
AN ENSEMBLE APPROACH FOR EXPLANATION-BASED ADVERSARIAL DETECTION

A Thesis

by

RAJ VARDHAN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Guofei Gu
Committee Members, Xia Hu

Jeyavijayan Rajendran
Head of Department, Duncan M. (Hank) Walker

May 2021

Major Subject: Computer Science

Copyright 2021 Raj Vardhan

ABSTRACT

Recent research has shown Deep Neural Networks (DNNs) to be vulnerable to adversarial

examples that induce desired misclassifications in the models. Such risks impede the application

of machine learning in security-sensitive domains. Several defense methods have been proposed

against adversarial attacks to detect adversarial examples at test time or to make machine learning

models more robust. However, while existing methods are quite effective under blackbox threat

model, where the attacker is not aware of the defense, they are relatively ineffective under whitebox

threat model, where the attacker has full knowledge of the defense.

In this thesis, we propose ExAD, a framework to detect adversarial examples using an en-

semble of explanation techniques. Each explanation technique in ExAD produces an explanation

map identifying the relevance of input variables for the model’s classification. For every class in

a dataset, the system includes a detector network, corresponding to each explanation technique,

which is trained to distinguish between normal and abnormal explanation maps. At test time, if

the explanation map of an input is detected as abnormal by any detector model of the classified

class, then we consider the input to be an adversarial example. We evaluate our approach using

six state-of-the-art adversarial attacks on three image datasets. Our extensive evaluation shows

that our mechanism can effectively detect these attacks under blackbox threat model with limited

false-positives. Furthermore, we find that our approach achieves promising results in limiting the

success rate of whitebox attacks.

ii

DEDICATION

To my father and mother, who have supported and inspired me for all my endeavours in life.

iii

ACKNOWLEDGMENTS

I would like to express my deepest appreciation and gratitude to my advisor Prof. Gu for

his guidance and mentorship in carrying out the research work detailed in this thesis. I am also

thankful to the committee members, Dr. Hu and Dr. Rajendran, for their insightful reviews that

helped improve this work. I would also like to acknowledge the contributions of Ninghao Liu,

Weijie Fu, Zhenyu Hu, and Phakpoom Chinprutthiwong who helped me in revising the writing

and in certain aspects of experimentation and design of the proposed system.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

The thesis committee for this work include Dr. Guofei Gu (Chair) from the Department of

Computer Science, Dr. Xia Hu of the Department of Computer Science and Dr. Jeyavijayan

Rajendran of the Department of Electrical Engineering at Texas A& M University.

In an early stage of this work, the design of an explanation-based adversarial detection mecha-

nism was reviewed by Ninghao Liu, Prof. Hu, and Prof. Gu.

The analysis of a state-of-the-art system called MagNet was done in collaboration with Zhenyu

Hu.

Issues encountered in conducting the whitebox attack were resolved in collaboration with Wei-

jie Fu.

Funding Sources

This material is based upon work supported in part by the National Science Foundation (NSF)

under Grant no. 1816497. Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily reflect the views of NSF.

v

NOMENCLATURE

DNN Deep Neural Network

CNN Convolutional Neural Network

JSMA Jacobian-based Saliency Map Attack

BIM Basic Iterative Method

MIM Momentum Iterative Method

CW Carlini and Wagner Attack

IG Integrated Gradients

GBP Guided Backpropagation

LRP Layer-wise Relevance propagation

PA Pattern Attribution

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES. x

1. INTRODUCTION. 1

2. BACKGROUND AND RELATED WORK . 5

2.1 Neural networks . 5
2.2 Adversarial examples . 5
2.3 Existing attacks. 6

2.3.1 Jacobian-based Saliency Map Attack (JSMA) . 6
2.3.2 Fast Gradient Sign Method (FGSM) . 7
2.3.3 Basic Iterative Method (BIM): . 7
2.3.4 Carlini and Wagner Attack (CW): . 8
2.3.5 Momentum Iterative Method (MIM) . 8

2.4 Existing work on adversarial detection. 9
2.5 Explainable machine learning . 10

3. DESIGN . 12

3.1 Threat model . 12
3.2 Overview of ExAD. 12
3.3 Generation of explanations . 14
3.4 Detector models . 17

3.4.1 Detection using a CNN-based binary classifier . 17
3.4.2 Detection based on reconstruction error . 17

3.5 Test-time detection of adversarial examples . 19

vii

4. EXPERIMENTS . 20

4.1 Experimental settings . 20
4.1.1 Environment . 20
4.1.2 Image Datasets. 20
4.1.3 Training the Target Models . 21
4.1.4 Generating Adversarial Examples . 21
4.1.5 Training ExAD-CNN and ExAD-AE . 23
4.1.6 Comparison . 25

4.2 Performance on normal examples . 25
4.3 Evaluation on blackbox attacks. 27
4.4 Generalizability of ExAD-CNN . 28
4.5 Comparison . 30
4.6 Evaluation with adaptive adversaries. 31

4.6.1 Whitebox Attack Approach . 32
4.6.2 Illustration of whitebox attack . 33
4.6.3 Evaluation of Whitebox Attack . 35

5. DISCUSSION . 39

5.1 Fragility of Explanations. 39
5.1.1 Hiding the attack from explanations . 39
5.1.2 Changing the explanation but not the classification . 39

5.2 Limitations . 41

6. CONCLUSION. 43

REFERENCES . 44

viii

LIST OF FIGURES

FIGURE Page

1.1 Intuition behind the proposed ExAD framework. 2

3.1 Similarity in normal explanations. 13

3.2 Distinguishability between normal and abnormal explanations. 14

3.3 Illustration of the proposed ExAD framework. 18

4.1 Similarity in explanation maps across adversarial attacks. 29

4.2 Illustration of whitebox attack. 34

4.3 Transferability of whitebox attack. 36

4.4 Transferability of whitebox attack on individual datasets. 37

5.1 Effect of adding random perturbations on explanations. 40

5.2 Impact of fragility of explanations.. 41

ix

LIST OF TABLES

TABLE Page

4.1 Evaluation of blackbox attacks. 21

4.2 Architecture of the image classifiers to be defended.. 22

4.3 Training and architecture hyperparameters of the target classifiers. 22

4.4 Architecture and hyperparameters of ExAD-CNN. 24

4.5 Architecture and hyperparameters of ExAD-AE. 24

4.6 Detection rate of ExAD on blackbox attacks. 26

4.7 Classification accuracy on normal examples with and without defense. 27

4.8 Detection rate of ExAD-CNN with limited attacks used in training. 28

4.9 False-positive rates obtained for MagNet [1], FS [2], and LID [3]. 28

4.10 Evaluation of whitebox attacks. 32

5.1 Hyperparameters used in whitebox attack.. 42

x

1. INTRODUCTION

In recent years, Deep Neural Networks (DNNs) are being increasingly adopted in a wide range

of tasks such as face-recognition [4], natural language processing [5], and malware classification

[6]. This trend can be attributed to the superior performance achieved by DNNs in solving com-

putational tasks that rely on high-dimensional data. However, increasing adoption of DNNs to

security-critical applications, such as self-driving cars and malware classification, is hindered by

the vulnerability of DNNs to adversarial attacks [7, 8, 9, 10]. Specifically, minor yet carefully

computed perturbations to natural inputs can cause DNNs to misclassify.

Several methods have been proposed for defending against adversarial examples. One direction

of research is to improve the robustness of neural networks, such as through adversarial training

[9] or gradient masking [11]. However, subsequent works have shown that neural network archi-

tectures modified with such techniques can still be attacked [12]. Another research direction is

adversarial detection, where the goal is to detect if an input is an adversarial example or a normal

example. Early works in this area either used a second neural network [13, 14, 15], or statisti-

cal tests [16, 17, 18] to classify between normal and adversarial examples. However, Carlini et

al. [19] showed that while most of these mechanisms are successful against blackbox attacks, they

lack robustness to whitebox attacks, where the adversary has knowledge of the defense. Although

many recent methods have enhanced the detection of blackbox adversarial attacks [1, 20, 2, 3],

improving the robustness to whitebox attacks remains an open problem.

One way of uncovering the reasons for the resulting misclassification of an adversarial example

can be understanding why the model predicts what it predicts through explanation techniques [21,

22, 23, 24, 25, 26, 27, 28]. For an image input, the result from an explanation technique encodes the

relevance of each pixel for the prediction result and is commonly referred to as an explanation map.

Our hypothesis is that the explanation map of an adversarial example being misclassified as the

target class may not be consistent with explanation maps generated for correctly classified normal

examples of that class. We term the former type as abnormal explanations and the latter as normal

1

Figure 1.1: Intuition behind the proposed ExAD framework.

explanations throughout this paper. Figure 1.1 shows an intuitive example where we can observe

that the explanation map of an adversarial example classified into the shirt class (bottom-right) is

quite distinguishable from that of a normal example of the targeted class (bottom-left). Overall,

the distinguishability between normal and abnormal explanation maps guides us in exploring the

effectiveness of using explainability as a tool for detecting adversarial examples.

However, a defense method that relies on a single explanation technique may still not be ro-

bust under whitebox setting. An adaptive adversary can leverage recent findings which show that

explanations can be unreliable [29] and can be manipulated to produce a target explanation map

[30, 31]. Such an adaptive adversary can generate adversarial examples that not only fool the target

model into producing desired misclassifications, but also fool the targeted explanation technique

into producing normal explanation maps. Towards building a mitigation strategy, we take motiva-

tion from previous work on N-variant systems [32]. To provide higher resistance against attacks

on software vulnerabilities, these systems combine multiple variants with disjoint exploitation sets

into a single system. In context of our work, we propose to use an ensemble of multiple kinds of

explanation techniques. The benefit of this approach is that it requires an adaptive adversary to

construct an adversarial example that fools the target model and simultaneously fools all explana-

2

tion techniques. By incorporating diverse explanation techniques, we can reduce the probability

that an attacker will achieve this goal.

