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ABSTRACT

This thesis applies a subset of machine learning known as deep reinforcement learning (DRL)

to the problem of steady state voltage control in the electric power transmission system. In support

of this work, both a new Python package that interfaces with PowerWorld Simulator and a set

of modular DRL environments were developed. A state-of-the-art open-source DRL algorithm

which leverages “deep Q networks” (DQN) was used along with the developed DRL environments

in order to apply DRL to voltage control.

An experiment from a recent publication which applies DRL to voltage control was reproduced

and its shortcomings were discussed. This led to experimentation with algorithm and environment

modifications. It was found that a novel change to the DQN algorithm in which agents are not

allowed to take the same action twice in any given training or testing episode leads to significant

improvements. Additionally, it was found that using min-max scaled voltages in observations pro-

vided to the DRL agent rather than per unit voltages leads to marked improvements in successfully

solving the voltage control problem.

After initial exploration using the IEEE 14 bus test system, use of DRL for voltage control

was tested on synthetic 200 and 500 bus systems developed at Texas A&M University. Results

for these systems were mixed, and instabilities were observed during training. For the 200 bus

system with single line contingencies present in all training and testing episodes, DRL agents

were able to achieve success near to that of a heuristically-driven graph-based agent that was

developed for comparison. By contrast, with the 500 bus system the DRL agents’ success rates

were approximately half that of the graph-based agents.

This thesis demonstrates that there is promise in the application of deep reinforcement learn-

ing to power system voltage control, but more research is needed in order to enable DRL-based

techniques to consistently outperform conventional methods.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Current Trends in the Electric Power System and Industry

The electric power grid is critical to the functioning of our modern society, and is undergoing a

period of major change. Large portions of the U.S. electric power system have undergone deregu-

lation since the 1990’s, distributing the responsibilities of electric power generation, transmission,

and distribution to separate entities and opening up power markets [1]. Additionally, electricity

generation from intermittent renewable resources such as wind and solar is rising while traditional

generation sources such as coal and nuclear are declining [2]. Due to numerous factors including

increasing extreme weather events, the reliability of the electric grid has been declining in recent

years [3]. Further complicating these challenges are current and upcoming labor shortages in the

electric power industry [4, 5].

Fortunately, the digital computing revolution of the last several decades has been a boon to the

electric power system. Phasor measurement units (PMUs) have been increasing visibility into the

electric power system [6], "smart" meter installations are on the rise [7], and energy management

systems (EMS) are continually growing in sophistication. Despite these recent advances, many

simple grid control actions are still taken by humans [8–11]. As electric grid operation becomes

increasingly complex due to increased data flow, changing resource mix, decreasing system inertia,

more control options, etc., the automation of grid control is more important than ever.

1.2 Electric Grid Reactive Power and Voltage Control

In order to ensure secure electric grid operation, all buses in the transmission system are kept

within a prescribed voltage band. Bus voltages are maintained by a variety of devices through

a mixture of human and automatic control. The most prevalent voltage control devices in the

transmission system are generators, switched shunts (e.g. capacitors), and on-load tap changing

(OLTC) transformers [12].

Electric generators are required to follow a pre-determined voltage schedule created by the
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transmission operator or independent system operator, and control of the high side voltage of their

step-up transformers is achieved by adjusting reactive power output. Capacitors and voltage reg-

ulators may operate automatically based on local measurements, be directly controlled by human

operators, and/or be controlled by a centralized optimization program [8, 12–15].

Recent advances in system-wide transmission voltage control leverage hierarchical control

schemes and the use of "pilot" (bellwether) buses in different pre-determined voltage control areas.

These schemes have been proven effective in Europe, China, and the United States [14–16]. While

effective, the aforementioned voltage control schemes must make major modeling and control sim-

plifications due to their reliance on conventional optimization techniques and the large scale of the

electric transmission system. Additionally, the optimization can be time consuming, which can

make these techniques impractical when the need for rapid control decisions arises.

1.3 Reinforcement Learning

Reinforcement learning is a form of learning in which an agent receives rewards or penalties

for performing actions which affect its environment. Based on these rewards or penalties, an agent

can potentially learn how to maximize its rewards [17].

In a popular model-free reinforcement learning algorithm, Q-learning, agents attempt to learn

the action-utility function (Q-function) which gives the expected utility of performing a particular

action (Q-value) given the state of the environment. By learning the Q-function, the agent can then

make decisions so as to optimize its cumulative future rewards. The learning of the Q-function

often takes the form of a table indexed by state and action. Each table entry represents the value of

an action given the state of the environment [17].

Unfortunately, traditional Q-learning algorithms don’t scale well due to their use of a tabular

Q-function representation. Recent advances use neural networks as an estimator of the Q-function:

states are passed to the input layer of the neural network and an estimate of the expected utility of

each possible action is emitted from the network’s output layer. Reinforcement learning algorithms

which use neural networks as Q-function estimators are collectively known as "deep reinforcement

learning" (DRL) algorithms and have been proven successful in domains with large state and action
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spaces such as Atari games and the board game Go [18–20].

1.4 Reinforcement Learning for Power System Control

Historically, the use of reinforcement learning in the power system domain has been stymied

by the large scale of states and control in the power system [21]. As reinforcement learning tech-

niques have grown more successful and proven capable of operating in environments with larger

state and action spaces, interest in reinforcement learning’s potential for power system control has

increased. Reference [22] (published in 2017) provides a survey of the literature involving rein-

forcement learning for control of the electric power system. Researchers have begun investigating

reinforcement learning for a variety of power system control problems including transient gener-

ator angle stability, congestion management, economic dispatch, and voltage control [22]. The

authors of [22] suggest that the recent success of DRL may warrant a revisiting of previous grid

control work where reinforcement learning was applied before recent breakthroughs.

One example of successfully revisiting grid control problems with new DRL algorithms is

[23]. The authors leveraged the open-source reinforcement learning environment known as Gym

[24] as well as recently published open-source DRL algorithms [25], both created by OpenAI,

in order to perform grid emergency control. OpenAI’s Gym and DRL algorithms are discussed

in more detail later on. The authors of [23] investigated two grid control problems: dynamic

generator braking and under-voltage load shedding. It was shown that reinforcement learning

agents could be successfully trained both to apply a resistive generator brake in order to prevent the

loss of generator synchronism and to shed the minimal amount of load required while maintaining

a particular voltage recovery envelope. While the work presented in [23] is quite promising, the

authors performed their studies using small test systems (10 and 14 buses).

In [26], traditional, tabular Q-learning was applied to reactive power/voltage control. The

authors simplified system states by using a binary representation: if a component is within its

operating limits (generator reactive power limits, transformer power flows, and bus voltages), the

corresponding component of the state vector is 0. If a component is outside its operating limits,

the corresponding state vector component is -1. The discrete action space consisted of transformer

3



tap positions, shunt switch positions, and generator voltage set points. The authors show that Q-

learning can be used to successfully determine control settings to reduce violations in 14 and 136

bus test cases. Unfortunately, the authors of [26] did not specify the tools they utilized for either

reinforcement learning or solving the power flow problem.

Similarly to [26], [27] presents the application of reinforcement learning to reactive power/volt-

age control. However, the authors of [27] use newer DRL algorithms instead of tabular Q-learning.

The states considered are the results from solving the power flow problem, e.g. bus voltages, bus

angles, active power flows, and reactive power flows. The only control actions considered are dis-

cretized generator voltage set points. The authors used GridPACK™ as a power flow solver [28],

Gym as a reinforcement learning environment [24], and wrote their own DRL algorithm. A simple

reward structure was used in which a positive reward is given for each bus within the accept-

able voltage bound, and negative rewards are given for each bus outside of the acceptable voltage

bound. The authors show that their DRL agent does in fact learn how to correct voltage issues

while minimizing the number of control actions taken.

1.5 Overview of Thesis

This thesis applies deep reinforcement learning to the power system voltage control problem.

Chapter 2 presents the software developed and used in order to solve the voltage control problem.

Contributions include the development of a Python package which interfaces with PowerWorld

[29,30] and the development of a new Gym environment which uses PowerWorld as the underlying

power systems simulator [24, 31]. In Chapter 3, a recent experiment from the literature ( [27]) is

reproduced and its shortcomings are discussed in detail. The primary contribution from Chapter 3

is a novel modification to a deep reinforcement learning algorithm that does not allow the agent to

take the same action multiple times within each training and testing episode. Chapter 4 leverages

the knowledge gained in Chapter 3 to explore several improvements to the environment. It was

found that min-max scaling of voltage observations along with the aforementioned algorithmic

improvement lead to good results when performing voltage control. Additionally, two novel reward

schemes based on voltage movement are presented. Chapter 5 takes the findings of Chapter 4 and
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applies them to larger power systems. Specifically, 200 and 500 bus systems developed at Texas

A&M University were used [32, 33]. Results with the larger systems were mixed, but there’s clear

potential for the application of DRL for voltage control on realistically sized electric grids. Finally,

Chapter 6 presents conclusions and future work.
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2. SOFTWARE DEVELOPED AND USED FOR DEEP REINFORCEMENT LEARNING

This chapter presents both the software used to perform the research contained within the the-

sis, as well as the software that was developed in order to perform deep reinforcement learning

for steady-state voltage control. Broadly, the software that was developed is broken up into three

components: development of an open-source Python package for interfacing with PowerWorld

Simulator [29], development of an open-source reinforcement learning environment leveraging

Gym [24] and PowerWorld for steady state voltage/reactive power control, and finally using deep

reinforcement learning (DRL) algorithms to perform grid voltage/reactive power control. Section

2.1 introduces the pre-existing tools which were leveraged in this research, Section 2.2 discusses

the Python/PowerWorld connector, ESA, that has been developed in support of this research, Sec-

tion 2.3 covers the development of a reinforcement learning environment for voltage control, and

Section 2.4 discusses the reinforcement learning experiments I propose to carry out.

2.1 Software Tools

In Chapter 1, power system trends, power system voltage control, reinforcement learning, and

reinforcement learning for power system control were all discussed. For the most part, that dis-

cussion was agnostic of tools. In this section, background related to the tools used to perform the

research proposed here is discussed.

2.1.1 Python

Python is a high=level, open-source, cross-platform, interpreted language that has been rapidly

gaining popularity in recent years [34,35]. Python has many freely available and powerful scientific

computing packages, such as Numpy and Pandas, which are both part of the SciPy ecosystem [36].

Additionally, many machine learning and artificial intelligence related packages have been released

in recent years, including Tensorflow and Keras [37,38]. The combination of ease of programming,

available packages, and open-source nature make Python a very attractive tool to use for machine

learning/artificial intelligence work.
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2.1.2 PowerWorld

PowerWorld Simulator is a power system simulation package with a wide variety of capabili-

ties ranging from power flow analysis to dynamic simulation and beyond [29]. PowerWorld was

founded in 1996 by Professor Thomas Overbye, and is under continuous development by Power-

World Corporation. Note that in this thesis, “PowerWorld Simulator” will often be shortened to

just “PowerWorld.”

PowerWorld is commercial grade software: it has been heavily optimized for performance,

provides a suite excellent power system visualization tools, and has an application programming

interface (API) allowing for the use of external tools to configure and control simulations. As

is discussed in detail later, training a reinforcement learning agent to perform voltage control in-

volves repeatedly solving the power flow, which is a computationally expensive problem to solve.

Fortunately, PowerWorld’s sophisticated algorithms and utilization of sparse matrix and vector

methods [39, 40] make for rapid power flow solutions.

2.1.3 OpenAI’s Gym and Baselines

OpenAI has released both a reinforcement learning platform, Gym [24], as well as a set of

recent reinforcement learning algorithm implementations, known as Baselines [25]. Both Gym

and Baselines are extendable and open-source, allowing practitioners and researchers to take full

advantage of the available tools.

Gym seeks to provide a standardized platform for the development of reinforcement learning

environments. In this way, different reinforcement learning algorithms can be tested against a con-

sistent environment. Additionally, using open-source standardized environments aids in making

published works more reproducible.

Baselines is a set of high-quality implementations of reinforcement learning algorithms. This

allows researchers to apply an established algorithm to a problem in their research domain, e.g.

voltage control of the electric transmission system. Of particular interest for the work presented

in this thesis is the so called “deep-Q” learning algorithm, introduced in [18, 19]. The deep-Q
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algorithm uses a neural network as a Q-function estimator, and is used for problems with discrete

control actions. Baselines also contains algorithms for continuous actions spaces, which could be

used for a continuous formulation of the voltage control problem.

The work from Baselines has been improved upon by others, and re-released under the name

“Stable Baselines” [41]. The Stable Baselines repository is a fork of the original Baselines reposi-

tory with improved testing coverage, a complete documentation site, and refactored code base. All

work presented in this thesis uses the algorithms provided by Stable Baselines rather than Base-

lines, though it’s important to note that Stable Baselines would not exist were it not for Baselines.

2.2 PowerWorld/Python Connector - Easy SimAuto (ESA)

A major portion of the initial work done to enable the deep reinforcement learning research

presented in this thesis was the development of Easy SimAuto (ESA) [30]. ESA provides a an

easy to use Python class for interfacing with PowerWorld.

PowerWorld contains an API to allow external tools to configure and run PowerWorld simu-

lations. This API is known as the Simulator Automation Server (SimAuto). SimAuto provides a

wide range of functions for performing tasks in PowerWorld, such as fetching and changing power

system component properties (e.g. generator voltage set points or shunt states), solving the power

flow, and more. SimAuto facilitates the connection between PowerWorld and external software via

Microsoft Component Object Model (COM) objects.

The use of SimAuto with Python can become quite cumbersome very quickly, as a lot of

“boiler plate” code is required to perform simple tasks. Additionally, the required data types that

are passed into PowerWorld are not commonly used in Python programming, and data returned

by PowerWorld come back as strings or lists of strings. Thus, in order to automate the use of

PowerWorld with Python, the programmer must write a significant amount of code just to get data

converted, which is an error-prone process. Clearly, there’s a need for re-usable code for managing

interactions between PowerWorld and Python.

As a preliminary step in conducting the reinforcement learning research proposed here, the

Easy SimAuto (ESA) Python package has been developed with assistance from my fellow grad-
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uate students (Zeyu Mao and Yijing Liu) here at Texas A&M University [30]. ESA dramatically

simplifies controlling PowerWorld from Python programs, and has the following desirable proper-

ties:

• Open-source and installable via Python’s package manager, Pip

• Uses common scientific computing data types such as Numpy arrays and Pandas DataFrames

• Well tested - all methods have unit tests to ensure they are functioning correctly

• Easy to use - boiler plate code and type conversions occur automatically behind the scenes

• Fully documented API and code including type hinting to ease development

• Object oriented and easily extendable

• And much more...

The creation of ESA lays important ground work for the research proposed here, and is the first

step in creating a Gym environment for reinforcement learning with PowerWorld. In addition to its

usefulness for the specific research discussed in this document, ESA is a very practical tool which

we hope will be adopted by the wider PowerWorld community which has interest in automating

PowerWorld tasks.

