)w
2} . (3.88)

Furthermore the integrations over the ghosts and anti-ghosts for the two gauge groups

contribute (det�)2 = {∏~n(4π
2~n2)d}2. When combined with (3.88) this gives:

∏

~n

{(4π2~n2)3d
∏

A

(π2~n2)w
2} . (3.89)

Up to a constant factor, this partially cancels the one-loop determinant from the boson

sector, (3.70). We are thus left with only X0-dependent contributions from both boson

and fermion sectors.

Inserting the localization conditions (3.46) into the off-shell Lagrangian (2.8) gives a

vanishing classical contribution. Therefore the partition function is given purely by the

one-loop determinant:

Z =

∫ ∏

A

∏

(ρ,ρ̂)

dX
0(ρ,ρ̂)
A

∏

B

∏

(ρ′,ρ̂′)

dXB0(ρ′ ,ρ̂′)

∏
(~n,−~n){det[1−D−1CA−1B]} 1

2

∏
~n det[

A

4π2(~n·~n)
]

. (3.90)

We now make use of the Sylvester identity:

det[1−D−1CA−1B] = det[1−BD−1CA−1] , (3.91)

where the matrix on the left-hand side above is 32w2 × 32w2, while the matrix on the

right-hand side is 8d× 8d. Using the definitions in (3.82) and (3.83), one can show that:

det[1−BD−1CA−1]

= det[1+ CTrD−1CA−1]

= det[1+


B DTr

D C


⊗ SN−1SM−1

2
]

=det[1+


B DTr

D C


⊗ 14×4

4π2(~n · ~n) ]

={det[ A

4π2(~n · ~n) ]}
4 .

(3.92)

Putting this back into the one-loop determinant, we see that the fermion and boson deter-

minants cancel exactly against each other.
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4 Discussion

We have partially carried out the localization procedure for the N = 1 Chern-Simons-

matter theory on T 3 with periodic boundary conditions. In particular we computed the

contributions to the partition function from the locus of saddle points with vanishing

gauge connection. As expected, restricting to this locus gives a trivial contribution to

the partition function, i.e. the bosonic and fermionic contributions exactly cancel each

other. Indeed evaluating the partition function on the flat torus at the trivial vacuum

(vanishing gauge connection) simply counts the degrees of freedom of the theory, and for

a supersymmetric theory one expects a complete cancellation. Of course the full partition

function should receive contributions also from saddle points with nonvanishing flat gauge

connections, which we have not computed here. We hope to return to this in the future.

Another potentially interesting direction in which this paper may be generalized is by

allowing for a more general Killing spinor equation than the eq. (2.15) which was used for

the present analysis. This may be achieved by coupling to a supergravity background and

could provide additional possibilities for spaces on which the theory localizes.

The authors of [23] considered Euclidean 4d N = 1 theories without R-symmetry, and

concluded that no localization is possible in this case. Our results are not in contradiction

with their conclusions. Indeed it is possible to construct 3d theories without R-symmetry

by dimensional reduction and further truncation of 4d theories with R-symmetry.

Our results have the following implication for the partition function of the ABJMmodel

on T 3.6 Our analysis of the saddle points shows that the classical CS action vanishes on the

locus of flat gauge connections on T 3, cf. (3.43). Since the one-loop determinant around

the saddle points does not introduce any dependence on the two CS levels, it follows by the

localization argument that the partition function is independent of the level k ≡ k1 = −k2.
Hence we may compute the partition function in the limit k → ∞ with N fixed, which

corresponds to vanishing ’t Hooft coupling. In this limit the matter sector becomes free

and decouples from the CS action. Therefore the resulting partition function factorizes

into a pure supersymmetric CS partition function and a free matter piece. The latter is

trivial, i.e. the bosonic and fermionic contributions exactly cancel each other. Moreover

our localization results can be applied to the pure CS partition function to show that the

contribution from the saddle points with vanishing gauge connection is also trivial. As

mentioned above, this is consistent with what one expects for a supersymmetric theory.
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A Spinor and gamma-matrix conventions in 3d

The charge conjugation matrix in three dimensions satisfies:

CTr = −C; (Cγµ)Tr = Cγµ; C∗ = −C−1 . (A.1)

For any spinor ψ and in any spacetime signature we define:

ψ̃ ≡ ψTrC−1 . (A.2)

Moreover in Euclidean signature we define:

ψc ≡ Cψ∗ . (A.3)

It follows that,

ψ† = −ψ̃c ; (ψc)c = −ψ . (A.4)

The irreducible spinor representation in three Euclidean dimensions is two-dimensional

complex (pseudoreal).