In this thesis, using the above insights, we propose ExAD, an Ensemble approach for Explanation-

based Adversarial Detection. ExAD uses an ensemble of explanation techniques wherein each

technique provides an explanation map for every classification decision by a target model. To in-

troduce explanation diversity, we include both gradient-based [21, 22, 33, 24, 23] and propagation-

based [26, 27, 23] explanation techniques in ExAD. Furthermore, for any class in a dataset, the

system includes a detector model associated with each explanation technique. The detector model

determines if an explanation map produced by the respective explanation technique is normal or

not for that class. The key idea here is to use the distinguishability between normal and abnormal

explanations for any class. Finally, for a test input classified into a particular class, if the explana-

tion map produced by any technique is detected as abnormal by the corresponding detector model,

then we classify the input as an adversarial example.

To assess the effectiveness of ExAD, we evaluate it using six state-of-the-art adversarial attacks

on three image datasets, namely MNIST [34], Fashion-MNIST (FMNIST) [35] and CIFAR-10

[36]. We first perform the evaluation under the blackbox threat model. Our experimental results

show that we can effectively detect all attacks, achieving a detection rate above 98% (many having

100% detection rate) across the three datasets with a low false-positive rate of under 1.1%. We

also compare ExAD with three state-of-the-arts Magnet [1], Feature Squeezing [2], and LID [3].

Our results show that ExAD can consistently achieve high detection rates with low false-positive

rates, while state-of-the-art systems perform very well only on a subset of attacks or datasets.

More importantly, we further evaluate ExAD under whitebox threat model. We build on previ-

ous research [31, 30], and create a strong adaptive adversary to generate adversarial examples that

fool the target model as well as a target explanation technique. Through experimental results, we

make an interesting finding on the transferability of adaptive attacks on explanation-based detector

models. We observe that on targeting a propagation-based technique, the resulting adversarial ex-

amples are more successful in fooling detector models of other propagation-based techniques (into

3

misclassifying an explanation map as normal) as compared to fooling detector models of gradient-

based techniques. Likewise, we find that targeting a gradient-based technique transfers better to

the detector model of the other gradient-based technique compared to those of propagation-based

techniques. Using an ensemble of detector models corresponding to diverse techniques, ExAD

achieves a mean detection rate of over 88% for this whitebox attack across the three datasets. The

results indicate that our proposed defense can significantly limit the success rate of such whitebox

attacks. Additionally, we find that our ensemble approach makes it considerably harder for attack-

ers to perform more advanced whitebox attacks, such as simultaneously targeting all explanation

techniques.

4

2. BACKGROUND AND RELATED WORK

2.1 Neural networks

A DNN is a computational graph of elementary computing units, called neurons, organized into

layers that represent the extraction of successive representations from the input. We use notations

consistent with previous work [20, 19] to denote an m-class DNN as a function f : Rd → Rm.

Each layer of the network takes as input the result from the previous layer. Neurons in adjacent

layers are connected with links that have associated weights and biases. Some layers involve an

activation function such as the non-linear ReLU [37]. Thus, the i-th layer of the network computes

f i(x) = ReLU(W if i−1(x) + bi)

where W i is a weight matrix, bi is a vector of bias values, and ReLU is a non-linear activation

function. Let Z(x) denote a vector of m elements representing the output of the last layer (before

softmax), known as logits, i.e., Z(x) = fn(x). A softmax function is used to obtain the normalized

output of the network given by y = f(x) = softmax(Z(x)) where x ∈ Rd and y ∈ Rm with

yi representing the probability of the input being recognized as class i. Then, we represent the

classification of f(·) on x by

C(x) = argmaxi(f(x)i)

At test-time, a trained model is provided with test inputs Xt, and for each input xt ∈ Xt, the model

assigns its classification to be C(xt) = argmaxi(f(xt)i). The result is considered correct if the

classification C(xt) is same as the true label C∗(xt).

2.2 Adversarial examples

Adversarial examples are crafted by imperceptibly perturbing normal inputs to cause DNNs

into misclassifying them. Formally, an input to the classifier f(·) is termed as normal if it occurs

naturally [1] or was benignly created [19]. Then, given a normal input x ∈ Rd with correctly

5

classified class C(x) = c, we call x′ an (untargeted) adversarial example if it is close to x, i.e.,

∆(x, x′) < ε and C(x′) 6= c, where ∆(.) denotes a measure of similarity between two inputs and

ε is a threshold that limits the permissible perturbations in the adversarial example. In a more

restrictive case, an attacker could also target a desired class t 6= c and find a x′ close to x such that

C(x) = c and C(x′) = t. We call x′ a targeted adversarial example.

In the case of images, the closeness function ∆(.) and threshold ε should be chosen such that

the adversarial example and its seed image (normal counterpart) are indistinguishable to a human

eye. To define ∆(.), a popular distance metric is the Lp norm, defined as

‖d‖p =
(n∑
i=0

|vi|p
) 1

p

Common choices for Lp include: L0, a measure of the number of pixels which have different values

in corresponding positions in two images; L2, which measures the standard Euclidean distance; or

L∞, a measure of the maximum change among all pixels at corresponding places in two images.

2.3 Existing attacks

Researchers have developed a number of methods for constructing adversarial examples. Broadly,

these methods can be categorized into gradient-based attacks [12, 9, 7], which leverage gradient-

based optimizations, and content-based attacks [38, 39], where perturbations are made in accor-

dance with the semantics of the input content to simulate real-world scenarios. In this paper, we

focus on six state-of-the-art gradient-based attacks for neural network classifiers, namely Jacobian-

based Saliency Map Attack (JSMA) [8], Basic Iterative Method (BIM) [40], Momentum Iterative

Method (MIM) [41], and Carlini and Wagner Attacks (CW) [12] tailored to L0, L2, and L∞ norms.

2.3.1 Jacobian-based Saliency Map Attack (JSMA)

Papernot et al. proposed the Jacobian-based Saliency Map Attack (JSMA) [8], which is a

greedy algorithm that optimizes the L0 distance. The attack is carried out in an iterative process.

In each iteration, the attack first computes the Jacobian, i.e., the forward derivative of a DNN.

Next, it generates an adversarial saliency map which is used to measure the degree to which each

6

output class label will be impacted when individual pixels are modified by using the Jacobian

matrix. Then, the most relevant pixel is perturbed to obtain the highest benefit towards getting

the model to misclassify the adversarial example. Finally, the iterative process concludes when

an adversarial example is found or if the adversarial threshold is exceeded. While JSMA only

modifies a small number of pixels, it has a very high computational cost as it involves computing

the Jacobian matrix, making it impractical for high dimensional inputs.

2.3.2 Fast Gradient Sign Method (FGSM)

Goodfellow et al. proposed the fast gradient sign method [9] to generate adversarial examples.

For a normal example x, FGSM changes all the pixels simultaneously with the same magnitude

along the gradient direction and finds an adversarial example x′ in the L∞ neighborhood of x. The

gradient sign is computed using backpropagation and is quite fast. This makes FGSM an efficient

attack algorithm. Formally, FGSM attack generates an adversarial example using the following

equation:

x′ = x+ ε · sign(OxJ(f(x)))

where O represents the gradient, J(·) is the loss function used to train the model F (·), and ε is a

parameter chosen to be sufficiently small for the adversarial example to be hard to detect.

2.3.3 Basic Iterative Method (BIM):

Kurakin et al. extended the FGSM attack using an iterative optimization method [40]. For a

normal example x, in each iteration, the attack applies the fast gradient sign method with a small

step size, and clips pixel values of intermediate results after each step to ensure that they are in an

L∞ neighbourhood of the original example x. Formally, BIM performs the following update in the

Nth iteration:

xadvN = Clipx,ε =
{
xadvN−1 + α · sign(OxJ(xadvN−1, ytrue))

}
where xadv0 is the original correctly classified input and α is the step-size.

7

2.3.4 Carlini and Wagner Attack (CW):

Carlini and Wagner proposed three attack algorithms tailored to different Lp norms, namely,

L2, L0, and L∞. Following notations in a previous work [20], we refer to these attacks as CW2,

CW0, and CW∞ respectively. With the distance metric instantiated with a particular Lp norm, the

overall attack approach can be formalized as the following optimization problem. Given original

example x, find perturbation δ that solves

minimize ‖δ‖p + α · f(x+ δ)

such that x+ δ ∈ [0, 1]n

where f(.) is an objective function such that C(x + δ) 6= C∗(x)), i.e., the classifier makes a

misclassification, if and only if f(x+ δ) ≤ 0, and α > 0 is a hyperparameter.

The attack algorithm ensures the adversarial modification results in a valid example, i.e., 0 ≤

xi + δi ≤ 1 for all i. For this goal, it introduces a new variable w which it optimizes over instead

of δ

δi =
1

2
(tanh(wi) + 1)− xi

Since −1 ≤ tanh(wi) ≤ 1, it can be seen that 0 ≤ xi + δi ≤ 1, and therefore the resulting

adversarial example will be valid.

2.3.5 Momentum Iterative Method (MIM)

Dong et al. built upon the Basic Iterative Method (BIM) with an added momentum term

and proposed the Momentum Iterative Method (MIM). The technique accelerates gradient descent

based attack algorithms by accumulating a velocity vector in the direction of the gradient of the

loss function across iterations. For targeted attacks, the Momentum Iterative Method is formally

represented as:

gt+1 = µ · gt +
OxJ(f(xtadv), ytarget)

std(OxJ(f(xtadv), ytarget)

8

xt+1
adv = Clip[0,1]

(
xtadv − α · Clip[−2,2](round(gt+1))

)
where g0 = 0, x0adv = x, α = ε

T
with T being the number of iterations, std(•) is the standard

deviation and round(•) is rounding to nearest integer.

2.4 Existing work on adversarial detection

Adversarial detection is a defense approach with the goal of building a classifier g with a binary

output y ∈ {0, 1}, where labels 0 and 1 denote that the input instance is normal or adversarial,

respectively. We briefly review state-of-the-art works in detecting adversarial examples, and divide

them into three categories as below.

Training a Detector. First, we can use adversarial examples to train detectors. The input into

detectors can be chosen as data instances in raw feature space or the intermediate representation

space of the target model. Using the former strategy, Gong et al. show that a simple binary

classifier can learn to separate normal and adversarial instances [13]. In a related work, Grosse

et al. add a new class, solely for adversarial examples, in the output layer of the model [14].