The following two code samples illustrate the benefit of using ESA. The first sample is directly

from PowerWorld [29], and the second sample accomplishes the same tasks by using ESA. More

examples illustrating the usefulness of ESA can be found at [30].

1 """PowerWorld example from powerworld.com, with slight modifications."""

2 # The following example uses Python 3.x syntax

3 # Python with COM requires the pyWin32 extensions

4 import win32com.client

5 from win32com.client import VARIANT

6 # This will import VT_VARIANT

7 import pythoncom
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8

9 # This will establish the connection

10 object = win32com.client.Dispatch("pwrworld.SimulatorAuto")

11

12 # The following function will determine if any errors are returned and

13 # print an appropriate message.

14 def CheckResultForError(SimAutoOutput, Message):

15 if SimAutoOutput[0] != ’’:

16 print(’Error: ’ + SimAutoOutput[0])

17 else:

18 print(Message)

19

20 CheckResultForError(object.OpenCase(r"C:\TestCode\B7FLAT.pwb"), ’Case open’)

21

22 # VARIANT is needed if passing in array of arrays. BOTH the field list

23 # and the value list must use this syntax. If not passing in arrays of

24 # arrays, the standard list format can be used. Passing out arrays of

25 # arrays from SimAuto in the output parameter seems to work OK with

26 # Python.

27 FieldArray = VARIANT(pythoncom.VT_VARIANT | pythoncom.VT_ARRAY,

28 ["BusNum", "GenID", "GenMW", "GenAGCAble"])

29 AllValueArray = [None] * 2

30 AllValueArray[0] = VARIANT(pythoncom.VT_VARIANT | pythoncom.VT_ARRAY,

31 [1, "1", 300, "NO"])

32 AllValueArray[1] = VARIANT(pythoncom.VT_VARIANT | pythoncom.VT_ARRAY,

33 [2, "1", 1400, "NO"])

34 CheckResultForError(

35 object.ChangeParametersMultipleElement("GEN", FieldArray, AllValueArray)

,

36 ’Do change’)

37

38 CheckResultForError(object.SaveCase(r"C:\TestCode\B7FLAT_changed.pwb",

39 "PWB", True), ’Save case’)

10



40

41 # This will close the connection

42 del object

43 object = None

The following example uses ESA to siginificantly simplify the script.

1 """Example of using ESA."""

2 # Import SAW class.

3 from esa import SAW

4

5 # Instantiate SAW object.

6 saw = SAW(FileName=r"C:\TestCode\B7FLAT.pwb")

7

8 # Change generator parameters.

9 saw.ChangeParametersMultipleElement(

10 ObjectType=’gen’, ParamList=[’BusNum’, ’GenID’, ’GenMW’, ’GenAGCAble’],

11 ValueList=[[1, "1", 300, "NO"], [2, "1", 1400, "NO"]])

12

13 # Save case.

14 saw.SaveCase(r"C:\TestCode\B7FLAT_changed.pwb")

15

16 # Clean up.

17 saw.exit()

2.3 PowerWorld+ESA Gym Environment

2.3.1 Overview

As discussed in section 2.1.3, Gym is an open-source Python package for the creation of stan-

dardized reinforcement learning environments [24]. In order to leverage the recent breakthrough

algorithms provided in Stable Baselines [41] and to enable future research, Gym environments

for voltage control with PowerWorld are necessary. As a part of the research presented in this

thesis, several Gym environments have been created and can be found in a repository known as
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Gym-PowerWorld [31].

The creation of a Gym environment requires the following class methods to be programmed:

• __init__: Initialize environment based on user inputs, initialize action space, initialize ob-

servation space

• reset: Reset environment for next learning episode, return an initial observation

• step: Accept action as input, perform action, return new observation

• close: Shut down environment

In the context of using PowerWorld for simulation of a power system, each of the aforemen-

tioned methods above perform the following tasks:

• __init__: Initialize an ESA class instance given a particular PowerWorld case; randomly ini-

tialize a set of training episodes with different generator set points (e.g. active power output,

voltage set point), loading conditions, line states (open/closed), etc.; initialize observation

space based on case data (e.g. number of buses, generators, lines, etc.); and initialize the

action space based on the available voltage control devices in the given case.

• reset: Change generator set points and loading conditions for a new episode, solve the power

flow for the given conditions, provide an initial observation containing power system data as

configured for the particular environment instance (e.g. bus voltage magnitudes, generator

states, line states, etc.).

• step: Change voltage/var control settings according to given action from reinforcement

learning agent, solve the power flow, return an observation (same as described for “reset”

above), and a reward/penalty based on how the given action impacted the power system.

• close: Properly close ESA and SimAuto instances.

The following subsections will elaborate on some of the more important tasks listed above.
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2.3.2 Environment Initialization

In order for the Gym-PowerWorld environment to be useful for a wide range of power system

models, it must be capable of properly handling a wide range of possible PowerWorld case con-

figurations. For example, during episode initialization a generator’s active power output may be

randomly drawn between its minimum and maximum active power output according to the Power-

World case. However, this is problematic if, for instance, the minimum power output is a negative

value (as is the case in the IEEE 14 bus case from [33]). Hence, Gym-PowerWorld must perform

several checks during initialization including generator limits, active load models, etc.

In addition to performing case checks and fixes, environment initialization must set several key

parameters based on both user input and case data. Examples include minimum/maximum total

system loading, minimum load power factor allowed, how generator voltage set points are dis-

cretized, etc. The initialization methods for Gym-PowerWorld classes take many different inputs

which allow for environment customization. For instance, with a simple Boolean flag passed to

the initializer, the environment can be changed to report voltage observations in per unit or in a

transformed space.

2.3.3 Episode Initialization

The design of how episodes (scenarios) are created can have a major impact both on a rein-

forcement learning agent’s ability to learn and on the ultimate usefulness of a trained agent. For

instance, training under a narrow range of load and generator conditions may enable an agent to

learn the best control actions quickly, but the agent’s decision making may not generalize well to

other conditions not encountered in training. The following sections describe the methodology

used for determining load and generation for each episode.

2.3.3.1 System Loading

To compute system loading, first active power is determined for all individual loads for each

scenario, and then reactive power is computed based on an allowable range of power factors (e.g.

[0.8, 1.0]).
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Active Power (P) - Given the total number of desired scenarios to generate (M ) as well as

user-provided minimum (Pmin) and maximum (Pmax) total system load bounds, a random number

generator (RNG) will be used to randomly draw a vector VM×1 with all values on the interval

[Pmin, Pmax). This vector represents total system loading for each episode.

After total system loading has been determined, the load must be apportioned among the in-

dividual loads. To do so, first the user provides a probability (pon) that any individual load is

on/active. Then, the RNG is used to draw from the uniform distribution on the interval [0, 1) and

fill a matrix, AM×N , where N is the number of individual loads present in the system. Each value

in A is compared with pon, and any values greater than pon indicate that particular load (indexed

by column) will be off for that particular scenario (indexed by row).

At this point, total loading for each scenario is known, as well as which loads are active. To

compute individual load levels the RNG is used to fill another M × N matrix, B, with values

on the interval [0, 1) from the uniform distribution. Elements in B are set to zero if the load is

off (see previous paragraph). For each row (index m), a scaling factor zm is computed such that

zm = vm∑N
n=1 bm,n

where bm,n is an entry in B and vm is the mth entry in the total scenario loading

vector, V. Finally, each row in B is element-wise multiplied with the corresponding zm to create

the final active power loading levels for each load within each scenario.

Reactive Power (Q) - With active power levels for each scenario and load in hand, reactive

power can be computed. The user provides both a minimum load power factor, pfmin, and the

probability that a load’s power factor is leading, plead. First, the RNG is used to draw power factors

for each load and scenario from the uniform distribution on the interval [pfmin, 1], allowing reactive

power levels to be computed by Q = P · tan(arccos(pf)). Finally, the RNG is used to draw from

the uniform distribution on the interval [0, 1) for each load and scenario. These random values are

compared with plead, and the corresponding reactive power value is multiplied by−1 if the random

value is less than plead.

Computational Considerations - The technique for drawing system loading described above

is designed to leverage the vectorized computing capabilities of the Python package Numpy [36],
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and is quite fast. However, the approach is memory intensive. Load conditions for each scenario

could instead be computed on the fly during learning instead of up front during initialization.

However, during the course of this research memory constraints have not been an issue, so the

speedier memory-intensive method is leveraged.

2.3.3.2 Generators - Active Power

After computing system loading for each scenario, the generator commitment can be deter-

mined and active power levels can be dispatched to meet demand. Since generators have active

power output minimum and maximum allowable values, the procedure for determining generation

levels differs somewhat from the procedure for determining individual loads. The following de-

scription is functionally equivalent to what is done in the Gym-PowerWorld code, but is explained

in a simplified manner. The actual code is completely vectorized for efficiency.

For each scenario, a random ordering of all generators in the case is drawn. Then, the gen-

erators are looped over in the given random order, and an active power output is drawn from the

uniform distribution between the particular generator’s minimum and maximum bounds. This

process continues until the total active power output of the generators meets or exceeds the total

loading for the given scenario, plus assumed losses of 3%. In this way, different generators may be

active for each scenario, effectively building in generator contingencies and creating unique system

conditions for each scenario. Assuming some losses are present ensures the slack generator must

not cover all active power losses, which can be a significant amount of power depending on the

size of the system and resistance of the lines.

Similarly to the technique described in Section 2.3.3.1, this technique is fast, but memory

intensive. If memory becomes an issue, modifications could be made to compute each episode’s

generator commitment and dispatch as needed, rather than computing it all up front.

2.3.3.3 Generators - Voltage Set Point

During environment initialization, random voltage set points are drawn for each episode and

each generator. These voltage set points are drawn randomly and uniformly with replacement from
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the set {0.95, 0.975, 1.00, 1.025, 1.05} (per unit). Note that this voltage set point set is configurable,

but the aforementioned set is used throughout this work.

2.3.3.4 Lines and Shunts

For cases which contain shunts, initial shunt states (open/closed) are simply randomly drawn

from the uniform distribution for all shunts and all scenarios. For environments which contain line

contingencies, a single line is randomly selected to be opened for each episode/scenario.

2.3.4 Observation Design

Engineering the observations given to the reinforcement learning agent is critical to successful

learning, and requires significant experimentation. It’s important to ensure the appropriate amount

of information is given to the agent - too little information and the agent may fail to learn due to a

lack of observability, while too much information can significantly scale up the size of the neural

network required for deep reinforcement learning and cause a failure to learn due to the increased

difficulty in finding relationships between variables.

There are many different options available for configuring the observation space in Gym-

PowerWorld. The following observation combinations are used throughout this thesis:

• Bus voltage magnitudes only

• Bus voltage magnitudes and generator states (on/off)

• Bus voltage magnitudes and branch states (open/closed)

• Bus voltage magnitudes, generator states, and branch states

• Bus voltage magnitudes, generator states, branch states, and shunt states (open/closed)

All of the observation combinations above can also be used with transformed bus voltage mag-

nitudes. In these cases, voltage are transformed via “min-max” scaling. The Gym-PowerWorld

environments consider a power flow to be “failed” if any single bus voltage dips below 0.7 per unit

or if any single bus voltage exceeds 1.2 per unit, even if PowerWorld is able to come up with a
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power flow solution. In this way, the absolute lower and upper voltage bounds are known for all

scenarios/episodes. Also, these voltage limits ensure that training and testing is only carried out

with realistic scenarios: in steady state it is extremely rare to see voltages below 0.7 per unit or

above 1.2 per unit. After the raw voltage values have been min-max scaled, the new minimum

voltage observation value is 0.0 (no longer in per unit), and the maximum voltage observation

value is 1.0 (also no longer in per unit). Note that all experiments presented in this thesis limit

voltages to the range [0.7, 1.2] per unit.

2.3.5 Reward Design

Careful design of the reward given to the reinforcement learning agent can make a large impact

on the quality of the final trained agent. The goal is to have the agent learn to bring all bus voltages

within the allowed range (if possible) while maintaining available var reserves and minimizing

the total number of control actions taken. Therefore, the agent should receive a negative reward

(penalty) for each control action taken. Actions which improve out of bounds voltages should be

rewarded, and future work may consider rewarding actions which increase var reserves.

In some of the recent RL for power systems literature, agents were primarily rewarded based

on the post-action state of the system, rather than the change that the given action induced in the

system [23, 27]. Gym-PowerWorld comes with two reward schemes based on induced voltage

changes, rather than the simple post-action system state. For example, if the objective is to bring

all bus voltages within the range [0.95, 1.05] per unit, an action that moves a bus voltage from 0.93

to 0.945 per unit would be rewarded, while an action that moves a bus voltage from 0.96 to 0.94

per unit would be penalized. This reward scheme more closely matches the stated goal of bringing

bus voltages in bounds - the agent shouldn’t be rewarded if an in-bound bus voltage changes but

remains in bounds.

The two reward schemes designed for this research are described in detail in Section 4.4.
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2.4 Applying Reinforcement Learning to the Voltage Control Problem

In Section 2.3, the learning environment which brings together Python, Gym, and PowerWorld

was discussed. Within that section, several important research areas were discussed, such as

episode initialization (loads, generation, etc.), observation design, and reward design. This sec-

tion will instead focus on the portion of the research involving DRL algorithm selection, test case

selection, and results evaluation.

2.4.1 Algorithm and Neural Network Selection

2.4.1.1 Algorithm and Hyper Parameters

The work presented in this thesis uses an improved version of the deep Q algorithm with

so-called “deep Q networks” (DQN) originally presented in [18]. Several improvements to the

algorithm have been published over the years including “dueling DQN” [42], “double-Q learn-

ing” [43], and prioritized experience replay [44]. The work here uses all the aforementioned DQN

algorithm improvements. As mentioned previously, the algorithm implementation is provided by

Stable Baselines [41]. The DQN algorithm requires a discrete action space, so continuous control

elements such as generator voltage set points must be discretized as mentioned in Section 2.3.3.3.