The Gamma matrices in Euclidean signature are taken to obey:

(γµ)
† = γµ . (A.5)

Antisymmetric products of Gamma matrices are defined by:

γ(n)µ1...µn
≡ γ[µ1

. . . γµn] . (A.6)

In Euclidean signature the Hodge-dual of an antisymmetric product of gamma matrices is

given by:

⋆ γ(n) = (−1)
1

2
n(n−1)γ(3−n) . (A.7)

B N = 1 Superconformal Symmetry

B.1 Poincaré Supersymmetry

In this subsection we show the invariance of the on-shell Lagrangian (2.1) under the

Poincaré supersymmetry.
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The most general Poincaré supersymmetry transformations read:

δXA = iΩAB ǫ̃Ψ
B

δXA = iΩAB ǫ̃ΨB

δΨA = ΩABγ
µǫDµX

B + δ3ΨA

δΨA = ΩABγµǫDµXB + δ3Ψ
A

δAµ =
1

k1
[ΩAB ǫ̃γµΨ

AXB +ΩABXBΨ̃Aγµǫ]

δÂµ =
1

k2
[ΩABX

B ǫ̃γµΨ
A +ΩABΨ̃AγµǫXB ] ,

(B.1)

where the variation δ3 will be determined in the following.

• The variation of LCS cancels against the variation of the matter fields in Lkin.

• The variation of the gauge fields in the spinor kinetic term in Lkin cancels against

the variation of the bosonic fields in L4, iff:

2

k1
+ 2α1 − ia1 + 2iā4 = 0 , − 2

k2
− 2ᾱ1 − ia2 + 2ia4 = 0 ,

1

k1
+ 2α1 + 2iā4 + α2,1 = 0 , − 1

k2
− 2ᾱ1 + 2ia4 − α2,2 = 0 ,

1

k2
+ 2α1 + α2,2 = 0 ,

1

k1
+ 2ᾱ1 + α2,1 = 0 ,

2α1 − 2iā3 + 2α3,2 = 0 , 2ᾱ1 + 2ia3 + 2α3,1 = 0 ,

2α1 − 2iā3 + 2α3,1 = 0 , 2ᾱ1 + 2ia3 + 2α3,2 = 0 ,

(B.2)

or:

a1 = −2i(
1

k1
+ ᾱ1) , a2 = 2i(

1

k2
+ α1) ,

a3 = −ā3 − i(α1 − ᾱ1) , a4 = ā4 = i(α1 − ᾱ1) ,

α2,1 = − 1

k1
− 2ᾱ1 , α2,2 = − 1

k2
− 2α1 ,

α3,1 = α3,2 = iā3 − α1 = −ia3 − ᾱ1 ,

(B.3)

where all parameters are expressed in terms of k1,k2,α1,ᾱ1 and ā3. In the following we will

set α3 ≡ α3,1 = α3,2, and use a4 instead of ā4.

• The variation of the gauge fields in the boson kinetic terms in Lkin, together with

the variation of the fermion fields in L4 without δ3Ψ, cancel against the δ3Ψ variation of

the fermion kinetic terms in Lkin, iff:

δ3ΨA = {ΩAB(α2,2X
CXCX

B − α2,1X
BXCX

C)− 2α3ΩBCX
BXAX

C}ǫ ,
δ3Ψ

A = {ΩAB(−α2,1XCX
CXB + α2,2XBX

CXC) + 2α3Ω
BCXBX

AXC}ǫ .
(B.4)
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• The δ3Ψ variation of L4 cancels against the variation of L6, iff:

