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ABSTRACT 

The major focus of this research is on sensor fusion. Sensor fusion means to combine 

multiple sensory input or data from different source such that the performance is better 

than the best performance would be when those different data were used individually. As 

we know, in the world of AI, sensors are really important. Traditionally, we treat these 

data as they are separated.  Doing so may deliver good performance when the sensors 

are exempt from noise and malfunction problems. However, if sensor failure appears, the 

performance will drop. Sensor fusion is a solution for the above situation.     

Recently, deep neural networks have been rigorously studied for sensor fusion 

applications such as autonomous driving and robot control.   Among these studies, 

various gated neural network architectures were proposed, which have improved the 

existing classical convolutional neural networks (CNNs).   

Several problems existed for those gated neural network architectures. In this research, 

some of them are described.  Then, to solve those problems, a further optimized gated 

architecture, a gated CNN with auxiliary paths, was proposed. The major focus of this 

thesis work is on auxiliary loss weighting, a technique to further regulate the gated 

CNNs with auxiliary paths and improve their performance. 

The CAD-60 dataset is utilized as a benchmark to demonstrate the significant 

performance improvements through the proposed architecture and its robustness in the 

presence of sensor noise and failures.  
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CHAPTER I 

INTRODUCTION 

Nowadays, neural networks and deep learning have gained lots of attention. They can 

be applied to various fields such as computer vision, natural language processing, and 

data analytics. Among all of those applications, the application of neural networks in the 

field of computer vision boosted the development of computer vision significantly. 

Thanks to CNNs (convolutional neural networks) and several famous CNN architectures 

like VGG[1], ResNet[2], FCN[3] and so on, now we can extract features for input data 

more efficiently. The extracted features can be used to detect objects, segment data, 

analyze data, etc. In this research, I mainly used the CNN deep network. 

A technology that using multi-sensor or multi-source data in deep learning is called 

sensor fusion in deep learning. It is an important technology for systems that are 

equipped with multiple sensors. For example, autonomous driving system is equipped 

with cameras, LIDARs and several other sensors. In addition, inertial measurement units 

(IMUs) and other sensors are utilized in devices such and smartwatches for activity 

recognition applications.  

To achieve autonomous driving, object detection needs to be done first. There are two 

kinds of object detection:2D object detection and 3D object detection. For 2D object 

detection, we can deal with the camera and use image recognition technology. 

Architectures like R-CNN[4], Fast R-CNN[5], Faster R-CNN[6], Mask R-CNN[7] and 

YOLO[8] are several well recognized 2D object detection architectures that only use the 

image as the inputs. For 3D object detection, several methods are available. One of such 
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techniques is to use multiple sensors and use sensor fusion, the other is to only use one 

input sensor’s data. Both of the above methods have their well-recognized architecture.  

For sensor fusion 3D object detection, MV3D [9], AVOD [10] are representative works. 

PointRCNN[11] presents an approach for 3D object detection t only based on LIDAR 

sensors.  

Specifically, in [9], several sensor fusion methods are studied and discussed under the 

background of autonomous driving. The dataset used in [9] is KITTI [12]. It contains 

two kinds of sensors, LIDAR and RGB images. By using this dataset, [9] discussed and 

compared three fusion methods: early fusion, late fusion, and deep fusion. More 

specifically, fusion is a way to get use of sensory inputs of multiple sensors. Sensory 

inputs are processed into features. We can get the extracted feature by using the neural 

network architecture. One of the most popular architectures in dealing with image data is 

the CNN architecture which is composed of convolution layers. Early fusion refers to the 

simple combinations of input features from the outputs of early convolutional layers and 

then uses the element- wise mean value as the combined features. After that, pass the 

combined features to the latter parts of the network.  Late fusion represents the blending 

of pre-processed features generated by the networks.  As for deep fusion which 

integrates the pre-processed features with element-wise mean operation in multi-stages, 

it is applied for joint input sensor fusion due to its flexibility. However, the way how 

each feature affects the training phase and classification performance is unclear. All the 

above methods, no matter 2D or 3D, are based on the presumption that all sensors work 

in good condition. However, things may change when one or more sensors malfunction. 
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When sensor is noisy or is failed, all the above methods will suffer from relatively big 

performance drop. 

To alleviate the impact of sensor noise and failure [13] proposes a gated information 

fusion network, in which weight maps are extracted from each sensory input. Raw input 

sensors are processed with convolutional layers. Furthermore, outputs from the 

convolutional layers are processed with convolutional layers. Furthermore, outputs from 

the convolutional layers are fed into weight-extraction architecture to produce weight 

maps from each sensory input. Then, weight maps are multiplied with each feature map 

to perform a weighted sum.  Note that the weight maps are derived from feature maps.  

However, the meaning of weight maps and the relationship with sensory input is not 

fully explored. 

Several works have explored gating architecture.  In [14], various multi-modal fusion 

work is reviewed in terms of architecture, and regularization. [15] provides time 

information fusion schemes in CNNs:  single frame, late fusion, early fusion, fusion 

approaches. The difference and effect of each method are also discussed. In [16] 

adaptive multi-modal fusion techniques for object detection are proposed and analyzed.  

In [16], the gating scaler is mentioned and how gating scalars work between different 

sensors like RGB images and depth images is covered. Nevertheless, that gating scalars 

parts are not discussed in detail. What is more, only two channels of input are utilized 

and deep insight of gating scalars is missing. In [17], Patel et al. propose a gated 

convolutional neural network called NetGated architecture.  In this architecture, fusion 

weight extracted from camera and LIDAR used to combine information in a 
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convolutional neural network (CNN).  Compared to traditional CNNs, the gated network 

(NetGated) is shown to be robust to sensor failures. However, a deep understanding of 

the relationship between sensory input, fusion weight, network architecture, and the 

resulting performances is not fully examined. 

This research is to propose a further improved for the modified version of the existing 

baseline gated architecture proposed in [17] that proposed by my team member and 

investigate how the pre-proposed ARGate [18] by my team member can improve the 

performance. And how the new architecture works when facing different input situations. 

Generally speaking, tests for architecture are under different sensor failure setting. 

In this research, I am mainly focused on the fusion method and using fusion to boost 

the robustness of the network. To specify, this work proposed the method called 

auxiliary loss weighting. This thesis contains several works. It contains 3D object 

detection by using a multi-sensor fusion method, and human activity detection. Both of 

them are implemented with sensor fusion architecture. The analyzes are mainly based on 

the experiment on human activity detection. 

The contributions of this work are as follows: 

● Proposed a new modified architecture based on ARGate [18] which can 

fuse all input sensors in a more reasonable way. The new method can 

alleviate the impact that caused by sensor noise and sensor failure. 

● Proposed new loss function named auxiliary loss weighting which weight 

the loss of auxiliary paths and uses the regularized auxiliary path loss to 
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further regularize early fusion and deep fusion stage, leading to model 

optimization and performance improvements. 

● The fusion scalers learned by the network is more meaningful. They are 

the indicator of the quality of the input sensor. 

● Well analyzed the characteristics of the proposed architecture 

The remainder of this thesis is organized as follows: 

 

Chapter 2 provides some background on deep learning, neural network, object 

detection, human activity detection and in particular the sensor fusion. Chapter 3 

presents problems that currently exist work has and the limitation of them. In this 

chapter, several improved architectures proposed by my team are also introduced. 

Chapter 4 presents the solution proposed in this work, the auxiliary loss weighting for 

robust multi-modal sensor fusion. Chapter 5 shows the experiment results of this work. 