The DQN algorithm with all improvements has many different hyper parameters which can be

tuned. In this work, the majority of hyper parameters were left at their default. The default values

for hyper parameters can be found at [41], and the actual hyper parameters used in this research

can be found at [45] and are depicted in Table 2.1. The parameter descriptions in Table 2.1 are

from [41].
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Table 2.1: DQN algorithm hyper parameters

Parameter Description Value
γ Discount factor 0.99
Learning rate Learning rate for Adam optimizer 0.0005
Buffer size Size of the replay buffer 50,000
Exploration fraction Fraction of entire training period over which exploration rate is annealed 1.0
Exploration final ε Final value of random action probability 0.01
Exploration initial ε Initial value of random action probability 1.0
Train frequency Model is updated every “train frequency” steps 1.0
Batch size Size of a batch sampled from replay buffer for training 32
Double-Q Whether to enable Double-Q learning True
Learning starts How many steps of the model to collect transitions for before learning starts 1,000
Target network update frequency Update the target network every “target network update frequency” steps 500
Prioritized replay If True, prioritized replay buffer will be used True
Prioritized replay α Determines how much prioritization is used in the replay buffer 0.6
Prioritized replay β0 Initial value of β for replay buffer 0.4
Prioritized replay β iterations Number of iterations over which β0 is annealed to 1.0. If None, equals total time steps None
Prioritized replay ε ε to add to the TD errors when updating priorities 0.000001
Parameter noise Whether or not to apply noise to the parameters of the policy False
Seed Random seed 0
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The only hyper parameters which were changed from their default are the “exploration frac-

tion” and the “exploration final ε.” In the DQN algorithm, over the course of training the “ex-

ploration ε” changes, typically so that the agent explores (takes a random action) more early in

training, and exploits (takes an action according to the learned Q-function representation) more

later in training. The exploration fraction refers to the percentage of training in which the explo-

ration ε changes. In this work, the exploration fraction is 1.0, meaning the exploration ε is annealed

over the entire duration of training. The exploration final ε used in this work is 0.01, meaning that

by the end of training the agent takes a random (exploratory) action 1% of the time.

2.4.1.2 Neural Networks

The neural networks used in this work are fully connected multi-layer perceptrons (MLP).

The rectifier linear unit (ReLU) activation function is used for all neurons in the networks. All

networks in this work have an input layer, two hidden layers, and an output layer. The input layer

is the same dimension as the observation space, and the output layer is the same dimension as the

action space. Throughout this work, the networks will be referenced by the number of neurons

in their hidden layers. For simplicity, the number of neurons provided here will be the number

which is passed to the DQN algorithm. However, it’s important to note that the use of the “dueling

DQN” improvement actually doubles the number of neurons in the hidden layers [41, 42]. So, if a

network is denoted here as having hidden layers with [64, 64] neurons, in reality, the hidden layers

have [128, 128] neurons.

Future work may use a convolutional neural network (CNN) with observations mapped into

grid-like structures representing the geographically located nature of the electric grid.

2.4.2 Power System Cases

Despite recent advances in deep reinforcement learning’s ability to handle large state and ac-

tion spaces, recent research in the literature still presents results for small test systems which are

significantly smaller than the real power system [23,27]. It is still valuable to use small test systems

as a stepping stone, but ultimately the scalability of these algorithms for power system control is
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of major interest.

Chapters 3 and 4 use the IEEE 14 bus system. A oneline diagram depicting the system is shown

in Figure 2.1.

Figure 2.1: IEEE 14 bus test system

Chapter 5 tests the scalability of the DQN algorithm for power system control, and uses test

cases with 200 and 500 buses from [32, 33].
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3. REPRODUCING THE “GRIDMIND” EXPERIMENT

This chapter discusses the reproduction of the experiment and results given in [27]. The authors

of [27] refer to their reinforcement learning environment and agent collectively as “GridMind.”

3.1 Overview of GridMind

In [27], the authors demonstrate the use of deep reinforcement learning to perform voltage

control in the electric transmission grid by controlling generator voltage set points. This paper

won a best paper award at the IEEE Power and Energy Society General Meeting in 2019. In order

to obtain baseline results and a baseline environment, the GridMind environment was recreated

as closely as possible given the information in the paper and with some additional information

obtained via email correspondence with one of the authors. The following subsections will provide

an overview of the GridMind environment, and the results the authors presented.

3.1.1 Environment and Algorithm

The authors of [27] implemented their own custom reinforcement learning environment using

GridPACK [28] as a power flow solver. The authors are intentionally vague about the details of the

reinforcement learning algorithm used as well as neural network design, as they desire to maintain

a competitive advantage in this research area. However, they do mention that the “DQN” algorithm

is used. Training was performed on a relatively powerful Linux server with an Intel Xeon processor

and 528 GB of RAM.

All testing and results presented in [27] use the IEEE 14 bus test system (which can be found

at [33]).

3.1.2 States, Rewards, and Actions

3.1.2.1 States

In [27], the authors mention that the states they use consist of bus voltage magnitudes and

angles as well as line power flows (active and reactive power). However, after communicating
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with one of the authors (Jiajun Duan), it was determined that for the results presented in the paper

only bus voltage magnitudes were used as input states.

3.1.2.2 Rewards

The authors of [27] used a very simple reward structure. After the agent takes an action, it is

given a reward of +100 if all bus voltage magnitudes are within the “normal” range ([0.95, 1.05]

per unit). If any bus voltage magnitudes are in the so called “diverged” range (< 0.8 or > 1.25 per

unit), a reward (penalty) of -100 is given. The third option is if no bus voltage magnitudes are in

the “diverged” zone, but not all are in the “normal” range, a reward (penalty) of -50 is given.

At the end of each episode, a final end-of-episode reward is given. This reward is equal to the

total cumulative episode rewards divided by the number of actions taken. The authors postulate

this encourages the agent to take fewer actions.

3.1.2.3 Actions

In [27], a single action is considered to be the update of all generator voltage set points. This

action may not change all generator set points (i.e., the command may contain preexisting set

points). All generator voltage set points were discretized into the set 0.95, 0.975, 1.0, 1.025, 1.5.

In general, this technique leads to an action space of dimension nng
v , where nv is the number of

discrete voltage set points and ng is the number of available generators. Since the IEEE 14 bus test

case has five generators and five voltage set points are considered, the resulting action space is of

dimension 55 = 3125.

3.1.3 Training

3.1.3.1 Environment Initialization

For each training episode described in [27], all loads are randomly scaled between 80% and

120% of their nominal value (both active and reactive power levels). A random scaling factor is

used for each load individually. The generators at buses 1 and 2 are considered to be available for

active power dispatch, and participation-factor-based automatic generation control is used to meet

demand for each episode. the remaining three generators (at buses 3, 6, and 8) are not considered
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available for active power dispatch, and only provide voltage support.

In a second variation of environment initialization, the authors of [27] additionally introduce a

small set of contingencies. Specifically, in each episode a random line is taken out of service. The

lines considered are (from bus - to bus) 1-5, 2-3, 4-5, and 7-9.

3.1.3.2 Episode Termination

An episode is considered to be complete if one of the following three conditions are met:

• All bus voltages are within the “normal” range ([0.95, 1.05] per unit).

• The power flow simulation failed to converge.

• The agent has exceeded its per-episode action cap.

In [27], the number of per episode allowed actions is not specified directly. Upon contacting

an author, they specified “10-20.” To reproduce the work in [27], an action cap of 15 is used.

3.1.3.3 Training Duration

All training discussed in [27] involves training for 10,000 episodes.

3.1.4 Results

The primary results presented in [27] are episode rewards as training progresses. The authors

show that at first, the agent does not earn very high rewards, but by the end of training, the agent

can consistently earn high rewards and take very few actions. Unfortunately the authors do not

delve into specifics such as what actions the agent takes or what initial voltage conditions are like

in the various episodes.

3.2 Reproduction of GridMind

In order to establish a baseline for the work presented in this thesis, the GridMind experiments

presented in [27] have been reproduced as accurately as possible given the details the authors

of [27] were willing to divulge. The experiment was recreated using PowerWorld Simulator as the

power flow solver [29], a new Gym environment [24, 31], and a DQN algorithm provided by [41].
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3.2.1 DQN Algorithm

The DQN algorithm is as discussed in Section 2.4 (DQN with all improvements), and the hyper

parameters used are reported in Table 2.1. All experiments are carried out with a neural network

architecture containing two hidden layers, each with 64 neurons.

3.2.1.1 Training Procedures

Since the required training duration will vary drastically based on neural network architec-

ture, specific DQN algorithm, hyper parameters, and more, training was not simply performed for

10,000 episodes as presented in [27]. Instead, training is allowed to proceed for 500,000 simulation

steps, with each episode capped at 15 steps (actions) per episode. As discussed in Section 3.1.3.2,

an episode will also terminate if all bus voltages are in the “normal” range or the power flow fails

to converge. Training was halted early if the agent successfully fixed voltage issues with a single

action in 99 of the most recent 100 episodes. Recall that in the case of GridMind, all generator

voltages are set simultaneously in a single action.

3.2.1.2 Testing Procedures

After training is complete, the agent is tested on 5,000 episodes which were not present in

training. No learning is performed during this 5,000 episode testing session.

3.2.2 GridMind Reproduction Results and Discussion

This subsection will detail the results of reproducing the environment and results presented

in [27] without any alterations of the setup or parameters.

3.2.2.1 Episode Initialization Discussion

Through the course of reproducing the work in [27], it was found that in the absence of contin-

gencies, the loading conditions described in [27] never lead to low voltage conditions. In fact, if all

load power levels are set to the maximum (120% of nominal), the lowest voltage in the system is

approximately 1.01 per unit. Therefore, in the course of training the reinforcement learning agent

will never actually see any low voltage conditions. Conversely, the IEEE 14 bus base case has
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three generators set above the maximum acceptable voltage of 1.05 per unit. Thus, every episode

the agent sees begins with bus over-voltages. These issues will be addressed in Section 3.3.

3.2.2.2 Results - No Contingencies

Figure 3.1 illustrates training and testing results for the simple case where there are no contin-

gencies. Training rewards and number of training actions are presented in Figures 3.1a and 3.1b,

respectively. Note that the results in Figures 3.1a and 3.1b are average per 100 episodes with a slid-

ing window. The normalized frequencies of testing rewards and episode action counts are given in

Figures 3.1c and 3.1d, respectively. The bar values should be read as a percentage.

Keeping in mind the caveats discussed in Section 3.2.2.1, it can be seen in Figure 3.1a that as

training progresses, the agent becomes increasingly adept at fixing voltage issues. Similarly, Figure

3.1b shows that the agent requires less actions per episode as training progresses. Figure 3.1c illus-

trates that during testing the agent earned the maximum possible reward of 200 (which can only be

achieved by fixing voltage issues with one action) in 100% of the 5,000 testing episodes. Similarly,

Figure 3.1d shows the agent fixed voltage issues with a single action in all testing episodes.

Upon investigating the actions which the agent took in testing, it turns out that only two of

the available 3,125 actions were utilized. Similarly, in a repeated run of this exact experiment

but with a different random number generator seed, the agent took the exact same single action in

100% of the testing episodes. While it’s clear that the agent is correctly learning, the environment

initialization is too simple to show that the GridMind agent can generalize to more complex power

systems with more diverse system loading and generator conditions (e.g. starting voltage set point,

active power dispatch, etc.).

3.2.2.3 Results - With Single Line Contingencies

As discussed in Section 3.1.3.1, the authors of [27] considered a variant of environment initial-

ization where each episode contains a random single line contingency.

Figure 3.2 shows training and testing results when a neural network with two hidden layers

each with 64 neurons is leveraged. Figure 3.2 uses the same conventions as Figure 3.1, which was
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(a) Training: average rewards (b) Training: number of actions taken
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Figure 3.1: Training and testing rewards and actions: GridMind without contingencies, neural
network hidden layers: [64, 64].

discussed in Section 3.2.2.2. It can be seen in Figure 3.2 that in contrast to the training rewards

presented in Figure 3.1a, the presence of single line contingencies results in a noisier and slower

“learning curve.” Additionally, it can be seen in Figure 3.2c that the agent only achieved the

maximum reward in approximately 74.2% of the testing episodes. As illustrated in Figure 3.2d,

the agent hit the action cap of 15 actions per episode in 16.2% of testing episodes.
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(a) Training: average rewards (b) Training: number of actions taken
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Figure 3.2: Training and testing rewards and actions: GridMind with contingencies, neural network
hidden layers: [64, 64].
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Upon investigating the specific sequences of actions taken during testing, it was found that the

agent can exhibit cyclic or repetitive behavior if it does not succeed in its first action. Table 3.1

illustrates cyclic behavior in 3.1a and repetitive behavior in 3.1b. Note that the reward of -100

at the end of each table is due to the agent hitting the action cap of 15, and being additionally

assessed the end of episode reward (penalty). This cyclic and repetitive behavior is clearly not

desirable, and has inspired two modifications that will be discussed in Sections 3.4 and 4.3. The

first modification restricts training and testing actions to be unique on a per-episode basis, and the

second modification gives the agent a “no-op” action which does not instantiate any change in the

environment.

Table 3.1: Cyclic and repetitive action-taking behavior in GridMind testing with contingencies

(a) Cyclic behavior

Action Count Action Taken Reward
1 2467 -50
2 2900 -50
3 3099 -50
4 2467 -50
5 2900 -50
6 3099 -50
7 2467 -50
8 2900 -50
9 3099 -50
10 2467 -50
11 2900 -50
12 3099 -50
13 2467 -50
14 2900 -50
15 3099 -100

(b) Repetitive behavior

Action Count Action Taken Reward
1 3023 -50
2 1673 -50
3 1673 -50
4 1673 -50
5 1673 -50
6 1673 -50
7 1673 -50
8 1673 -50
9 1673 -50
10 1673 -50
11 1673 -50
12 1673 -50
13 1673 -50
14 1673 -50
15 1673 -100

3.3 GridMind with Modified Episode Initialization

Sections 3.2.2.3 and 3.2.2.2 show that the GridMind agent performs relatively well both with

and without single line contingencies, obtaining the maximum per-episode reward in 74.2% and
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100% of testing episodes, respectively. However, as mentioned in Section 3.2.2.1, in the absence

of contingencies there are never any undervoltages in the system, simplifying what the agent must

learn. Additionally, as discussed in Section 3.1.3.1, the GridMind environment does not cover a

large portion of the possible grid state space since. In addition to the narrow loading band (80%-

120%), the generators use simple participation factor control, always start with the same voltage

set points, and the same two generators (at buses 1 and 2) are used to meet active power demand.

In order to test whether the GridMind agent/architecture is generalizable to a more diverse set of

grid conditions, the episode initialization procedure discussed in Section 2.3.3 is leveraged. Table

3.2 illustrates the parameters used for environment and episode initialization. Note that single line

contingencies are applied for each episode as described in Sections 3.1.3.1 and 3.2.2.3.

Table 3.2: Episode/environment initialization parameters

Variable Variable Value
Maximum possible system loading (% of nominal) 140%
Minimum possible system loading (% of nominal) 60%
Percent chance an individual load is off 10%
Percent chance loads have leading power factor 10%
Minimum possible load power factor 0.8
Possible generator voltage set points 0.95, 0.975, 1.0, 1.025, 1.05
Lines which may be opened (one open per episode) 1-5, 2-3, 4-5, 7-9
Generators available for active power dispatch (by bus number) 1, 2, 3, 6, and 8

Note that in addition to the lower minimum and higher maximum system loading, the process

by which load active and reactive power levels are determined leads to much more diverse loading

conditions than the GridMind process. Additionally, the generator commitment and dispatch pro-

cedure leads to different generators being online for different scenarios, and dispatched in different

proportions.