2iα1α2,1 − iα2
2,1 − a1α2,1 − 2a4α2,1 − iα4,2 + P = 0 ,

2iᾱ1α2,2 − iα2
2,2 + a2α2,2 + 2a4α2,2 − iα4,1 + P̄ = 0 ,

− 2iᾱ1α2,1 − a2α2,1 − 2a4α2,1 + 2iα4,4 − P̄ = 0 ,

− 2iα1α2,2 + a1α2,2 + 2a4α2,2 + 2iα4,4 − P = 0 ,

2iα1α2,1 − 2iα3α2,1 + 2ā3α2,1 − im̄+ P = 0 ,

2iᾱ1α2,2 − 2iα3α2,2 − 2a3α2,2 − im+ P̄ = 0 ,

− 2iα1α2,2 + 2iα3α2,2 − 2ā3α2,2 + im− P = 0 ,

− 2iᾱ1α2,1 + 2iα3α2,1 + 2a3α2,1 + im̄− P̄ = 0 ,

− 2iα1α2,1 − a2α2,1 + 2iα4,4 − P = 0 ,

− 2iᾱ1α2,2 + a1α2,2 + 2iα4,4 − P̄ = 0 ,

2iα1α2,2 − iα2
2,2 + a2α2,2 − iα4,1 + P = 0 ,

2iᾱ1α2,1 − iα2
2,1 − a1α2,1 − iα4,2 + P̄ = 0 ,

4iα2,2α3 + im− P = 0 , 4iα2,1α3 + im̄− P̄ = 0 ,

4iα2,1α3 + im̄− P = 0 , 4iα2,2α3 + im− P̄ = 0 ,

2iα2,1α2,2 + 2iα4,4 − P = 0 , 2iα2,1α2,2 + 2iα4,4 − P̄ = 0 ,

4iα2
3 − in− P = 0 , 4iα2

3 − in − P̄ = 0 ,

4iα4,3 − P = 0 , 4iα4,3 − P̄ = 0 ,

(B.5)

and:

2a1α3 + 4a4α3 + 4ā3α3 + im̄+ in = 0 ,

2a2α3 − im+ 2a1α3 + 4a4α3 + im̄ = 0 ,

− 2a2α3 − 4a4α3 − 4a3α3 + im+ in = 0 ,

2a1α3 + im̄+ 2a2α3 + 4a4α3 − im = 0 ,

(B.6)

where:

P = −4iα1α3 + 2a1α3 + 4a4α3 + im̄ ,

P̄ = −4iᾱ1α3 − 2a2α3 − 4a4α3 + im ,
(B.7)

and we made use of the identities:

εABCD = ΩABΩCD −ΩACΩBD +ΩADΩBC ; εABCDΩ
EF = 24Ω[ABδ

E
C δ

F
D] . (B.8)
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After some further manipulation of these equations, taking (B.3) into account, we find:

a1 = −2i(
1

k1
+ ᾱ1), a2 = 2i(

1

k2
+ α1) ,

a3 = −ā3 − i(α1 − ᾱ1), a4 = i(α1 − ᾱ1) ,

α2,1 = − 1

k1
− 2ᾱ1, α2,2 = − 1

k2
− 2α1 ,

α3 = iā3 − α1 = −ia3 − ᾱ1 ,

α4,1 = −3α2
2,2 + 4α2,2α3 +m ,

α4,2 = −3α2
2,1 + 4α2,2α3 +m ,

α4,3 = α2,2α3 +
m

4
,

α4,4 = −α2,1α2,2 + 2α2,2α3 +
m

2
,

m̄ = 4(α2,2 − α2,1)α3 +m

n = 4(α3 − α2,2)α3 −m .

(B.9)

• Let us also mention that the requirement that the total Lagrangian should be real (which

we do not need to impose in the present paper) would imply the following additional

conditions on the parameters:

α2,1, α2,2, α3, α4,1, α4,2, α4,3, α4,4,m, m̄, n are real ,

a1, a2 are imaginary ,

(a3 − iᾱ1)
∗ = ā3 + iα1 , (a4 + iᾱ1)

∗ = −iα1 , (iᾱ1)
∗ = a4 − iα1 .

(B.10)

When we combine the above reality conditions with (B.9), we see that α1 and ᾱ1 are real

and a4, a3, ā3 are imaginary.

From the above it follows that the on-shell theory has four independent parameters

besides the CS levels k1, k2. They can be chosen to be α1, ᾱ1, ā3 and m.

B.2 Conformal supersymmetry

Provided (B.9) holds, the action possesses an additional conformal supersymmetry. To

show this, we follow [17] and replace the parameter ǫ of the Poincaré supersymmetry by

xµγ
µη, while adding to the spinor variations the terms:

δ′ΨA = ΩABX
Bη ,

δ′ΨA = ΩABXBη .
(B.11)

Most terms in the Lagrangian are then invariant by virtue of the Poincaré supersymme-

try. The term coming from the derivative acting on x of xµγ
µη in δ3Ψ of the fermion

kinetic Lagrangian cancels with δ′Ψ of L4, if (B.9) holds. Finally terms generated by the

remaining variations of the fermions in the fermionic kinetic terms cancel against the boson

transformations in the bosonic kinetic Lagrangian and the variations of the CS terms.
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C Trivial G-structures in 3d

The existence of a nowhere-vanishing (commuting) spinor ǫ on a Riemannian three-manifold

implies the existence of a trivial G-structure, i.e. the trivialization of the tangent bundle.

In this section we will explore in detail the implications of this trivialization.

