

CLASSIFICATION AND LOCALIZATION OF FRACTURE-HIT EVENTS IN LOW-

FREQUENCY DAS STRAIN RATE WITH CONVOLUTIONAL NEURAL

NETWORKS

A Thesis

by

MENGYUAN CHEN

Submitted to the Graduate and Professional School of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Ding Zhu

Committee Members, Alfred Daniel Hill

 Zenon Medina-Cetina

Head of Department, Jeff Spath

August 2021

Major Subject: Petroleum Engineering

Copyright 2021 Mengyuan Chen

ii

ABSTRACT

Distributed acoustic sensing (DAS) has been used in the oil and gas industry as an

advanced technology for surveillance and diagnostics. Operators use DAS to monitor hydraulic

fracturing activities, to examine well stimulation efficacy, and to estimate complex fracture

system geometries. Particularly, low-frequency DAS can detect geomechanical events such as

fracture-hits as hydraulic fractures propagate and create strain rate variations. Analysis of DAS

data today is mostly done post-job and subject to interpretation methods. However, the

continuous and dense data stream generated live by DAS offers the opportunity for more

efficient and accurate real-time data-driven analysis.

The objective of this study is to develop a machine learning-based workflow that can

identify and locate fracture-hit events in low-frequency DAS data. The study is conducted in two

phases. In phase one, a fracture propagation model is used to produce strain rate patterns

observed at a hypothetical monitoring well. Using this model, two sets of strain rate responses

are generated with one set containing fracture-hit events. The simulated data are then used to

train a custom convolutional neural network (CNN) model for identifying the presence of

fracture-hit events. The same model is trained again for locating the event with the output layer

of the model replaced with linear units. The models achieved near-perfect predictions for both

event classification and localization. In phase two, the same workflow is applied to field data,

which includes 8.4 days of DAS monitoring data while two offset wells are hydraulically

stimulated. A more complex model (AlexNet) is used to train for classifying events and for

localizing fracture-hits. Using AlexNet, we achieved f1 score of 0.9 for identifying fracture-hits

and R2 of 0.93 for localizing fracture-hits.

iii

Additionally, edge detection techniques are used for recognizing fracture-hit event

patterns in the simulated strain rate images. The accuracy is also plausible, but edge detection is

more dependent on image quality and shape, hence less robust compared to CNN models. It can

only be applied to simulated data since field data often shows irregular fracture-hit patterns. This

comparison further supports the need for CNN applications in image-based real-time fiber optic

sensing event detection.

iv

DEDICATION

To my parents, Youzhuan Zhang and Yibin Chen.

v

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Dr. Ding Zhu, and Dr. A.

Daniel Hill for taking me in as a graduate student, for guiding me on my study and research, and

for allowing me the opportunity to explore the subject. Pursuing graduate study had been my

dream for years. They have immensely helped me make this dream come true.

 I thank Dr. Zenon Medina-Cetina for being my committee member and for his valuable

input to my research.

 Dr. Siddarth Misra’s Machine Learning course was of great help as it built the foundation

of my machine learning knowledge and solidified my programming skill in Python.

 I would also like to thank my friends in the research group – Gongsheng Li, Smith

Leggett, Jin Tang, Julia Pakhotina, Shohei Sakaida, Tohoko Tajima, Gabriel Tatman, and Yuhai

Zhou. Despite my short-spent time in College Station due to the pandemic, I enjoyed all the

inspiring conversations.

My gratitude is also due to Dr. David Castineira, Dr. Sebastien Matringe, and Dr. Nansen

Saleri. Their constant encouragement has helped me grow as a young professional.

Thanks to Dr. Larry Lake for believing in me.

Lastly, I would like to thank my beloved husband, Rui Li, who has always supported my

life choices.

vi

CONTRIBUTORS AND FUNDING SOURCES

Contributors

 This work was supervised by a thesis committee consisting of Dr. Ding Zhu, Dr. A.

Daniel Hill of Harold Vance Department of Petroleum Engineering, and Dr. Zenon Medina-

Cetina of Zachry Department of Civil and Environmental Engineering.

The strain rate simulation model used to produce input data for the synthetic case was

developed by Dr. Jin Tang. Smith Leggett shared the method to process field DAS data, which

was provided by Marathon Oil.

All other work described in this thesis was conducted by the student independently.

Funding Sources

 This research work was fully funded by the United Stated Department of Energy Office

of Fossil Energy under grant number DE-FE0031579 (The Eagle Ford Shale Laboratory: A Field

Study of the Stimulated Reservoir Volume, Detailed Fracture Characteristics and EOR

Potential). Contents of this study are solely the responsibility of the author and do not necessarily

represent the official views of the Department of Energy.

vii

NOMENCLATURE

𝐴 Activation function result

𝑏 Bias unit

𝑓 Filter size

𝐺 Magnitude of image intensity gradient from Sobel filter

𝐺𝑥, 𝐺𝑦 Horizontal and vertical image intensity gradients from Sobel filter

𝑔 Activation function

ℎ𝑤,𝑏 Perceptron as a function of weight and bias

𝐽 Loss function

𝑚 Sample size

𝑛𝑎𝑣𝑒 Average of the numbers of neurons of the previous and current layers

𝑛ℎ,𝑤
[𝑙]

 Shape of output (height and width) of a convolutional layer 𝑙

𝑝 Padding size

𝑝𝑖 Probability of sample 𝑖 belonging to the target class

𝑝𝑘 Probability of sample belonging to class 𝑘

𝑠 Stride size

𝑠𝑏 , 𝑠𝑊, 𝑠𝜃 RMSprop terms

𝑡 Time step

𝑣 Exponentially weighted moving average

𝑊, 𝑤 Weight parameter in matrix and vector forms

𝑥 Neural networks input

viii

𝑦(𝑖) True value for sample 𝑖

𝑦̂(𝑖) Predicted value for sample 𝑖

𝑍, 𝑧 Weighted sum of input plus bias in matrix and vector forms

𝛼 Learning rate

𝛽 Momentum hyperparameter

𝜖 A tiny number that avoids division by zero

𝜃 Model parameters

𝜎 Sigmoid function

𝜎2 Variance

ix

TABLE OF CONTENTS

 Page

ABSTRACT .. ii

DEDICATION ... iv

ACKNOWLEDGEMENTS .. v

CONTRIBUTORS AND FUNDING SOURCES ... vi

NOMENCLATURE ... vii

TABLE OF CONTENTS ... ix

LIST OF FIGURES ... xi

LIST OF TABLES .. xv

1. INTRODUCTION .. 1

1.1. Distributed Fiber Optic Sensing .. 1

1.2. Problem Statement and Research Objectives .. 5

1.2.1. Problem Statement .. 5

1.2.2. Research Objectives .. 7

2. METHODOLOGIES .. 10

2.1. Artificial Neural Networks and Convolutional Neural Networks 10

2.1.1. Artificial Neural Networks ... 10
2.1.2. Convolutional Neural Networks ... 26

2.1.3. Training Deep Neural Networks ... 32
2.2. Edge Detection ... 40

2.2.1. Sobel Filter .. 41

2.2.2. Morphological Transformation ... 41

2.2.3. Connected Component Labeling ... 43

3. MODEL DEVELOPMENT AND RESULTS .. 45

3.1. Synthetic Case .. 45
3.1.1. Input Data .. 45
3.1.2. Model Architecture and Configuration ... 50
3.1.3. Fracture-hit Event Classification .. 53

x

3.1.4. Fracture-hit Event Localization .. 56
3.1.5. Event Localization with Edge Detection .. 58

3.2. Field Case .. 64
3.2.1. Input Data .. 66
3.2.2. Model Architecture and Configuration ... 70
3.2.3. Fracture-hit Event Classification .. 72
3.2.4. Fracture-hit Event Localization .. 74

3.2.5. Field Case Summary ... 78

4. CONCLUSIONS... 80

REFERENCES ... 82

APPENDIX A MODEL ARCHITECTURE SPECIFICATIONS ... 85

xi

LIST OF FIGURES

 Page

Figure 1.1 Different components of light scattering (reprinted from Molenaar et al., 2012). 2

Figure 1.2 Schematic of Rayleigh scattering used in the DAS system (reprinted from

Molenaar et al., 2012). .. 3

Figure 1.3 Illustration of low-frequency DAS response to fracture propagation (reprinted from

Ugueto et al., 2019). .. 6

Figure 1.4 Example of low-frequency DAS signal showing fracturing arrival pattern

(modified from Jin and Roy, 2017). .. 7

Figure 1.5 Workflow of using CNN to classify and localize fracture-hit events in low-

frequency DAS. ... 9

Figure 2.1 Schematic of a linear threshold unit, an artificial neuron (reprinted from Géron,

2019). ... 14

Figure 2.2 Architecture of a MLP model to predict the price of a house. 15

Figure 2.3 Example of a multilayer perceptron with corresponding notations (modified from

Script Reference, 2021). .. 17

Figure 2.4 The sigmoid activation function (logistic function). ... 20

Figure 2.5 The hyperbolic tangent (tanh) activation function. ... 21

Figure 2.6 Examples in the Fashion MNIST data set. Each image example contains one

fashion item. .. 23

Figure 2.7 Training history of the example MLP model. ... 25

Figure 2.8 Samples from the Fashion MNIST testing data with corresponding true and

predicted classes. ... 26

Figure 2.9 Illustration of the convolutional operation (reprinted from IndoML, 2021). 28

Figure 2.10 Illustration of convolution over volume (reprinted from IndoML, 2021). 30

Figure 2.11 Example of a typical CNN architecture (reprinted from Prabhu, 2018). 32

Figure 2.12 The ReLU activation function. .. 33

Figure 2.13 The Leaky ReLU activation function. ... 34

xii

Figure 2.14 The exponential linear unit activation function with α set to 1. 35

Figure 2.15 A two-parameter example demonstrating the difference between regular Gradient