Training and testing results for GridMind in this more challenging environment are shown in

Figure 3.3. It’s clear from Figure 3.3a that the agent failed to learn a useful policy, as there is
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no clear reward increase over training episodes. Additionally, Figure 3.3b shows an upward trend

in the average action required per episode, further strengthening the argument that the agent had

failed to learn. It can be seen in Figure 3.3c that the agent earned the maximum per-episode reward

(200) in 21.4% of the testing episodes, and earned the minimum possible reward (-1600) in 8.42%

of the episodes. Furthermore, the agent was successful in bringing all voltages in-band for 19.2%

of testing episodes which started with out-of-band voltages.

(a) Training: average rewards (b) Training: number of actions taken
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Figure 3.3: Training and testing rewards and actions: GridMind with modified episode initializa-
tion, neural network hidden layers: [64, 64].
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3.4 GridMind with Modified Episode Initialization and Unique Actions per Episode

As shown in Section 3.3, the GridMind agent performs poorly in the presence of a more chal-

lenging environment with widely varying grid conditions. Section 3.2.2.3 and Table 3.1 show that

when using the “out-of-the-box” DQN algorithm [18, 20] with improvements [42–44] provided

by [41], the agent tends to take the same action more than once per episode. While this is certainly

desirable behavior in the context of Atari video games, it is not desirable for power system voltage

control. To address this issue, the algorithm provided by [41] was modified to ensure that during

both testing and training, specific actions are only allowed to be taken once per episode. If an

action has already been taken in the episode, the action with the next highest Q-value estimate is

selected instead. This is a novel contribution to the application of deep reinforcement learning to

the field of power system voltage control. The implementation of the DQN algorithm modification

can be found in [45].

The results for using the GridMind architecture with the modified DQN algorithm are shown in

Figure 3.4. Note that Figure 3.4c is now a histogram, as opposed to previous figures which showed

the raw reward distribution. The modified algorithm leads to significantly more unique rewards

than the stock algorithm, since the agent is forced to take a different action if the top action has

already been taken in the given training episode.

It can be seen in Figure 3.4a and 3.4b that the agent struggled to learn a useful policy, similarly

to the GridMind agent with the unmodified DQN algorithm. While not shown explicitly in Figure

3.4c, the agent earned the maximum reward in 29.7% of testing episodes. Figure 3.4c does show

the agent earned a reward between 36 and 200 in 39.28% of testing episodes. However, Figure

3.4d illustrates that the agent took 15 actions (the maximum allowed) in 30.2% of testing episodes,

indicating the agent was not particularly successful.

While the modified DQN algorithm does effectively prevent repetitive and cyclic behavior, it

does not prevent the agent from getting stuck learning a single best voltage setting (recall GridMind

sets all generator voltage set points simultaneously in a single action). It was found in testing that

the agent took the exact same first action in all 5,000 testing episodes. However, it’s important to
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(a) Training: average rewards (b) Training: number of actions taken
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Figure 3.4: Training and testing rewards and actions: GridMind with modified episode initializa-
tion and unique actions per episode, neural network hidden layers: [64, 64].

note this is more likely due a combination of the the relatively simple observation space and reward

definition, action space in which all generators are set simultaneously, and the noted failure to learn

illustrated in Figure 3.4. As mentioned in Section 3.2.2.2, the unmodified algorithm sometimes

learns a single action as well.

3.4.1 Comparison of Modified and Unmodified DQN Algorithm

Despite the lack of a clear “learning curve” in training (see Figure 3.4a), the modified DQN

algorithm did lead to more successful voltage control when compared to the unmodified DQN
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algorithm. As learning and success can vary across different training and testing runs due to the

stochastic nature of both neural network initialization and episode creation (grid case initializa-

tion), Table 3.3 presents summary testing metrics for three runs with different random seeds. A

testing episode is considered “successful” if the agent brings all voltages within the acceptable

range ([0.95, 1.05] per unit) before the episode is terminated for other reasons (hit action cap,

power flow diverged). While the agent that learned with the unmodified algorithm had a compos-

ite average success rate across the three runs of 20.4%, the modified algorithm’s average success

rate was 45.8%. Unsurprisingly, the modified algorithm takes more unique actions in testing than

the unmodified algorithm, which tends to take repetitive or cyclic actions as discussed in Section

3.2.2.3. While this algorithm modification does not cause GridMind to succeed in the majority

of episodes in this more challenging environment, it clearly helps the agent be more successful in

fixing voltage issues.

Table 3.3: GridMind testing results with and without DQN algorithm modification

(a) Unmodified DQN Algorithm

Random
Seed

Success
Percentage

Mean
Reward

Number of Unique
Test Actions

0 23.9 -620.2 7
1 16.2 -628.98 20
2 21.0 -630.05 1

(b) Modified DQN Algorithm

Random
Seed

Success
Percentage

Mean
Reward

Number of Unique
Test Actions

0 48.5 -304.10 39
1 46.4 -332.70 85
2 42.5 -478.18 18

3.5 GridMind Conclusions and Discussion

This chapter provided an overview of the “GridMind” DQN environment, provided a good-

faith reproduction of GridMind, tested GridMind’s generalizability in a more challenging environ-
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ment with more diverse grid conditions, and tested a novel DQN algorithm modification with the

GridMind environment.

In Section 3.2.2, the experiments from [27] were reproduced. While the results were not iden-

tical to those presented in [27], the trends were similar. Without single line contingencies, the

agent was able to learn a policy which successfully brought voltages in bounds in 100% of testing

episodes. When contingencies were included, the agent’s success rate dropped to 83.8%. While

these success rates are impressive, the environment consisted of a very narrow range of loading

conditions and very simple generator dispatch, as discussed in Section 3.2.2.1.

In order to test the generalizability of the GridMind architecture, it was tested with more chal-

lenging grid conditions in Section 3.3. There it was shown that the GridMind agent effectively

fails to learn a useful policy and was successful at fixing voltage issues in a small percentage of

cases. It’s worth noting that in this more challenging environment, there is no guarantee that it is

even possible to bring all bus voltages in bounds.

It was shown in Section 3.4 that modifying the DQN algorithm to allow each unique action

to be taken only once per episode in both training and testing leads to an improvement in agent

success. However, the algorithm modification alone does not bring the agent’s success anywhere

near to the rate seen in the simple environment with narrow loading band and simple generation

dispatch.

In light of the issues mentioned in this section, several potential architectural improvements are

proposed:

1. Reward design. The GridMind reward system is very simple, and does not reward in-

cremental improvements. An improved reward design could account for per-bus voltage

movement after an action is taken.

2. Action space. The GridMind action space is not scalable to large systems as nng
v actions

are available, where nv is the number of discrete voltage set points and ng is the number of

generators. Rather than using a combinatorial action space, a better action space might have

a single action per control setting. In the case of generator voltage control alone, this would
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lead to an action space with dimension nv × ng, which is significantly more scalable.

3. Observations. The GridMind architecture relies on bus voltages alone. It was shown that the

agent’s success decreased in the presence of single line contingencies, as well as in the chal-

lenging environment with different generator conditions. Adding additional observations

such as line state and/or generator state (on/off) may help in learning.

Experimentation with these improvements will be presented in the following chapter.
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4. TESTING ARCHITECTURAL IMPROVEMENTS ON THE IEEE 14 BUS SYSTEM

The focus of this chapter is on experimenting with improvements to the deep reinforcement

learning environment to facilitate better learning and scalability. Chapter 3 presented the so-called

“GridMind” environment, reproducing as faithfully as possible the work in [27]. This chapter

presents environment modifications designed to address GridMind’s shortcomings, which are sum-

marized in Section 3.5. Broadly speaking, these improvements are related to reward design, action

space design, and observation space design.

4.1 Overview

All experiments in this chapter will use identical environment initialization parameters (e.g.

minimum load factor, random seed, etc.). These parameters were presented and discussed in Sec-

tion 3.3 and are summarized in Table 3.2. In this chapter, all experiments use the IEEE 14 bus

system obtained from [33]. In general, all experiments will be performed both with and without

the algorithm modification which forces each action to be unique within each episode, as discussed

in Section 3.4. Additionally, a random agent and a graph-based agent were developed in order to

provide a basis for comparison with the deep reinforcement learning agents. The remaining sec-

tions in this chapter will provide details related to the observations, actions, and rewards used for

the experiments; a description of the random and graph-based agents along with their testing re-

sults; training and testing results for the DRL agents with different observation and reward designs;

and finally a discussion of all the results contained in this chapter.

4.2 Observations

Experiments in this chapter examine several different observation combinations and variants:

• Voltage observations only

• Voltage observations and generator state observations (on/off, also known as open/closed)

• Voltage observations and line state observations (open/closed)
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• Voltage observations, generator state observations, and line state observations

In addition to the observation variants listed above, each variant is also tried with the use of

so-called “min-max” scaling for voltage observations. All experiments consider a power flow to be

“failed” if any single bus voltage dips below 0.7 per unit or if any single bus voltage exceeds 1.2 per

unit. In this way, the absolute lower and upper voltage bounds are known for all scenarios/episodes.

After min-max scaling, the new minimum voltage observation value is 0.0 (no longer in per unit),

and the maximum voltage observation value is 1.0 (also no longer in per unit).

The choice to implement min-max scaling originates from the fact that in general, ensuring

neural network inputs are consistently scaled can aid in learning stability and speed. During typi-

cal (non-emergency) power system operations, most voltages are close to nominal (one per unit).

If most voltages are numerically similar, a neural network may have difficulties learning the im-

portance of voltage magnitude differences (e.g. 0.94 per unit is unacceptable, while 0.95 per unit

is acceptable). The linear “stretching” the min-max scaling provides can help ease this differenti-

ation.

4.3 Action Space

Since the 14 bus system does not contain any shunts or on-load tap-changing voltage regulators,

only the setting of generator voltage set points are considered as actions. However, in contrast to

the GridMind architecture, each action represents a single voltage set point for a single generator.

Thus, the dimension of the action space is nv × ng, where nv is the number of discrete voltage

set points and ng is the number of generators. With the 14 bus system’s five generators and the

use of five voltage set points, the action space has dimension [25 × 1]. Recall that by contrast the

GridMind architecture utilizes an action space where each action is a unique combination of all

generator set points, resulting in an action space dimension of nng
v (3125 for the 14 bus system

with five generator voltage set points).

When analyzing results, it is important to keep in mind that the new [25 × 1] action space

definition may result in more actions to fix voltage issues, since each action only changes the

voltage at a single generator at a time, rather than each action setting all generator voltage set
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points all at once as is done with GridMind.

In addition to the simplified action space, a “no-op” (no operation) action is introduced, which

as the name implies, makes no change in the power system. This action is introduced in the hope

that if the agent has performed all sensible actions yet voltage issues remain, it may choose to take

no action. With the inclusion of the no-op action, the final dimension of the action space is [26×1].

4.4 Reward Design

Since there is no guarantee that a given episode has a viable solution which brings all volt-

ages into the acceptable band ([0.95, 1.05] per unit), it is important that rewards not simply only

consider whether or not the objective (bring all voltages within limits) has been met. This chapter

presents two similar reward schemes, both of which emphasize the movement of voltages toward

the acceptable band.

Equations (4.1) through (4.9) present definitions for sets which will be leveraged when pre-

senting the two reward schemes. Time step t − 1 corresponds to the discrete time step before the

most recent action was taken, and time step t corresponds to the time step after the most recent

action was taken. Bus numbers are denoted with a superscript i, while time steps are denoted with

a subscript. The quantity nbuses corresponds to the number of buses in the system, and v is used to

denote per unit voltage.

Bus voltage (V ) set:

V = {vi | i ∈ [1, 2, . . . , nbuses]} (4.1)

Voltages out-of-band (O) at time step t− 1:

Ot−1 = {vi ∈ V | (vit−1 < 0.95) ∨ (vit−1 > 1.05)} (4.2)

Voltages out-of-band (O) at time step t:

Ot = {vi ∈ V | (vit < 0.95) ∨ (vit > 1.05)} (4.3)
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Voltages in-band (I) at time step t− 1:

It−1 = {vi ∈ V | 0.95 ≤ vit−1 ≤ 1.05} (4.4)

Voltages in-band (I) at time step t:

It = {vi ∈ V | 0.95 ≤ vit ≤ 1.05} (4.5)

Voltages in-band at time step t− 1, but moved below (Mb) band at time step t:

Mb = {vi ∈ V | (vi ∈ Ib) ∧ (vit < 0.95)} (4.6)

Voltages in-band at time step t− 1, but moved above (Ma) band at time step t:

Ma = {vi ∈ V | (vi ∈ Ib) ∧ (vit > 1.05)} (4.7)

Voltages out-of-band at time step t− 1, moved in the right direction (rd):

Prd =

{
vi ∈ V |

((
(vit−1 < 0.95)∧ (vit > vit−1)

)
∨
(

(vit−1 > 1.05)∧ (vit < vit−1)
))}

(4.8)

Voltages out-of-band at time step t− 1, moved in the wrong direction (wd):

Pwd =

{
vi ∈ V |

((
(vit−1 < 0.95)∧ (vit < vit−1)

)
∨
(

(vit−1 > 1.05)∧ (vit > vit−1)
))}

(4.9)

4.4.1 Reward Scheme 1: Per-Bus Movement Magnitude Scheme

This reward scheme provides rewards for moving voltages in the right direction (toward the

acceptable band), while providing penalties for voltages that move in the wrong direction (away

from the acceptable band). The movement rewards and penalties are scaled by the movement

magnitude so that a larger voltage movement obtains a larger reward or penalty. Additionally, a
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penalty is given for taking an action in order to help incentivize the agent to minimize the number of

actions taken. Equations (4.10) through (4.16) illustrate several components of the reward scheme,

and Figure 4.1 presents the complete flow necessary to compute the reward after an action has been

taken. In several of the equations below, some terms are multiplied by 100. This is to make the

corresponding reward/penalty apply per 0.01 per unit movement ( 1
0.01

= 100). Note in Figure 4.1

that the corresponding equations for different components of the reward computation are indicated

to the right of the relevant blocks. Also note that the → symbol used within a block is used as

shorthand for “moved.” The code for the reward scheme can be found at [31].