But, modifying the model architecture impacts the accuracy on normal examples. Based on the

latter approach, Metzen et al. use representations generated by inner deep neural network layers

as inputs into detectors which are augmented to the classification network [15]. By freezing the

weights of the classification network before training the detectors, this method does not affect the

classification accuracy on normal examples. However, in subsequent work, Carlini et al. showed

that these detectors don’t generalize well and lack robustness to whitebox attacks [19]. In our

work, we mitigate the generalization challenge by including an attack-independent defense setting

(discussed in Section 3.4.2).

Statistical Metrics. Second, we can use statistical metrics to design detectors. Grosse et

al. [14] study two statistical distance measures, Maximum-Mean-Discrepancy and Energy Dis-

tance, where a sample is regarded as adversarial if it is rejected by statistical testing. Ma et al.

estimate an LID value which assesses the space-filling capability of the region around an example

by measuring the distance distribution with respect to its neighbors [3]. The authors demonstrate

9

that estimated LID of adversarial examples tends to be much higher than that of normal examples.

However, a challenge faced by these approaches is in developing more effective and transferable

metrics to separate clean instances from adversarial examples generated by different attacks.

Prediction Abnormality. Third, we can also resort to detecting the abnormality of input in-

stances. Meng and Chen proposed Magnet [1] which learns to approximate the manifold of normal

examples using autoencoders. Another method called Feature Squeezing [2] proposes reducing the

degree of freedom of an adversary, such as by smoothing images or minimizing their color depth.

Another recent work called Neural-network Invariant Checking (NIC) proposed leveraging the

provenance channel and the activation value distribution channel in DNNs by showing that ad-

versarial examples tend to violate either provenance invariant or value invariant [20]. However,

while these methods have improved the detection rates on blackbox attacks, they have shown very

limited success against whitebox attacks. Zhang et al. proposed a detection method based on

perturbation of saliency maps [42]. The authors find that on adding adversarial perturbations, the

saliency of the adversarial example is also perturbed compared to that of the seed image. However,

this difference between saliency may not be effective because, at test-time, we do not know the

class from which an adversarial example originated. Therefore, we do not know what its normal

saliency would look like had the example not been perturbed. Besides, explanations have also

been used by Liu et al. for a different goal of crafting adversarial examples [43]. In this paper,

we further explore the premise of using explanations, but to detect adversarial examples and based

on a fundamentally different approach. Our work was done concurrently with a similar approach

presented by Wang et al. [44]. In contrast, we have the following differentiating aspects. First, our

work offers a more detailed evaluation on whitebox attacks. Second, we provide a discussion on

the fragility of an explanations-based defense. Finally, we compare the proposed method with a

number of state-of-the-art detection systems.

2.5 Explainable machine learning

Our work utilizes recent advances in explainable machine learning. Specifically, we focus on

local explainability methods [22, 45] which explain the output of DNN models for a given input.

10

For computer vision models, these techniques identify which regions in an input image are most

responsible for the prediction result. The explanation result is often termed as a saliency map [21],

or more generally, an explanation map [31]. Naturally, our defense is compatible with models that

are inherently explainable (e.g., linear models) and models that produce an explanation result along

with the prediction [46, 47]. However, we focus on local explainability methods as they build on

top of existing models. This allows us to add our adversarial detection capability to any existing

blackbox model without sacrificing its prediction power for explainability, or putting the burden of

producing explanations during classification.

Among local explanation techniques, backpropagation-based methods have gained consid-

erable attention. These can be further categorized into the following. The first is gradient-

based techniques which rely on the gradient of the neural network function to generate expla-

nations [21, 22, 33, 24, 23]. The second category is propagation-based techniques [26, 27, 23].

These techniques view the neural network as a computational graph, and generate explanations by

starting with the prediction score at the output layer and progressively redistributing it backwards

by means of propagation rules until the input layer is reached. To achieve diversity in explanation

methods, we use both gradient-based and propagation-based explanation techniques, which we

discuss further in Section 3.3.

11

3. DESIGN

3.1 Threat model

In designing our defense, we assume that the attacker has complete knowledge of the target

classifier f(·) including its architecture and parameters. This is a conservative and practical as-

sumption, consistent with prior works [20, 2, 1]. Also, depending upon whether the attacker has

knowledge of the defense, we consider two types of threat models. First, we consider blackbox

attack, where the attacker does not have any knowledge of the defense mechanism. Second, we

consider whitebox attack, where the attacker has complete knowledge of the defense mechanism

including its structure and parameters. For ExAD, this implies that the attacker has full knowledge

of the explanation techniques and detector models.

3.2 Overview of ExAD

ExAD is a framework that uses an ensemble of explanation techniques to detect adversarial

examples. The role of explanation techniques is to allow ExAD to examine the reasons for the

misclassification of adversarial examples. Our hypothesis is that the explanations of adversarial

examples being misclassified as the target class (abnormal explanations) may not be consistent

with explanations generated for correct classifications of normal examples of that class (normal

explanations). Our design relies upon the consistency of normal explanations, and their distin-

guishability from abnormal explanations. We provide an intuitive example for the distinguishabil-

ity aspect in Figure 1.1. Further examples showing the consistency aspect can be found in Figure

3.1. The first row shows five normal examples from the Coat class of FMNIST dataset. The

third row shows normal examples from the Airplane class of CIFAR-10 dataset. The fifth row

shows normal examples of class Three from MNIST dataset. The second, fourth, and sixth rows

show corresponding explanations for the preceeding row using the IG, LRP, and GBP techniques,

respectively.

While we provide such motivating examples, it is worth noting that an explanation itself may

12

Figure 3.1: Similarity in normal explanations.

be incomprehensible to humans as recent work has shown neural networks to use non-robust fea-

tures (that may not align with human perception of a class) to make predictions [48]. Therefore,

even the distinguishability may not necessarily be apparent to humans. Nevertheless, we empiri-

cally show that we can train detector models to learn to distinguish between normal and abnormal

explanations.

An overview of our approach is as follows. First, we train the target model as usual on the clean

training set. Second, we use a set of diverse explanation techniques to generate explanation maps

for normal examples of each class. Third, for every class, we train a detector model corresponding

to each technique. The detector model identifies if the explanation map of an example is normal

for the classified class. We study two approaches to build the detector model: a binary classifier

13

Figure 3.2: Distinguishability between normal and abnormal explanations.

approach (where we use both normal and abnormal explanations) and an anomaly detection ap-

proach (where we only use normal explanations). Whereas the former setting makes the training

and validation process simple (once we have the required data), the motivation for the latter set-

ting is to make our defense attack-independent so that it is more likely to generalize to unknown

attacks. At test time, if the explanation map of an input is classified as abnormal by any detector

model of the classified class, then we consider it to be an adversarial example.

3.3 Generation of explanations

Given a neural network classifier f(·) and an input x, the explanation of the classification of

x is represented as an explanation map denoted by h : Rd → Rd. The explanation map h(x)

encodes the relevance score of every pixel in x for the neural network’s prediction. We consider

the following explanation generation techniques towards building an ensemble of methods.

• Gradient: The gradient of the output f(x) with respect to the input x is indicative of how

14

infinitesimal changes in each pixel can influence the output [21, 22]. The explanation map

using the gradient method is given by

h(x) =
∂f

∂x
(x)

• Gradient * Input (GTI): This method computes an element-wise product between the

gradient-based explanation map of Simonyan et al. [21] and the input to quantify the in-

fluence of each pixel on the prediction score [23]. Formally, the explanation map produced

by gradient * input is given by

h(x) = x� ∂f

∂x
(x)

• Integrated Gradients (IG): In contrast to GTI, which performs a single computation of the

gradient at the input x, integrated gradients computes the gradients at all points along a linear

path from a baseline x̄ to x, and averages them [24]. The baseline x̄ can be defined by the

user and is generally chosen as a black image. Formally,

h(x) = (x− x̄)�
∫ 1

α=0

∂f(x̄+ α(x− x̄))

∂x
dα

• Guided Backpropagation (GBP): This method is an extension of gradient-based explana-

tion with the key difference that it prevents backward flow of negative gradients through

non-linearities, such as ReLUs [25].

• Layer-wise Relevance propagation (LRP): To explain the prediction of class c, LRP [26,

27] starts with the output neuron of class c and goes backwards through the network by

following the z+ rule for all layers except the first.

Rl
i =

∑
j

xli(W
l)+ji∑

i x
l
i(W

l)+ji
Rl+1
j

Here, i and j are two neurons of consecutive layers, Rl
i denotes the relevance of i-th neuron

15

in the l-th layer, xli represents the activation vector, and (W l)+ji denotes the positive weight

between the two neurons. Then, to account for the bounded range of an input, we use the zB

rule in the first layer

R0
i =

∑
j

x0jW
0
ji − lj(W 0)+ji − hj(W 0)−ji∑

i(x
0
jW

0
ji − lj(W 0)+ji − hj(W 0)−ji)

R1
j

where l and h are the lowest and highest allowed pixel values, respectively.

• Pattern Attribution (PA): Kindermans et al. [28] proposed patter attribution as an improve-

ment over the LRP framework. The method is analogous to the backpropagation operation

with the weights in the backward pass replaced by element-wise multiplication of weights

W l and learned patterns Al.

While we considered all six of the above-mentioned explanation techniques to include in

ExAD, we found the performance of the gradient method (h(x) = ∂f
∂x

(x)) to be unacceptable

based on evaluations on the validation sets, whereas remaining techniques performed significantly

better. Therefore, in this work, ExAD uses an ensemble of k = 5 techniques- LRP, GBP, IG, PA,

and GTI.

Figure 3.2 shows examples of normal and abnormal explanations produced by different tech-

niques used in ExAD. When a test input xt is classified by the target model f(·) as class c, each of

the k techniques produce an explanation map for this classification. In column 1, the first, third,

and fifth rows show a normal example from FMNIST, CIFAR-10, and MNIST datasets, respec-

tively. In the same column, the second, fourth, and sixth rows show an adversarial example which

is misclassified as the class represented by the normal example in the preceding row. Columns 2-6

show the corresponding explanation maps produced by the five explanation techniques. The dis-

tinguishability between explanation maps of normal and adversarial examples allows the detector

models to determine if an explanation map is normal or not. In the following section, we discuss

how a set of k detector models, one corresponding to every explanation technique, evaluate the

explanation maps towards determining if xt is an adversarial example.