Descent and and RMSprop. ... 39

Figure 2.16 Demonstration of fitting and hitting a binary image with two structuring elements

Structuring element S1 fits region A only, and hits regions A, B, and C. Structuring

element S2 fits regions A and B, and hits regions A and B. (reprinted from School

of Computer Science at the University of Auckland, 2021). .. 42

Figure 2.17 Effects of erosion, dilation, and opening operations (modified from OpenCV,

2021). ... 43

Figure 2.18 Four-connectivity (left) and eight-connectivity (right) in connected component

labeling. Connected pixels that share the same value as the center pixel are grouped

together. ... 44

Figure 3.1 Simulation of fracture-hit strain rate at a monitoring well. ... 46

Figure 3.2 Examples of noise added strain rate patterns for synthetic fracture-hit event

classification (left: positive event, right: negative event). 1000 samples of positive

events and 1000 samples of negative events are generated. Red color indicates

extension, and blue color indicates compression. ... 49

Figure 3.3 CNN model architecture for the synthetic case (model visualized by NN-SVG). 51

Figure 3.4 Synthetic case: history of classification model performance on training and

validation sets for all five runs. a) history of binary cross-entropy loss on training

data; b) history of binary cross-entropy loss on validation data; c) history of f1 score

on training data; d) history of f1 score on validation data. ... 55

Figure 3.5 Synthetic case: history of localization model performance on training and

validation sets for all five runs. a) history of mean squared error loss on training

data; b) history of mean squared error loss on validation data; c) history of R2 on

training data; d) history of R2 on validation data. ... 57

Figure 3.6 Examples results from the edge detection workflow to identify strain rate fronts. 59

Figure 3.7 Cross plot of detected depth versus true depth (left) and cross plot of detected time

versus true time (right) from edge detection workflow. Red solid line represents

equality. ... 60

Figure 3.8 Synthetic case: cross plots of predicted depth and time of all data versus true depth

and time from localization models 1-3. Red solid line represents equality (left

column shows depth predictions; right column shows time predictions). 61

xiii

Figure 3.9 Synthetic case: cross plots of predicted depth and time of all data versus true depth

and time from localization models 4 and 5. Red solid line represents equality (left

column shows depth predictions; right column shows time predictions). 62

Figure 3.10 Boxplot of localization absolute error distributions for the CNN models and edge

detection. The boxes represent interquartile ranges of the data, and the whisks cover

99% of the data. Diamonds represent outliers. .. 63

Figure 3.11 Gun barrel view of the instrumented monitoring well (7HX) and two treatment

wells (6HX and 8HX). .. 65

Figure 3.12 A portion of unprocessed (left) and processed (right) low-frequency DAS data

from the study well. ... 66

Figure 3.13 Entire processed low-frequency DAS data from the study well. 66

Figure 3.14 Sliding a rectangular window to produce field DAS image samples. Left: the

entire DAS data. Right: four examples of subsets of the data generated by the

sliding window. ... 67

Figure 3.15 Examples of noise, shadow and fracture-hit samples generated from field DAS

data. ... 69

Figure 3.16 Architecture of the modified AlexNet used for field case (model visualized by

NN-SVG). ... 71

Figure 3.17 Field case: history of classification model performance on training and validation

sets for all five runs. a) history of binary cross-entropy loss on training data; b)

history of binary cross-entropy loss on validation data; c) history of f1 score on

training data; d) history of f1 score on validation data. .. 73

Figure 3.18 Comparison of R2 on training and validation data with the same activation

function but different initialization methods. .. 75

Figure 3.19 Field case: history of localization model performance on training and validation

sets for all five runs. a) history of mean squared error loss on training data; b)

history of mean squared error loss on validation data; c) history of R2 on training

data; d) history of R2 on validation data, early epochs not shown due to large

negative values. ... 76

Figure 3.20 Field case: cross plots of predicted depth and time of the testing data versus true

depth and time from localization models 1-3. Red solid line represents equality (left

column shows depth predictions; right column shows time predictions). 77

Figure 3.21 Field case: cross plots of predicted depth and time of the testing data versus true

depth and time from localization models 4 and 5. Red solid line represents equality

(left column shows depth predictions; right column shows time predictions). 78

xiv

xv

LIST OF TABLES

 Page

Table 2.1 Architecture of the MLP model used for the Fashion MNSIT data classification. 24

Table 3.1 Strain rate simulation input parameter distributions. Mechanical properties represent

SW Eagle Ford. ... 48

Table 3.2 Strain rate simulation input parameter distributions. Mechanical properties represent

NE Eagle Ford. Young’s modulus and Poisson’s ratio for NE Eagle Ford exhibit a

negative correlation as discovered by Kwabi (2013). ... 48

Table 3.3 Numbers of training, validation, and testing data sets for the synthetic case. 50

Table 3.4 Testing f1 scores from predictions by the five classification models (synthetic case). 56

Table 3.5 Confusion matrices from the five classification models (synthetic case). 56

Table 3.6 R2 of testing set predictions from the five localization models (numbers are averages

of depth and time R2). ... 57

Table 3.7 Field case sample counts. .. 69

Table 3.8 Numbers of samples for training, validation, and testing sets for the field case. 69

Table 3.9 Classification model training configuration and model performance (field case)........ 72

Table 3.10 Testing f1 scores for each event type (field case). .. 73

Table 3.11 Localization model training configuration and model performance (field case). 75

Table A.4.1 Synthetic case classification model architecture specifications. 85

Table A.4.2 Synthetic case localization model architecture specifications. 86

Table A.4.3 Field case classification model architecture specifications. 87

Table A.4.4 Field case localization model architecture specifications. .. 88

1

1. INTRODUCTION

1.1. Distributed Fiber Optic Sensing

Most well-known for the telecommunication industry, fiber optics as a means of

reliable data transmission is not new to us. It is widely used in industries including

defense, security, and transportation (Molenaar et al., 2011). The oil and gas industry

also has adopted fiber optic cables as an instrument for detecting pipeline leakage

(Tanimola and Hill, 2009) and monitoring hydraulically stimulated (HFS) wells

(Molenaar et al., 2011).

Completing long horizontal wells with hydraulic fracturing is capital intensive.

Operating companies strive to optimize completion designs to get the most value of the

investment. Distributed fiber optic sensing gives operators the ability to monitor

activities during fracturing, flow-back, and to investigate cross-well communication.

Standard fiber optic cables are usually installed outside of the casing or inside the tubing,

with a surface interrogation unit to receive and process the monitored data. When laser

pulses are sent from the interrogation unit, the system measures the disturbance in the

backscattered light caused by changes in temperature, strain, and acoustic intensity

where the disturbance occurs along the fiber.

Fiber optic sensing works based on the properties of light scattering. There are

three types of fiber optic sensing based on the frequency of the signal and the discrete

peaks within the electromagnetic spectrum. They are Rayleigh, Raman, and Brillouin

backscattering, as illustrated in Figure 1.1 (Tanimola and Hill, 2009).

2

Distributed temperature sensing (DTS) uses the difference in the Stokes and anti-Stokes

components of Raman backscattering to infer local temperature changes in the fiber.

Distributed acoustic sensing (DAS) measures Rayleigh backscattering to infer vibration-

induced disturbance (Molenaar et al., 2012). Distributed strain sensing (DSS) uses strain

sensitive Brillouin scattering to provide strain measurements (Tanimola and Hill, 2009).

Figure 1.1 Different components of light scattering (reprinted from Molenaar et al.,

2012).

Due to natural random inhomogeneity of the fiber optic cable, when light pulses

travel in the fiber, a small fraction of the light pulses is reflected back by imperfections

much smaller than the wavelength of the light. This is referred as Rayleigh

backscattering. The DAS system then uses optical time domain reflectometry (OTDR) to

measure changes in the backscattering. The measurement is made in the form of

intensity changes or phase changes. The system is illustrated in Figure 1.2.

3

Figure 1.2 Schematic of Rayleigh scattering used in the DAS system (reprinted from

Molenaar et al., 2012).

Many authors have demonstrated various applications of fiber optic sensing

during or after hydraulic fracturing operation. The real-time sound vibration from DAS

reflects activities such as tools traveling up and down the wellbore, ball seating, packer

setting, and perforation shots (Molenaar et al., 2012). Such capability allows operators to

change the course of action on the fly if needed. In the past few years, efforts have been

made to interpret DTS and DAS data for post-job well stimulation diagnostics. By cross-

examining treatment information, operators use DAS and DTS data to analyze fluid

distributions and cluster efficiency for diagnosing and optimizing completion designs

(Molenaar and Cox, 2013 and Ugueto et al., 2016). In addition to observation-based

analyses, model-based interpretations are also achieved. Pakhotina et al. (2020)

4

presented a joint interpretation of DAS and DTS for multi-fracture fluid distribution

based on experimental and numerical models. For cross-well analysis, the low-frequency

band (<0.05Hz) of DAS reflects the discernable deformation of the cable caused by

propagating fractures from hydraulically stimulated wells, hence providing a basis for

fracture geometry estimation (Jin and Roy, 2017 and Haustveit et al., 2020).

As the applications grow, the need for effective and timely analysis of data

generated by fiber optic sensing has become imperative. Furthermore, the technology

produces enormous amounts of data with high spatial and temporal resolutions. This

dense coverage of data allows for machine learning techniques to be used to enhance the

value of data interpretation. Jin et al. (2019) demonstrated using a multi-layer perceptron

neural network to predict fracture-hits from low-frequency DAS data. In their work,

DAS data were divided into sections according to completion stages and pumping time

windows. Input features for the neural network were deliberately designed variables

based on the strain rates of each section. Then channels were selected to create a labeled

training data set for neural network classification. Their model scored f1 scores of 0.86

on the validation data, and 0.79 on the test data. Stork et al. (2020) used a convolutional

neural network (CNN) object detection algorithm called YOLO (you only look once) to

identify and locate microseismic events in images of DAS data sampled at 2000 Hz.