Absolute change in distance from nominal voltage times 100:

∆ni = ||vi,t−1 − 1.0| − |vi,t − 1.0|| · 100, ∀vi ∈ V (4.10)

Reward (r) for moving in the right direction (δ is a constant scalar value. For all experiments

presented in this chapter, δ = 1):

r = r + ∆ni · δ, ∀vi ∈ Prd (4.11)

Penalty for moving in the wrong direction:

r = r −∆ni · δ, ∀vi ∈ Pwd (4.12)

Penalty for starting in-band, but moving below the band:

r = r + (vit − 0.95) · 100 · δ, ∀vi ∈Mb (4.13)

Penalty for starting in-band, but moving above the band:

r = r + (1.05− vit) · 100 · δ, ∀vi ∈Ma (4.14)
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Extra penalty for any buses that moved out of the band (ρ is a constant scalar value. For all

experiments presented in this chapter, ρ = 10):

r = r − ρ, ∀vi ∈ (Mb ∪Ma) (4.15)

Extra reward for any buses that moved in to the band:

r = r + ρ, ∀vi ∈ (Ot−1 ∩ It) (4.16)

Note that the parameter ρ is set equal to 10 so that if just one bus voltage moves from out-

of-band to in-band, the action penalty of −10 is counter-acted. A very large penalty (−1000) is

assessed if the agent causes the power flow to diverge. The no-op reward (+50) is in place so that if

a given episode starts with all voltages in bounds, the agent can choose to not take a control action

and still be rewarded. Conversely, if the agent takes no action but not all voltages are in bounds,

it is penalized (−50). This −50 no-op penalty has the potential to cause issues if the particular

episode/scenario is unsolvable (i.e., no sequence of control actions can possibly bring all voltages

in-band). For example, if all generators are already at their maximum voltage set point yet low

voltage conditions still exist, the agent may choose to lower a voltage set point rather than take no

action. The second reward scheme presented in the following section addresses this shortcoming.
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Figure 4.1: Reward scheme 1 flow chart
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4.4.2 Reward Scheme 2: Clipped and Simplified Movement Scheme

This scheme keeps all rewards within the range [−1.0, 1.0], inspired by the reward “clipping”

done in [18,19]. The authors of [18,19] note that keeping rewards in a fixed band “limits the scale

of the error derivatives” and thus makes the reward function useful across multiple games. In the

case of the work presented in this thesis, the same notion applies, but instead helps the reward gen-

eralize across power system cases. The clipped scheme presented here has the following discrete

reward possibilities: {−1.00,−0.75,−0.50,−0.25,−0.10, 0.00,+0.25,+0.50,+0.75,+1.00}, and

the flow for determining the reward is presented in Figure 4.2.

It can be seen from Figure 4.2 that the agent is given the minimum reward (−1.00) if its action

caused the power flow to diverge, and is given the maximum reward (+1.00) if its action brought

all voltages in band. The no-op action is always given a reward of 0.00, unless all voltages are in

bounds. A greater reward (penalty) is given if multiple bus voltages are brought in-band (out-of-

band). If voltages move in the right (wrong) direction, the smallest reward (penalty) is assessed

to the agent. If the agent’s action is not the no-op action, but does not move any out-of-band

voltages in the right or wrong direction, a “useless action” penalty of−0.10 is given. One potential

shortcoming of this reward scheme is that moving 20 out-of-band voltages in-band receives the

same reward as moving 2 out-of-band voltages in-band.
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Figure 4.2: Reward scheme 2 flow chart
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4.5 Random and Graph-Based Agents for Comparison

In order to provide a basis for comparison, both a random agent and a graph-based agent were

created and tested against the same testing scenarios that the DRL agents were tested against. The

random agent behaves exactly as one might expect: during each time step it randomly chooses and

takes an action from the environment’s action space. As per usual, each episode proceeds either

until all voltage issues have been fixed, the power flow diverges, any bus voltage goes below 0.7

per unit or above 1.2 per unit, or the agent hits the per-episode action cap. The random agent is run

both with and without the unique-actions-per-episode requirement.

4.5.1 Graph-Based Agent

The graph-based agent has been created in an attempt to provide a reasonable benchmark for

comparison with the DRL agents without writing a full-blown optimization program. As such, it

is heuristically driven, leveraging the idea that voltage issues are typically “local” and are often

remedied by dispatching reactive power resources near to the buses with voltage issues. In short,

the agent constructs a graph of the power system network and changes the voltage set point at

the generator which is “nearest” to the bus with minimum/maximum voltage. A more detailed

description of the graph-based agent’s algorithm for each testing episode is as follows:

1. Using PowerWorld [29] and ESA [30], obtain the Y-bus matrix for the system’s current

topology (recall single line contingencies are included).

2. Using the Python package NetworkX [46], create a graph representing the transmission sys-

tem which uses reactance between buses as edge weights.

3. If all bus voltages are in band ([0.95, 1.05] per unit), take the “no-op” action. Otherwise,

proceed.

4. Determine the buses with the highest and lowest voltages in the system.

(a) If the bus with the lowest voltage is below 0.95 per unit voltage, the “nearest” genera-

tor’s voltage set point will be set to 1.05 per unit, and the bus with the lowest voltage
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will be considered when computing distances to generators in Step 5.

(b) Otherwise, if the bus with the highest voltage is above 1.05 per unit voltage, the “near-

est” generator’s voltage set point will be set to 1.025 per unit, and the bus with the

highest voltage will be considered when computing distances to generators in Step 5.

5. Using NetworkX’s implementation of Dijkstra’s algorithm [47], determine the “nearest”

generator to the bus with the lowest or highest voltage (determined in Step 4), consider-

ing line reactance as a measure of electrical distance. Only generators which are on/active

are considered.

(a) If the “nearest” generator already has its voltage set point set to the desired voltage

(determined in Step 4), find the next-nearest generator instead. Continue until a valid

generator is found. If no valid generator is found, take the “no-op” action. Otherwise,

proceed.

(b) Set the determined “nearest” (or next-nearest or next-next-nearest, etc.) generator’s

voltage set point to the desired voltage.

There are several noteworthy items with respect to the graph-based agent. First, if an overvolt-

age condition is not fixed by reducing generator voltage set points to 1.025 per unit, it will never

be fixed. In the absence of shunts (recall the 14 bus system does not have shunts) or off-nominal

transformer tap positions, this should not generally be an issue. Second, the agent receives more

system knowledge than the DRL agents do (e.g. full topology and line reactances). Third, the

agent’s “nearest” heuristic does not fully account for the meshed nature of the electric transmis-

sion system. A possibly more robust heuristic might instead perform some network equivalencing

(e.g. Ward equivalents) before computing the shortest path in order to better determine which

generator may have the highest impact.

4.5.2 Results for Random and Graph-Based Agents with the 14 Bus System

The random and graph-based agents were tested on the same three sets of 5,000 testing scenar-

ios that the DRL agents were tested on (see Sections 3.2.1.2, 3.4.1, and 4.6). Table 4.1 presents
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results for the graph-based and random agents. The values presented in Table 4.1 represent the

mean across the three testing scenario sets. Note that “O.O.B.” stands for “out of band,” so the

fifth column in Table 4.1 presents the mean success rate for episodes which started with voltages

outside of the acceptable band. Since the random and graph-based agents do not consider rewards

in their decision making, the success rates are identical across tests with different reward schemes.

This also indicates that the random seeding is working as intended, since separate environment

initializations result in identical results.

Table 4.1: Mean testing results for graph-based and random agents

Agent Reward
Scheme

Unique Actions
per Episode?

Percent
Success

Percent Success,
Episode Starts O.O.B.

Mean
Reward

Graph-based 1 Yes 46.97 40.79 -118.95
Graph-based 2 Yes 46.97 40.79 0.83
Random 1 No 22.46 14.47 -206.21
Random 1 Yes 24.34 16.52 -214.20
Random 2 No 22.46 14.47 -0.43
Random 2 Yes 24.34 16.52 -0.39

Due to the simplicity of the 14 bus system, it is believed that the graph-based agent’s success

rate is very near to the highest possible success rate that is physically achievable. As previously

mentioned, not all scenarios are “solvable,” i.e., there is no guarantee that a generator voltage set

point configuration exists that brings all voltages in band. It’s interesting to note that the Grid-

Mind environment with the modified DQN algorithm comes very close to the performance of the

graph-based agent (see Section 3.4.1) with a mean O.O.B. success rate of approximately 39.90%

compared to the graph-based agent’s rate of 40.79%. However, when the DQN algorithm is un-

modified (repeated actions are allowed), GridMind’s performance is close to the random agent’s

performance (16.22% and 14.47% O.O.B. success rate, respectively). The random and graph-based

agents will be used as a basis for comparison for the results presented in the following section.
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4.6 Results

This section will group results in subsections by observations given to the agent. For each

observation subsection, results will be presented for:

• Per unit voltage observations with reward scheme 1 (see Section 4.4.1)

• Per unit voltage observations with reward scheme 1 and the unique-action-per-episode algo-

rithm modification (see Section 3.4)

• Min-max scaled voltage observations (see Section 4.2) with reward scheme 1

• Min-max scaled voltage observations with reward scheme 1 and the unique-action-per-episode

algorithm modification

• Min-max scaled voltage observations with reward scheme 2 (see Section 4.4.2) and unique-

actions-per-episode algorithm modification

It’s important to note that all agents were trained and tested with identical environments with

identical scenarios. However, since the training duration is based on the number of time steps

rather than the number of episodes, some agents see more training episodes than others. In testing,

a consistent set of episodes are used for all agents, so that testing results are directly comparable

across the different agents and architectures.

4.6.1 Abbreviations, Terminology, and Methodology

Figures and tables within this results section contain several abbreviations for space. Per unit

will be abbreviated as “P.U.,” min-max scaled will be abbreviated as “M.M.,”, out-of-band will be

abbreviated as “O.O.B.”, modified will be abbreviated as “mod.,” and reward will be abbreviated

as “rew.” Some success rates will be described as “O.O.B.” success rates. This refers to an agent’s

success rate only accounting for episodes which began with out-of-band voltages.

Each of the experiments in the following subsections were carried out three times with dif-

ferent random seeds. These independent experiments entail both training and testing. Figures
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which present training rewards over time, actions taken per episode over training, testing reward

histograms, and testing action count distributions all come from a single experimental run where

the random seed equals zero. Unless otherwise specified, figures and tables which present mean

success rates refer to the overall mean across all three experimental runs. A single experimental

run involves 5,000 testing episodes which were never seen by the agent during training.

4.6.2 Bus Voltage Observations Only

This subsection presents results for agents which only received bus voltage observations in

Figures 4.3, 4.4, 4.5, 4.6, and 4.7.
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4.6.2.1 Per Unit Voltage Observations with Reward Scheme 1

(a) Training: average rewards (b) Training: number of actions taken
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Figure 4.3: Training and testing rewards and actions: Per unit voltage observations only, reward
scheme 1, neural network hidden layers: [64, 64].
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4.6.2.2 Per Unit Voltage Observations with Reward Scheme 1 and the Unique-Action-Per-Episode

Algorithm Modification

(a) Training: average rewards (b) Training: number of actions taken
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(d) Testing: action count distribution

Figure 4.4: Training and testing rewards and actions: Per unit voltage observations only, reward
scheme 1, unique-actions-per-episode, neural network hidden layers: [64, 64].
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4.6.2.3 Min-Max Scaled Voltage Observations with Reward Scheme 1

(a) Training: average rewards (b) Training: number of actions taken
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(d) Testing: action count distribution

Figure 4.5: Training and testing rewards and actions: Min-max scaled voltage observations only,
reward scheme 1, neural network hidden layers: [64, 64].
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4.6.2.4 Min-Max Scaled Voltage Observations with Reward Scheme 1 and the Unique-Action-

Per-Episode Algorithm Modification

(a) Training: average rewards (b) Training: number of actions taken
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Figure 4.6: Training and testing rewards and actions: Min-max scaled voltage observations only,
reward scheme 1, unique-actions-per-episode, neural network hidden layers: [64, 64].
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4.6.2.5 Min-Max Scaled Voltage Observations with Reward Scheme 2 and Unique-Actions-Per-

Episode Algorithm Modification

(a) Training: average rewards (b) Training: number of actions taken

−3
.00

0

−2
.44

5

−1
.89

0

−1
.33

5

−0
.78

0

−0
.22

5
0.3

30
0.8

85
1.4

40
1.9

95
2.5

50

Episode Rewa d Bins

0

20

40

60

80

100

Pe
 c

en
ta

ge
 o

f R
ew

a 
ds

 F
al

lin
g 

in
 R

ew
a 

d 
Bi

n

0.48 2.30
10.48

24.90
21.14 20.98

8.38 10.00

1.08 0.26

No malized Histog am of Testing Episode Rewa ds
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Figure 4.7: Training and testing rewards and actions: Min-max scaled voltage observations only,
reward scheme 2, unique-actions-per-episode, neural network hidden layers: [64, 64].
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4.6.2.6 Comparison and Discussion

The “learning curves” in Figures 4.3a, 4.4a, and 4.6a show marked reward improvement over

time. By contrast, Figures 4.5a and 4.7a do not show a clear trend over training. Figure 4.8 presents

mean out-of-band success rates for all five experiments with different observation, reward, and

algorithm combinations. Note that only two of the five experiments exceeded the success rate of

the random agent, and none met or exceeded the performance of the graph-based agent. The two

best performing experiments both used the unique-actions-per-episode algorithm modification and

reward scheme 1.
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Figure 4.8: Mean out-of-band (O.O.B.) success rates for different experiments: bus voltage obser-
vations only
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4.6.3 Bus Voltage Observations and Generator State Observations

The figures presented in this section illustrate training and testing results with the agent’s ob-

servations contain both bus per unit voltage observations and generator state (on/off) observations.

Training and testing results can be found in in Figures 4.9, 4.10, 4.11, 4.12, and 4.13.

4.6.3.1 Per Unit Voltage Observations with Reward Scheme 1

(a) Training: average rewards (b) Training: number of actions taken
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Figure 4.9: Training and testing rewards and actions: Per unit voltage observations only, reward
scheme 1, neural network hidden layers: [64, 64].
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4.6.3.2 Per Unit Voltage Observations with Reward Scheme 1 and the Unique-Action-Per-Episode

Algorithm Modification

(a) Training: average rewards (b) Training: number of actions taken
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Figure 4.10: Training and testing rewards and actions: Per unit voltage observations only, reward
scheme 1, unique-actions-per-episode, neural network hidden layers: [64, 64].
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4.6.3.3 Min-Max Scaled Voltage Observations with Reward Scheme 1

(a) Training: average rewards (b) Training: number of actions taken
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Figure 4.11: Training and testing rewards and actions: Min-max scaled voltage observations only,
reward scheme 1, neural network hidden layers: [64, 64].
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4.6.3.4 Min-Max Scaled Voltage Observations with Reward Scheme 1 and the Unique-Action-

Per-Episode Algorithm Modification

(a) Training: average rewards (b) Training: number of actions taken
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(c) Testing: reward histogram
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Figure 4.12: Training and testing rewards and actions: Min-max scaled voltage observations only,
reward scheme 1, unique-actions-per-episode, neural network hidden layers: [64, 64].
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4.6.3.5 Min-Max Scaled Voltage Observations with Reward Scheme 2 and Unique-Actions-Per-

Episode Algorithm Modification

(a) Training: average rewards (b) Training: number of actions taken
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Figure 4.13: Training and testing rewards and actions: Min-max scaled voltage observations only,
reward scheme 2, unique-actions-per-episode, neural network hidden layers: [64, 64].
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4.6.3.6 Comparison and Discussion

Of the five experiments, only two show consistently improving rewards over time, as illustrated

in Figures 4.10a and 4.12a. Figure 4.14 illustrates mean out-of-band success rates for the various

experiments. Only two experiments outperform the random agent, and both of these experiments

use the modified DQN algorithm and reward scheme 1. Interestingly, the addition of generator

state observations does not lead to improvements in the agent’s success for the the two experiments

which beat the random agent when compared to agents which received only voltage observations

(presented in Section 4.6.2). However, the success for the other three experiments with success

rates less than the random agent increases when compared to agents which only received voltage

observations.
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Figure 4.14: Mean out-of-band (O.O.B.) success rates for different experiments: bus voltage and
generator state observations
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4.6.4 Bus Voltage Observations and Branch State Observations

The figures presented in this section illustrate training and testing results with the agent’s obser-

vations contain both bus per unit voltage observations and branch state (open/closed) observations.