16

3.4 Detector models

The detector model determines if the explanation map of an input is normal or abnormal for

the classified class. We study the following two methods for building detector models.

3.4.1 Detection using a CNN-based binary classifier

First, we consider an approach of building a CNN-based binary classifier. We term this as the

CNN-based detector model and denote it as g(·). Under this setting, we refer to the defense as

ExAD-CNN. Below, we describe the training procedure for these detector models.

For every class c, we build a separate detector model gc,j(·) for each explanation technique hj .

At test-time, for an input classified as class c, the detector model gc,j(·) takes the explanation map

of the input, produced by the corresponding explanation technique hj , and classifies it as normal or

abnormal. We build this new model gc,j(·) as follows. We take every normal example xnormal from

class c, which is correctly classified by the target model f(·), and generate the explanation map

hj(xnormal) for its classification into that class. These explanation maps are considered as normal

explanations, and are labeled as negative class 0. Then, we generate a number of adversarial

examples using different adversarial attacks where the targeted class is c. Next, for each successful

adversarial example xadv, we generate the explanation map hj(xadv) for its classification as target

class c. These explanation maps are considered as abnormal explanations, and labeled as positive

class 1. Then, we train gc,j(·) on this labeled training set using a CNN-based architecture.

3.4.2 Detection based on reconstruction error

In this approach, we avoid the requirement of adversarial examples to train a detector model,

and thereby make the defense more likely to generalize on unknown attacks. Here, we propose

using reconstruction error by an autoencoder to determine if the explanation map of a test example

is normal or not. We term this as the autoencoder-based detector model. Under this setting, we

refer to the defense as ExAD-AE. Similar to ExAD-CNN setting, we consider each class and build

k autoencoder-based detector models, one corresponding to every explanation technique.

An autoencoder ae = ψ ◦ φ contains two components, an encoder and a decoder, which can be

17

Figure 3.3: Illustration of the proposed ExAD framework.

defined as transitions φ : Rd → Rz and ψ : Rz → Rd, respectively, where Rd is the input space

and Rz is the latent space. For class c and the j-th explanation technique, the input space for the

autoencoder aec,j in our system is formed by the set of explanations produced by hj for correctly

classified normal examples of class c. We train the autoencoder to minimize a loss function over

this set of explanations, where the loss function is taken as the mean squared error (MSE):

L(Etrain) =
1

Etrain

∑
hj(x)∈Etrain

‖hj(x)− (ψ ◦ φ)hj(x)‖2

For a test image, the explanation map hj(x) produced by the j-th technique is given as input to

the autoencoder aec,j which generates a reconstructed image. Then, we compute a reconstruction

error:

R(hj(x)) = ‖hj(x)− (ψ ◦ φ)hj(x)‖p (3.1)

where ‖·‖p is a suitable p-norm. If the reconstruction error is above a threshold tre, we consider the

explanation map hj(x) to be abnormal. The threshold value is a hyperparameter for each detector

18

model. It should be low enough to detect abnormal explanations, but sufficiently high to not falsely

flag normal explanations. We decide tre values using a validation set of normal explanations, which

are in turn derived from a validation set of normal examples. For any detector, we select the highest

tre such that its false-positive rate on the validation set is below a threshold tfp. The threshold tfp

can be chosen depending upon system requirements.

3.5 Test-time detection of adversarial examples

Figure 3.3 illustrates our overall approach, with the ExAD-CNN setting. At test-time, if an un-

known input x is being classified by the target classifier f(·) as class c, our goal is to identify if x

is a normal example of class c or an adversarial example. To this end, we take the following steps.

First, we generate k explanation maps for the classifier’s decision to classify x as class c using k ex-

planation techniques. Second, for each explanation map hj(x), we use the corresponding detector

model to determine if the explanation map is normal or abnormal. For ExAD-CNN, each detector

model directly provides a classification of normal (gc,j(hj(x))=0) or abnormal (gc,j(hj(x))=1). On

the other hand, for ExAD-AE, we obtain the reconstruction error for each explanation map hj(x)

using the corresponding autoencoder aec,j . If the reconstruction error computed by a detector

model is above its threshold, then it considers the explanation map to be abnormal. Finally, in both

settings, we aggregate the results from all the detector models. In our current implementation, we

use a simple (and strict) strategy of inferring that an input x is an adversarial example if any of the

k detector models classifies the respective explanation map as abnormal. However, this setting can

be configured based on the needs of the application, such as the false-positive and false-negative

rates that can be tolerated. In future work, we will explore more approaches to aggregate these re-

sults, such as using majority vote or another machine learning model to produce the final outcome

more effectively.

19

4. EXPERIMENTS

In this section, we evaluate the effectiveness of ExAD. This section is organized as follows.

First, we provide details on the experiment settings in Section 4.1. In Section 4.2, we report the

performance of the system on normal examples. Then, in Section 4.3, we show the performance

of ExAD on blackbox attacks. Next, we investigate the generalizability of ExAD-CNN in Section

4.4. We compare the performance of our approach with three state-of-the-art detection methods in

Section 4.5. Finally, in Section 4.6, we present our evaluation on whitebox attacks.

4.1 Experimental settings

4.1.1 Environment

We implement the proposed framework using the Python libraries Keras and TensorFlow. We

conducted our experiments on a Linux server with one GPU (GeForce RTX 2080 Ti) and CPU

(Intel Xeon Silver 4116 processor).

4.1.2 Image Datasets

We evaluated the performance of our detection mechanism on three image datasets: MNIST

[34], Fashion-MNIST (FMNIST) [35] and CIFAR-10 [36]. MNIST is a well-known gray-scale

image dataset of handwritten digits from 0 to 9. FMNIST is a relatively more challenging dataset

of article images where each example is a 28x28 grayscale image associated with a label from

10 classes (shirts, sandals, etc.). Both datasets consist of 60000 examples in the training set and

10000 examples in the testing set. CIFAR-10 is a colored image dataset of tiny 32x32x3 images

used for object recognition. It comprises of 50000 training images and 10000 testing images. We

chose MNIST and CIFAR-10 datasets as they are most widely used for evaluating defenses against

adversarial attacks [20, 1, 2, 19], and additionally used FMNIST as it provides more challenges for

a gray-scale dataset.

20

Table 4.1: Evaluation of blackbox attacks.

Attack Parameter Cost (s) Success
Rate

Prediction
Confidence

L2

Distortion
M

N
IS

T

L∞

CW∞ - 90.57 100% 39.11% 3.47
BIM eps:0.3 0.003 99% 99.94% 4.10
MIM eps:0.3 0.003 100% 99.99% 5.98

L2 CW2 confidence:0 0.001 100% 97.11% 4.33

L0
CW0 - 8.98 100% 38.18% 5.47

JSMA gamma:0.2 0.84 94% 76.86% 7.00

FM
N

IS
T

L∞

CW∞ - 90.07 100% 38.51% 0.729
BIM eps:0.3 0.004 98% 100% 4.06
MIM eps:0.3 0.004 100% 100% 5.87

L2 CW2 confidence:0 0.006 100% 96.09% 2.20

L0
CW0 - 8.95 100% 37.80% 2.88

JSMA gamma:0.2 0.96 85% 83.20% 4.53

C
IF

A
R

-1
0

L∞

CW∞ - 68.90 100% 26.91% 1.19
BIM eps:0.3 0.008 100% 100% 6.1
MIM eps:0.3 0.001 100% 100% 7.9

L2 CW2 confidence:0 0.005 100% 94.52% 3.86

L0
CW0 - 13.35 100% 27.09% 2.98

JSMA gamma:0.2 6.42 100% 43.35% 1.78

4.1.3 Training the Target Models

On MNIST and FMNIST datasets, we trained a CNN based target model with 54000 examples

in the training set and 6000 examples in the validation set. For CIFAR-10, we trained the CNN

based target model with 44000 examples in the training set and 6000 examples in the validation

set. Table 4.2 shows the CNN architectures, and Table 4.3 shows the hyperparameters for training

the three target models.

4.1.4 Generating Adversarial Examples

As described in Section 2.3, we generate adversarial examples using six state-of-the-art attacks-

JSMA [8], BIM [40], MIM [41], and CW0, CW2, and CW∞ variants of the CW attack [12]. For

JSMA, BIM, MIM, and CW2 attacks, we created adversarial samples using their implementations

21

Table 4.2: Architecture of the image classifiers to be defended.

MNIST FMNIST CIFAR-10

Conv.ReLU 8x8x64 Conv.ReLU 3x3x32 Conv.ReLU 3x3x64
Conv.ReLU 6x6x128 Conv.ReLU 3x3x32 Conv.ReLU 3x3x128
Conv.ReLU 5x5x128 MaxPooling 2x2 AvgPooling 2x2

Softmax 10 Conv.ReLU 3x3x64 Conv.ReLU 3x3x128
Conv.ReLU 3x3x64 Conv.ReLU 3x3x256
MaxPooling 2x2 AvgPooling 2x2
Dense.ReLU 200 Conv.ReLU 3x3x256
Dense.ReLU 200 Conv.ReLU 3x3x512

Softmax 10 AvgPooling 2x2
Conv.ReLU 3x3x10

Softmax 10

Table 4.3: Training and architecture hyperparameters of the target classifiers.

Hyperparameter MNIST FMNIST CIFAR-10

Learning Rate 0.001 0.01 0.001
Optimization Method Adam SGD Adam

Batch Size 128 128 256
Epochs 50 50 50

Padding (Conv layers) Valid Valid Same

in the Cleverhans library [49]. For CW0 and CW∞ attacks, we use the implementation from the

authors [12, 50]. For our evaluation, we adopt the target-next attack setting in which the targeted

label is the class next to the ground truth class modulo the number of classes (e.g., misclassify

an input of class 4 to class 5). Table 4.1 shows a summary of our evaluation of the six blackbox

attacks.