These studies demonstrated the feasibility of using machine learning to detect events

from fiber optic sensing data.

5

1.2. Problem Statement and Research Objectives

1.2.1. Problem Statement

Low-frequency DAS strain rate measurement has gained attention in recent years

for its ability to provide information about hydraulic fracture geometries (Ugueto et al.,

2019). In developing unconventional resources, it is crucial to understand the extent of

fracture propagation in order to optimize well completion and maximize capital

efficiency. Fracture-hit is a direct indication of fracture-induced cross well

communication. Surface or downhole pressure gauges can detect fluid communication

caused by hydraulic fracturing in real time, but pressure monitoring is unable to provide

precise location of the hit. Fluid communication can also result from fracture-to-fracture

connection, rather than fracture-to-well connection.

Jin and Roy (2017), Ugueto et al. (2019) and Haustveit et al. (2020)

demonstrated the ability of low-frequency DAS to detect a propagating fracture

intersecting a monitoring well equipped with fiber optic sensing cable. When a

transverse fracture reaches the monitoring well, the fracturing opening causes axial

deformation of the fiber optic cable that can be reflected on low frequency DAS data.

The data is essentially the phase changes of the backscattered light plotted over time and

over a depth range. On the 2-dimensional representation, low frequency DAS signal

shows either extension or compression as the fiber optic cable slightly deforms. When

the fracture arrives, the data reflects the cable deformation by showing extension at the

fracture-hit location. Once the pumping stops, the fracture starts to close, and the fiber

responds with relaxation (Ugueto et al., 2019). This process is illustrated by Figure 1.3.

6

Moreover, the arrival of the fracture is indicated by a cone-shaped extension zone right

before the fracture hits the monitoring well. Researchers have been using this cone-

shaped strain rate front pattern to identify fracture-hits. For example, in Figure 1.4, the

pattern can be seen as a new fracture arrives (Jin and Roy, 2017). However, the

identification of the fracture-hit patterns from low-frequency DAS is mostly done

through visual inspection after the stimulation operation has been completed. It would be

advantageous to be able to identify fracture-hits automatically during the operation so

that operators can respond more promptly.

Figure 1.3 Illustration of low-frequency DAS response to fracture propagation

(reprinted from Ugueto et al., 2019).

7

Figure 1.4 Example of low-frequency DAS signal showing fracturing arrival pattern

(modified from Jin and Roy, 2017).

1.2.2. Research Objectives

Based on the characteristic pattern of fracture arrival, in this study, we

investigate the feasibility of training convolutional neural network models to recognize

the presence of fracture-hit events from low-frequency DAS strain rate data, as well as

the location of fracture-hit events in terms of time and depth. A trained CNN model can

be deployed to identify fracture-hit events automatically and systematically in real time,

allowing operators to take actions more promptly with confidence.

The study is conducted in two phases. In phase one, we use data generated by a

fracture propagation strain response model to train CNN models. With the proof of

concept provided by phase one, we proceed to phase two, where field data is used to

produce samples to train CNN models for the same purpose – recognizing and locating

8

fracture-hit events. The following procedure is executed to accomplish this goal. Figure

1.5 illustrates the workflow of this study.

• Run fracture propagation strain response models with various completion

configurations to obtain sufficient data samples. Data samples should be

labeled with classes (fracture-hit events or non-fracture-hit events). Fracture-

hit samples should be annotated with locations for training purpose.

• Develop CNN models with the objectives of classifying and localizing

events. Start with simpler model architecture but also investigate well-known

CNN models.

• Process field DAS data to produce training samples. The data set should be

analogous to the simulated data in the sense that each sample should be a 2D

segment of DAS data in which a fracture-hit event could appear. All samples

should be properly labeled and annotated.

• Develop CNN models to achieve the same classification and localization

objectives of fracture-hit events with the expectation that the model

architecture used for the field data should be more complex than the one used

for the simulated data.

From data processing to model development, the code is completely written in

Python, with the CNN models developed in Keras framework. Since training CNN

models requires high computer performance, GPU (graphics processing unit) enabled

Google Colaboratory (https://colab.research.google.com/) is used as the model

development environment. Google Colaboratory is an online Python platform.

9

Figure 1.5 Workflow of using CNN to classify and localize fracture-hit events in low-

frequency DAS.

10

2. METHODOLOGIES

2.1. Artificial Neural Networks and Convolutional Neural Networks

This section explains the key principles of artificial neural networks and

convolutional neural networks. It is necessary to understand how artificial neural

networks learn to perform a task. Elements of convolutional neural networks will be

described, and why they excel at visual tasks will be explained. This section also covers

some key techniques in training convolutional neural networks.

In machine learning, we teach the model what we want it to learn with relevant

data so that the model can make a recognition when it sees new unidentified data. A

model trained to identify categories (discrete values) is called a classifier. A model

trained to make a continuous prediction is called a regressor. This is referred as

supervised learning in the sense that the model has been trained with data that has

corresponding responses. Among the numerous machine learning algorithms, artificial

neural networks (ANN) excel at more complex tasks because they mimic the brain’s

cognitive system. Examples of these complex tasks include autonomous driving, speech

recognition, and natural language processing.

2.1.1. Artificial Neural Networks

Inspired by the network of biological neurons in the brain, artificial neural

networks are powerful machine learning models that have a wide range of applications,

including search engines, recommender systems, fraud detection, medical diagnostics

11

and so on. Although ubiquitous today, research and development of ANNs have gone

through some up and downs. The earliest ANN model was introduced by

neurophysiologist Warrant McCulloch and mathematician Walter Pitts in 1943

(McCulloch and Pitts, 1943). However, due to the lack of computational power, the

promises of ANNs were deemed unrealistic. In the 1980s, new developments sparked a

wave of revival, but it was not until the 1990s did ANNs see substantial advancements

thanks to the abundant digital data available today and the exponential growth in

computing power (Géron, 2019).

2.1.1.1. Fundamentals of Artificial Neural Networks

In a nutshell, an artificial neural network (ANN) can be viewed as a structured

and layered system composed of many linear regression units with the extension of some

activation functions. The system parameters (weights and biases) are to be fitted through

minimizing a certain cost function.

The simplest one-variable linear regression model can be represented by:

𝑧 = 𝑤𝑥 + 𝑏, 2.1

where 𝑥 is the predictor variable, 𝑧 is the response variable, and 𝑤 and 𝑏 represent the

parameters (slope and intercept) of the straight line that fits the data represented by 𝑥.

An example of this simple linear regression problem is predicting the price of a house

based on a data set that contains the square footage (𝑥) of 𝑚 number of houses and their

corresponding prices (𝑦). Running linear regression will yield a pair of parameters 𝑤 and

12

𝑏 that best describe the linear relationship between the square footage and price of a

house.

 In more generalized multi-variable linear regression, equation 2.1 can be

represented as:

𝑧(𝑥) = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + ⋯ 𝑏, 2.2

or in vectorized form:

𝑧(𝑥) = 𝑤𝑇𝑥 + 𝑏. 2.3

In linear regression, finding the best parameters is done by minimizing the cost

function (𝐽), the squared distance between the actual value (𝑦) and the corresponding

predicted value (𝑦̂), through Gradient Descent. The cost function is defined as:

𝐽(𝑤, 𝑏) = ∑[𝑦(𝑖) − 𝑦̂(𝑖)]
2

.

𝑚

𝑖=1

2.4

Superscript 𝑖 indicates the 𝑖th sample.

In Gradient Descent, the parameters are updated iteratively in the direction of the

steepest descent until the reduction of the cost function reaches a tolerance level.

In an ANN model, linear regression is realized through the fundamental element,

the neuron (or unit), which computes the weighted sum of its input then applies an

activation function to produce an output. The output is passed to neurons in the next

layer as their input. The neuron can be viewed as an extension of linear regression in the

sense that the output from the linear part needs to be activated or de-activated. Whether a

neuron is activated depends on the neuron value and the specific activation function

13

used. More details on activation functions will be discussed in sections 2.1.1.2 and

2.1.3.1.

The earliest artificial neural network model is the perceptron model introduced

by Frank Rosenblatt in 1958 (Rosenblatt, 1958). The perceptron model is a single layer

ANN composed of linear threshold units (LTU). The LTU uses a step function as the

activation function applied to the linear combination of its inputs (𝑧 = 𝑤𝑇𝑥), as shown

in Figure 2.1. The step function outputs 1 if 𝑧 is above or equal to a threshold value

(typically 0), and it outputs 0 if 𝑧 is below the threshold. A perceptron has several LTUs

and every LTU is connected to all the input units. Additionally, a bias unit is added. The

bias is analogous to the intercept in linear regression. Equation 2.5 is the mathematical

representation of a perceptron:

ℎ𝑤,𝑏(𝑥) = 𝑔(𝑤𝑇𝑥 + 𝑏). 2.5

In the equation above, 𝑥 represents the input vector, 𝑤 represents the weights

applied to the input, and 𝑏 is the bias unit. Function 𝑔 is the activation function (step

function in an LTU).

14

Figure 2.1 Schematic of a linear threshold unit, an artificial neuron (reprinted from

Géron, 2019).

A perceptron by itself is not particularly useful. To utilize its power, researchers

developed multilayer perceptron (MLP) models, which perhaps are the most represented

ANN model in the literature. A MLP model contains more than one layer of neurons,

and they are referred as the hidden layers. With stacked layers of neurons, MLPs can be

trained to make predictions for complex systems. In general, more complex problems

require more layers of neurons. Instead of using a step function, MLPs use activation

functions. Activation functions give the network system nonlinearity, otherwise a multi-

layer network is equivalent to a single layer network. In theory, activation functions also

need to be continuous with non-zero gradients defined everywhere to make Gradient

Descent work.