Training and testing results can be found in in Figures 4.15, 4.16, 4.17, 4.18, and 4.19.

4.6.4.1 Per Unit Voltage Observations with Reward Scheme 1

(a) Training: average rewards (b) Training: number of actions taken
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Figure 4.15: Training and testing rewards and actions: Per unit voltage observations only, reward
scheme 1, neural network hidden layers: [64, 64].
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4.6.4.2 Per Unit Voltage Observations with Reward Scheme 1 and the Unique-Action-Per-Episode

Algorithm Modification

(a) Training: average rewards (b) Training: number of actions taken
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(d) Testing: action count distribution

Figure 4.16: Training and testing rewards and actions: Per unit voltage observations only, reward
scheme 1, unique-actions-per-episode, neural network hidden layers: [64, 64].
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4.6.4.3 Min-Max Scaled Voltage Observations with Reward Scheme 1

(a) Training: average rewards (b) Training: number of actions taken
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(d) Testing: action count distribution

Figure 4.17: Training and testing rewards and actions: Min-max scaled voltage observations only,
reward scheme 1, neural network hidden layers: [64, 64].
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4.6.4.4 Min-Max Scaled Voltage Observations with Reward Scheme 1 and the Unique-Action-

Per-Episode Algorithm Modification

(a) Training: average rewards (b) Training: number of actions taken
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(d) Testing: action count distribution

Figure 4.18: Training and testing rewards and actions: Min-max scaled voltage observations only,
reward scheme 1, unique-actions-per-episode, neural network hidden layers: [64, 64].

67



4.6.4.5 Min-Max Scaled Voltage Observations with Reward Scheme 2 and Unique-Actions-Per-

Episode Algorithm Modification

(a) Training: average rewards (b) Training: number of actions taken
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(d) Testing: action count distribution

Figure 4.19: Training and testing rewards and actions: Min-max scaled voltage observations only,
reward scheme 2, unique-actions-per-episode, neural network hidden layers: [64, 64].
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4.6.4.6 Comparison and Discussion

When branch states are included, four of the five experiments show an upward sloped “learn-

ing curve” as can be seen in Figures 4.15a, 4.16a, 4.17a, and 4.18. The only experiment with a

learning curve without a clear upward slope used reward scheme 2, and can be seen in Figure 4.19.

Figure 4.20 illustrates mean out-of-band success rates for the various experiments. As was seen in

Sections 4.6.2 and 4.6.3, only two experiments exceed the success rate of the random agent, and

both of these experiments use the modified DQN algorithm and reward scheme 1.
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Figure 4.20: Mean out-of-band (O.O.B.) success rates for different experiments: bus voltage and
branch state observations
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4.6.5 Bus Voltage, Generator State, and Branch State Observations

The figures presented in this section illustrate training and testing results with the agent’s ob-

servations contain bus per unit voltage observations, branch state (open/closed) and generator state

(on/off) observations. Training and testing results can be found in in Figures 4.21, 4.22, 4.23, 4.24,

and 4.25.

4.6.5.1 Per Unit Voltage Observations with Reward Scheme 1

(a) Training: average rewards (b) Training: number of actions taken
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Figure 4.21: Training and testing rewards and actions: Per unit voltage observations only, reward
scheme 1, neural network hidden layers: [64, 64].
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4.6.5.2 Per Unit Voltage Observations with Reward Scheme 1 and the Unique-Action-Per-Episode

Algorithm Modification

(a) Training: average rewards (b) Training: number of actions taken
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Figure 4.22: Training and testing rewards and actions: Per unit voltage observations only, reward
scheme 1, unique-actions-per-episode, neural network hidden layers: [64, 64].
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4.6.5.3 Min-Max Scaled Voltage Observations with Reward Scheme 1

(a) Training: average rewards (b) Training: number of actions taken

−1
08

4
−9

41
−7

97
−6

53
−5

09
−3

66
−2

22 −7
8 65 20

9
35

3

Episode Rewa d Bins

0

20

40

60

80

100

Pe
 c

en
ta

ge
 o

f R
ew

a 
ds

 F
al

lin
g 

in
 R

ew
a 

d 
Bi

n

8.34
3.60 0.32 0.00 0.06 0.48

19.12

50.30

15.54

2.24

No malized Histog am of Testing Episode Rewa ds

(c) Testing: reward histogram

10 4 3 2 1
Action Counts

0

20

40

60

80

100

Pe
rc
en
ta
ge
 o
f E

pi
so
de
s w

ith
 G
iv
en
 A
ct
io
n 
Co

un
t

67.06

0.02 0.80

12.44
19.68

Normalized Frequency of Testing Action Counts

(d) Testing: action count distribution

Figure 4.23: Training and testing rewards and actions: Min-max scaled voltage observations only,
reward scheme 1, neural network hidden layers: [64, 64].
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4.6.5.4 Min-Max Scaled Voltage Observations with Reward Scheme 1 and the Unique-Action-

Per-Episode Algorithm Modification

(a) Training: average rewards (b) Training: number of actions taken
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Figure 4.24: Training and testing rewards and actions: Min-max scaled voltage observations only,
reward scheme 1, unique-actions-per-episode, neural network hidden layers: [64, 64].
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4.6.5.5 Min-Max Scaled Voltage Observations with Reward Scheme 2 and Unique-Actions-Per-

Episode Algorithm Modification

(a) Training: average rewards (b) Training: number of actions taken
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Figure 4.25: Training and testing rewards and actions: Min-max scaled voltage observations only,
reward scheme 2, unique-actions-per-episode, neural network hidden layers: [64, 64].
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4.6.5.6 Comparison and Discussion

The observation combination in this subsection provides the agent with the most information of

all the experiments. Despite this fact, only two experiments show learning curves with consistent

improvement, as can be seen in Figures 4.22a and 4.24a. Figure 4.26 illustrates mean out-of-band

success rates for the various experiments. This is the only observation combination in which the per

unit voltage observations with the modified algorithm and reward scheme 1 was more successful

than the min-max scaled voltage observations with the modified algorithm and reward scheme 1.

However, the difference is less than 0.5%. As has been seen in the previous sections, the only

two experiments which beat the random agent are those with the modified algorithm and reward

scheme 1.
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Figure 4.26: Mean out-of-band (O.O.B.) success rates for different experiments: bus voltage,
generator state, and branch state observations
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4.6.6 Additional Training

As can be seen in the the previous sections, some agents show a linear learning curve which

does not have a “plateau” at the end, indicating additional training may lead to a continued increase

in agent success. Some examples of these curves can be seen in Figures 4.6 and 4.24. To test if

more training is useful, two agents received additional training. The first agent received only

voltage observations with min-max scaling, used reward scheme 1, and used the unique-action-

per-episode algorithm modification. This agent’s initial results can be found in Section 4.6.2.4.

The second agent received min-max voltage observations, generator state observations, and line

state observations. The second agent also used reward scheme 1 and the unique-action-per-episode

DQN algorithm modification. The second agent’s initial results can be found in Section 4.6.5.4.

To perform additional training, the agent’s state (including neural network parameters) at the

end of initial training was loaded from file using the save feature provided by [41]. Training was

performed for another 500,000 time steps. In order to make this additional training simply look

like continued training, the following hyper parameter changes were made:

• Exploration fraction fixed at 10%, as done in [18, 19].

• Prioritized replay β fixed at 1.0, as during initial training it annealed from 0.4 to 1.0.

• Learning does not begin until the replay buffer is full (after 50,000 time steps).

Additional training results for these two agents can be found in Figures 4.27 and 4.28. The

agent that only received voltage observations had an out-of-band success rate of 37.92% after ad-

ditional training, which is slightly better than the mean out-of-band-success rate reported in Figure

4.8. However, this success rate is slightly worse than the individual agent’s out-of-band success

rate after initial training, which was 40.19%. The agent which received voltage observations as

well as generator and branch state observations had an out-of-band success rate of 29.43%, which

is markedly worse than the mean success rate of 35.13% reported in Figure 4.26. This new success

rate is also worse than the individual agent’s initial O.O.B. success rate of 37.19%.

In these two cases, additional training did not seem to improve performance.

77



(a) Training: average rewards (b) Training: number of actions taken
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(c) Testing: reward histogram
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Figure 4.27: Training and testing rewards and actions: Min-max scaled voltage observations only,
reward scheme 1, unique-actions-per-episode, additional training, neural network hidden layers:
[64, 64].
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(a) Training: average rewards (b) Training: number of actions taken
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Figure 4.28: Training and testing rewards and actions: Min-max scaled voltage observations,
generator and branch state observations, reward scheme 1, unique-actions-per-episode, additional
training, neural network hidden layers: [64, 64].
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4.7 Discussion and Conclusions

Several key takeaways can be gathered from the results presented in Section 4.6. First, the

min-max scaling of voltage observations leads to a higher success rate than raw per unit voltage

observations in all but one case. In that one case, the difference was negligible (less than 0.5%

difference in success rate). Second, reward scheme 1 consistently outperforms reward scheme 2.

However, it’s worth noting that reward scheme 2 was only tested with min-max scaled voltages and

the modified DQN algorithm which enforces unique actions per-episode. This combination had the

highest success rate when reward scheme 1 was used. Third, agents which used the unmodified

DQN algorithm never once outperformed the random agent. By contrast, agents which used the

modified DQN algorithm and reward scheme 1 always outperformed the random agent, and often

approached the success rate of the graph-based agent.

With the exception of the agent which received bus voltage, generator state, and branch state

observations, the combination of min-max scaled voltages, modified DQN algorithm, and reward

scheme 1 consistently led to the highest out-of-band success rate. As this combination is the most

successful, it will be used in experiments with larger electric grids as will be presented in Chapter

5.

As can be seen in several figures in Section 4.6, such as Figure 4.6a, it’s quite possible that

training was terminated early. One might expect the slope of the rewards over episodes curve to

begin to decay once the agent has been fully trained. However, none of the “learning curves” in

Section 4.6 exhibit this decaying slope at the end of training. This is likely in part due to the fact

that training halted once the exploration rate was annealed to 1%. It’s possible that more training

could lead to higher success rates and average rewards.

Table 4.2 presents tabulated results for all experiments presented in Section 4.6. Interestingly,

the highest out-of-band success rate (36.22%) comes from an agent which only received min-max

voltage observations. This agent received min-max scaled voltages and used the unique-actions-

per-episode algorithm modification. However, agents which received generator state, branch state,

and both generator and branch states were not far behind with respective out-of-band success rates
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of 35.71%, 34.59%, and 35.13%. While in the case of the 14 bus system the agent with the least

observations performed the best, it is hypothesized that this is a direct result of the simplicity of the

14 bus system. Since the success rates are not wildly different for the agents which received more

observations, the full set of observations (bus voltage, generator states, and branch states) will be

used when testing with larger systems in Chapter 5.

Table 4.2: Percent success and mean rewards for all 14 bus experiments

Observations Unique Actions
per Episode?

Min-Max
Voltages?

Reward
Scheme

Pct.
Success

Pct.
Success,
O.O.B.

Mean
Reward

Voltage Only

No No 1 13.44 6.02 -52.67
Yes No 1 38.48 31.8 -50.94
No Yes 1 19.42 11.61 -84.7
Yes Yes 1 42.75 36.22 -7.98
Yes Yes 2 14.76 9.64 -0.37

Voltage and
Gen. State

No No 1 19.39 12.82 -94.51
Yes No 1 31.69 24.91 -12.59
No Yes 1 21.03 14.49 -111.1
Yes Yes 1 41.61 35.71 -12.39
Yes Yes 2 16.39 11.2 -0.26

Voltage and
Branch State

No No 1 16.93 8.93 -46.04
Yes No 1 37.37 30.53 -41.53
No Yes 1 17.29 9.71 -86.49
Yes Yes 1 41.29 34.59 -29.77
Yes Yes 2 14.61 8.67 -0.39

Voltage,
Gen. State,
and Branch
State

No No 1 19.45 12.81 -80.99
Yes No 1 40.83 35.44 6.8
No Yes 1 20.08 13.87 -116.79
Yes Yes 1 40.9 35.13 -18.16
Yes Yes 2 16.01 11.05 -0.33
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5. SCALING TO LARGER ELECTRIC GRIDS

In this chapter, the lessons learned from Chapter 4 are leveraged to test the application of deep

reinforcement learning to larger power systems.

5.1 Overview

Synthetic grid test cases with 200 and 500 buses presented in [32] and available at [33] are

leveraged in order to test the scalability of DRL for power system voltage control. These synthetic

grids have been constructed to be representative of the real electric grid, but are intentionally

different in order to avoid data sensitivity issues.

Some figures and tables use shorthand terminology which is described in Section 4.6.1.

The following subsections will provide a brief overview of the synthetic test cases, environment

initialization, observation spaces, action spaces, reward design, modifications to the graph-based

agent, and training and testing procedures.

5.1.1 200 Bus Case

A one line diagram for the 200 bus test case is illustrated in Figure 5.1. This synthetic grid

is geographically located in Central Illinois. It contains 200 buses, 49 generators, four switched

shunts, and 180 transmission lines.

5.1.2 500 Bus Case

A one line diagram for the 500 bus test case is illustrated in Figure 5.2. This synthetic grid

is geographically located in a portion of South Carolina. It contains 500 buses, 90 generators, 17

switched shunts, and 468 transmission lines.
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Figure 5.1: Synthetic 200 bus test case
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Figure 5.2: Synthetic 500 bus test case
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5.1.3 Environment Initialization

The training and testing episodes for all experiments are initialized using the procedure de-

scribed in Sections 2.3.3 and 3.3. Initialization parameters are the same as provided in Table 3.2

except that when contingencies are applied any line in the system may be opened and all generators

are available for active power dispatch.

5.1.4 Observation Spaces

In all experiments, min-max scaled voltages (see Section 4.2), generator states (open/closed),

and shunt states (open/closed) are included. Each system is tested both with and without single

line contingencies. If contingencies are included, the agent is additionally given all line states

(open/closed) as observations.