We generate adversarial examples for two purposes. First, as discussed in section 3.4, we need

adversarial examples to derive abnormal explanations for training and validating ExAD-CNN. To

this end, we consider each class in a dataset and generate as many adversarial examples as the

number of normal examples of that class in the training and validation sets. These adversarial

examples are unevenly distributed by attack methods, due to relatively higher cost involved in con-

22

ducting certain attacks. Column 5 in Table 4.1 shows the average cost (in seconds) to generate

one adversarial example for different attacks. We observe that the CW∞, CW0, and JSMA at-

tacks incur much more overhead than remaining three attacks. Therefore, we generate 80% of the

examples using BIM, MIM, and CW2 attacks, and the remaining using CW∞, CW0, and JSMA

attacks. We empirically found this distribution to be sufficient, based on performance on the vali-

dation sets. Furthermore, seed images for these adversarial examples are randomly selected from

normal examples of the source class. Note that we only utilize examples from the training (resp.,

validation) set towards training (resp., validating) ExAD; any example in the test set is considered

non-accessible for this purpose, as is standard practice.

The second purpose is to evaluate the detection rate of ExAD. To this end, for every dataset,

we generate 100 adversarial examples using each attack. This number is consistent with previous

works [20, 2] and is limited since many attacks are too expensive to execute. In this process,

we create the same number of adversarial examples for every target class to ensure a balanced

evaluation. Furthermore, seed images for adversarial examples are taken from correctly classified

examples in the test set so that the normal counterparts are unseen by the target model, and the

resulting abnormal explanations are unseen by ExAD-CNN.

In Table 4.1, column 6 shows the success rate achieved by the six blackbox attacks when ExAD

is not included as a defense. We consider an attack to be successful if the target model predicts

the targeted class. The resulting examples from such attacks are termed as successful adversar-

ial examples. We observe that most attacks are very effective against three target models. The

BIM, MIM, and CW2 attacks are particularly effective in generating high-confidence adversarial

examples as shown in column 7.

4.1.5 Training ExAD-CNN and ExAD-AE

Table 4.4 and Table 4.5 show the CNN architectures and hyperparameters used for training

the CNN-based and autoencoder-based detector models, respectively. For each setting, we use the

same architecture and hyperparameters for all three datasets as the performance on the respective

validation sets was found acceptable. As discussed in Section 3.4, for each target class, we train

23

Table 4.4: Architecture and hyperparameters of ExAD-CNN.

Architecture Hyperparameters

Conv.ReLU 3x3x32 Learning Rate 0.01
Conv.ReLU 3x3x64 Optimization

Method
Adam

MaxPooling 2x2 Batch Size 32
Conv.ReLU 3x3x128 Epochs 50
Conv.ReLU 3x3x128 Padding (Conv

layers)
Same

MaxPooling 2x2
Dense.ReLU 512
Dense.ReLU 64
Softmax 2

Table 4.5: Architecture and hyperparameters of ExAD-AE.

Architecture Hyperparameters

Dense.ReLU HxW Learning Rate 10−5

Dense.ReLU 400 Optimization
Method

Adam

Dense.ReLU 20 Batch Size 32
Dense.ReLU 400 Epochs 100
Dense.ReLU HxW
Softmax 2

a detector model for every explanation technique. For training and validation, while ExAD-CNN

uses both normal and abnormal explanations, ExAD-AE only uses normal explanations. To obtain

normal explanations for a class, we take all its normal examples in our training and validation sets

and generate corresponding explanations. For abnormal explanations (to be used by ExAD-CNN),

we generate explanations of the adversarial examples being classified as the target class using each

explanation technique. As discussed earlier, for this purpose, we had generated as many adversarial

examples as the number of normal examples of each class in the training and validation sets.

This provides us with balanced training and validation sets of normal and abnormal explanations.

For ExAD-CNN, we label the normal and abnormal explanations as negative and positive class,

respectively. We train the detector models on the training set, and use the validation set for tuning

24

the hyperparameters. For ExAD-AE, we exclude the abnormal explanations in both training and

validation sets (so that they online consist of normal explanations). Then, we train the detector

models on the training set, and use the validation set for setting the threshold tre values. Also, for

computing the reconstruction error (equation 3.1), we empirically find it sufficient to use the L2

norm. Furthermore, we selected the threshold tre such that the false-positive rate for any detector

model is at most 0.2% on its validation set.

4.1.6 Comparison

We compare ExAD with three state-of-the-arts- MagNet [1], Feature Squeezing (FS) [2], and

LID [3]. For their implementation, we use the respective GitHub repositories. We follow in-

structions in the repositories and papers to identify optimal configurations. Feature Squeezing, in

particular, allows many configurations for its squeezers. Consistent with the author’s work, we

utilize the optimal join-detection setting with multiple squeezers. For MNIST and FMNIST, we

use the combination of a 1-bit depth squeezer with 2x2 median smoothing. For CIFAR-10, we use

a 5-bit depth squeezer with 2x2 median smoothing and 13-3-2 non-local means filter. To ensure

fair comparison, for all detection methods, we set thresholds such that the false-positive rate on

the validation set is at most 0.2% (same as ExAD). Additionally, our comparison could not include

NIC [20] as it is yet to be made open-source, and we were not successful in reproducing the

system.

4.2 Performance on normal examples

Table 4.7 shows the classification accuracy of the three target models on their test set (of normal

examples). Without ExAD, we achieve an accuracy of 99.15%, 90.68%, and 84.54% for MNIST,

FMNIST, and CIFAR-10 datasets, respectively. When ExAD is included as a defense, it is possible

that a correctly classified normal example (by the target model) is misclassified as an adversarial

example, termed as a false-positive (FP). With ExAD-CNN, we obtained a false-positive rate of

0.90% on MNIST dataset, as 89 of 9915 correctly classified normal examples are classified as

adversarial. Thus, with ExAD-CNN, the accuracy of the target system is reduced only slightly to

25

Table 4.6: Detection rate of ExAD on blackbox attacks.

Dataset Attack Parameter No
Defense

ExAD-
CNN

ExAD-
AE

MagNet
[1]

FS [2] LID
[3]

M
N

IS
T

L∞

CW∞ - 0% 100% 100% 96% 100% 92%
BIM eps:0.3 1% 100% 100% 100% 97.98% 97.98%
MIM eps:0.3 0% 100% 100% 100% 98% 99%

L2 CW2 confidence:0 0% 100% 100% 86% 100% 91%

L0 CW0 - 0% 100% 100% 86% 91% 91%
JSMA gamma:0.2 6% 100% 100% 84.04% 100% 93.62%

FM
N

IS
T

L∞

CW∞ - 0% 100% 100% 97% 100% 94%
BIM eps:0.3 2% 100% 100% 100% 97.96% 93.88%
MIM eps:0.3 0% 100% 100% 99% 99% 95%

L2 CW2 confidence:0 0% 100% 100% 85% 100% 92%

L0 CW0 - 0% 100% 100% 85% 90% 91%
JSMA gamma:0.2 15% 100% 100% 87.06% 100% 92.94%

C
IF

A
R

-1
0 L∞

CW∞ - 0% 99% 100% 84% 98% 90%
BIM eps:0.3 0% 100% 100% 100% 52% 97%
MIM eps:0.3 0% 100% 100% 100% 51% 97%

L2 CW2 confidence:0 0% 100% 100% 92% 100% 89%

L0
CW0 - 0% 98% 100% 76% 98% 91%

JSMA gamma:0.2 0% 100% 99% 95% 83% 92%

98.26%. Similarly, on FMNIST and CIFAR-10 datasets, the accuracy has a minor drop to 89.70%

and 83.74%, respectively. The low false-positive rates are indicative of explanation maps of normal

examples rarely being mistaken as abnormal by the detector models. This allows us to maintain a

strict policy of classifying a test input as adversarial if even a single detector model considers its

explanation map as abnormal.

With ExAD-AE, we obtain false-positive rates of 0.62%, 0.85%, and 0.82% on the test sets of

MNIST, FMNIST, and CIFAR-10 datasets, respectively. The accuracy of the target systems under

this setting is 98.54% for MNIST, 89.91% for FMNIST, and 83.85% for CIFAR-10 dataset. These

results are close to the performance of ExAD-CNN on normal examples. In the following section,

we show that both settings of ExAD can effectively detect adversarial attacks while maintaining

these low false-positive rates.

26

Table 4.7: Classification accuracy on normal examples with and without defense.

Dataset Accuracy
without
ExAD

Top-1
Mean

Confidence

Accuracy
with

ExAD
(CNN)

FP rate
with

ExAD
(CNN)

Accuracy
with

ExAD
(AE)

FP rate
with

ExAD
(AE)

MNIST 99.15% 99.86% 98.26% 0.90% 98.54% 0.62%
FMNIST 90.68% 97.86% 89.70% 1.08% 89.91% 0.85%

CIFAR-10 84.54% 76.64% 83.74% 0.95% 83.85% 0.82%

4.3 Evaluation on blackbox attacks

Table 4.6 shows the detection rates of our approach on the six blackbox attacks. Columns 1-4

show datasets and details of the attacks. Column 5 shows the detection rate of adversarial ex-

amples when ExAD is not included as a defense (which corresponds to the success rate achieved

by blackbox attacks on the target models). Columns 6 and 7 show the detection rates of ExAD-

CNN and ExAD-AE, respectively. Note that, except when noted explicitly, “detection rate" of a

detection method refers to its detection rate on successful adversarial examples, consistent with

previous work [2]. The remaining columns report our comparison with three state-of-the-art de-

tectors, which we will discuss in Section 4.5.

We first consider the ExAD-CNN setting. For this setting, our approach achieves consistently

high detection rates for all attacks across the three datasets. As shown in Table 4.6, for MNIST and

FMNIST datasets, we get 100% detection rates for all six attacks. For CIFAR-10 dataset, we obtain

98% detection rate for CW2 and CW0 attacks, and 100% detection rate for remaining attacks. For

the ExAD-AE setting, the detection rate of adversarial examples is again consistently high. We

achieve 100% detection rate for all six attacks on MNIST and FMNIST datasets. On CIFAR-

10 dataset, we obtain a 99% detection rate for JSMA attack. For all other attacks on CIFAR-10

dataset, the detection rate is 100%.

While we find both settings of ExAD are effective against adversarial attacks, each has its own

relative advantages and disadvantages. A benefit of ExAD-AE is that it does not rely on adversarial

examples for training or validation. This reduces the training overhead as many adversarial attacks

27

Table 4.8: Detection rate of ExAD-CNN with limited attacks used in training.