A MLP model contains an input layer (layer 0), several hidden layers, and an

output layer. In each layer, every unit (or neuron) is connected to every single unit in the

next layer to indicate their impact on units in the next layer. The number of units in the

hidden layers generally depend on the dimensions of the data and the complexity of the

15

problem. The number of units in the input layer is the same as the number of predictor

variables (features) of the input data. The number of units in the output layer depends on

the objective of the task. For example, a binary classifier and a single variable regressor

need one unit in the output layer. For a multi-class classifier, the number of units of the

output layer needs to be the same as the number of classes.

In the real world, most problems are nonlinear. For example, instead of using

simple linear regression, MLP can be used to better predict the price of a house. A house

has attributes such as the size, number of rooms, year built, and location. A MLP model

can be constructed with four input units representing the four attributes and one output

unit representing the price, as illustrated in Figure 2.2. The hidden units can be viewed

as secondary or implicit attributes that indicate the value of the house. The arrows

indicate the connections of units from the previous layer to units in the next layer. They

represent the impact each unit has on units in the next layer. The levels of impact are

characterized by the weight parameters.

Figure 2.2 Architecture of a MLP model to predict the price of a house.

16

In a neural network model, the weights and biases are the trainable parameters

that make the model produce the best prediction. The training process is done through

the forward pass and back propagation algorithm, the core of training artificial neural

networks. The algorithm is described below.

• The input data is passed to the network’s input layer, and the neurons

calculate the corresponding output layer by layer till the output layer of the

network is computed (a prediction is made).

• Once the output has been computed, the error of the prediction defined by a

certain cost function can be measured.

• Error gradients (gradients of the cost function) with respect to each model

parameter are calculated layer by layer backwards using the chain rule.

• Parameters are updated by Gradient Descent using the calculated error

gradients.

In summary, the calculations (weighted sum and activation) are carried forward

layer by layer, and the error gradients determined by the cost function are carried

backward layer by layer to update the system parameters until the parameters are fitted.

 The mathematical formulation of the forward pass calculation of layer 𝑙 is

represented by equation 2.6 and equation 2.7.

𝑍[𝑙] = 𝑊[𝑙]𝐴[𝑙−1] + 𝑏[𝑙] 2.6

𝐴[𝑙] = 𝑔[𝑙](𝑍[𝑙]) 2.7

17

In the equations above, 𝐴[𝑙−1] is the input matrix of layer 𝑙 (or output from layer 𝑙 − 1),

and 𝑊 is the weight matrix in the shape of (𝑛, 𝑚) where 𝑛 is the number of neurons in

the current layer and 𝑚 is the number of neurons in the previous layer. The weight

parameters make the connections between neurons in each layer. 𝑍 represents the result

of the linear combination of the input matrix of layer 𝑙 (𝐴[𝑙−1]) plus the bias vector 𝑏.

For the input layer, 𝐴[0] = 𝑋, where 𝑋 represents the model’s input matrix. Figure 2.3

demonstrates a concrete example.

Figure 2.3 Example of a multilayer perceptron with corresponding notations

(modified from Script Reference, 2021).

In the example shown in Figure 2.3, there are two hidden layers with four units

and two units, respectively. The input data has three variables and five training samples.

The output layer has one unit. The notation can be described as follows.

18

• The superscripts in square brackets indicate layer indices, superscripts in

parenthesis indicate sample indices, and subscripts indicate unit indices in the

layer. For instance, 𝑥1
[0](2)

 represents the second sample (2) of the first input

variable (1) in the input layer (0).

• 𝑛[𝑙] indicates the number of units in layer 𝑙. For the input and output layers,

they can also be represented as 𝑛𝑥 and 𝑛𝑦.

• In this network, there are three input variables and five training samples,

hence 𝑛[0] = 3, and the shape of 𝑋 is 3 × 5. In layer 1 (the first hidden layer),

there are four units, hence 𝑊[1] has the shape of (4 × 3). As a result, the

output of layer 1, 𝐴[1], has the shape of (4 × 5). 𝐴[1] is then fed into layer 2

to obtain 𝐴[2]. Eventually, the output of the network, 𝐴[3], is calculated.

After the forward pass, the error can be measured by the cost function, 𝐽(𝑌, 𝐴),

which is a function of the true value 𝑌 and the model output 𝐴. The specific cost

function depends on the type of the learning task.

In backpropagation, because gradients are needed in order to update the model

parameters in Gradient Descent, the partial derivatives of 𝐽 w.r.t 𝑊and 𝑏 for each layer

are calculated using the chain rule, as shown by equations 2.8 and 2.9.

∇𝑊𝐽 =
𝜕𝐽

𝜕𝐴

𝜕𝐴

𝜕𝑍

𝜕𝑍

𝜕𝑊

2.8

∇𝑏𝐽 =
𝜕𝐽

𝜕𝐴

𝜕𝐴

𝜕𝑍

𝜕𝑍

𝜕𝑏

2.9

19

The exact expressions for the partial derivatives depend on the activation function and

cost function used.

Finally, the weights and biases can be updated by:

𝑊 ← 𝑊 − 𝛼∇𝑊𝐽, 2.10

and

𝑏 ← 𝑏 − 𝛼∇𝑏𝐽, 2.11

where 𝛼 is the learning rate. The entire process is repeated iteratively until model

parameters 𝑊 and 𝑏 have been fitted (error no longer reduces).

It is important to note that for each layer, the weight parameters must be

initialized randomly so that the units bear different weights. If the units have the same

weight, then having many units is meaningless. Initializing weights randomly is referred

as “breaking the symmetry”.

2.1.1.2. Activation Functions

To provide the network nonlinearity, and to predict a discrete output for the final

layer (for classification), ANN must use activation functions. Without activation

function, stacked layers are equivalent to a single layer. The most common activation

function is the sigmoid function (or the logistic function), which is defined as:

𝜎(𝑧) =
1

1 + exp(−𝑧)

2.12

with

𝑧 = 𝑤𝑇𝑥 + 𝑏. 2.13

20

The sigmoid function outputs a probability between 0 and 1, as shown in Figure

2.4. For binary classification, the final output is 1 if the probability is greater or equal to

0.5, 0 if the probability is less than 0.5.

Figure 2.4 The sigmoid activation function (logistic function).

The hyperbolic tangent function (tanh) is also s-shaped like the sigmoid function,

but its value ranges from -1 to 1 instead of 0 to 1 (Figure 2.5). As a result, the output of

this function is usually centered around 0, making model converge more easily. The tanh

function is defined as:

tanh(𝑧) = 2𝜎(2𝑧) − 1. 2.14

21

Figure 2.5 The hyperbolic tangent (tanh) activation function.

When a model is trained to recognize multiple classes, the output layer is

activated by the softmax activation function. The softmax activation computes the

probability of a sample belonging to each class. As usual, the linear combination is

computed first:

𝑧 = 𝑤𝑇𝑥 + 𝑏. 2.15

Then the softmax function computes the probabilities according to:

𝑝𝑘 = 𝜎(𝑧(𝑥))
𝑘

=
exp(𝑧𝑘(𝑥))

∑ exp (𝑧𝑗(𝑥))𝐾
𝑗=1

.
2.16

The final class prediction is made by:

22

𝑦̂ = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑝𝑘). 2.17

In the equations above, 𝐾 is the number of classes, 𝑝𝑘 is the probability of

sample 𝑥 belonging to class 𝑘, and 𝑦̂ is the predicted class, class 𝑘 that maximizes the

probability 𝑝𝑘.

2.1.1.3. An Image Classifier with MLP

To demonstrate how MLP works, this section details the process of developing

an MLP model to recognize clothing items in the Fashion MNIST data set. Fashion

MINST is one of the built-in data sets in Keras. Figure 2.6 shows some examples of

items in the data set. In the Fashion MNIST data set, each sample is a grayscale image of

size 28 × 28 and contains one fashion item. There are 60,000 training images and

10,000 testing images. Each image is labeled with one of the ten clothing item classes:

“T-shirt/top”, “Trouser”, “Pullover”, “Dress”, “Coat”, “Sandal”, “Shirt”, “Sneaker”,

“Bag”, and “Ankle boot”. In the data set, the classes are coded as numbers from 0 to 9.

23

Figure 2.6 Examples in the Fashion MNIST data set. Each image example contains

one fashion item.

Because each layer in an MLP is a 1D array of neurons (flat layers), the image

needs to be converted to a 1D vector of size 784. Hence the input layer will have 784

neurons. The output layer will have ten neurons, one for each class. For this example, we

use two hidden layers with 200 and 100 neurons, respectively. The model architecture is

displayed in Table 2.1.

24

 The total number of parameters in an MLP model is the sum of total number of

neuron connections and the number of all bias units. For each layer, the number of

parameters is 𝑛 × 𝑚 + 𝑛, where 𝑛 is the number of neurons in the current layer and 𝑚 is

the number of neurons in the previous layer. Hence in this network, the total number of

parameters to be trained is:

(200 ∗ 784 + 200) + (100 ∗ 200 + 100) + (10 ∗ 100 + 10) = 178110.

Table 2.1 Architecture of the MLP model used for the Fashion MNSIT data

classification.

Layer (type) Output Shape Param #

input (Flatten) (None, 784) 0

dense0 (Dense) (None, 200) 157000

dense1 (Dense) (None, 100) 20100

output (Dense) (None, 10) 1010

Total params: 178,110

Trainable params: 178,110

Non-trainable params: 0

 After the model has been constructed, it can be then used to fit the training data.

The training process is an iterative optimization process with the objective of

minimizing the loss. Hence the history of loss should generally decrease and the history

of model performance (some accuracy measure) should increase. An optimal model

should be one that does not overfit nor underfit the training data. An overfitted model

tends to “memorize” the training data and performs poorly on the validation data. An

underfitted model is too general and does not capture the characteristics of the data.

Keeping track of model performance on both training and validation data allows the data

scientist to tune the model to the optimal state.