5.1.5 Action Spaces

As done in Chapters 3 and 4, generator voltage set points are discretized into the set

{0.95, 0.975, 1.00, 1.025, 1.05} per unit, and an action is available for each generator for each

available voltage set point. As introduced in Section 4.3, a “no-op” action is included which does

nothing. Since both the 200 and 500 bus systems contain switched shunts, a toggle action is

included in the action space for each shunt in the system. This action switches the shunt from open

to closed or from closed to open depending on the previous state of the shunt.

5.1.6 Reward Design

All experiments in this chapter use reward scheme 1 as presented in Section 4.4.1. Reward

scheme 2 (see Section 4.4.2) is not used since it was found in Section 4.6 that reward scheme 2

never outperformed reward scheme 1 for the given experiments.

5.1.7 Graph-Based Agent Modification

The graph-based agent introduced in Section 4.5 only changed generator voltage set points

since the IEEE 14 bus system does not contain any shunts. To support the 200 and 500 bus cases

which do contain shunts, the graph-based agent has been modified. In short, the graph-agent looks
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for capacitors at buses which neighbor the bus with the lowest or highest voltage and toggles them

if appropriate. If there are no capacitors for which it is appropriate to toggle, the agent controls

generators instead (as described in Section 4.5.1). The following steps are performed immediately

before Step 4 in Section 4.5.1, and then the algorithm proceeds as normal.

1. Determine the buses with the highest and lowest voltages in the system.

(a) If the bus with the lowest voltage is below 0.95 per unit, capacitors at neighboring buses

(including this bus) will be closed if they are not already.

(b) Otherwise, if the bus with the highest voltage is above 1.05 per unit, capacitors at

neighboring buses (including this bus) will be opened if they are not already.

2. Get a list of all buses which neighbor the bus determined in Step 1 (including itself).

3. Iterate over the buses from Step 2:

(a) If this bus has a capacitor, it is appropriate to toggle it (see Steps 1a and 1b), and this

capacitor has not yet been toggled in this episode, toggle it and exit the graph-agent

algorithm.

The full algorithm is performed for each time step, so in the event that capacitor switching does

not solve the voltage issues, generator voltage set points will then be considered.

5.1.8 Training and Testing Procedures

As was done in Chapter 4, all experiments are performed in triplicate with different random

seeds. The results sections for the different power system cases will specify how many training

time steps were carried out. After training, testing is performed on 5,000 episodes which were not

present during training.

Any results reported as “mean” are mean results for all 15,000 (5,000 × 3) testing episodes

unless otherwise specified. Results from the random and graph-based agents will be used as a

basis for comparison. In all results for the random agent, the random agent is not allowed to
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take the same action more than once per episode. The graph-based agent controls both switched

shunts as well as generator voltage set points. Note that mean rewards will not be presented for

the graph-based agent since episodes were terminated prematurely if the agent selected the no-op

action.

5.2 Results: 200 Bus Case

Results for the 200 bus test system are described in this section. In Chapters 3 and 4 all

agents were trained over 500,000 time steps and used neural networks with two hidden layers of

64 neurons each. Since the 200 bus system is an order of magnitude larger in all relevant aspects

(number of buses, number of generators, number of transmission lines) than the 14 bus system,

training is performed over 2,000,000 time steps instead of 500,000, and the two neural network

hidden layers contain 1,024 neurons each (not including the doubling that the “dueling DQN”

algorithm improvement performs. See Section 2.4.1.2 for more details). Training would have been

carried out for even more time steps had time allowed.

The following subsections present results for the random and graph-based agents (see Section

4.5) and DRL agents with and without single line contingencies.

5.2.1 Results, Random and Graph-Based Agents

The following subsections present testing results for the random and graph-based agents. Re-

sults for the three individual testing runs as well as the overall mean are reported.

5.2.1.1 No Contingencies

The results presented in this subsection were created by using an environment which does

not apply any line contingencies during episode initialization. Tables 5.1 and 5.2 present results

for the random and graph-based agents, respectively. It can be seen from these tables that even

in the absence of contingencies approximately 99.13% of testing episodes start with out-of-band

voltages. The random agent is successful in fixing voltage issues in 2.71% of testing cases that

start with out-of-band voltages, while the graph-based agent is successful in 32.95% of cases.
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Table 5.1: Success percentages and rewards, 200 bus system without contingencies, random agent

Random
Seed

Success
Percentage

Success
Percentage,
O.O.B.

Percent
Episodes
Start
O.O.B.

Mean
Reward

0 3.62 2.82 99.18 -1031.80
1 3.68 2.83 99.10 -1031.88
2 3.32 2.48 99.10 -1054.00
Overall
Mean 3.54 2.71 99.13 -1039.23

Table 5.2: Success percentages, 200 bus system without contingencies, graph-based agent

Random
Seed

Success
Percentage

Success
Percentage,
O.O.B.

Percent
Episodes
Start
O.O.B.

0 33.52 32.97 99.18
1 33.08 32.47 99.10
2 34.02 33.42 99.10
Overall
Mean 33.54 32.95 99.13
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5.2.1.2 Single Line Contingencies

The results presented in this subsection were created by using an environment which applies

single line contingencies during episode initialization. Tables 5.3 and 5.4 present results for the

random and graph-based agents, respectively. It can be seen from these tables that in the presence

of contingencies approximately 99.31% of testing episodes start with out-of-band voltages. The

random agent is successful in fixing voltage issues in 2.58% of testing cases that start with out-of-

band voltages, while the graph-based agent is successful in 31.56% of cases.

Table 5.3: Success percentages and rewards, 200 bus system with contingencies, random agent

Random
Seed

Success
Percentage

Success
Percentage,
O.O.B.

Percent
Episodes
Start
O.O.B.

Mean
Reward

0 3.76 3.04 99.26 -1033.62
1 2.92 2.31 99.38 -1043.64
2 3.02 2.38 99.30 -1062.13
Overall
Mean 3.23 2.58 99.31 -1046.46

Table 5.4: Success percentages, 200 bus system with contingencies, graph-based agent

Random
Seed

Success
Percentage

Success
Percentage,
O.O.B.

Percent
Episodes
Start
O.O.B.

0 31.84 31.33 99.26
1 31.82 31.39 99.38
2 32.44 31.96 99.30
Overall
Mean 32.03 31.56 99.31
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5.2.2 Results, DRL Agent, No Contingencies

Figures 5.3, 5.4, and 5.5 present training and testing results for the DRL agent when the en-

vironment does not include single line contingencies. Since there are no contingencies, the agent

does not receive line states as observations as mentioned in Section 5.1.4. Note that unlike figures

in previous chapters, the testing action count sub-figure is a histogram rather than the raw distri-

bution. Table 5.5 presents testing success rates and mean rewards for the experiments depicted in

Figures 5.3, 5.4, and 5.5. Figure 5.6 presents a comparison of the random, DRL, and graph-based

agents.
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(a) Training: average rewards (b) Training: number of actions taken
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Figure 5.3: Training and testing rewards and actions: 200 bus system without contingencies, ran-
dom seed: 0, neural network hidden layers: [1024, 1024].
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(a) Training: average rewards (b) Training: number of actions taken
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(d) Testing: action count histogram

Figure 5.4: Training and testing rewards and actions: 200 bus system without contingencies, ran-
dom seed: 1, neural network hidden layers: [1024, 1024].
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(a) Training: average rewards (b) Training: number of actions taken
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(d) Testing: action count histogram

Figure 5.5: Training and testing rewards and actions: 200 bus system without contingencies, ran-
dom seed: 2, neural network hidden layers: [1024, 1024].
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Table 5.5: Success percentages and rewards, 200 bus system without contingencies, DRL agent

Random
Seed

Success
Percentage

Success
Percentage,
O.O.B.

Percent
Episodes
Start
O.O.B.

Mean
Reward

0 20.40 19.74 99.18 56.8
1 23.32 22.62 99.10 -29.01
2 24.16 23.47 99.10 10.55
Overall
Mean 22.63 21.95 99.13 12.78
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Figure 5.6: Comparison of random, DRL, and graph-based agents, 200 bus system, no contingen-
cies

Even in the absence of contingencies, Table 5.5 shows that more than 99% of testing episodes

begin with out-of-band voltages. It’s interesting to note that the “learning curve” in Figure 5.3a

does not exhibit a monotonic learning trend, while Figures 5.4a and 5.5a show learning trends
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which appear more linear in nature. As one might expect based on these results, Table 5.5 shows

that the success rates for the experiments with random seeds 1 and 2 were more successful in fixing

voltage problems than the experiment with a random seed of 0.

When comparing Table 5.5 with Tables 5.1 and 5.2, it’s clear the DRL agent performs sig-

nificantly better than the random agent. However, the DRL agent’s best out-of-band success rate

of 23.47% (random seed = 2) is significantly worse than the graph-based agent’s corresponding

success rate of 33.42%.

5.2.3 Results, DRL Agent, With Single Line Contingencies

Figures 5.7, 5.8, and 5.9 present training and testing results for the 200 bus system when the

environment includes single line contingencies for every episode. As noted in Section 5.1.4, since

contingencies are included branch states are included in the observations given to the agent. Table

5.6 presents testing success rates and mean rewards for all three experiments with different random

seeds and Figure 5.10 presents a comparison of the random, DRL, and graph-based agents.
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(a) Training: average rewards (b) Training: number of actions taken
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Figure 5.7: Training and testing rewards and actions: 200 bus system with contingencies, random
seed: 0, neural network hidden layers: [1024, 1024].
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(a) Training: average rewards (b) Training: number of actions taken
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Figure 5.8: Training and testing rewards and actions: 200 bus system with contingencies, random
seed: 1, neural network hidden layers: [1024, 1024].
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(a) Training: average rewards (b) Training: number of actions taken
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(d) Testing: action count histogram

Figure 5.9: Training and testing rewards and actions: 200 bus system with contingencies, random
seed: 2, neural network hidden layers: [1024, 1024].
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Table 5.6: Success percentages and rewards, 200 bus system with contingencies

Random
Seed

Success
Percentage

Success
Percentage,
O.O.B.

Percent
Episodes
Start
O.O.B.

Mean
Reward

0 18.32 17.71 99.26 -157.30
1 28.4 27.97 99.38 315.61
2 29.98 29.49 99.30 279.00
Overall
Mean 25.57 25.06 99.31 145.77
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Figure 5.10: Comparison of random, DRL, and graph-based agents, 200 bus system, with contin-
gencies

In this case, both Figures 5.7a and 5.9a show learning curves that lack monotonistic behavior,

while Figure 5.8a has a relatively linear section beginning before training episode 10,000. Despite
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the lack of a linear learning curve for the experiment with a random seed of 2, this experiment

obtained the highest success rates as can be seen in Table 5.6.

As can be seen from Tables 5.6 and 5.3, the DRL agent consistently significantly outperforms

the random agent. Interestingly, in the presence of contingencies the DRL agent’s best out-of-band

success rate (29.49%, random seed = 2) is quite close to the graph-based agent’s corresponding

success rate (31.96%).

5.2.4 Results for Agents with Additional Training

This subsection builds upon the results presented in Sections 5.2.2 and 5.2.3. The agents from

the experiments with the highest out-of-band success rate from these two sections were trained for

an additional 2,000,000 time steps. The additional training is carried out as described in Section

4.6.6. Additional training results without and with contingencies are presented in Figures 5.11 and

5.12, respectively. The agent acting in the environment without contingencies saw a slight uptick

in out-of-band success rate, increasing from 23.47% to 24.12% while the agent which experienced

contingencies saw a large decline in success, decreasing from 29.49% to 15.07%. It’s clear from

Figure 5.12a that toward the end of the additional training with contingencies the agent’s average

rewards saw a major decline.
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(a) Training: average rewards (b) Training: number of actions taken
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Figure 5.11: Training and testing rewards and actions: 200 bus system without contingencies,
additional training, random seed: 0, neural network hidden layers: [1024, 1024].
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(a) Training: average rewards (b) Training: number of actions taken
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Figure 5.12: Training and testing rewards and actions: 200 bus system with contingencies, addi-
tional training, random seed: 0, neural network hidden layers: [1024, 1024].
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5.3 Results: 500 Bus Case

Results for the 500 bus test system are described in this section. Since the 500 bus system is

roughly double the size of the 200 bus system (see Sections 5.1.1 and 5.1.2 for object counts), the

neural network hidden layers used for the 500 bus system have 2,048 neurons each (as opposed to

1,024 used for the 200 bus case). Training was carried out for 3,000,000 time steps. More training

would have been performed had time permitted.

5.3.1 Results, Random and Graph-Based Agents

The following subsections present testing results for the random and graph-based agents. Re-

sults for the three individual testing runs as well as the overall mean are reported.

5.3.1.1 No Contingencies

Tables 5.7 and 5.8 depict results for the random and graph-based agents when no single line

contingencies are applied. It can be seen that approximately 92.31% of all testing episodes start

with out-of-band voltages. The random agent is successful in fixing voltage issues in 17.43%

of episodes which begin O.O.B., while the graph-based agent is successful in 53.02% of O.O.B.

episodes.

Table 5.7: Success percentages and rewards, 500 bus system without contingencies, random agent

Random
Seed

Success
Percentage

Success
Percentage,
O.O.B.

Percent
Episodes
Start
O.O.B.

Mean
Reward

0 23.68 17.66 92.66 -1554.15
1 23.66 17.09 91.98 -1528.12
2 23.88 17.55 92.30 -1547.21
Overall
Mean 23.74 17.43 92.31 -1543.16
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Table 5.8: Success percentages, 500 bus system without contingencies, graph-based agent

Random
Seed

Success
Percentage

Success
Percentage,
O.O.B.

Percent
Episodes
Start
O.O.B.

0 56.44 52.99 92.66
1 57.40 53.69 91.98
2 56.04 52.37 92.30
Overall
Mean 56.63 53.02 92.31
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5.3.1.2 Single Line Contingencies

Tables 5.9 and 5.10 depict results for the random and graph-based agents when single line

contingencies are applied. It can be seen that approximately 93.17% of all testing episodes start

with out-of-band voltages. The random agent is successful in fixing voltage issues in 16.56%

of episodes which begin O.O.B., while the graph-based agent is successful in 50.87% of O.O.B.

episodes.

Table 5.9: Success percentages and rewards, 500 bus system with contingencies, random agent

Random
Seed

Success
Percentage

Success
Percentage,
O.O.B.

Percent
Episodes
Start
O.O.B.

Mean
Reward

0 21.88 16.54 93.60 -1582.15
1 21.98 15.86 92.68 -1569.83
2 22.90 17.29 93.22 -1539.96
Overall
Mean 22.25 16.56 93.17 -1563.98

Table 5.10: Success percentages, 500 bus system with contingencies, graph-based agent

Random
Seed

Success
Percentage

Success
Percentage,
O.O.B.