Those results are evidence that the proposed solution in this work has a better 

performance. Chapter 6 draws the conclusion and presents a summary of the entire 

research work.  
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CHAPTER II 

BACKGROUND 

This chapter presents the background information required for the contribution and all 

work in this research. It includes the background of Convolutional Neural Networks, 

Object Detection, Human Activity Detection, and Gated Architecture. 

2.1 Convolutional Neural Networks 

 

2.1.1 Neural Networks 

  

The artificial neural network is inspired by the actual neural network. The key 

component of the artificial neural network is its connection weight. If we view the 

artificial neural network as an end-to-end black box, the main operation occurs in the 

black box. If we treat that black box as a function, we can name it as 𝑓, then the goal of 

the network is to approximate function 𝑓. The output is defined as 𝑦, the input is defined 

as 𝑥, the parameters of the network defined as 𝜃. By using the above defines we can 

represent the neural network as follows equation 2.1: 

                                                                           𝑦 = 𝑓(𝑥; 𝜃)            (2.1) 

That means using 𝑓 to map input 𝑥 to output 𝑦.  

 Two kinds of artificial neural networks are existing, the single layer artificial neural 

network and the multilayer artificial neural network. A single hidden layer neural is 

made by the input layers, the hidden layer and the output layer. The input layer is 

responsible gather all input data. The hidden layer is the key point of the single hidden 

layer neural network. It is responsible for taking the calculations. Each hidden unit use 

the inputs from the input layer as its input. For each hidden unit, a random initial value is 
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assigned. The computation process is as follow: the value of the hidden unit is multiplied 

with the inputs and then the results are added to a random noise. After that, the 

activation function comes. Some activation function like Relu and Sigmoid is applied on 

the outputs of the hidden layers. The final layer is the output layer. It takes all the 

previous layer’s result as input and multiplies and adds their outputs to initially random 

values. Then these data get activated by a Sigmoid function. The outputs of the Sigmoid 

function are numbers between zero and one. Therefore, we can treat the output as the 

probability that the correspond action could be. Basically, we can increase the accuracy 

by adding more hidden units. The architecture of a single layer neural network is shown 

in Figure 1.  

 

Figure 1: The Single Layer Neural Network 

For Multilayer Artificial Neural Network, it means the hidden layer is more than one. 

Figure 2 shows the architecture of it.  
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Figure 2: The Multi-Layer Neural Network 

 

2.1.2 Convolutional Networks 

  

Convolutional networks are a kind of neural network designed to process data that 

has a known grid-like topology[19]. Since the convolution operation focuses more on the 

adjacent pixel on the input data it has been really successful in image processing. 

Besides the convolution operation, the convolution neural network is exactly the same as 

the artificial neural network. 

The Convolution Operation 

 Convolution is a mathematical operation on two functions 𝑓 and 𝑔 to produce a third 

function.  Convolution is defined as an integral that expresses the amount of overlap of 𝑔 

as it is shifted over  𝑓. It can be described as fellow’s equation 2.2: 

                                                    (𝑓 ∗ 𝑔)(𝑡) =  ∫
+∞

−∞
𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏.         (2.2) 
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Convolution Networks 

 The ConvNet is made by several Conv layers and each of those Conv layers has its 

own activation function. Besides the Conv layers, the pooling layer and the fully-

connected layer are also frequently used in a ConvNet. By combining those layers 

together, we can get a CoveNet.  

 The convolution layer takes the original parts of the input to do computation at a 

time. That computation generates one output scalar. Lots of this kind of computation are 

done during the convolution process. After that, the outputs need to be activated by a 

activation function. This process is shown in Figure 3. Next, each linear activation is run 

through a nonlinear activation function. In the next stage, the pooling layer performs a 

down-sampling operation along the spatial dimensions (width, height). Hence it is 

common to periodically insert a pooling layer before the successive convolution layer. 

Finally, the FC layer computes the class score.  

        

 

Figure 3. The convolution processes 
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 The spatial arrangement of Conv layer output volume is controlled by three 

hyperparameters: the depth, stride, and zero-padding. The depth corresponds to the 

number of filters the network uses to look for different features in the input. Stride 

specifies how to slide the filter. When the stride is 1, the filter is moved one pixel at a 

time, and when the stride is 2, the filter jumps two pixels, and so on. This, in turn, will 

produce a smaller output volume spatially. Padding is used to pad the input volume with 

zeros, which enables the network to control the spatial size of the output volumes.  

2.2 Human Activity Detection 

 Most human-activity recognition (HAR) research has focused on the recognition of 

relatively simple activities (e.g., sitting or walking) rather than more complex activities. 

Very early work in the field using data collected from different sensors placed all around 

the human body. These data were easy to analyze but inconvenient to collect. Then, 

video recordings soon became a significant method of HAR research. Scientists have 

used camera recordings to 

recognize different behaviors e.g., hand-gestures. In this research, I mainly used the 

CAD-60 dataset and my partner mainly focused on the HAR dataset. The detail 

introduction of the above dataset is presented in section 4.3. 

2.3 Gated Architecture 

        A way to do sensor fusion based on neural network was proposed in [17]. The 

proposed architecture is a kind of gated architecture, which refers to a gate in the 

network that can control the data flow. To specify, there are several fusion weight 

scalars in the network. The scalars participate in the process of fusion. Each feature has 
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its own scalar and then do weighted fusion according to that scalar. The process 

described above is called weight fusion based on weight scalar and in this research, the 

architecture that can achieve this is called gating architecture. 
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CHAPTER III 

PROBLEM 

3.1 Baseline NetGated Architecture 

 In the previous research of our team, we use [17] as our baseline NetGate 

architecture. This NetGate architecture is proposed for unmanned ground vehicle (UGV) 

control. Input sensors of this application are LIDAR image and camera image.  The 

diagram of this architecture is shown in Figure 4.  

 

Figure 4 The NetGated CNN architecture [17] 

 We can see in this architecture, two inputs are processed independently at the first 

stage and after that, the features are combined together and passed to the later parts for 

further processing. To extend it to multi-input we have Figure 5. To explain in more 

detail, the data from three sensors are processed independently. First, they go through 

convolutional (Conv) layers, pooling layers, and finally fully connected (FC)layers. 

After that, each sensor's feature maps are generated.  Outputs of the FC layers, from 

“FC-f1” to"FC-f3" in the first dashed box in Fig. 1, are the generated feature maps. After 

that, these feature maps are concatenated together and then fused by another FC layer 
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“FC-con”, where three feature-level fusion weight(scalars) is created.  Note that each 

fusion weight is a scalar value, which is the outputs of the “FC-con” layer. At this time, 

we can use the weight scalars we get to do the further process. The outputs of the 

feature-level FC layers are multiplied with the corresponding fusion weight. In order to 

provide a visual aid, the data flow is demonstrated by arrows in Figure 5.  Finally, these 

weighted feature outputs are fused by the last FC layer "FC-out" which produces the 

final prediction.  

 

 

Figure 5: NetGated CNN proposed in[17]. Extend to three sensors 

  Here it is necessary to point out that the so-called weight scalar or say the extracted 

feature-level weight may be working as a controller for each input features. They act as a 

gate. If the scalar value is zero then the gate will be closed which means this input’s 

feature is turned off. Ideally, when an input sensor is noisy or malfunctioning, that 
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sensor’s input will be closed. Furthermore, we can say that weight scalar can be viewed 

as an indicator of the quality of the input sensor. Therefore, these gated scalars may 

represent the ranking of the input features. To some extent, baseline architecture may 

provide robust sensor fusion capability. 