Since ǫ is assumed nowhere-vanishing we can take it to be normalized:

ǫ†ǫ = ǫ̃ǫc = −ǫ̃cǫ = 1 , (C.1)

where we used the formulas in Appendix A. On the other hand,

ǫ̃ǫ = 0 , (C.2)

due to the antisymmetry of the charge conjugation matrix, cf. (A.1). furthermore we can

define the following ǫ-bilinear one-forms:7

Uµ ≡ ǫ†γµǫ = −ǫ̃cγµǫ = −ǫ̃γµǫc , (C.3)

where we took (A.4) into account, and:

Vµ ≡ ǫ̃γµǫ . (C.4)

It can be seen that U is real whereas V is complex:

V̄µ = −ǫ̃cγµǫc = ǫ†γµǫ
c . (C.5)

The Fierz identities can be conveniently written in terms of the bilinears above:

ǫǫ̃c = −1

2
(1+ Uµγµ) ; ǫcǫ̃ =

1

2
(1− Uµγµ)

ǫǫ̃ =
1

2
V µγµ ; ǫcǫ̃c = −1

2
V̄ µγµ .

(C.6)

Using the above, the following relations can be shown:

U2 = ℜV 2 = ℑV 2 = 1 ; U · ℜV = U · ℑV = ℜV · ℑV = 0 , (C.7)

where we have defined A2 ≡ AµAµ, A · B ≡ AµBµ and V = ℜV + iℑV . In other words

the triplet (U , ℜV , ℑV ) is a globally-defined orthonormal frame thus trivializing the

(co)tangent bundle of the manifold.

Let us also mention the following useful identities which can similarly be shown by

fierzing:

γµǫ = Uµǫ+ Vµǫ
c

γµǫ
c = V̄µǫ− Uµǫ

c .
(C.8)

From these we also obtain:

Uµγµǫ = ǫ ; Uµγµǫ
c = −ǫc

1

2
V µγµǫ

c = ǫ ;
1

2
V̄ µγµǫ = ǫc

V µγµǫ =V̄
µγµǫ

c = 0 .

(C.9)

7Since we are assuming the existence of a Riemannian metric on our manifold, we can convert vectors

to one-forms and vice-versa.
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Spinor and tensor decomposition

Spinors on the manifold can be expanded on the basis of ǫ, ǫc. Explicitly, for any spinor λ

we have:

λ = λ+ǫ+ λ−ǫ
c , (C.10)

where λ± are scalar coefficients given by:

λ+ = λ̃ǫc ; λ− = ǫ̃λ . (C.11)

The notation is motivated by the fact that we may define a chirality operator:

γ ≡ Uµγµ , (C.12)

which indeed squares to one as follows from (C.7). Moreover ǫ, ǫc are chiral, antichiral

respectively with respect ot γ, as can be seen from (C.9).

Forms and tensors can be decomposed using the orthonormal frame provided by (U, V ).

For example any one-form A can be decomposed as follows:

A = A⊥U +A+V +A−V̄ , (C.13)

where A⊥, A± are scalar coefficients given by:

A⊥ = U ·A ; A+ =
1

2
V̄ ·A ; A− =

1

2
V ·A . (C.14)

The notation is motivated by the fact that one-forms can be decomposed into the subspaces

parallel and orthogonal to U , which we may call the vertical and horizontal subspaces

respectively. The horizontal subspace can then be further decomposed into directions

parallel and orthogonal to V (equivalently: orthogonal and parallel to V̄ ), which we may

consider as the holomorphic and antiholomorphic directions respectively.
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D Lorentz Gauge

In this section we give the details of the integration over the ghost complex. First note

that in (3.32) the integration over b and b0 can be performed independently:

∫ ∏

x

db(x)db0 exp
i
∫
dx3tr{b(∂µAµ+b0)}

=

∫ ∏

x

db′(x)db0 exp
i
∫
dx3tr{b′(x)(∂µAµ+b0)}

∫
db′ expi

∫
dx3tr{b′(∂µAµ+b0)}

=

∫ ∏

x

db′(x)db0 exp
i
∫
dx3tr{b′(x)(∂µAµ+b0)}

∫
db′ expi

∫
dx3tr{b′b0}

=
1

Vol

∫ ∏

x

db′(x)db0 exp
i
∫
dx3tr{b′(x)(∂µAµ+b0)} δ(b0)

=

∫ ∏

x

db′(x)db0 exp
i
∫
dx3tr{b′(x)(∂µAµ+b0)}

∫
db′ expi

∫
dx3tr{b′b0}

=
1

Vol

∫ ∏

x

db′(x) expi
∫
dx3tr{b′(x)∂µAµ} ,

(D.1)

where Vol denotes the volume of T 3, and we decompose b(x) = b′(x) + b′; b′ is a constant

field: it is the zero mode of b(x). The remaining integration over b′(x) imposes the Lorentz

gauge condition.