Attack
Train on BIM, MIM, CW2, JSMA Train only on CW2

MNIST FMNIST CIFAR-10 MNIST FMNIST CIFAR-10

CW∞ 100% 100% 92% 99% 99% 96%
BIM 100% 100% 100% 97.98 % 96.94% 100%
MIM 100% 100% 100% 89% 86% 100%

CW2 100% 100% 100% 100% 100% 100%

CW0 100% 100% 92% 100% 97% 91%
JSMA 100% 100% 100% 91.49% 94.12% 87%

Table 4.9: False-positive rates obtained for MagNet [1], FS [2], and LID [3].

Dataset MagNet [1] FS [2] LID [3]

MNIST 0.50% 3.85% 4.24%
FMNIST 0.81% 3.76% 3.89%

CIFAR-10 4.25% 4.81% 5.36%

incur significant cost (Table 4.1). More importantly, being attack-independent, the performance

of ExAD-AE indicates that our approach generalizes well to unknown attacks. But, compared

to the effort required in setting the threshold tre values for ExAD-AE, it is relatively simpler to

tune the hyperparameters for ExAD-CNN. However, training the detector models in ExAD-CNN

requires adversarial examples (to derive abnormal explanations). In the following section, we

investigate the extent to which this requirement impacts the generalizability of ExAD-CNN in

detecting unknown attacks.

4.4 Generalizability of ExAD-CNN

In the generation of abnormal explanations, we notice that adversarial examples created using

attacks of the same category (L∞ or L0) produce similar explanations. We show an example of

this similarity in Figure 4.1. Rows 1 and 2 show explanation maps for adversarial examples which

were created using CW∞ and BIM attacks, respectively. Both attacks come under the L∞ category.

The adversarial examples are targeting the Pullover class and their seed images are taken from the

Trouser class of FMNIST dataset. Comparing explanation maps in row 1 and row 2 shows that

28

Figure 4.1: Similarity in explanation maps across adversarial attacks.

adversarial examples created using different attacks, under the same category (L∞ in this case) can

result in similar explanation maps. This can also be observed for CIFAR-10 dataset (rows 3-4),

where we use two L0 attacks, and MNIST dataset (rows 5-6), where we again use two L∞ attacks.

Using this observation, we leave out the CW∞ and CW0 attacks, and only use adversarial

examples from other four attacks for training ExAD-CNN. We keep other training and attack pa-

rameters same as before. In Table 4.8, columns 2-4 show the new performance of ExAD-CNN. On

MNIST and FMNIST datasets, we find that ExAD-CNN effectively detects the unknown attacks.

On CIFAR-10, ExAD-CNN still achieves a good detection rate of 92% for both unknown attacks,

CW∞ and CW0. We also observe that the detection of other attacks is not affected on any dataset.

These results appear to indicate that abnormal explanations are influenced more by the original

class of the seed images and the category (norm) of the attack, rather than the attack variant in

29

that category used to craft the adversarial examples. This allows ExAD-CNN to generalize well to

unknown attacks when we train on representative attacks from different categories. Furthermore,

to study the generalizability in a more restrictive case, we only train ExAD-CNN on CW2 attack.

Columns 5-7 in Table 4.8 show the performance under this scenario. For all datasets, we find the

results are good on the three CW attacks, with the lowest detection rate of 91% obtained for CW0

attack on CIFAR-10 dataset. For BIM attack, the performance remains consistently high across

datasets. However, the detection is less effective for MIM attack on MNIST and FMNIST datasets,

for which we have 89% and 86% detection rates, respectively, and for JSMA attack on CIFAR-10,

for which we obtain 87% detection rate. Overall, we see that ExAD-CNN can detect many un-

known attacks even in this restrictive case, but there is still room for improvement. For boosting

the detection in such scenarios, we can consider performing join-detection using both ExAD-CNN

and ExAD-AE (which obtained high detection rates while being attack-independent). Building

such joint-detectors to improve generalizability will be an interesting topic for future work.

4.5 Comparison

Table 4.6 shows the comparison of ExAD with three state-of-the-art adversarial detection

methods- MagNet [1], Feature Squeezing [2], and LID [3]. The false-positive rates for these

methods on the test sets are reported in Table 4.9.

MagNet. We find that MagNet’s false-positive rates on the two grayscale datasets are marginally

lower than those of ExAD-AE. However, it has much higher false-positive rate of 4.25% on

CIFAR-10 dataset. We also find its detection performance to vary depending upon the dataset

and attack-norm. MagNet uses trained autoencoders to detect adversarial examples, and to reform

them based on the differences between the manifolds of normal and adversarial examples. Mag-

Net’s denoising strategy is quite effective against L∞ attacks, for which adversarial examples tend

to have a large number of modified pixels, with a limit on the change per pixel. MagNet achieves

high detection rates (most being 100%) for L∞ attacks on both grayscale datasets. On CIFAR-10,

a colored dataset, it achieves similar performance on BIM and MIM attacks, but relatively low

detection rate of 84% on CW∞ attack. Furthermore, we observe that MagNet’s denoising mech-

30

anism is not as effective on L0 attacks. These attacks make changes of high magnitude to very

few pixels, thereby making denoising difficult. This is consistent with findings by Ma et al. [20].

Similarly, we find MagNet’s performance on CW2 attack is not as good on MNIST and FMNIST

datasets. Moreover, MagNet requires training a single detector network, which is computationally

expensive. A benefit of our approach is that we use small detector models for every class, which

are much easier to train. This makes our approach more practical.

LID. We find the detection performance of LID to be consistent across attacks and datasets.

This method computes an LID value that captures the intrinsic dimensional properties of adversar-

ial regions[3]. LID achieves its highest detection for L∞ attacks on the three datasets. For most

of the other attacks, its detection was consistently above 90%. However, as shown in Table 4.9,

a downside of using LID values is the relatively higher false-positive rates on normal examples,

which impacts the reliability of its classifications.

Feature Squeezing. For Feature Squeezing, we observe that joint-detection provides fairly

consistent detection rates (Table 4.6), but introduces high false-positive rates between 3.76% to

4.81% (Table 4.9). This is natural, given the use of a single threshold across all squeezers, con-

sistent with original work [2]. Nevertheless, as reported by the authors, this can be improved by

combining multiple squeezers with different thresholds in future work. Feature Squeezing ob-

tains very high detection rates on all attacks on MNIST and FMNIST datasets. On CW2 attack, it

achieves 100% detection rate on all three datasets. However, for L∞ attacks, while it obtains de-

tection rates of above 98% on CW∞ attack, we find it less effective against BIM and MIM attacks

on CIFAR-10 dataset with a detection rate of nearly 52%. This reflects upon the generalizability

challenges in building squeezers. In contrast, our approach is more general and achieves consistent

detection and false-positive rates.

4.6 Evaluation with adaptive adversaries

In this section, we evaluate our defense, with the ExAD-CNN setting, under whitebox threat

model for an adaptive adversary. Here, we build upon recent research that shows that explanations

can be unreliable [29] and can be manipulated to produce a target explanation map [30, 31]. Below,

31

Table 4.10: Evaluation of whitebox attacks.

Target
Explanation

Method

Mean
Success

Rate
without
defense

Cost (s) L2

Distortion

M
N

IS
T

LRP 99.00% 137.07 2.49
GBP 95.17% 50.15 2.64
IG 82.00% 506.75 2.81
PA 96.17% 57.74 2.55
GTI 91.50% 48.96 2.50

FM
N

IS
T

LRP 99.17% 169.36 2.28
GBP 95.33% 51.03 2.34
IG 89.00% 510.47 2.33
PA 93.67% 57.77 2.76
GTI 91.50% 49.12 2.31

C
IF

A
R

-1
0 LRP 99.00% 138.83 2.26

GBP 97.33% 51.35 2.24
IG 94.00% 484.02 3.87
PA 96.00% 66.53 3.20
GTI 95.33% 66.80 3.45

we present our approach to conduct a whitebox attack for generating an adversarial example.

4.6.1 Whitebox Attack Approach

Given a normal or seed image x ∈ Rd with correctly classified class C(x) = c by target model

f(·), we follow a two-step process towards conducting a whitebox attack. First, we use a blackbox

attack to generate an adversarial example x′ which is misclassified as C(x′) = t, where t is the

targeted class. While x′ is likely to fool f(·), it is likely to be correctly classified as an adversarial

example by the defense, which has not yet been accounted for by the attack. As a next step,

we consider a target explanation technique hj , which produces an explanation map hj(x′) that is

correctly classified as abnormal by the corresponding detector model gt,j(·). Our goal in this step

is to manipulate x′ to create a final adversarial example x′′ = x′ + δx′, such that

• The target model’s classification remains approximately constant, i.e. f(x′′) ≈ f(x′)

• The explanation map hj(x
′′) is close to a target explanation map htj that is classified as

normal by gt,j(·)

32

• The norm of the perturbation δx′ added is small so that it remains imperceptible.

To obtain the target explanation map htj , we randomly select a normal example xr from class t

and check if its explanation map hj(xr) is classified as normal by gt,j(·). If so, we set the target

explanation map as htj = hj(xr). Else, we repeat the process until we find such an example. This

search is fairly quick because explanation maps of normal examples of a class are very likely to be

correctly classified as normal by the detector models. Finally, we generate x′′ by optimizing the

following loss function

L = ||hj(x′′)− htj||2 + γ||f(x′′)− f(x′)||2 (4.1)

with respect to x′′ using gradient descent, such that ‖δx′‖2 < ε. The first term in the loss function

ensures that the explanation map for x′′ is close to the target map, while the second term ensures

the prediction by the target model is still the misclassified class t. The weighting of these two

terms is controlled by hyperparameter γ ∈ R+. To compute the gradient with respect to the

input Ohj(x′′), we follow the strategy by Dombrowski et al. of replacing relu with the softplus

function to circumvent the problem of vanishing second-derivative [31]. A similar strategy of

approximating relu was used by Zhang et al. [30]. After the optimization completes, we test

whether the manipulated image x′′ fools the original relu-based target model f(·) as well as our

defense.

4.6.2 Illustration of whitebox attack

Figure 4.2 shows an illustration of our whitebox attack approach, discussed in Section 4.6.

The leftmost image in the first row shows a seed image x, which is a normal example from class

Airplane of CIFAR-10 dataset. In the first step, we use CW∞ attack to add perturbations δx to x,

which results in the adversarial example x′ = x + δx. The rightmost image of row 1 shows x′.