Percent
Episodes
Start
O.O.B.

0 53.52 50.34 93.60
1 54.68 51.10 92.68
2 54.48 51.17 93.22
Overall
Mean 54.23 50.87 93.17
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5.3.2 Results, DRL Agent, No Contingencies

Training and testing results for the DRL agents when single-line contingencies are not applied

are shown in Figures 5.13, 5.14, and 5.15. Table 5.11 presents testing success rates and rewards for

the DRL agents. Figure 5.16 presents a comparison of the random, DRL, and graph-based agents.

Figures 5.13a and 5.15a show increased rewards over time, while Figure 5.14a shows an extreme

drop-off in rewards toward the end of training. The best agent was successful in fixing voltage

problems in 21.50% of episodes which began with out-of-band voltages. This is slightly better

than the corresponding random agent (17.43%) but significantly worse than the corresponding

graph-based agent (52.37%).
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(a) Training: average rewards (b) Training: number of actions taken
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Figure 5.13: Training and testing rewards and actions: 500 bus system without contingencies,
random seed: 0, neural network hidden layers: [2048, 2048].
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(a) Training: average rewards (b) Training: number of actions taken
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Figure 5.14: Training and testing rewards and actions: 500 bus system without contingencies,
random seed: 1, neural network hidden layers: [2048, 2048].
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(a) Training: average rewards (b) Training: number of actions taken
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Figure 5.15: Training and testing rewards and actions: 500 bus system without contingencies,
random seed: 2, neural network hidden layers: [2048, 2048].
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Table 5.11: Success percentages and rewards, 500 bus system without contingencies, DRL agent

Random
Seed

Success
Percentage

Success
Percentage,
O.O.B.

Percent
Episodes
Start
O.O.B.

Mean
Reward

0 23.14 20.38 92.66 -179.805
1 8.02 2.46 91.98 -4471.18
2 23.82 21.50 92.30 -168.83
Overall
Mean 18.33 14.78 92.31 -1606.60
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Figure 5.16: Comparison of random, DRL, and graph-based agents, 500 bus system, no contin-
gencies
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5.3.3 Results, DRL Agent, With Single Line Contingencies

Training and testing results for the DRL agents when single-line contingencies are applied

are shown in Figures 5.17, 5.18, and 5.19. None of these figures show a consistent increase in

rewards over time, though Figures 5.18a and 5.19a do have upticks toward the end of training.

Table 5.12 presents results for the DRL agents and Figure 5.16 presents a comparison of the ran-

dom, DRL, and graph-based agents. The best agent was successful in fixing voltage problems in

26.28% of episodes which began with out-of-band voltages. This is significantly better than the

corresponding random agent (17.29%) but significantly worse than the corresponding graph-based

agent (51.17%).

111



(a) Training: average rewards (b) Training: number of actions taken
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Figure 5.17: Training and testing rewards and actions: 500 bus system with contingencies, random
seed: 0, neural network hidden layers: [2048, 2048].
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(a) Training: average rewards (b) Training: number of actions taken
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Figure 5.18: Training and testing rewards and actions: 500 bus system with contingencies, random
seed: 1, neural network hidden layers: [2048, 2048].
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(a) Training: average rewards (b) Training: number of actions taken
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Figure 5.19: Training and testing rewards and actions: 500 bus system with contingencies, random
seed: 2, neural network hidden layers: [2048, 2048].
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Table 5.12: Success percentages and rewards, 500 bus system with contingencies

Random
Seed

Success
Percentage

Success
Percentage,
O.O.B.

Percent
Episodes
Start
O.O.B.

Mean
Reward

0 7.40 3.21 93.60 -3392.79
1 30.24 25.10 92.68 -441.74
2 30.30 26.28 93.22 42.96
Overall
Mean 22.65 18.19 93.17 -1263.86
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Figure 5.20: Comparison of random, DRL, and graph-based agents, 500 bus system, with contin-
gencies
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5.4 Discussion

In both Sections 5.2 and 5.3, no DRL agent ever met or exceeded the success rate of the graph-

based agent. In most cases, the DRL agent’s performance was better than the random agent’s

performance. It’s interesting to note that the graph-based agent had a significantly higher success

rate for the 200 bus system than the 500 bus system. It was also found when pre-screening power

flow cases that a higher percentage of cases converged for the 500 bus system than the 200 bus

system.

For both the 200 and 500 bus systems, DRL agent success rates in general increased when

contingencies were included. The agents operating in the contingency-free environments did not

receive line state observations, while the agents operating in environments with contingencies did

receive line state observations. The higher success rates in the environments with contingencies

may indicate that the neural networks for the contingency-free environments were too large, thus

destabilizing training. More investigation is needed to verify this hypothesis.

For the 200 bus system, two agents received additional training beyond the initial 2,000,000

time steps. It was found that this additional training did not significantly increase success rates.

Also for the 200 bus system, two of the three agents trained in the environment with contingencies

achieved success rates near to graph-based agents.
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6. CONCLUSIONS AND FUTURE WORK

This thesis provided an in-depth exploration of the application of deep reinforcement learn-

ing to the electric power transmission system voltage control problem. Primary software-related

contributions of the work include the development of a Python package which interfaces with

PowerWorld Simulator [30] and the development of open-source DRL environments for power

system voltage control [31]. The so-called “GridMind” architecture and experiments from [27]

were reproduced, and the shortcomings discussed. A novel deep-Q network algorithm modifica-

tion wherein the agent is not allowed to take the same action multiple times in any given training or

testing episode was shown to provide significant DRL performance improvements. Additionally, it

was shown that the min-max scaling of bus voltage observations can lead to performance improve-

ments as opposed to simply using per unit voltages. As opposed to the GridMind environment,

the environments presented in this work are scalable to larger power systems. Additionally, the

environments created for this work are capable of actuating switched shunts, which has not before

been demonstrated in the context of DRL for voltage control. DRL agents were trained to control

200 and 500 bus power systems developed at Texas A&M University in order to test the scalability

of DRL for voltage control [32,33]. While no DRL agents were able to exceed the performance of

the graph-based agents which were developed for comparison with DRL agents, there were cases

with both the 14 and 200 bus systems where DRL agent performance approached graph-based

agent performance.

The research presented in this thesis shows clear potential for using DRL to solve the voltage

control problem, but more work is needed to ensure DRL techniques can consistently outperform

conventional techniques.

Opportunities for future work are numerous. To name a few:

• Map observations onto a 2D geographically-based coordinate plane and leverage convolu-

tional neural networks (CNNs) instead of MLPs

117



• Tune hyper parameters

• Experiment with different neural network architectures

• Improve neural network training, e.g. use of drop out for pruning neural networks

• Scale or normalize rewards with scheme 1 (see Section 4.4.1) by pre-running episodes with

random actions to obtain a representation of the possible reward distribution

• Modify reward scheme 1 to never penalize the no-op action

• Modify reward scheme 2 (see Section 4.4.2) to provide more reward tiers

• Modify environments such that the no-op action terminates the episode

• Include sensitivities from PowerWorld in observations provided to the DRL agent

• Investigate methods for determining when to stop training

• Include whether or not generators are at var limits in observation space

• Train with time series and stacked observations rather than snapshot cases

• Compare DRL performance with that of expert human operators

• Test DRL performance with even larger power system cases, e.g. 2000 buses

• Include on-load tap-changing (OLTC) transformers in action space

• Create environments which only control shunts and taps, not generator voltage set points

• Move beyond the voltage control problem into security-constrained optimal power flow

Of the items mentioned above, it is believed that some of the most immediately useful ex-

periments include using CNNs with geographically arranged observation data, improving neural

network training with drop out (or other regularization techniques), changing the no-op action to

always result in a reward of 0.0 and terminate the current episode, and to include observations

related to generator var limits.
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İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Hen-

riksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van

Mulbregt, and S. . . Contributors, “SciPy 1.0–Fundamental Algorithms for Scientific Com-

puting in Python,” arXiv e-prints, p. arXiv:1907.10121, Jul 2019.

[37] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-

fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,

C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,

122

https://www.powerworld.com/
https://github.com/mzy2240/ESA
https://github.com/blthayer/gym-powerworld
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/
https://www.python.org/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/


V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and

X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015.

Software available from tensorflow.org.

[38] F. Chollet et al., “Keras.” https://keras.io, 2015.

[39] W. Tinney and W. Meyer, “Solution of large sparse systems by ordered triangular factoriza-

tion,” IEEE Transactions on Automatic Control, vol. 18, pp. 333–346, August 1973.

[40] W. F. Tinney, V. Brandwajn, and S. M. Chan, “Sparse vector methods,” IEEE Transactions

on Power Apparatus and Systems, vol. PAS-104, pp. 295–301, Feb 1985.

[41] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse,

O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu, “Stable

baselines.” https://github.com/hill-a/stable-baselines, 2018.

[42] Z. Wang, N. de Freitas, and M. Lanctot, “Dueling network architectures for deep reinforce-

ment learning,” CoRR, vol. abs/1511.06581, 2015.

[43] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-

learning,” CoRR, vol. abs/1509.06461, 2015.

[44] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” 2015.

[45] B. Thayer, “drl-powerworld.” https://github.com/blthayer/drl-powerworld, 2020.

[46] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics, and

function using networkx,” in Proceedings of the 7th Python in Science Conference (G. Varo-

quaux, T. Vaught, and J. Millman, eds.), (Pasadena, CA USA), pp. 11 – 15, 2008.

[47] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik,

vol. 1, pp. 269–271, December 1959.

123

https://keras.io
https://github.com/hill-a/stable-baselines
https://github.com/blthayer/drl-powerworld

	ABSTRACT
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION AND LITERATURE REVIEW
	Current Trends in the Electric Power System and Industry
	Electric Grid Reactive Power and Voltage Control
	Reinforcement Learning
	Reinforcement Learning for Power System Control
	Overview of Thesis

	SOFTWARE DEVELOPED AND USED FOR DEEP REINFORCEMENT LEARNING
	Software Tools
	Python
	PowerWorld
	OpenAI's Gym and Baselines

	PowerWorld/Python Connector - Easy SimAuto (ESA)
	PowerWorld+ESA Gym Environment
	Overview
	Environment Initialization
	Episode Initialization
	System Loading
	Generators - Active Power
	Generators - Voltage Set Point
	Lines and Shunts

	Observation Design
	Reward Design

	Applying Reinforcement Learning to the Voltage Control Problem
	Algorithm and Neural Network Selection
	Algorithm and Hyper Parameters
	Neural Networks

	Power System Cases


	REPRODUCING THE ``GRIDMIND'' EXPERIMENT
	Overview of GridMind
	Environment and Algorithm
	States, Rewards, and Actions
	States
	Rewards
	Actions

	Training
	Environment Initialization
	Episode Termination
	Training Duration

	Results

	Reproduction of GridMind
	DQN Algorithm
	Training Procedures
	Testing Procedures

	GridMind Reproduction Results and Discussion
	Episode Initialization Discussion
	Results - No Contingencies
	Results - With Single Line Contingencies


	GridMind with Modified Episode Initialization
	GridMind with Modified Episode Initialization and Unique Actions per Episode
	Comparison of Modified and Unmodified DQN Algorithm

	GridMind Conclusions and Discussion

	TESTING ARCHITECTURAL IMPROVEMENTS ON THE IEEE 14 BUS SYSTEM
	Overview
	Observations
	Action Space
	Reward Design
	Reward Scheme 1: Per-Bus Movement Magnitude Scheme
	Reward Scheme 2: Clipped and Simplified Movement Scheme

	Random and Graph-Based Agents for Comparison
	Graph-Based Agent
	Results for Random and Graph-Based Agents with the 14 Bus System

	Results
	Abbreviations, Terminology, and Methodology
	Bus Voltage Observations Only
	Per Unit Voltage Observations with Reward Scheme 1
	Per Unit Voltage Observations with Reward Scheme 1 and the Unique-Action-Per-Episode Algorithm Modification
	Min-Max Scaled Voltage Observations with Reward Scheme 1
	Min-Max Scaled Voltage Observations with Reward Scheme 1 and the Unique-Action-Per-Episode Algorithm Modification
	Min-Max Scaled Voltage Observations with Reward Scheme 2 and Unique-Actions-Per-Episode Algorithm Modification
	Comparison and Discussion

	Bus Voltage Observations and Generator State Observations
	Per Unit Voltage Observations with Reward Scheme 1
	Per Unit Voltage Observations with Reward Scheme 1 and the Unique-Action-Per-Episode Algorithm Modification
	Min-Max Scaled Voltage Observations with Reward Scheme 1
	Min-Max Scaled Voltage Observations with Reward Scheme 1 and the Unique-Action-Per-Episode Algorithm Modification
	Min-Max Scaled Voltage Observations with Reward Scheme 2 and Unique-Actions-Per-Episode Algorithm Modification
	Comparison and Discussion

	Bus Voltage Observations and Branch State Observations
	Per Unit Voltage Observations with Reward Scheme 1
	Per Unit Voltage Observations with Reward Scheme 1 and the Unique-Action-Per-Episode Algorithm Modification
	Min-Max Scaled Voltage Observations with Reward Scheme 1
	Min-Max Scaled Voltage Observations with Reward Scheme 1 and the Unique-Action-Per-Episode Algorithm Modification
	Min-Max Scaled Voltage Observations with Reward Scheme 2 and Unique-Actions-Per-Episode Algorithm Modification
	Comparison and Discussion

	Bus Voltage, Generator State, and Branch State Observations
	Per Unit Voltage Observations with Reward Scheme 1
	Per Unit Voltage Observations with Reward Scheme 1 and the Unique-Action-Per-Episode Algorithm Modification
	Min-Max Scaled Voltage Observations with Reward Scheme 1
	Min-Max Scaled Voltage Observations with Reward Scheme 1 and the Unique-Action-Per-Episode Algorithm Modification
	Min-Max Scaled Voltage Observations with Reward Scheme 2 and Unique-Actions-Per-Episode Algorithm Modification
	Comparison and Discussion

	Additional Training

	Discussion and Conclusions

	SCALING TO LARGER ELECTRIC GRIDS
	Overview
	200 Bus Case
	500 Bus Case
	Environment Initialization
	Observation Spaces
	Action Spaces
	Reward Design
	Graph-Based Agent Modification
	Training and Testing Procedures

	Results: 200 Bus Case
	Results, Random and Graph-Based Agents
	No Contingencies
	Single Line Contingencies

	Results, DRL Agent, No Contingencies
	Results, DRL Agent, With Single Line Contingencies
	Results for Agents with Additional Training

	Results: 500 Bus Case
	Results, Random and Graph-Based Agents
	No Contingencies
	Single Line Contingencies

	Results, DRL Agent, No Contingencies
	Results, DRL Agent, With Single Line Contingencies

	Discussion

	CONCLUSIONS AND FUTURE WORK
	REFERENCES