3.2 Limitations of the NetGated Architecture 

 Through the introduction above we know that the NetGated architecture offers a 

promising deep learning solution for sensor fusion application. However, it still has 

several limitations. Since that architecture is an end-to-end all the weight scalars are 

generated during the network optimization and there is no direct control or regularization 

to ensure that scalars can truly represent the quality of corresponding sensory inputs. 

Following section is about several limitations of the NetGated architecture. 

Fusion Weight Inconsistency 

     The first limitation the NetGate architecture suffers is the fusion weight inconsistency 

problem. 

       Since our goal is to improve the robustness of the sensor fusion architecture, the 

architecture should be able to deal with the noise and the sensor failure situation. 

Therefore, for a well functional neural network architecture, it should have some 

mechanism to deal with the above situations.  NetGate architecture declares that it can 

use the fusion weight scaler to fuse the data accordingly. However, the true meaning of 

fusion weight of the NetGate architecture is not explained in detail in [17]. That problem 

also applies to the function of the fusion weight. 
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       What is more, through experiments we observed that the feature-level fusion weight 

may not reflect the feature ranking. The meaning of the generated scalar is too chaotic to 

tell the meaning of it. According to our experiment, there are some cases where the 

largest extracted fusion weight may correspond to the noise channel, causing fusion 

weight inconsistency.   That means when a channel is noisy the fusion weight scalar of 

that channel may be relatively large compared with other channels’ fusion weight scalars. 

Which is in contrast with our understanding. According to our understanding, when a 

channel is noisy it is apparently not an important channel then the corresponding fusion 

weight scalar should be relatively small comparing with other scalars.  This 

inconsistency negatively affects training and overall prediction performance when it 

comes to noisy sensory input or corrupted features.   

  Let us assume we have two input features 𝑓1, 𝑓2 with feature-level fusion weight 

𝑓𝑤1, 𝑓𝑤2 where these are extracted from “FC-con" layer based on shared input features. 

Also, simply assume that input  𝑓1 is the most important feature in the dataset.  The 

corresponding fusion weight 𝑓𝑤1 should technically be higher than 𝑓𝑤2.  Furthermore, 

when the input is noisy, the fusion weight 𝑓𝑤1should be lower than 𝑓𝑤2.  However, the 

previously mentioned weight does not fully cast the quality of the input features which 

lead to non-optimized prediction performance. 

 Besides above, the inconsistency of the fusion weight scalar also makes the scaler 

generated by the NetGate architecture cannot represent the quality of the input sensors. 

Then the whole network will not be a robust network. For the reason that the scalers are 

not the representation of quality then, to some extent, the fusion according to that scalar 
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can be treated as random fusion. If the fusion is random then we cannot expect the fused 

features to be a good representation of all the information we can extract from all input 

sensors' data we have. 

Lack of Additional Fusion Mechanisms 

      Another limitation the NetGate architecture suffers is the lack of additional fusion 

mechanisms.  

  From Figure. 5 we can see that the NetGate architecture proposed using “FC-out” to 

fuse all weighted features together and then the loss function used in the NetGate 

architecture only treat the entire output as the regulation for optimization. In this way, 

the physical meaning of each channel’s features may be lost even though all input for 

“FC-out” layer is weighted features. 

 This raw input fusion mechanisms can be improved, potentially leading to additional 

performance enhancement. As we all know, all parameters in the neural network are 

controlled by the loss function. That is because we use gradient descent as our 

optimization methods. Furthermore, ADAM and other well-adopted optimization 

methods are also based on gradient descent. Therefore, the loss function is really 

important. What is more, if we can add some regulation to the network that can make 

each channel participated in the process of weight fusion scalar generation. Based on 

that we generated our first stage solution. 

 We have resolved the above limitations of the baseline NetGated architecture by 

gated architecture with auxiliary paths (ARGate-WS). The proposed architecture 
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regularizes the convolution layers and fusion stage which optimizes the baseline 

NetGated model and improve prediction accuracy. 

 After the first stage improved we further find that the regulation does have a positive 

effect on the robustness and performance of the network. That leads to the second stage 

solution (ARGate-WS-FWR). In [20], we further improved the network's robustness by 

using the ARGate-WS-FWR. 

3.3 Pre-proposed architecture 

  To alleviate the above problem, we proposed several new gated architectures and 

those are discussed in this section. Those works are the basement of this work’s solution 

and are quite enlightening.  

3.3.1 The Gated CNN with Auxiliary Paths on Selected Channels  

 Base on the idea of the auxiliary path discussed in [9], [18] came up with an idea that 

uses the auxiliary path as a competitor to force the main model to get better performance. 

Named Auxiliary Path on Selected Channels The architecture is shown in Figure 6[20]. 

 We can see that in figure 6, besides the main model, auxiliary paths are also 

participated in the training process and combined with the main model to become the 

whole model. For the auxiliary path, it only contains clean sensors. That is the pre-

request of using this model. After we know which sensor is clean, we can put it to the 

auxiliary path. Which is means, the auxiliary path only contains clean sensors. Under the 

sensor failure situation, the main model’s input contains several noisy channels. 
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Figure 6: Auxiliary Path on Selected Channels[20] 

 However, auxiliary paths don’t contain noisy input. Based on this truth, we know 

that if we fusion the sensor’s input in the main model by using the element-wise mean 

fuse, then the noisy channel will affect the clean channel and the performance of the 

main model can be dropped a lot because of that. On the other side, since the auxiliary 

path only contains the clean channel, the performance of the auxiliary path is not 

affected by the noisy sensor. That leads to the idea that uses the auxiliary path as a 

competitor to regulate the performance of the main model. In this architecture, the 

performance of the main model should be at least as good as the auxiliary path. In order 

to achieve that goal, the fusion weight generated by the main model should be as 

reasonable as possible. This can be achieved by adopting the loss function as follows 
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                    Loss𝑡𝑜𝑡𝑎𝑙 =  {
𝛼 ∙ 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 +  𝐿𝑜𝑠𝑠𝑎𝑢𝑥,       𝑖𝑓 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 ≥ 𝐿𝑜𝑠𝑠𝑎𝑢𝑥

  𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 + 𝐿𝑜𝑠𝑠𝑎𝑢𝑥 ,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
 (3.1) 

3.3.2 The Gated CNN with Auxiliary Paths 

 In order to alleviate the limitation for the Auxiliary Paths on Selected Channels 

architecture. [18] proposed a gated CNN with auxiliary paths as regulation (ARGate-

WS). The architecture is shown in Figure 7.  

 

Figure 7: The gated architecture with auxiliary paths (ARGate-WS)  

 As we can see from Figure 7, the new architecture mainly contains two parts: the 

main gated model architecture and the auxiliary path for each input feature. The main 

gated model architecture is similar to the NetGate architecture proposed in[17]. For the 

auxiliary path, that is the architecture that each input will have its own feature extract 

network and then proceed the extracted feature to the later FC and prediction part. The 
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feature extract network for each input is the same as the main model. We achieve that by 

sharing the weight between the main model and auxiliary path. 

The loss functions for this architecture is 

                                       𝐿𝑜𝑠𝑠𝑓𝑖𝑛𝑎𝑙 =  𝛼𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 +  𝛽𝐿𝑜𝑠𝑠𝑎𝑢𝑥𝑚𝑖𝑛                                  (3.2) 

 To explain it in more detail, we assume that there are three input features in Fig.7: 

𝑓1, 𝑓2, 𝑓3.   In the main gated model, all features are passed through each convolutional 

layer, pooling layer, and fully connected (FC) layer separately.  Then, these three FC 

layers “FC-f1”, “FC-f2”, and “FC-f3" are concatenated into a FC layer called "FC-con".  