The example x′ is misclassified as class Automobile by target model f(·). The second row shows

the explanation maps produced for x′ by the five techniques. We find that all detector models

classify these explanation maps as abnormal. We observe in row 2 that the explanation maps

33

Figure 4.2: Illustration of whitebox attack.

are not consistent with the expected normal explanations of class Automobile. As an adaptive

adversary, we now intend to target an explanation technique. For this illustration, we choose to

target LRP. To this end, we randomly select an example xr from class Automobile, for which the

explanation map produced by LRP is classified as normal by the corresponding detector model.

We show xr as the first image in row 3. Its explanation map by LRP, shown as the second image in

row 2, is set as the target map htLRP . Then, we perform the optimization for the loss function 4.1

(shown in Section 4.6) using x′ and htLRP . After the optimization completes, we obtain the final

adversarial example x′′ = x′ + δx′, which is shown as the rightmost image in row 4. The bottom

row shows the explanation maps produced by the five techniques for x′′. We observe that targeting

34

LRP results in the explanation map produced by LRP (first image in row 5) to be very close to

the target map. Also, the explanation maps for GBP (second image in row 5) and PA (fourth

image in row 5) are also fairly close to the target map. We find that all three of these explanation

maps are classified as normal by their respective detector models. However, we observe that the

explanation maps produced by the gradient-based techniques, i.e., IG (third image in row 5) and

GTI (rightmost image in row 5), are not as close to the target map. Both these explanation maps

are classified as abnormal by their respective detector models. Therefore, using an ensemble of

detector models corresponding to diverse explanation techniques, our defense is able to mitigate

this whitebox attack by correctly identifying x′′ as an adversarial example.

4.6.3 Evaluation of Whitebox Attack

To perform the first step of the above approach, we re-use the successful adversarial examples

X ′ created using blackbox attacks. However, while targeting integrated gradients (IG), we only

used adversarial examples from CW2 attack as we find targeting IG to incur very high cost. For

targeting remaining techniques, we use adversarial examples from all six attacks. Then, for each

adversarial example x′ ∈ X ′, we perform the second step using the optimization process described

above to obtain final adversarial examples X ′′.

Table 4.10 shows a summary of the whitebox attack. Column 3 shows the mean success rate of

the final adversarial examples in retaining the desired misclassification in the target model (when

ExAD is not included). The mean is computed over success rates obtained for different attacks

(except for IG where we only use CW2 attack). We do not show individual success rates for each

attack as they were very similar for any target technique. In Table 4.10, we observe that targeting

LRP results in the highest success rate, with least L2 distortion. However, as shown in Column

4, the average time required per example to target LRP is over 130 seconds which is quite high

compared to targeting GBP, PA, or GTI techniques.

Figure 4.3 shows the results of the whitebox attack. Each row represents the targeted expla-

nation technique. Columns 1-5 show the detection rate obtained by individual detector models

corresponding to the five explanation techniques in correctly classifying explanation maps as ab-

35

Figure 4.3: Transferability of whitebox attack.

normal. Column 6 shows the overall performance by ExAD-CNN in correctly classifying the

examples as adversarial. From Figure 4.3, we make several interesting observations. First, we

notice the values along the diagonal (from top-left to bottom-right) are all very low. This is natural

as the detector model corresponding to the targeted technique is expected to correctly classify very

few explanations as abnormal. For instance, targeting GTI causes its detector model to have a

detection rate of only 19.41%. Second, we observe that targeting gradient-based techniques do not

severely impact detector models of propagation-based techniques, and vice-versa. For instance,

on targeting IG or GTI, the detector models corresponding to LRP, GBP, and PA still achieve de-

tection rates above 85%. This is consistent with the transferability findings by Zhang et al. [30].

On a different set of diverse explanation techniques, the authors showed that manipulated images

created by targeting one technique rarely produce desirable explanations (which are close to the

target map) on other techniques. Finally, we find that targeting propagation-based (resp., gradient-

based) techniques transfer well to detector models corresponding to the other propagation-based

(resp., gradient-based) techniques. For instance, targeting LRP results in the GBP-based detec-

36

Figure 4.4: Transferability of whitebox attack on individual datasets.

tor model to have a detection rate of only 17.82%. The same phenomenon can be observed for

gradient-based techniques (IG and GTI). This empirically supports the need to have diversity in

the explanation methods to build robustness against adaptive attacks. As shown in Column 6 of

Figure 4.3, using an ensemble of gradient-based and propagation-based techniques, ExAD is able

to significantly limit the success rate of whitebox attacks. We find ExAD to be relatively more ro-

bust when gradient-based techniques are targeted. We achieve 99.67% and 98.94% detection rate

for IG and GTI as the target, respectively. For propagation-based techniques, the highest impact is

caused by targeting PA, which results in a detection rate of 88.61%. For the case of targeting LRP

and GBP, we obtain detection rates of 90.11% and 91.55%, respectively.

Furthermore, in Figure 4.4, each value shows the mean detection rate for adversarial exam-

ples created using different attacks (except while targeting IG technique which only uses CW2

attack) and considering all target classes. On all three datasets, we find that targeting a gradient-

based technique has relatively less impact on detector models corresponding to propagation-based

techniques. For instance, targeting GTI on MNIST causes the IG-based detector model to have a

detection rate of only 56.70% whereas detector models corresponding to LRP, GBP, and PA have

detection rates above 89%. Interestingly, on CIFAR-10 dataset, we observe that the detector mod-

els corresponding to IG and GTI are impacted by most techniques, although the impact is relatively

higher when we target either of IG or GTI. For instance, on CIFAR-10 dataset, targeting PA has a

noticeable impact on IG-based detector model as it achieves a detection rate of 60.39%, whereas

37

targeting GTI results in the IG-based detector model to have a relatively lower detection rate of

50.26%.

In terms of impact on ExAD, on all three datasets, targeting gradient-based techniques (IG

and GTI) is relatively less effective. For instance, on MNIST, we obtain 100% detection rate

by our approach while targeting IG and GTI techniques. In contrast, we observe that targeting

propagation-based techniques is more effective across datasets. On MNIST dataset, the detection

rate of the defense on propagation-based techniques is nearly 89%. On CIFAR-10 dataset, targeting

PA results in the lowest detection rate of 80.67% by ExAD. On FMNIST dataset, the overall

performance is fairly consistent while targeting propagation-based techniques. The highest impact

is produced by targeting PA and LRP, for which ExAD obtains detection rates of 95.50% and

95.67%, respectively.

38

5. DISCUSSION

5.1 Fragility of Explanations

In Section 4.6, we discussed the reliability of explanations in context of an adaptive adversary.

Recently, there has also been research that shows the fragility of explanations in an adversarial

context. In this section, we discuss two related scenarios and any potential impact to our defense

strategy.

5.1.1 Hiding the attack from explanations

Recently, adversarial patches [38, 51] were introduced to make adversarial examples more

practical in the physical world. This attack restricts the spatial dimensions of the perturbation,

but removes the imperceptibility constraint. However, Subramanya et al. [52] demonstrated that

we can generate adversarial patches that not only fool the prediction by the target classifier, but

also change the explanation of the modified example such that the adversarial patch is no longer

considered important. Nevertheless, here the attacker only manages to make the explanation tech-

nique focus in a region outside the adversarial patch; she does not try to make the explanation itself

appear more normal for the target class. Therefore, even though such adversarial examples may

evade the explanation mechanism, they are still likely to be correctly classified as adversarial by

our defense.

5.1.2 Changing the explanation but not the classification

Another possibility is that an attacker may add adversarial perturbations which produce exam-

ples that are classified into the same class, but have very different explanations [53]. Figure 5.1

shows an example of this attack for the case of random perturbations. The leftmost image in first

row is a normal example from the Sneaker class of FMNIST dataset. The next image in first row

shows a manipulated image created by adding random perturbations to the normal example such

that the prediction remains unchanged, and the perturbations do not exceed a threshold value of 1,

in terms of L∞ distance. The next three images are created in a similar manner but with increased

39

Figure 5.1: Effect of adding random perturbations on explanations.

threshold values of 2, 4, and 8, respectively. The second row shows the corresponding explanations

produced by LRP technique. We observe that with increased noise threshold, the explanations also

become noisy. With our defense, if such explanations are classified as abnormal, then the corre-

sponding inputs would be considered adversarial (false-positive). Figure 5.2 shows that adding

random perturbations to normal examples results in a decline of the target classifier’s classification

accuracy with increasing noise threshold.

Nevertheless, we believe the impact of this attack may depend upon the nature of the applica-

tion where the defense is being used. If the perturbed examples resulting from such attacks are

not considered normal for the system, then the abnormality produced in the explanations can be

beneficial because the examples will likely be classified as adversarial. However, if an application

considers such perturbed examples as normal, such as if the norm of perturbation is within an al-

lowed threshold, then our defense could result in false-positives. For such applications, we would

require explanation techniques to be robust enough to allowed perturbations. We leave further

research towards such methods as future work.

40

Figure 5.2: Impact of fragility of explanations.

5.2 Limitations

Our detection mechanism and scope of evaluation has certain limitations. First, our current

evaluation only considers the targeted attack setting for generating adversarial examples. In fu-

ture work, we will extend our evaluation to cover untargeted adversarial attacks as well. Second,

currently we do not have a unified optimization-based approach that simultaneously (and success-

fully) targets multiple explanation techniques. We attempt doing so in two ways. One approach is

to modify the loss function 4.1 as follows

L =
(5∑
j=1

||hj(x′′)− ht||2
)

+ γ||f(x′′)− f(x′)||2 (5.1)

Here, we create the target map ht using any one of the explanation techniques. However, in this

case, when the target map is created using a gradient-based technique, we did not notice any

significant change in the performance of the detector models corresponding to propagation-based

techniques, and vice-versa. The results remained consistent with our findings in Figure 4.3. One

reason behind this could be the diversity in explanation techniques due to which the target maps

required by gradient-based techniques differ substantially from those required by propagation-

41

based techniques. Then, we further consider modifying the loss function 5.1 as follows

L =
(5∑
j=1

||hj(x′′)− htj||2
)

+ γ||f(x′′)− f(x′)||2 (5.2)

Here, target maps used are created using the corresponding explanation techniques. However, in

this case, we found the explanation-loss component did not reduce much during the optimization

process. Moreover, it often led to memory errors on the GPU. One reason for this is that in

the current whitebox attack framework[31], each explanation technique requires a different set of

hyperparameters (e.g., learning rate, β growth, and iterations), as shown in Table 5.1. Therefore,

we find that simultaneously attacking multiple explanation techniques is considerably difficult for

an adaptive adversary. We leave further exploration on improving the efficiency and effectiveness

of such attack to future work.