25

 Figure 2.7 shows the training history of the MLP model on the Fashion MNSIT

data set. As expected, the loss decreases for both training and validation data whereas

the accuracy increases for both training and validation data.

Figure 2.7 Training history of the example MLP model.

 The trained model can then be used to make a prediction on the testing data.

Figure 2.8 shows the first five samples of the testing data, the true label of each sample

and the predicted label of each sample. The model correctly identifies all the five

samples.

26

Figure 2.8 Samples from the Fashion MNIST testing data with corresponding true

and predicted classes.

2.1.2. Convolutional Neural Networks

Emerged from studies of the brain’s visual cortex, convolutional neural networks

(CNN) are the state-of-the-art technology used in computer vision. Regular MLP models

can perform some visual tasks with small images. However, digital images can easily

have millions of pixels. With fully connected neurons of each layer, the computational

need is simply infeasible and inefficient. CNNs are developed based on the idea that the

cognitive neuron of a layer does not need to be connected to every single neuron before

and after. It only needs to be connected to a small receptive field of the previous layer.

The earliest inspiration was from studying of the structure of cats’ visual cortex

by neurophysiologists David H. Hubel and Torsten Wiesel in 1958 and 1959 (Géron,

2019). Their studies showed that many neurons in the visual cortex have a small local

receptive field, and the neurons only react to visual stimuli located in this receptive field.

The neurons with the receptive fields may react to different visual patterns (e.g., lines

with different orientations). Moreover, the authors showed that some neurons have larger

receptive fields that react to more complex patterns. These studies inspired the

neocognitron model introduced by Kunihiko Fukushima in 1980 (Fukushima, 1980).

27

The neocognitron is a hierarchical multilayer artificial neural network. It is the

predecessor of convolutional neural networks. The earliest well-known CNN is the

modeled called LeNet-5 developed by Yann LeCun et al. (1989) after many years of

research. LeNet-5 popularized CNN applications and was widely used to recognize

handwritten characters by banks and postal offices.

2.1.2.1. The Convolutional Operation

The core of a CNN model is the convolutional operation. The operation takes a

small 2D filter (or convolution kernel) and convolves it with an input image to produce

an output image, called a feature map. The convolutional operation performs

elementwise multiplication with an area in the input of the same size as the filter. The

output is a single number that is the summation of the products. The operation continues

to the next receptive field horizontally then vertically until the entire input has been

covered. This process produces a 2D feature map as the output and it is usually smaller

in size compared to the input. For example, convolving a 6 × 6 input with a 3 × 3 filter

produces an output of size 4 × 4, as illustrated by Figure 2.9. In Figure 2.10, the filter

has predefined values. It is a type of vertical edge detector. While training CNN models,

the values of the filter are the weight parameters that are to be determined by the training

process.

28

Figure 2.9 Illustration of the convolutional operation (reprinted from IndoML,

2021).

2.1.2.2. Stride and Padding

The filter can move pixel by pixel or skip some pixels. The step size by which

the filter moves is called stride. Bigger strides result in smaller feature maps. It is

possible to produce a feature map the same size as the input. This is done by zero

padding – adding zeros around the input. In a convolutional layer 𝑙, the shape of the

29

output (𝑛ℎ,𝑤
[𝑙]

) is determined by the following expression with the shape of the input

(𝑛ℎ,𝑤
[𝑙−1]

), filter size (𝑓), strides (𝑠), and padding (𝑝):

𝑛ℎ,𝑤
[𝑙]

= ⌊(
𝑛ℎ,𝑤

[𝑙−1]
+ 2𝑝 − 𝑓

𝑠
) + 1⌋,

2.18

where subscripts ℎ and 𝑤 denote height and width. The brackets ⌊ ⌋ indicate the

mathematical floor operation. In practice, filters are square matrices and stride is the

same in horizontal and vertical directions.

2.1.2.3. Convolution Over Volume

The convolutional operation is typically done over a 3D tensor since images are

usually represented in RGB (red, green, and blue) channels. Correspondingly, the filter

must also be 3D with the third dimension equal to the third dimension of the input. If

only one filter is used, the output is still 2D because each output number is the sum of

the results from all channels. Figure 2.10 illustrates the convolution over volume

concept.

30

Figure 2.10 Illustration of convolution over volume (reprinted from IndoML, 2021).

2.1.2.4. One Convolutional Layer

In summary, a convolutional layer 𝑙 has the following components:

• Filter size: 𝑓[𝑙] × 𝑓[𝑙] × 𝑛𝑐
[𝑙−1]

• Padding size: 𝑝[𝑙]

• Stride: 𝑠[𝑙]

• Number of filters: 𝑛𝑐
[𝑙]

• Input: 𝑛h
[l−1]

× 𝑛w
[l−1]

× 𝑛𝑐
[𝑙−1]

• Output: 𝑛h
[l] × 𝑛w

[l] × 𝑛𝑐
[𝑙]

Notice that the number of filters is the same as the number of channels of the

output, and the third dimension of the filter size is the same as the third dimension of the

input size (output size from previous layer).

31

A convolutional layer often also contains a pooling layer. A pooling layer

operates similarly to convolution, but instead of computing the sum of the element-wise

products, pooling layer computes the average or the maximal values within the pooling

kernel. In modern applications, max pooling is more commonly used because it has the

effect of reducing data dimensionality while preserving the most prominent feature.

A CNN model is usually a stack of several convolutional layers followed by a

few flat layers. In a convolutional layer, each filter learns a specific feature across an

image. For example, an early layer in the network can learn low-level features such as

horizontal and vertical lines in the image. Compared to a classic fully connected multi-

layer perceptron network with the same scale, a CNN model can extract relevant features

of an image with fewer parameters to be trained. This is because neurons (pixels) in a

feature map share the same trainable parameters (parameter sharing) and each output is

only connected to a small number of inputs (sparsity of connection) (Géron, 2019). A

typical CNN architecture is shown in Figure 2.11. In this example, input images

containing single objects are fed into the network. The end goal is for the model to

recognize the type of the object (i.e., car, truck, van, bicycle etc.)

32

Figure 2.11 Example of a typical CNN architecture (reprinted from Prabhu, 2018).

2.1.3. Training Deep Neural Networks

Along with the powerfulness and freedom deep neural networks have, challenges

arise in training a deep neural network models. This section describes the prevailing

vanishing/exploding gradients problem and several techniques researchers developed to

address it.

In backpropagation, the error gradients of each layer are calculated sequentially

from later layers. Subsequently, the error gradients of the early layers can be

exponentially small or exponentially large, depending on the initial values of the weight

parameters. As a result, the model may never converge. This is referred as the vanishing

or exploding gradients problem. There are a few techniques that tackle this challenge,

such as using non-saturating activation functions, initializing weights with a certain

variance, and normalizing data for each layer.

2.1.3.1. Non-saturating Activation Functions

33

Unlike the saturating sigmoid activation function, the rectified linear unit (ReLU)

activation function has become the most popular activation function for training ANN

models. The ReLU function is defined as:

𝑅𝑒𝐿𝑈(𝑧) = max(0, 𝑧) 2.19

As can be seen in Figure 2.12, the ReLU function does not have a gradient at 𝑧 =

0 and the gradient is zero for 𝑧 < 0. This turns out to work fine in practice. The key is

that the ReLU function does not saturate for positive values.

Figure 2.12 The ReLU activation function.

34

Although ReLU works well in practice, there are some improved variants of

ReLU. Leaky ReLU (Figure 2.13) modifies the negative portion of ReLU so that it does

not have a zero gradient. Leaky ReLU is defined as:

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 = max(𝛼𝑧, 𝑧), 2.20

where 𝛼 is the slope of the negative portion, usually a very small number.

Figure 2.13 The Leaky ReLU activation function.

Exponential linear unit (ELU) also addresses the zero-gradient problem. It is

defined as:

𝐸𝐿𝑈𝛼(𝑧) = {
𝛼(exp(𝑧) − 1), 𝑖𝑓 𝑧 < 0

𝑧, 𝑖𝑓 𝑧 ≥ 0
,

2.21

35

with 𝛼 typically set to 1. Figure 2.14 shows the ELU activation function.

Figure 2.14 The exponential linear unit activation function with α set to 1.

2.1.3.2. Initializations

The vanishing/exploding gradients problem was first addressed by Xavier Glorot

and Yoshua Bengio in 2010 (Glorot and Bengio, 2010). The authors pointed out that if

the variance of the output of each layer is much bigger than the variance of the input, the

sigmoid function will eventually saturate. When the inputs of the sigmoid function are

very large or small, the gradients become extremely small, practically leaving nothing to

be learned for the earlier layers. Glorot and Bengio (2010) stated that to alleviate this

problem, the variance of the input and the variance of the output of each layer need to be

36

the same. Although this cannot be guaranteed since different layers usually have

different numbers of neurons, the authors proposed a practical solution described below.

• Normal distribution with mean of 0 and 𝜎2 =
1

𝑛𝑎𝑣𝑒
 where 𝑛𝑎𝑣𝑒 is the average

of the numbers of neurons of the previous and current layers.

• Uniform distribution between −𝑟 and +𝑟 where 𝑟 = √
3

𝑛𝑎𝑣𝑒

This is referred as the Glorot initialization. The Glorot initialization is suitable for

sigmoid, tanh, and softmax activations. For ReLU, He et al.(2015b) suggest that using a

variance of
2

𝑛𝑎𝑣𝑒
 with a normal distribution reduces model errors faster.

2.1.3.3. Batch Normalization

Another technique that drastically reduces the vanishing/exploding gradients

problem is called batch normalization, introduced by Sergey Ioffe and Christian

Szegedy in 2015 (Ioffe and Szegedy, 2015). This operation transforms the input so that it

is zero centered and normalized, then scales and shifts each input. This can be done

before or after each convolutional layer. It is called batch normalization because in

practice, the operation is done using the current mini-batch. A mini-batch is simply a

subset of the training data to be used to train the model. As opposed to using the whole

data set, dividing the data into several mini batches allows the model to update

parameters more frequently, and reduces the memory requirement. During testing,

Keras’s implementation of batch normalization estimates the means and standard

deviations needed for the transformation using moving averages of the input layer’s

37

mean and standard deviations during training (Géron, 2019). Batch normalization also

has the effect of regularization.