The output of the FC layer “FC-con” is split into three feature-level fusion weight, which 

are scalars for three input features individually.  Note that when splitting the FC-con 

output into three fusion weight, L2 normalization and a SoftMax normalization of fusion 

weight.  Then, the fusion weight is multiplied with the corresponding processed feature 

information “FC-f1”, “FC-f2”, and “FC-f3”.  Weighted feature information is finally 

blended into the FC layer “FC-out”, which produces the classification. 

 In parallel, the weight of convolutional layers is shared to regularize the convolution 

layers and are reused individually in auxiliary paths.  Weight sharing represents the 

coupling of input channels with corresponding to the auxiliary paths. Then, reused 

convolutional layers are connected to the FC layers “FC-f1-aux”, “FC-f2-aux”, and “FC-

f3-aux”.  These three FC layers are creating their own loss, called 𝑙𝑜𝑠𝑠𝑎𝑢𝑥.  The 𝑙𝑜𝑠𝑠𝑎𝑢𝑥  

are utilized to improve the main gated model with the main model loss function, 

𝑙𝑜𝑠𝑠𝑚𝑎𝑖𝑛.  The detailed loss function of the proposed architecture is demonstrated in the 

following subsection. 
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The reasons that add auxiliary path are as follows: 

 Since our goal is to propose a new architecture which is more robust than the 

NetGate architecture, our new architecture should alleviate the limitation of NetGate 

architecture. The main limitation of the NetGate architecture is that the fusion weight 

scalars are not that reasonable. Nevertheless, the idea that uses fusion weight scalar to do 

weight fusion is definitely enlightening. Based on that idea, our new method should 

generate the reasonable fusion weight scalar as exactly as possible, which means we 

need to let the new architecture generate the fusion weight scalars that truly reflect the 

quality of the corresponding channel. Then we notice the second limitation of the 

NetGate architecture, the fusion mechanism, and the whole network is treated as a whole 

black box. Start from that, the idea that adds an auxiliary path to the main model 

architecture came up. By adding the auxiliary path, it actually means the black box is 

opened. Since the weight between the main model and the auxiliary are shared, if we 

changed the auxiliary path then the main model will be affected by the auxiliary at the 

same time. That is the meaning of “black box is opened”. Then, by adding the auxiliary 

path we can actually tune the fusion weight scalars. As a consequence, we can make the 

fusion weight scalars approach the quality indicator by using the auxiliary path. That is 

one of the reasons that the auxiliary path is proposed. The other reason is adding the 

auxiliary can be viewed as a way to do the regulation to the entire network. The 

robustness of the entire network will be enhanced as well.  

 The above paragraph discussed the auxiliary path proposed in the ARGate-WSError! 

Reference source not found. and the reason behind it.  
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3.4 Problem Summary 

 To sum it up, our team has proposed several architectures that can alleviate the 

problem of the NetGate architecture. According to the previous experiments, the 

proposed architecture outperforms the NetGate architecture. However, there still is space 

to further improve the performance of the ARGate-WS architecture.  In the next section, 

I introduced the solutions proposed in this work. 
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CHAPTER IV 

SOLUTIONS 

In this chapter, a modified version of the ARGate architecture developed as part of 

this thesis work is discussed. The details are discussed. The relevant experiments are 

present in the next chapter to demonstrate the performance of the new proposed 

architecture of this work.  

4.1 The Loss Function in the pre-proposed Architecture 

 In[18], we proposed the ARGate-WS architecture and a Fusion Weight 

Regularization (FWR) method to regularize the network. The brief summary of FWR is 

in the next subsection. 

4.1.1 The Fusion Weight Regularization (FWR loss function) 

 The network that uses the FWR is shown in Figure.8. In order to regularize the 

convolutional layers through the weight sharing mechanism, the main gated model loss 

(𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛) and losses from auxiliary paths (𝐿𝑜𝑠𝑠𝑎𝑢𝑥) are exploited.   

 First, only two losses, 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 and 𝐿𝑜𝑠𝑠𝑎𝑢𝑥  are utilized in equation (4.1). Please 

note that the alpha and beta are user-defined parameters. 

Loss𝑡𝑜𝑡𝑎𝑙 =  𝛼 ∙  𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 +  𝛽 ∙ ∑ 𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘

𝐾

𝑘=1

+  ∑ (𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘 −  𝑒−(𝐿𝑜𝑠𝑠𝑎𝑢𝑥

𝑘 )2̂ )
2

𝐾

𝑘=1

 

                                𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘 2̂

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑙𝑛𝑜𝑟𝑚
2 (𝑒−(𝐿𝑜𝑠𝑠𝑎𝑢𝑥

𝑘 )2
+ 1) ∗ 2)                  (4.1) 
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Figure 8: The ARGate architecture with FWR, ARGate-WS-FWR 

     In the equation, 𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 is the loss of the main model. And 𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘  is the loss of 

the kth input channel. 𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘  is the corresponding fusion weight for the kth channel. 

 Parameter regularization is made in the convolutional layers by sharing weight. 

However, weight sharing may bring a problem when one or more input channels are 

noisy or corrupted.  Parameter sharing of corrupted input features in the auxiliary paths 

does not enhance the main gated model. Then add the FWR.  

        The key idea is to use the loss of the auxiliary path to regulate the fusion weight. In 

the ARGate-WS, the main is to let the auxiliary path participated into the process of 

training, and then use the performance of the auxiliary path to force the main model to 
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generate reasonable fusion weight. By this way, the entire model is more capable to deal 

with the sensor failure. However, the way that an auxiliary path participated in that 

process is not strong enough. Then the FWR comes. In this method, the loss of the 

auxiliary path is the indicator of the quality of the corresponding channel. If one has a 

large loss compared with others, then that channel should have a smaller weight scaler. 

4.2 Auxiliary Loss Weighting for Robust Multi-Modal Sensor Fusion 

 Here is the solution developed in this thesis work. It is aimed to further regulate the 

fusion weight scalar and improve the performance of the network. The architecture is 

shown in Figure 9. 

 

Figure 9. The ARGate with ALW, named ARGate-F 
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Since loss functions of all auxiliary paths are included in the total loss function of 

ARGate-WS and ARGate-WS-FWR. However, if one or multiple sensors corrupt, then 

their large loss functions may dominate other terms in total loss functions, the 

performances of the network may be degraded because of this. In order to address this 

issue, these works proposed the auxiliary loss weighting (ALW). Using the fusion 

weight extracted from the main model to multiply with the corresponding loss of the 

auxiliary path. It is shown by the red dash arrows in Figure 9. After applied ALW, we 

have the new loss function: 

Loss𝑡𝑜𝑡𝑎𝑙 =  𝛼 ∙  𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 +  𝛽 ∙ ∑ 𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘 ∙ 𝐿𝑜𝑠𝑠𝑎𝑢𝑥

𝑘

𝐾

𝑘=1

+  ∑(𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘 −  𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥

𝑘 2̂
)2

𝐾

𝑘=1

 

                            𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘 2̂

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑙𝑛𝑜𝑟𝑚
2 (𝑒−(𝐿𝑜𝑠𝑠𝑎𝑢𝑥

𝑘 )2
+ 1) ∗ 2)                 (4.2) 

            𝐿𝑜𝑠𝑠𝑚𝑎𝑖𝑛 is the loss of the main model. And 𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘  is the loss of the kth input 

channel. 𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘  is the corresponding fusion weight for the kth channel. 