Table 5.1: Hyperparameters used in whitebox attack.

Method Iterations Learning Rate Factors

LRP 1500 10−3 2x10−4, 106

GBP 1500 10−3 1011, 106

IG 500 5x10−3 1011, 106

PA 1500 2x10−3 1011, 106

GradxInput 1500 10−3 1011, 106

42

6. CONCLUSION

We proposed ExAD, a framework to detect adversarial examples using an ensemble of explana-

tion techniques. The use of explanations is motivated by the distinguishability between normal and

abnormal explanations for any target class. Furthermore, motivated by previous work on N-variant

systems, we used an ensemble of gradient-based and propagation-based explanation techniques

to introduce diversity in our defense. Experiments showed that our approach is effective against

blackbox attacks, and outperforms three state-of-the-art detectors. We also find that ExAD signif-

icantly limits the success rate of whitebox attacks. In this process, we made interesting findings

on the transferability of adaptive attacks. We acknowledge the possibility of more sophisticated

whitebox attacks in future, and hope our work will inspire further research in this direction. We

believe our proposed defense is complementary to state-of-the-art detection methods and can be

used in conjunction with them to boost the detection of adversarial attacks.

43

REFERENCES

[1] D. Meng and H. Chen, “Magnet: a two-pronged defense against adversarial examples,” in

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Secu-

rity, pp. 135–147, ACM, 2017.

[2] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples in deep

neural networks,” arXiv preprint arXiv:1704.01155, 2017.

[3] X. Ma, B. Li, Y. Wang, S. M. Erfani, S. Wijewickrema, G. Schoenebeck, D. Song, M. E.

Houle, and J. Bailey, “Characterizing adversarial subspaces using local intrinsic dimension-

ality,” arXiv preprint arXiv:1801.02613, 2018.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-

tional neural networks,” in Advances in neural information processing systems, pp. 1097–

1105, 2012.

[5] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,

P. Nguyen, B. Kingsbury, et al., “Deep neural networks for acoustic modeling in speech

recognition,” IEEE Signal processing magazine, vol. 29, 2012.

[6] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware classification using ran-

dom projections and neural networks,” in 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing, pp. 3422–3426, IEEE, 2013.

[7] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,

“Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.

[8] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The limitations

of deep learning in adversarial settings,” in 2016 IEEE European Symposium on Security and

Privacy (EuroS&P), 2016.

44

[9] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial exam-

ples,” arXiv preprint arXiv:1412.6572, 2014.

[10] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial examples and

black-box attacks,” arXiv preprint arXiv:1611.02770, 2016.

[11] S. Gu and L. Rigazio, “Towards deep neural network architectures robust to adversarial ex-

amples,” arXiv preprint arXiv:1412.5068, 2014.

[12] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in 2017

IEEE S&P, pp. 39–57, IEEE, 2017.

[13] Z. Gong, W. Wang, and W.-S. Ku, “Adversarial and clean data are not twins,” arXiv preprint

arXiv:1704.04960, 2017.

[14] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel, “On the (statistical)

detection of adversarial examples,” arXiv preprint arXiv:1702.06280, 2017.

[15] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting adversarial perturba-

tions,” ICLR, 2017.

[16] D. Hendrycks and K. Gimpel, “Early methods for detecting adversarial images,” arXiv

preprint arXiv:1608.00530, 2016.

[17] X. Li and F. Li, “Adversarial examples detection in deep networks with convolutional fil-

ter statistics,” in Proceedings of the IEEE International Conference on Computer Vision,

pp. 5764–5772, 2017.

[18] A. N. Bhagoji, D. Cullina, and P. Mittal, “Dimensionality reduction as a defense against

evasion attacks on machine learning classifiers,” arXiv preprint arXiv:1704.02654, 2017.

[19] N. Carlini and D. Wagner, “Adversarial examples are not easily detected: Bypassing ten

detection methods,” in Proceedings of the 10th ACM Workshop on Artificial Intelligence and

Security, 2017.

45

[20] S. Ma, Y. Liu, G. Tao, W.-C. Lee, and X. Zhang, “Nic: Detecting adversarial samples with

neural network invariant checking.,” in NDSS, 2019.

[21] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visualis-

ing image classification models and saliency maps,” arXiv preprint arXiv:1312.6034, 2013.

[22] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K.-R. Mueller, “How

to explain individual classification decisions,” arXiv preprint arXiv:0912.1128, 2009.

[23] A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje, “Not just a black box:

Learning important features through propagating activation differences,” arXiv preprint

arXiv:1605.01713, 2016.

[24] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,” in ICML,

2017.

[25] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity: The

all convolutional net,” arXiv preprint arXiv:1412.6806, 2014.

[26] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, “On pixel-

wise explanations for non-linear classifier decisions by layer-wise relevance propagation,”

PloS one, 2015.

[27] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller, “Explaining nonlin-

ear classification decisions with deep taylor decomposition,” Pattern Recognition, vol. 65,

pp. 211–222, 2017.

[28] P.-J. Kindermans, K. T. Schütt, M. Alber, K.-R. Müller, D. Erhan, B. Kim, and S. Dähne,

“Learning how to explain neural networks: Patternnet and patternattribution,” arXiv preprint

arXiv:1705.05598, 2017.

[29] P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schütt, S. Dähne, D. Erhan, and

B. Kim, “The (un) reliability of saliency methods,” arXiv preprint arXiv:1711.00867, 2017.

46

[30] X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, and T. Wang, “Interpretable deep learning under

fire,” in 29th {USENIX} Security Symposium ({USENIX} Security 20), 2020.

[31] A.-K. Dombrowski, M. Alber, C. Anders, M. Ackermann, K.-R. Müller, and P. Kessel, “Ex-

planations can be manipulated and geometry is to blame,” in Advances in Neural Information

Processing Systems, pp. 13589–13600, 2019.

[32] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-Tuong,

and J. Hiser, “N-variant systems: A secretless framework for security through diversity.,” in

USENIX Security Symposium, pp. 105–120, 2006.

[33] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, “Smoothgrad: removing noise

by adding noise,” arXiv preprint arXiv:1706.03825, 2017.

[34] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based learning applied to docu-

ment recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[35] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for benchmarking

machine learning algorithms,” 2017.

[36] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,”

2009.

[37] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in

Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–

814, 2010.

[38] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial patch,” arXiv preprint

arXiv:1712.09665, 2017.

[39] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno,

and D. Song, “Robust physical-world attacks on deep learning models,” arXiv preprint

arXiv:1707.08945, 2017.

47

[40] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,”

arXiv preprint arXiv:1607.02533, 2016.

[41] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial attacks with

momentum,” in CVPR, 2018.

[42] C. Zhang, Z. Ye, Y. Wang, and Z. Yang, “Detecting adversarial perturbations with saliency,”

in 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP),

pp. 271–275, IEEE, 2018.

[43] N. Liu, H. Yang, and X. Hu, “Adversarial detection with model interpretation,” in Proceed-

ings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, pp. 1803–1811, 2018.

[44] J. Wang, Y. Wu, M. Li, X. Lin, J. Wu, and C. Li, “Interpretability is a kind of safety: An

interpreter-based ensemble for adversary defense,” in Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pp. 15–24, 2020.

[45] Z. C. Lipton, “The mythos of model interpretability,” arXiv preprint arXiv:1606.03490, 2016.

[46] C. Rudin, “Stop explaining black box machine learning models for high stakes decisions and

use interpretable models instead,” Nature Machine Intelligence, 2019.

[47] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural

machine translation,” arXiv preprint arXiv:1508.04025, 2015.

[48] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry, “Adversarial exam-

ples are not bugs, they are features,” in Advances in Neural Information Processing Systems,

pp. 125–136, 2019.

[49] N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, and A. K. et al., “Technical re-

port on the cleverhans v2.1.0 adversarial examples library,” arXiv preprint arXiv:1610.00768,

2018.

48

[50] N. Carlini, “Robust evasion attacks against neural network to find adversarial examples..”

https://github.com/carlini/nn_robust_attacks.

[51] D. Karmon, D. Zoran, and Y. Goldberg, “Lavan: Localized and visible adversarial noise,”

arXiv preprint arXiv:1801.02608, 2018.

[52] A. Subramanya, V. Pillai, and H. Pirsiavash, “Towards hiding adversarial examples from

network interpretation,” arXiv preprint arXiv:1812.02843, 2018.

[53] A. Ghorbani, A. Abid, and J. Zou, “Interpretation of neural networks is fragile,” in Proceed-

ings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3681–3688, 2019.

49

https://github.com/carlini/nn_robust_attacks

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Background and Related Work
	Neural networks
	Adversarial examples
	Existing attacks
	Jacobian-based Saliency Map Attack (JSMA)
	Fast Gradient Sign Method (FGSM)
	Basic Iterative Method (BIM):
	Carlini and Wagner Attack (CW):
	Momentum Iterative Method (MIM)

	Existing work on adversarial detection
	Explainable machine learning

	Design
	Threat model
	Overview of ExAD
	Generation of explanations
	Detector models
	Detection using a CNN-based binary classifier
	Detection based on reconstruction error

	Test-time detection of adversarial examples

	Experiments
	Experimental settings
	Environment
	Image Datasets
	Training the Target Models
	Generating Adversarial Examples
	Training ExAD-CNN and ExAD-AE
	Comparison

	Performance on normal examples
	Evaluation on blackbox attacks
	Generalizability of ExAD-CNN
	Comparison
	Evaluation with adaptive adversaries
	Whitebox Attack Approach
	Illustration of whitebox attack
	Evaluation of Whitebox Attack

	Discussion
	Fragility of Explanations
	Hiding the attack from explanations
	Changing the explanation but not the classification

	Limitations

	Conclusion
	REFERENCES