2.1.3.4. Optimization Techniques

Although Gradient Descent is the standard way for optimization, it is not the

most suitable for training deep neural networks because it can be painfully slow. In

standard Gradient Descent, the parameters are updated by subtracting the gradient of the

cost function multiplied a learning rate. If the gradient is small, then the model learns

slowly. Optimization with momentum (Polyak, 1962) addresses this problem by keeping

track of the history the gradient. This is achieved by using the exponentially weighted

moving average of the gradients and using this averaged gradient to update the

parameters. For step 𝑡, the exponentially weighted moving average (𝑣) of a variable 𝑥 is

defined as:

𝑣𝑡 = 𝛽𝑣𝑡−1 + (1 − 𝛽)𝑥𝑡, 2.22

where 𝛽 is the momentum hyperparameter usually set to 0.9 and 𝑣 is initialized as 0

(𝑣0 = 0). The weight and bias parameters are updated as follows:

𝑣𝑊 ← 𝛽𝑣𝑊 + (1 − 𝛽)∇𝑊𝐽, 2.23

𝑊 ← 𝑊 − 𝛼𝑣𝑊 , 2.24

𝑣𝑏 ← 𝛽𝑣𝑏 + (1 − 𝛽)∇𝑏𝐽, 2.25

𝑏 ← 𝑏 − 𝛼𝑣𝑏 . 2.26

38

Optimization can be even faster with RMSProp, a non-published technique

developed for a machine learning course on Coursera (https://www.coursera.org/). The

RMSProp algorithm is similar to optimization with momentum, but it scales the gradient

terms so that gradient decent moves faster along dimensions with flatter slopes. The

weight and bias parameters are updated as follows:

𝑠𝑊 ← 𝛽𝑠𝑊 + (1 − 𝛽)(∇𝑊𝐽 ⊗ ∇𝑊𝐽), 2.27

𝑊 ← 𝑊 − 𝛼(∇𝑊𝐽 ⊘ √𝑠𝑊 + 𝜖) 2.28

𝑠𝑏 ← 𝛽𝑠𝑏 + (1 − 𝛽)(∇𝑏𝐽 ⊗ ∇𝑏𝐽) 2.29

𝑏 ← 𝑏 − 𝛼(∇𝑏𝐽 ⊘ √𝑠𝑏 + 𝜖)

2.30

In the expressions above, ⊗ and ⊘ represent element wise multiplication and division.

𝜖 is a tiny number that prevents dividing by zero. If the original gradient terms are steep,

then adjusted gradients will be the result of dividing the original gradients by relatively

large numbers. On the other hand, if the original gradients are small, then they are

adjusted by dividing relatively small numbers. The combined effect is preventing the

path of optimization from zig-zagging too much in the wrong directions. Figure 2.15

illustrates the idea of RMSProp with a two-parameter example.

39

Figure 2.15 A two-parameter example demonstrating the difference between regular

Gradient Descent and and RMSprop.

Adaptive moment estimation (Adam) combines the benefits of both Momentum

Optimization and RMSProp (Kingma and Ba, 2015). The Adam algorithm uses the

exponentially weighted averages calculated by both MomentumOoptimization and

RMSProp. It then applies bias correction, and the parameters are updated using a

combination of the corrected exponentially weighted averages. The update process is

described by the expressions below. For brevity, 𝜃 is used to represent both weight and

bias.

For iteration 𝑡:

𝑣𝜃 ← 𝛽1𝑣𝜃 + (1 − 𝛽1)∇𝜃𝐽(𝜃), 2.31

𝑠𝜃 ← 𝛽2𝑠𝜃 + (1 − 𝛽2)(∇𝜃𝐽 ⊗ ∇𝜃𝐽), 2.32

𝑣𝜃
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =

𝑣𝜃

1 − 𝛽1
𝑡, 2.33

40

𝑠𝜃
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =

𝑠𝜃

1 − 𝛽2
𝑡, 2.34

𝜃 ← 𝜃 −
𝛼𝑣𝜃

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

√𝑠𝜃
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 + 𝜖

.
2.35

Because the momentum terms (𝒗𝜽) and the RMSProp terms (𝒔𝜽) are initialized at zero,

they are biased towards zero. The purpose of the bias correction (equation 2.33 and

equation 2.34) is to boost these terms at the beginning of the training.

2.2. Edge Detection

The simulated strain rate of a fracture-hit exhibits a well-defined pattern. This

pattern is distinguished by a cone-shaped extension. Based on this characteristic, edge

detection techniques can be applied to identify the cone-shaped strain rate front. The

edge detection workflow consists of Sobel filtering, morphological transformation, and

connected component labeling. This workflow may not be applicable to field data

because the strain rate front is far less regular in shape compared to the simulated strain

rate front. The purpose of using edge detection workflow is to compare the results with

CNN models for fracture-hit location identification in simulated strain rate data.

41

2.2.1. Sobel Filter

In image processing, edge detection techniques can identify distinctive lines of

an image. It is achieved by convolving predefined filters with an input image. This

operation approximates the image intensity gradients at each pixel location. In this study,

Sobel filter is chosen as the edge detection filter to find the strain rate front. The Sobel

filter consists of one horizontal filter and one vertical filter that detect horizontal edges

and vertical edges, respectively. The approximated gradient results 𝐺𝑥 and 𝐺𝑦 are

obtained by convolving these two 3 × 3 filters with an input image 𝐴:

𝐺𝑥 = [
−1 0 1
−2 0 2
−1 0 1

] ∗ 𝐴,
2.36

𝐺𝑦 = [
1 2 1
0 0 0

−1 −2 −1
] ∗ 𝐴.

2.37

The results are combined to produce the magnitude of the gradient defined as:

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2.
2.38

2.2.2. Morphological Transformation

If the input image is noisy, the output from the Sobel filter can have undesired

spotty edges that are not part of the strain rate front. To remove them, morphological

transformation, opening, is performed. Opening operation is the combination of two

basic transformations: erosion and dilation. Morphological transformations have a

similar process as convolution. A transformation is usually performed over a binary

42

image made of ones and zeros. The image is scanned with a structuring element

analogous to the convolutional filter to produce an output image. The structuring

element is a small matrix also made of ones and zeros. The transformation determines

whether each pixel location is fit or hit by the structuring element based on the following

rules.

• A structuring element fits the image if, for every pixel set to one in the

structuring element, its corresponding position in the image is also one.

• A structuring element hits the image if, at least one pixel set to one in the

structuring element, its corresponding position in the image is also one.

Figure 2.16 illustrates the concept of fit and hit. Hitting is more tolerant than

fitting to produce a positive result at a pixel location. Erosion is the result of a

structuring element fitting the input image. In contrast, dilation is the result of a

structuring element hitting the input image. Figure 2.17 illustrates the effect of erosion,

dilation, and opening.

Figure 2.16 Demonstration of fitting and hitting a binary image with two structuring

elements Structuring element S1 fits region A only, and hits regions A, B, and C.

Structuring element S2 fits regions A and B, and hits regions A and B. (reprinted

from School of Computer Science at the University of Auckland, 2021).

43

Figure 2.17 Effects of erosion, dilation, and opening operations (modified from

OpenCV, 2021).

2.2.3. Connected Component Labeling

To further enhance the identification of the strain rate front, connected

component labeling can be used to identify unique pixel blobs in the image. The strain

rate front should be only two blobs of connected pixels separated by a small gap at the

location of the fracture-hit. In the image, they should be the two largest blobs. This

assumption ensures that only the strain rate front is retained in the image. The fracture-

hit location can then be identified easily assuming it is the apex of this strain rate front.

44

Connected component labeling scans the image and finds unique groups of pixels

defined by connectivity with adjacent pixels. Figure 2.18 illustrates the two types of

connectivity with a center pixel: four-connectivity and eight-connectivity. Four-

connectivity checks top, bottom, left, and right pixels whereas eight-connectivity checks

all the eight surrounding pixels. Adjacent pixels share the same value are identified to be

in the same group. For this study, eight-connectivity is used to find the pixel blobs.

Figure 2.18 Four-connectivity (left) and eight-connectivity (right) in connected

component labeling. Connected pixels that share the same value as the center pixel

are grouped together.

45

3. MODEL DEVELOPMENT AND RESULTS

3.1. Synthetic Case

To test the feasibility of using CNN to identify and locate fracture-hit events in

low-frequency DAS data, we start with using data generated by a fracture propagation

model developed by Tang and Zhu (2021) that simulates the axial displacement of a

fiber as a fracture approaches. Because the displacement is linearly proportional to the

phase change in DAS signal associated with dynamic strain change, the displacement

change can be used to approximate the strain rate inside the observation window. This

simulation model provides the training data for the synthetic case.

3.1.1. Input Data

Using the strain rate simulation model to produce training data for the CNN

models involves running many simulated observations at a hypothetical monitoring well

over a 90-minute by 366-ft observation window. The output of the simulation is a 2D

matrix representing the strain rate of the observation window. Rows of the matrix

correspond to depth and columns correspond to time. Figure 3.1 shows an example of

the strain rate simulation.

46

Figure 3.1 Simulation of fracture-hit strain rate at a monitoring well.

Because we intend to train a binary classifier, two sets of simulations are

generated. One set contains fracture-hit patterns, labeled as positive events, and the other

set does not contain fracture-hit patterns, labeled as negative events. The process of

generating simulated data is described below.

• Define distributions of input parameters including injection rates, fluid

viscosity, Young’s modulus, Poisson’s ratio, injection location, fracture

height, and well spacing.