 The key point of this loss function is using the fusion weight of the main model 

𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘  are multiplied with auxiliary path loss 𝐿𝑜𝑠𝑠𝑎𝑢𝑥

𝑘 . The idea is that if the k-th 

sensor fails while the rest sensors are all functioning, the pure noisy inputs would 

generate a large 𝐿𝑜𝑠𝑠𝑎𝑢𝑥
𝑘 , which will dominate the total loss function Loss𝑡𝑜𝑡𝑎𝑙 . The 

quality of sensory input can be represented by fusion weight of the main model, and 

implementing 𝑤𝑓𝑢𝑠𝑖𝑜𝑛
𝑘  as a weighting term to multiply with 𝐿𝑜𝑠𝑠𝑎𝑢𝑥

𝑘  would be a solution 

to this issue. 



    

 

 

 

27 

 By adding the ALW, the loss function becomes more complete. This modification 

can take cover the corner case of the model and as a result, the model that uses ALW has 

more generalization ability. The result showed in the next section proved this statement. 
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CHAPTER V 

EXPERIMENTS 

 In this chapter, all experiments this research includes are presented and the related 

analyzes also shows at this chapter. In this section, several results for the traditional 

CNN, the baseline NetGate architecture, ARGate[18] and ARGate-WS-FWR [20] are 

presented and then are compared with the results of ARGare-F that proposed in this 

work. All data presented in this chapter are demonstrating that the proposed new 

architecture does have a decent accuracy compared to others.  

5.1 Experiment setting 

     The experiments are based on two datasets: The HAR dataset and the CAD-60 

dataset.  

     This work mainly focuses on the experiment based on the CAD-60 dataset and 

fellows are several setting this work adopted when test and train the ARGate-F. In the 

training process, mini-batch training is adopted. For HAR dataset, the batch size is 16 

and for CAD-60 dataset, the batch size is 128. The optimization function was the 

ADAM optimizer and the learning rate was 0.001. Besides that, results for HAR dataset 

are based on the training for 200 epochs and the results for CAD-60 dataset are based on 

100 epochs of training.  

HAR dataset [21] 

 HAR Dataset is utilized which has the accelerometer and gyroscope sensory input 

with six activities:  walking, walking upstairs, walking downstairs, sitting, standing and 

laying.  
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 Sensors has three-axial total acceleration data (total_acc_x, total_acc_y, total_acc_z). 

three-axial body   acceleration data (body_acc_x, body_acc_y, body_acc_z), and three- 

axial angular velocity (body_gyro_x, body_gyro_y, body_gyro_z).   

 All data are sampled in sliding windows of 2.56 seconds with 128 reading per 

window, distributed between [−1,1]. 7352 samples are used for training and 2947 

samples for testing the neural networks 

CAD-60 Dataset [22] 

 CAD-60 dataset consists of 60 videos captured by Microsoft Kinect sensor for 

human activity detection, which contains a RGB video camera and a depth sensor.   The 

dataset records four people’s 14 activities, and videos are segmented into RGB and 

depth images.  A feature extraction code is provided to extract features from the raw 

RGB and depth images, skeletal features. The extracted features are skeletal features, 

skeletal histogram of oriented gradients (HOG) features on RGB Image, RGB HOG, 

skeletal HOG features on the depth image sensor, and Depth HOG. Total 5 channels. 

The same “new person” setting in [22] is applied here, which uses the data from three 

people in training, and person for testing. 

Fusion Weight Normalization 

 In [17] the concept of fusion weight is proposed and the fusion weight is generated 

by the FC layer “FC-con” as showed in Figure 4. However, the original NetGated 

architecture does not have normalization on these fusion weights.  If the fusion weight 

scalars are not normalized then when do the weight fusion the relation between each 

channel will be chaos. That is based on the criteria that when we want to add several 
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different distribute data together and want the added data has reserved all channels’ 

information we should make all of them added in the same scale.  To achieve that, we 

have applied two-step normalization on original NetGated and our proposed 

architectures: L2 normalization, then soft-max function on the outputs of the FC layer” 

FC-con”. The two-step normalization is needed for verifying the meaning of fusion 

weight.   Due to the fact that fusion weight is expected to be working as a gated scalar to 

represent input feature quality, we utilize the normalization for fusion weight 

comparison.  

Neural Network Configuration 

 For the baseline NetGated and our proposed gated CNN with auxiliary paths 

(ARGate-F) architecture, 3x3 same padding convolution filters are utilized.  That acts as 

the basement of the convolutional layer. The detailed configuration of ARGate-F for 

CAD-60 dataset is shown in Table. 1. To describe it in general, the architecture we 

adopted is based on the CNN and then apply RELU layer after each convolutional layer. 

After the ReLu layer, the 2*2 max pooling is added. Then the other main part is the 

Fully Connected layer. For the auxiliary path, the front part of it is the same as the main 

model, since the weight of the auxiliary path is shared with the main model the 

architecture needs to be the same. The latter part is a little different. The remaining part 

of the auxiliary part is the prediction part, the FC layer is applied. To sum it up, the 

feature extraction part of the main model and the auxiliary path is the same and then to 

simplify the auxiliary path and the size of the whole network the prediction part of the 
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auxiliary path is slightly different. Table 1 shows the network configuration of the 

ARate-F on CAD-60. 

 In HAR dataset, slightly different parameters for convolution layers, pooling layers, 

and FC layers are applied.  Detail settings are shown in appendix A. 

Table 1: Network configuration of the ARGate-F on CAD-60 dataset 

 Gated Main Model  Auxiliary Paths 

1 Layer Name Layer Setting Layer 

Name 

Layer 

Setting 

2 Conv1D 

ReLU 

Kernel size: 3 Stride: 1 

Padding: 1 # of filters: 8 

 

 

 

Same as the Main Model 

(share weight) 

3 Max Pooling 2 * 2 down sample 

4 Conv1D 

ReLU 

Kernel size: 3 Stride: 

1Padding: 1 # of filters: 4 

5 Max Pooling 2 * 2 downsample 

6 Concatenate Vertical Concatenation 

7 Fully 

Connected 

# of neurons: 600 _ _ 

8 Fully 

Connected 

# of neurons: 5 _ _ 

9 weighted 

fusion 

Multiplication with output5 _ _ 
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Table 1 Continued 

 Gated Main Model  Gated Main Model 

10 Addition Element-wise addition _ _ 

11 Fully 

Connected 

# of neurons: 200 _ _ 

12 Fully 

Connected 

# of neurons: 14 Fully 

Connected 

# of neurons 

14 

 

Runtime environment and device setting 

 This work evaluated the performance of the proposed gated CNN with auxiliary 

paths (ARGate-F) based on two public datasets: human activity recognition (HAR) 

dataset and CAD-60dataset.   All simulations are done on Ubuntu 16.04 with Python 2.7 

and Pytorch 0.4.0. The GPU we used is the NVIDIA TITAN Xp GPUs. 

5.2 Sensor Noise and Failure 

Sensor Noise 

 The sensor noise means the sensor work but the output may contain several noises. 

The noise is an additive noise usually represent by additive Gaussian noise. However, 

just simply add gaussian to the original clean output of the sensor may not be that 

appropriate. Because all sensors have their own way to simulate sensor noise. The detail 

information may be provided by the manufactory of the sensors.   