Next we integrate over a0, then ā0:

∫
dā0da0 exp

i
∫
dx3tr{−(a0−

i
2
{C,C})ā0}

=
1

Vol

∫
dā0 exp

i
∫
dx3tr{ i

2
{C,C}ā0} δ(ā0)

=
1

Vol
.

(D.2)
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The remaining integrations read:
∫ ∏

x

dC̄(x)dC(x)dC0dC̄0 exp
i
∫
dx3tr{−C̄(∂µDµC+∂µδQAµ+C0)+CC̄0}

=

∫ ∏

x

dC(x)dC0dC̄0dC̄
′(x) expi

∫
dx3tr{−C̄′(x)(∂µDµC+∂µδQAµ+C0)+CC̄0}

×
∫
dC̄ ′ expi

∫
dx3tr{−C̄′(∂µDµC+∂µδQAµ+C0)}

=

∫ ∏

x

dC(x)dC0dC̄0

∫
dC̄ ′(x) expi

∫
dx3tr{−C̄′(x)(∂µDµC+∂µδQAµ+C0)+CC̄0}

×
∫
dC̄ ′ expi

∫
dx3tr{−C̄′C0}

=

∫ ∏

x

dC(x)dC0dC̄0

∫
C̄ ′(x) expi

∫
dx3tr{−C̄′(x)(∂µDµC+∂µδQAµ+C0)+CC̄0}

×Volδ(C0)

=Vol

∫ ∏

x

dC(x)dC̄0

∫
dC̄ ′(x) expi

∫
dx3tr{−C̄′(x)(∂µDµC+∂µδQAµ)+CC̄0}

=Vol

∫ ∏

x

dC ′(x)dC̄0

∫
dC̄ ′(x) expi

∫
dx3tr{−C̄′(x)(∂µDµC

′(x)+∂µδQAµ)+C′(x)C̄0}

×
∫
dC ′ expi

∫
dx3tr{−iC̄′(x)[∂µAµ,C

′]+C′C̄0} .

(D.3)

Note that the expression above is multiplied by an overall factor δ(∂ ·A), therefore we can

set ∂ ·A to zero and integrate over C ′:

Vol2
∫ ∏

x

dC ′(x)dC̄ ′(x)dC̄0 exp
i
∫
dx3tr{−C̄′(x)(∂µDµC

′(x)+∂µδQAµ)+C′(x)C̄0}

× δ(C̄0)

=Vol2
∫ ∏

x

dC ′(x)dC̄ ′(x) expi
∫
dx3tr{−C̄′(x)(∂µDµC

′(x)+∂µδQAµ)} .

(D.4)

Absorbing δQAµ into C ′(x), restricting to the saddle point A = 0 and integrating over C ′

and C̄ ′, the last line gives det�.

To see that δQAµ can indeed be absorbed into C ′(x) it suffices to show that there is a

C ′′ such that:

∂µDµC
′(x) + ∂µδQAµ = ∂µDµC

′′ . (D.5)

Equivalently in form notation:

d†(δQA+ dAδC) = 0 , (D.6)

where we have set δC := C ′ −C ′′, dA := d+ i[A, ]. The Hodge decompositions of δC, δQA

are as follows:

δC = δC(h) + d†δC(1) ; δQA = δQA(h) + dδQA(0) + d†δQA(2) , (D.7)
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where the numerical subscripts indicate the rank of the corresponding form and δC(h),

δQA(h) are harmonic zero-, one-forms respectively; in particular δC(h) is constant. Similarly

for the gauge field we expand:

A = d†A(2) +A(h) . (D.8)

The fact that there is no exact piece in the decomposition above is due to the Lorentz

gauge, d†A = 0. Furthermore equation (D.6) is equivalent to the statement that there

exist a two-form u and a harmonic one-form wh such that:

dAδC + δQA = d†u+ w(h) . (D.9)

On the other hand, taking the expansions (D.7),(D.8) into account, the left-hand side of

(D.6) reads:

d(δC + δQA(0)) + id†([A(2), δC] + [A(h), δC(1)]) + i[A(h), δC(h)] . (D.10)

It follows that (D.9), is solved for:

δC = −δQA(0) ; u = i([A(2), δC] + [A(h), δC(1)]) ; w(h) = i[A(h), δC(h)] . (D.11)
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