• Randomly draw sufficient samples from the input parameter distributions and

run strain rate simulations.

47

• Save simulation results as images and ensure the validity of positive and

negative events of each set.

• For the positive event set, obtain fracture-hit locations (XY-coordinates)

analytically and label each sample with the location.

The input parameters for the strain rate simulations have either uniform or

normal distributions. Table 3.1 and Table 3.2 list the distributions of these parameters

used to generate the two sets of data. Common ranges of values are used for operational

parameters. Mechanical property distributions are estimated from a study done by Kwabi

(2013) for the Eagle Ford shale formation. Kwabi found the southwest and northeast

regions of Eagle Ford have different distributions of Young’s modulus and Poisson’s

ratio. In the northeastern region, Young’s modulus and Poisson’s ratio exhibit a negative

correlation. A correlation coefficient of -0.7 is used to associate the two parameters for

northeastern Eagle Ford. The correlation coefficient represents the linear correlation

between two variables. It is their covariance divided by the product of their standard

deviation. The fact that the two regions were used to provide input for the strain rate

simulation was rather arbitrary. An additional artificial parameter, injection location, was

also used to determine the hypothetical location of the fracture-hit in depth. For the

positive events, injection locations are within the 366-ft observation window, whereas

for the negative events, injection locations are outside the 366-ft observation window. In

image representation, only positive events have the apex of the cone-shaped strain rate

front. In contrast, the negative events only have a partial extension zone as if the fracture

hit at a location outside the observation zone. Gaussian white noise was added to each

48

sample to make model training more robust. Mathematically, Gaussian white noise is

generated from a normal random variable with zero mean. In this application, the noise

was added to each channel (depth) and scaled to 20% of the channel’s standard

deviation. Figure 3.2 shows an example of a positive event (left) and a negative event

(right).

Table 3.1 Strain rate simulation input parameter distributions. Mechanical

properties represent SW Eagle Ford.
Min/Mu Max/Sigma Distribution

Injection (bbl/min) 5 40 Uniform

Young's Modulus (GPa) 14 56 Uniform

Poisson's ratio 0.18 0.3 Uniform

Viscosity (cp) 5 100 Uniform

Fracture height(ft) 100 200 Uniform

Well Spacing (ft) 400 1000 Uniform

Table 3.2 Strain rate simulation input parameter distributions. Mechanical

properties represent NE Eagle Ford. Young’s modulus and Poisson’s ratio for NE

Eagle Ford exhibit a negative correlation as discovered by Kwabi (2013).
Min/Mu Max/Sigma Distribution Correlation Coeff

Injection (bbl/min) 5 40 Uniform

Young’s Modulus (GPa) 19 3 Normal -0.7

Poisson's ratio 0.35 0.02 Normal -0.7

Viscosity (cp) 5 100 Uniform

Fracture height(ft) 100 200 Uniform

Well Spacing (ft) 400 1000 Uniform

49

Figure 3.2 Examples of noise added strain rate patterns for synthetic fracture-hit

event classification (left: positive event, right: negative event). 1000 samples of

positive events and 1000 samples of negative events are generated. Red color

indicates extension, and blue color indicates compression.

The goal of generating input samples for the CNN models was to obtain images

with various strain rate patterns, regardless of whether the event is considered existent or

not. Hence input parameters were randomly drawn from the distributions. Initially 1000

samples were generated for each set, however 60 of the positive samples did not show

the apex of the strain rate front, hence they were removed from the data set.

Accordingly, 60 negative samples were also removed to make the data set balanced. For

both classification and localization, the images were divided into training and testing sets

(80% training and 20% testing). The testing set is set apart and is only used for reporting

model performance. During each training run, a random 25% of the training set is held

out as the validation set. Table 3.3 lists the numbers of samples for training, validation,

and testing. Only positive event samples were used for the localization task.

50

Table 3.3 Numbers of training, validation, and testing data sets for the synthetic

case.

 Classification Localization

Total 1880 940

Training 1128 564

Validation 376 188

Testing 376 188

3.1.2. Model Architecture and Configuration

Many image classification applications utilize well-known pre-trained models

such as ResNet (He et al., 2015a) and VGGNet (Simonyan and Zisserman, 2014). These

models are sophisticated and are trained to identify hundreds of types of objects. In this

synthetic case, since the patterns to be identified differ drastically from objects in our

daily life, using complex object detection models would require retraining the weights

from the beginning, which could take much computational time. In fact, a simple CNN

architecture is sufficient for the synthetic case. The model consists of two convolutional

layers followed by two fully connected flat layers. Each convolutional layer includes

convolution, batch normalization, ReLU activation, and max pooling. The output layer

contains one unit with sigmoid activation for event classification, or two linear units for

event localization. Figure 3.3 depicts the model architecture.

51

Figure 3.3 CNN model architecture for the synthetic case (model visualized by NN-

SVG).

The objective of a classification problem is to maximize the probability of the

target class and to minimize the probability of the non-target classes. For binary

classification, the objective is to minimize the binary cross-entropy loss, 𝐽, defined as:

𝐽(𝜃) = −
1

𝑚
∑[𝑦(𝑖) log(𝑝(𝑖)) + (1 − 𝑦(𝑖)) log(1 − 𝑝(𝑖))]

𝑚

𝑖=1

3.1

where 𝜃 is the model parameter vector, 𝑝 is the probability of sample 𝑖 belonging to the

target class, obtained from the sigmoid function. 𝑚 is the total number of samples, and 𝑦

is the true probability (Géron, 2019).

Adam optimization is adopted here since it is a proven efficient optimization

algorithm used in deep learning. As explained in section 2.1.3.4, Adam optimization

allows the model to converge much faster along the right dimension with adaptive

moments applied to the gradients. Additionally, tuning on hyperparameters, including

the learning rate, is almost not needed. f1 score is used to evaluate model performance.

The metric is defined as the harmonic mean of precision and recall. Precision is the ratio

of the number of true positive events over the number of all predicted positive events.

52

Recall is the number of true positive events over the number of all actual positive events.

Formula of f1 score is expressed in the equations below. f1 score is high when both false

negative and false positive rates are low.

𝑓1 =
2

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑟𝑒𝑐𝑎𝑙𝑙

3.2

where

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

3.3

and

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

3.4

Plug equations 3.3 and 3.4 into equation 3.2, f1 score can be expressed as:

𝑓1 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +
𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

2

3.5

In addition to identifying whether an image contains a fracture-hit event, the

model is also trained to identify the location of the event. This is considered an object

localization problem, practically a regression problem with the task of identifying where

in the image the object of interest is. The location is typically characterized by a 2D

coordinate, and relative width and height that define a bounding box around the object.

In this application, we are only concerned with the 2D coordinate, hence the model has

two outputs: location in X-axis (time) and in Y-axis (depth). The architecture of the

localization model is the same the classification model trained to identify the presence of

53

the event, except that the sigmoid output is replaced with two linear activations

(essentially no activations). Correspondingly, mean squared error (MSE) is used as the

loss function since the training data are generated with well-defined distributions. MSE

is defined as:

𝑀𝑆𝐸 =
1

𝑚
∑[𝑦(𝑖) − 𝑦̂(𝑖)]

2
𝑚

𝑖=1

3.6

where 𝑦(𝑖) and 𝑦̂(𝑖) represent the true and predicted values for sample 𝑖, respectively.

3.1.3. Fracture-hit Event Classification

When selecting the filter shapes for a CNN model, the principle is to have the

total number of trainable parameters small while maintaining stable predictive

capability. After a few trials, the following set-up is determined. The simulation domain

from the strain model for each sample is 360 time increments by 360 depth increments.

Without losing much resolution, the input images for the CNN are read as 224×224

pixels in RGB (red, green, and blue) channels. The first convolution layer includes five

filters of size 11×11. The second convolution layer includes ten filters of size 5×5. In

general, the pooling layer filters should not be too big to avoid over destruction. Both

pooling layers are of size 2×2. With the fully connected layers, the number of parameters

to be trained totals 3,144,311 for the classification model, significantly smaller than that

of all well-known image classification CNN models.

To ensure model robustness, the model is trained five times as a way for

validation. Each time Keras’s fitting function randomly selects 25% of the training data

54

as validation data and keeps track of the performance on both data sets. Training is quite

fast with GPU enabled on Google Colaboratory. With 40 epochs and a batch size of 50,

training the model five times takes less than three minutes. One epoch refers to that the

training process having gone through all the training data once. Increasing epochs leads

to bettering fitting the data but increasing it too much can result in overfitting. Figure 3.4

illustrates the history of binary cross-entropy loss and f1 score on training data and

validation data for the five runs. As shown, the model stabilized on both training and

validation sets for all five runs. Deployed on the testing set, the models achieved

superior f1 scores (Table 3.4). Confusion matrices from the five models are shown in

Table 3.5. A confusion matrix lists the numbers of actual and predicted classes. The rows

represent the actual numbers of each class, and the columns represent the predicted

numbers of each class. Table 3.5 shows that all models correctly classified positive

events. Two of the models only misclassified two negative events as positive events.

55

Figure 3.4 Synthetic case: history of classification model performance on training

and validation sets for all five runs. a) history of binary cross-entropy loss on training

data; b) history of binary cross-entropy loss on validation data; c) history of f1 score

on training data; d) history of f1 score on validation data.

56

Table 3.4 Testing f1 scores from predictions by the five classification models

(synthetic case).