      In this research, I mainly focused on sensor failure. The detail information is 

presented in the follow paragraph.  
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Sensor Failure 

 Sensor Failure means the sensor is not working at all. The output of the sensor is 

several random noises. The simulation we used is based on the uniform distribution. The 

simulation equation is as equation (5.1) 

                                                                              𝑣𝑛 =  𝜉𝑛                                                  (5.1) 

 Where 𝜉𝑛 is a random variable for uniform distribution.    

  To generate noise with the same range of clean data, for CAD-60 dataset,  𝜉𝑛 ∼

𝑈[𝑑𝑎𝑡𝑎𝑚𝑖𝑛, 𝑑𝑎𝑡𝑎𝑚𝑎𝑥] is exploited and  𝜉𝑛 ∼ 𝑈[−1,1]  is applied in HAR dataset. Where 

𝑑𝑎𝑡𝑎𝑚𝑖𝑛, and 𝑑𝑎𝑡𝑎𝑚𝑎𝑥 represent the minimum and maximum of the clean data. 

 Besides the uniformed distribution, the Gaussian distribution also used to simulate the 

sensor failure situation. The simulation equation is as (5.2) 

                                                                    𝑣𝑔 =  𝜉𝑔                                                    (5.2) 

 The same as the uniform distribution, 𝜉𝑛 ∼ 𝐺[0,1] is exploited to both CAD-60 

dataset and HAR dataset. Where 0  represent the mean of the data is 0 and 1 means the 

variance of the data is one.  

       In the actual runtime, since the 𝛾  is the coefficient, for the neural network the linear 

modification will not affect the result. Therefore, we always ignore the 𝛾  in the 

experiment.  

Sensor Failure with Fixed Noisy Channel 

 To represent the real situation as better as possible, we split both training and testing 

dataset into the clean set and noisy set.   
1

3
  of total training data are randomly selected as 
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“clean set”, where all input channels are pure without noise. The outputs of those 

channels are just the pure data we get from the dataset. While the rest training data are 

defined to be “noisy set". In the noisy set, 𝑛𝑓𝑛𝑜𝑖𝑠𝑒  out of 𝑛 channels are selected and 

fixed as noisy channels. 𝑛𝑓𝑛𝑜𝑖𝑠𝑒  is a constant which represents the number of fixed noisy 

channels.  Note that 𝑛 is the total number of input channels. Same noise scheme is 

applied to the testing set. 

Sensor Failure with Dynamic Noisy Channel 

       In order to simulate more challenging failure cases, among noisy set defined in 

previous, 𝑛𝑑𝑐𝑙𝑒𝑎𝑛 out of 𝑛 input channels are randomly selected to have clean sensory 

inputs, while the rest  𝑛  − 𝑛𝑑𝑐𝑙𝑒𝑎𝑛 channels have noisy inputs as in equation (5.1), 

clean channels are dynamically changing in different examples. 𝑛𝑑𝑐𝑙𝑒𝑎𝑛 is a constant 

which represents the number of dynamic clean channels. 

Mixed Failure Schemes 

        In practice, sensor failure may be a mixture of different noise schemes.  Therefore, 

we performed a combination of different noise schemes in training and testing processes. 

In order to verify the robustness of our work, the proposed model is also tested in more 

realistic sensor failure situations when noise schemes in testing data are more 

complicated than those in training data. 

5.3 Parameters in ALW 

      To propose the new architecture with the best performance, the parameters in the 

loss function need to be further tuned. Several experiments are done for that goal. In this 
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section, several experiment results are provided and the final parameters that we used in 

loss function are presented. 

     The sensor failure model I used when doing the experiment is the fixed failure 

scheme. I use this scheme to test the performance of ARGate-F with loss function (5.2). 

The parameters we need are 𝛼 and 𝛽. To find the best parameters lots experiments were 

done. From those experiments, we can find for HAR dataset, the best parameters are α = 

5 and β=1.  

The result is shown in Table 2 and Table 3. (only several main results are displayed 

here) 

Table 2: Performances of ARGate-F with loss functions in HAR dataset 

Noise 

Scheme 

𝛼 = 5   and 

𝛽 = 1 

𝛼 = 1 and 𝛽 =

4 

𝛼 = 1  and 𝛽 =

5 

𝜶 = 5 and 𝜷 = 𝟏 

𝑛𝑑𝑐𝑙𝑒𝑎𝑛  
=   1 

62.13% 63.42% 65.34% 66.42% 

 

 For the CAD-60 dataset. The parameters got by the experiment are 𝛼 = 9 and 𝛽 = 5.  

Table 3: Performances of ARGate-F in CAD-60 dataset 

 

 

 

Noise Scheme 𝛼 = 3 and 𝛽 = 5 𝛼 = 6 and 𝛽 = 5 𝜶 = 𝟗 and 𝜷 = 𝟓 

𝑛𝑑𝑐𝑙𝑒𝑎𝑛  =   1 60.31 % 61.49 % 62.96 % 
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5.4 Fusion Weight Distribution 

 In this part, the results of the distribution of fusion weight for several models are 

provided.  the baseline NetGated and the ARGate with auxiliary paths using FWR and 

ALW, short named as ARGate-F, under the first dataset. 

     The goal is to make the fusion weight to become the indicator of the quality of the 

corresponding channel. Then the scalar should be small when a channel is less important 

or is noisy. As a consequence, we can judge the quality of our setting by seeing the 

distribution of the fusion weight scalar. If one architecture can generate the weight scalar 

that does distribute as our assumption then the corresponding architecture is better than 

the other. 

       In the experiment of the network based on ARGate-F, the 𝛼 is set to 9 and the 𝛽 is 

set to 5. Fusion weight normalization is applied to normalize 𝑒−𝐿𝑜𝑠𝑠𝑎𝑢𝑥𝑘
2

. After the 

normalization, the sum of all fusion weight scalar is 1. The results are based on the 

CAD-60 dataset. 

       This experiment is under the sensor failure situations, with 𝑛𝑑𝑐𝑙𝑒𝑎𝑛 set as 1, 𝛾 as 0.5, 

only RGB HOG channel is clean in each training and testing example.  When the input 

feature has pure noise, fusion weight should be distributed around a value which is much 

smaller than the clean feature.  The Fig.10,11,12 shows the fusion weight of channel 

RGB HOG for clean testing examples based on the NetGated, the ARGate-WS-FWR 

and ARGate-F respectively 
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Figure 10: Weight Distributions of clean features for channel RGB HOG using NetGated, 

when 𝑛𝑑𝑐𝑙𝑒𝑎𝑛 and 𝛾 are set to be 1 and 0.5, respectively 

 

Figure 11: Weight Distributions of clean features for channel RGB HOG using 

ARGate-WS-FWR, when 𝑛𝑑𝑐𝑙𝑒𝑎𝑛 and 𝛾 are set to be 1 and 0.5, respective 
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Figure 12: Weight Distributions of clean features for channel RGB HOG using ARGate-

F, when 𝑛𝑑𝑐𝑙𝑒𝑎𝑛 and 𝛾 are set to be 1 and 0.5, respectively 

As showed in the above pictures, in Figure 10 we see that when using the NetGated 

architecture, when the corresponding channel is clean the fusion weight is mainly 

distributed at around 0.1 and relatively fewer fusion weight is distributed are 0.4. In 

Figure 11, we see that when using the ARGate-WS-FWR[20], the fusion weight does 

have more in the range around 0.4, however, on the same time, there are also lots of the 

fusion weight are distributed around 0.1. For the ARGate-F, we can see that most of the 

fusion weight is distributed at 0.3 ~ 0.4. That is what we want. From Figure 10 to 12 we 

can get the conclusion that the ARGate-F architecture has the ability to extract 

reasonable fusion weight and the performance of ARGate-F is the best when compared 

with the NetGate and the ARGate-WS-FWR. Similarly, when the input sensor RGB 

HOG is noise, the fusion weight should mostly distribute at smaller values than other 

clean features.    
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Together with the weight distributions in Figure.10,11,12, we can see that the 

Auxiliary loss weighting can further regulated fusion weight and thus is capable of 

representing sensor quality and thus achieve higher accuracy than NetGate. That 

supports this work’s solution ARGate-F out performs others compared architecture. 

5.5 Experimental Findings and Results in CAD-60 Dataset 

Failures on Extracted Features 

 For CAD-60 Dataset, as we introduced in the previous paragraph, it was generated by 

3 sensors, the RGB image, the depth image and the Skeleton data. Based on that three 

sensors, the CAD-60 Dataset also provides a feature extractor code that can extract five 

features from the original three sensors.    

 In this part, five extracted features from raw data are treated as five sensor input.  

Similar noise scheme is implemented to the five features. That means this work assumes 

we have five sensors instead of three sensors in the experiments presents in this section.  

Simulation Results of Sensor Failure with Fixed Noisy Channel 

The fellow results are for the experiment based on the simulation of sensor failure in 

the fixed noisy channel.   𝑛𝑓𝑛𝑜𝑖𝑠𝑒  stands for the number of fixed noisy channel. The 

experiment result is as shown in Table 4. The results of my solution are shown in the last 

column. 

In this experiment, all failing sensors have inputs following uniform distribution 

between -1 and 1. 𝑛𝑓𝑐𝑙𝑒𝑎𝑛 = 1, skeletal features, RGB HOG, skeletal HOG features on 

Depth Image, and Depth HOG are simulated to be corrupted sensors.  𝑛𝑓𝑐𝑙𝑒𝑎𝑛 = 4, only 

skeletal channel is corrupted. 
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Table 4: Prediction accuracies under fixed failing sensor assignment for CAD-60 dataset 

# Clean Channels Baseline NetGated ARGate-WS-FWR ARGate-F 

𝑛𝑓𝑐𝑙𝑒𝑎𝑛 = 1 60.60% 59.98% 63.22% 65.14% 

𝑛𝑓𝑐𝑙𝑒𝑎𝑛 = 4 64.15% 61.72% 69.83% 72.74% 

 

 From the result shows on Table 4 we can see that under the fixed noisy channel 

situation, the performance of the original CNN network performance is the worst. The 

NetGate architecture does perform better when compared to the original CNN network. 

The architecture that we compared with, ARGate-WS-FWR, performs better than 

baseline CNN and the NetGate. However, the proposed solution in this thesis, the 

ARGate-F's performance is the best. Compared with the baseline model (ARGate-WS-

FWR) that this work improved from, the performance is improved around 2 ~ 3 %. 

Theoretical limits for sensor fusion 

The theoretical limits are the highest performance we can get when use multi-sensor. 

In this part, the theoretical limits for fixed channel sensor failure are explored. 

To compared to theoretical limits with the result of the ARGate-F that proposed in 

this work, the noise setting and noise channel are the same as the setting for ARGate-F 

experiments. The theoretical limits are got as fellows, when one channel is under sensor 

failure, the corresponding channel will be manually closed. That is means, when do the 

sensory fusion, that channel’s data will not be fused with others clean data.  

The results for theoretical limits are shown in Table 5. 
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Table 5. The theoretical limits for the sensor fusion 

# Clean Channels Theoretical 

limits 

ARGate-F 

𝑛𝑓𝑐𝑙𝑒𝑎𝑛 = 1 66.64% 65.14% 

𝑛𝑓𝑐𝑙𝑒𝑎𝑛 = 4 73.77% 72.74% 

 

 From result shows in Table 5 we can see that the result of ARGate-F is almost the 

same as the Theoretical limits. The difference between these two is around 1%. Further 

proved ARGate-F does have decent performance. Even though there is still some gap 

between the ARGate-F and the theoretical limits, the performance of the ARGate-F does 

perform best when compared with others. 

Simulation Results of Sensor Failure with Dynamic Noisy Channel 

The fellow’s results are for the experiment that simulation of sensor failure with 

dynamic noisy channel 

Simulations are set up with 𝑛𝑑𝑐𝑙𝑒𝑎𝑛 ∈ {1,2,3,4}. For the training epochs, considering 

the time cost, is set to do 100 epochs training. The detail results of the experiment are 

shown in Table 6. 

We can see from the results in Table. 6 that when all five channels are clean, the 

proposed gated CNN with auxiliary paths has 0.5% improvement over traditional CNN, 

and 0.44% over ARGate-WS-FWR. With the increase of the clean channel, all CNN, 

ARGate-WS-FWR and ARGate-F's performance increased. That is because, with the 

increase of the clean channel, the total information that input can provide is increased, 
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even though CNN cannot fully use all information the performance of CNN still can 

improve since the total information is increased. 

Table 6: Prediction accuracies under random failing sensor assignment for CAD-60 

dataset 

Clean 

Channels 

Failure 

Model 

Baseline NetGated ARGate-

WS-FWR 

ARGate-F 

All Clean - 87.01% 86.57% 87.37% 87.51% 

 

𝑛𝑟𝑐𝑙𝑒𝑎𝑛 = 4 

Zero 71.91% 68.87% 78.67% 82.01% 

Uniform 69.76% 65.13% 78.81% 79.78% 

Gaussian 71.55% 73.81% 75.74% 77.93% 

 

𝑛𝑟𝑐𝑙𝑒𝑎𝑛 = 3 

Zero 72.91% 65.48% 71.47% 77.13% 

Uniform 69.38% 67.61% 71.96% 73.86% 

Gaussian 88.41% 89.04% 90.07% 74.75% 

 

𝑛𝑟𝑐𝑙𝑒𝑎𝑛 = 2 

Zero 67.94% 67.98% 64.41% 68.17% 

Uniform 64.98% 62.98% 66.59% 66.70% 

Gaussian 67.41% 66.55% 66.96% 68.51% 

 

𝑛𝑟𝑐𝑙𝑒𝑎𝑛 = 1 

Zero 59.07% 28.18% 59.89% 60.01% 

Uniform 61.42% 57.10% 61.35% 61.82% 

Gaussian 57.44% 57.75% 57.55% 57.96% 

 

However, if we see the performance of CNN, ARGate-WS-FWR, and ARGate-F at the 

same time we can find that the ARGate-F 's performance keeps being the best one. 

 To sum it up, from the table we can see that after applied ALW(ARGate-F), the 

maximum network’s performance improved can reach to 3.5 %, on average the 

improvement is around 2 %. 
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Combined with the simulation of sensor failure with the fixed noisy channel, we can 

see that when we treat the five extracted features as five sensors,  the new proposed 

ARGate-F architecture’s performance is the best and the improvement is around 3.5 %. 

The improvement demonstrated the superiority of the ALW and ARGate-F architecture. 

Failures on Original Inputs 

In the previous paragraph, the input of the network is the five extracted features. 

Those five extracted features are treated as five sensors. In this part, in order to simulate 

what actually happens on sensors, noise is added directly to the raw data that sensors 

have. Threes sensors of CAD-60 dataset are the RGB images, the Depth images and the 

Skeleton data. The skeleton data are generated from the RGB images. 

The noise scheme I adopted for the experiment is the dynamic noise channel scheme. 

To specify, this experiment is based on the simulation of sensor failure based on 

dynamic noisy channel and fixed noisy channel. 

Since the experiment result shows in Table 4, 5 and 6 already proved the ARGate-F 

architecture does perform better than the other architecture for the experiment presents 

in this part, only one setting of noise situation is explored. We try to use the most 

extreme setting to demonstrate that the ARGate-F architecture does can improve the 

performance even in such worst situation. Therefore, the number of clean channels is set 

to be 1 (𝑛𝑑𝑐𝑙𝑒𝑎𝑛 = 1).  

The result is shown in Table 7. 
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Table 7: Accuracy on CAD-60 when original inputs (RGB and RGB-D images) under 

dynamic noise schemes 

Noise Scheme Noise Level CNN NetGate ARGate-F 

All clean - 87.01% 86.57% 87.51% 

Ndclean = 1 Gaussian 74.33% 74.30% 76.02% 

Ndclean = 1 Uniformed  73.16% 72.26% 76.42% 

Ndclean = 1 Zero noise 73.53% 72.08% 77.09% 

 

This simulates the mixture of two situations:  the two sensors (RGB and RGB-D) are 

both working, only one of the two sensors are working. The same feature extraction code 

is implemented to extract five features, which are input to the same network in the 

experiment of sensor failure with fixed noisy channel. 

In Table.7, when RGB and Depth data are both clean, I got the same results as in “All 

Clean” noise scheme in Table. 6. Under the noise scheme mentioned above, the 

proposed ARGate-F has an improvement of 1.72% over NetGate, and 1.69% over 

traditional CNN. 

Besides the dynamic failing sensor setting, the fixed noise setting is also explored. 

The results are shown in Table 8. 
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Table 8: Accuracy on CAD-60 when original inputs (RGB and DRGB images) under 

fixed noise schemes 

Noise Scheme Noise Level CNN NetGate ARGate-F 

All clean - 87.01% 86.57% 87.51% 

Depth Gaussian 65.27% 61.05% 67.02% 

RGB Gaussian 70.77% 67.98% 73.71% 

         

 Combined the result in Table 7 and Table 8, we can see that the performance of the 

ARGate-F is also the best one no matter the noise is added on the source of the input or 

on the extracted features. 

Failing Sensor Assignment for Model Generalization 

To test the generalization ability of the ARGate-F architecture, fellow experiments 

are done. The model generalization means when the model is tested in the scenario that 

has never been seen during the training process. If the model can still have decent 

performance, then that means the model has generalization ability. 

In the fellow experiments, several representations need to be clarified. (1, 4) (2, 4) 

means the number of failing channels in train dataset in each example is randomly 

selected from [1, 4], while the range of failing channel numbers in the test set is between 

[2, 4]. 
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Table 9: Prediction accuracies under failing sensor assignments for testing generalization 

for CAD-60 dataset 

#Failing Channels Baseline NetGated ARGate-F 

(1,4)(2,4) 64.08% 63.71% 68.36% 

(2,3)(2,8) 55.36% 55.16% 58.04% 

(2,4)(1,4) 60.77% 61.05% 62.09% 

   

When the experiment is under setting (1, 4) (2, 4), the improvement is 2.63%. Which 

is the maximum improvement compared to ARGate-WS-FWR. For other settings, the 

performance of ARGate-F is also the best. 

5.6 Experimental Findings and Results in HAR Dataset 

In this section, the result of the CNN Baseline, NetGated, ARGate-WS and ARGate-

WS-FWR is cited from [20].  The last column’s results are for ARGate-F, which was 

explored by myself. 

Table 10 shows the result of random failing sensor assignment. Table 11 shows the 

result of fixed noise assignment result. 

The results in Table 10 and Table 11 further proves the performance of ARGate-F is 

the best one and the ALW is proved to be useful. 

 

 

 

 

 



    

 

 

 

47 

Table 10: Prediction accuracies under random failing sensor assignment for HAR 

dataset[20] 

# Clean 

Channels 

Failure 

Model 

Baseline[20] NetGated[20] ARGate-

WS[20] 

ARGate-

WS-

FWR[20] 

ARGate-

F 

All Clean - 94.06% 94.50% 94.96% 95.09% 95.69% 

 

𝑛𝑟𝑐𝑙𝑒𝑎𝑛

= 8 

Zero 93.02% 93.17% 94.66% 94.04% 94.60% 

Uniform 92.35% 92.20% 92.45% 92.46% 92.57% 

Gaussian 92.94% 93.28% 94.97% 94.35% 94.13% 

 

𝑛𝑟𝑐𝑙𝑒𝑎𝑛

= 5 

Zero 88.36% 87.95% 88.63% 88.83% 89.89% 

Uniform 86.73% 86.80% 88.53% 89.17% 89.51% 

Gaussian 88.41% 89.04% 89.52% 90.07% 90.12% 

 

𝑛𝑟𝑐𝑙𝑒𝑎𝑛

= 1 

Zero 71.56% 71.12% 74.38% 74.44% 74.62% 

Uniform 62.06% 62.90% 65.69% 66.09% 67.09% 

Gaussian 69.67% 70.54% 71.83% 72.58% 73.19% 

 

Table 11: Prediction accuracies under fixed failing sensor assignment for HAR 

dataset[20] 

# Clean Channels Baseline[20] NetGated[20] ARGate-F 

𝑛𝑓𝑐𝑙𝑒𝑎𝑛 = 5 87.68% 89.28% 91.01% 

𝑛𝑓𝑐𝑙𝑒𝑎𝑛 = 6 80.59% 81.94% 84.52% 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

6.1 Summary 

 This work introduced a way to further improve the performance of the ARGate-WS-

FWR, named Auxiliary Loss Weighting (ALW). The model combined with ALW is 

called ARGate-F, a sensor fusion neural network architecture. The ARGate-F different 

from the ARGate-WS-FWR as it has a feedback path from the fusion weight to the loss 

of the auxiliary path to do regulation for the auxiliary path. This method it the main point 

of this thesis. ARGate-F, in turn, is more capable to deal with the sensor failure situation. 

The experiments on the CAD-60 Dataset showed the performance boost of the ARGate-

F over the CNN, the NetGate and the ARGate-WS-FWR.  

6.2 Conclusions 

This thesis proposed the Auxiliary Loss Weighting for Robust Multi-Modal Sensor 

Fusion with Deep Neural Networks. The proposed method makes the architecture 

outperform existing ARGate-WS-FWR, NetGated architecture and basic CNN 

approaches. The proposed model shows robust classification performance on noisy data 

under sensor failure cases.  For future work, the proposed architecture will be exposed to 

camera and LIDAR images for more complex sensory input. 
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APPENDIX A 

A.1 Neural Network Configuration used for HAR Dataset  

 Gated Main Model  Auxiliary Paths 

1 Layer Name Layer Setting  Layer Name Layer Setting 

2 Conv1D 

ReLU 

Kernel size: 32. Stride: 8 

Padding: 0 # of filters: 16 

 

 

 

Same as the Main Model 

(share weight) 

3 Max Pooling 2 * 2 down sample 

4 Fully 

Connected 

# of neurons: 256 

6 Concatenate Vertical Concatenation 

7 Fully 

Connected 

# of neurons: 256 _ _ 

8 Fully 

Connected 

# of neurons: 9 _ _ 

9 weighted 

fusion 

Multiplication with output5 _ _ 

1

0 

Addition Element-wise addition _ _ 

1

2 

Fully 

Connected 

# of neurons: 6 Fully 

Connected 

# of neurons 6 

 

  