 Run 1 Run 2 Run 3 Run 4 Run 5

Test F1

Score
1 0.9945 0.9944 1 1

Table 3.5 Confusion matrices from the five classification models (synthetic case).
Run 1 Run 2 Run 3 Run 4 Run 5

Negative Positive Negative Positive Negative Positive Negative Positive Negative Positive

A
ct

u
a

l

N
eg

a
ti

v
e

188 0 186 2 186 2 188 0 188 0

P
o
si

ti
v
e

0 188 0 188 0 188 0 188 0 188

3.1.4. Fracture-hit Event Localization

As mentioned earlier, for locating fracture-hit events, the same model was trained

with two linear outputs: one for location in time and one for location in depth. The only

difference from the classification model is the number of parameters in the output layer,

which is doubled. Tuning on batch size was needed to avoid overfitting. Using a batch

size of 25 achieved high performance on both training and validation sets. The history of

the MSE loss and coefficient of determination (R2) are shown in Figure 3.5 for fitting the

model five times. The performance is near perfection on the testing set (Table 3.6). No

weights are imposed for MSE or R2, hence the values are the average R2 scores for the

two outputs.

57

Figure 3.5 Synthetic case: history of localization model performance on training and

validation sets for all five runs. a) history of mean squared error loss on training

data; b) history of mean squared error loss on validation data; c) history of R2 on

training data; d) history of R2 on validation data.

Table 3.6 R2 of testing set predictions from the five localization models (numbers

are averages of depth and time R2).

 Run 1 Run 2 Run 3 Run 4 Run 5

Test R2 0.9974 0.997 0.9964 0.998 0.9978

58

3.1.5. Event Localization with Edge Detection

The edge detection algorithm is implemented with the following Python

modules:

scipy.ndimage.sobel

cv2.morphologyEx

cv2.connectedComponents

Each fracture-hit image goes through Sobel filtering, morphological

transformation (opening), and connected component labeling. Figure 3.6 shows three

examples of the edge detection process. As the examples show, the opening operation is

able to retain only the strain rate front. Connected component labeling effectively does

not change the result.

59

Figure 3.6 Examples results from the edge detection workflow to identify strain rate

fronts.

Using the strain rate front pixels, the fracture-hit location is easily identified by

selecting the rightmost pixel(s). If several rightmost pixels are identified, their average

location in depth is taken. Figure 3.7 shows the cross plots of detected locations and true

locations for all the 940 fracture-hit images. The process produces perfect detection in

time. There are a few outliers in depth detection. This is because when several pixels

sharing the same time location are identified as fracture-hit locations, the average depth

60

is taken, hence it can be less accurate. To compare CNN models, the trained CNN

localization models are used to predict locations in depth and time on all 940 positive

event samples. Figure 3.8 and Figure 3.9 show the prediction from all five models (left

column: depth, right column: time). CNN models show slight variability in prediction

with near-perfect correlations. Figure 3.10 shows the absolute error distributions from

the five CNN localization models and edge detection in a boxplot for a more quantitative

comparison. As expected, CNN models have more consistent and tighter error

distributions, whereas depth location by edge detection has a wider error distribution.

Figure 3.7 Cross plot of detected depth versus true depth (left) and cross plot of

detected time versus true time (right) from edge detection workflow. Red solid line

represents equality.

61

Figure 3.8 Synthetic case: cross plots of predicted depth and time of all data versus

true depth and time from localization models 1-3. Red solid line represents equality

(left column shows depth predictions; right column shows time predictions).

62

Figure 3.9 Synthetic case: cross plots of predicted depth and time of all data versus

true depth and time from localization models 4 and 5. Red solid line represents

equality (left column shows depth predictions; right column shows time predictions).

63

Figure 3.10 Boxplot of localization absolute error distributions for the CNN models

and edge detection. The boxes represent interquartile ranges of the data, and the

whisks cover 99% of the data. Diamonds represent outliers.

Although using edge detection is a simple, straightforward way to locate the apex

of the strain rate front, it has some disadvantages. It assumes that the fracture-hit

location is the apex of the cone-shaped strain rate front, which is valid for synthetic data,

but field data may not show such regularly shaped patterns. It is also more dependent on

the quality of the image, making the workflow less robust. The edge detection workflow

was manually tuned to ensure edges were clearly identified. Color intensity, resolution,

and level of noise in the image all affect how well defined the edges are, eventually

64

affecting the end result accuracy. Additionally, every image needs to go through the

edge detection algorithm, making the identification slower than the CNN model

prediction.

3.2. Field Case

The same training framework is applied to a field case following the successful

implementation of CNN with simulated strain rate data. The field data used in this

research comes from a well located in the STACK play in Oklahoma. The equipped

study well (7HX) is an observation well with DAS monitoring commenced during the

hydraulic fracturing treatment of two offset wells (6HX and 8HX). Figure 3.11 displays

the gun barrel view of the layout of the three wells.

65

Figure 3.11 Gun barrel view of the instrumented monitoring well (7HX) and two

treatment wells (6HX and 8HX).

 Distributed fiber optic sensing was operating for 202 hours (8.4 days) and low-

frequency (1Hz) DAS phase change was recorded every 10 seconds at a one-meter depth

resolution. The raw data needs to go through log transformation for the

extension/compression polarity to be visible. Firstly, the data is differentiated in time to

represent strain rate. Then all zeros are changed to a tiny number (0.0001). Negative

values are converted to positive then back to negative after the logarithm is taken. Figure

3.12 shows a portion of the data before and after the transformation. The processed data

clearly shows several fracture-hit patterns as desired. Figure 3.13 shows the entire

processed DAS data from the study well.

66

Figure 3.12 A portion of unprocessed (left) and processed (right) low-frequency DAS

data from the study well.

Figure 3.13 Entire processed low-frequency DAS data from the study well.

3.2.1. Input Data

For the data to be usable by the CNN models, image samples must be produced

in the size that can contain one fracture-hit event. This is done by sliding a rectangular

67

window over the data set horizontally and vertically. The sliding window covers three

hours and about 300 meters. It moves by one fourth of its size both horizontally and

vertically. Figure 3.14 demonstrates the sliding window process. As a result, 5754

samples are produced from the study well. Because of how the sliding window moves,

the same fracture-hit event appears in several image samples at various relative

locations. This process has the effect of Data Augmentation, producing more available

training data. Data augmentation refers to slightly modifying input images to increase

the number of training data. Some data augmentation techniques include changing the

color of the image, rotating or flipping the image, or slightly twisting the image. In this

case, the input data is augmented in the sense that the same event appears in different

locations of several input images.

Figure 3.14 Sliding a rectangular window to produce field DAS image samples. Left:

the entire DAS data. Right: four examples of subsets of the data generated by the

sliding window.

68

Although the interest of this study is to recognize fracture-hit events, it is

reasonable to create three classes rather than a binary class. The samples are manually

labeled with “noise”, “shadow”, or “fracture-hit” event classes. The fracture-hit samples

are further annotated with hit locations using an online open-source image labeling and

annotation tool, MakeSense.AI. Examples of each class are shown in Figure 3.15. Table

3.7 lists the numbers of samples of each class. This data set is imbalanced. Noise and

shadow samples significantly outweigh fracture-hit samples. To handle imbalanced data,

random down sampling is performed during the classification model training. This

means that noise and shadow samples are randomly removed so that their quantities

equal to the number of fracture-hit events. Although the number of samples are

significantly reduced, it is still sufficient to train models with reasonably high

performance as demonstrated later. The fracture-hit event samples are further annotated

with XY coordinates to indicate the hit locations in time and depth. Now the data set is

prepared for training both classification and localization models. The same train-

validation-test split proportion is used, and the sample numbers are listed in Table 3.8.

69

Figure 3.15 Examples of noise, shadow and fracture-hit samples generated from field

DAS data.

Table 3.7 Field case sample counts.
 Noise Shadow Fracture-hit

Number of samples 2845 2485 424

Table 3.8 Numbers of samples for training, validation, and testing sets for the field

case.

 Classification Localization

Total 1272 424

Training 762 254

Validation 255 85

Testing 255 85

70

3.2.2. Model Architecture and Configuration

Since the field case images are much more complex than the simulated data

images, the simple architecture used for the simulated data is no longer adequate.

Generally, more complex visual tasks require deeper neural networks. The common path

is to utilize well known convolutional neural networks architecture that is proven to

work. One of the relatively simple architectures is the AlexNet, which won the 2012

ImageNet ILSVRC challenge (ImageNet Large Scale Visual Recognition Challenge).

The AlexNet resembles the architecture used for the synthetic case. The major difference

is that it has three more convolutional layers which contain many small 3 × 3 filters. The

architecture is illustrated in Figure 3.16. Using AlexNet, we train the classification and

localization models with field DAS data samples. The input and output sizes of AlexNet

are modified to fit this case. The input size is changed to DAS sample image size

(233 × 233) and the output layer is changed to three units for classification and two

units for localization. For classification, the output layer is activated by the softmax

function since there are three classes.

In the two flat layers of AlexNet, there is a 50% drop out rate. Drop out is

randomly removing the connections between neurons while training the model. This

means the model must not rely on every single neuron in the corresponding layer, hence

the learning process makes the model more robust and avoids overfitting.

71

Figure 3.16 Architecture of the modified AlexNet used for field case (model

visualized by NN-SVG).

For multi-class classification with softmax activation, the objective is to

minimize the cross-entropy cost function defined as:

𝐽(𝜃) = −
1

𝑚
∑ ∑ 𝑦𝑘

(𝑖)
log (𝑝̂𝑘

(𝑖)
)

𝐾

𝑘=1

𝑚

𝑖=1

3.7

where 𝐾 is the total number of class, and 𝑝̂𝑘
(𝑖)

 is the predicted probability of sample 𝑖

belonging to class 𝑘, and 𝑦𝑘
(𝑖)

 is the true probability of sample 𝑖 belonging to class 𝑘.

When 𝐾 is two, this equation becomes the binary cross-entropy cost function. f1 score is

still used as the evaluation metric. Since now there are three classes, global f1 is

calculated during evaluation. However, the metric can be calculated for each class.

 For fracture-hit event localization with CNN, the configuration is the same as the

synthetic case. MSE is the cost function, and R2 is the evaluation metric.

72

3.2.3. Fracture-hit Event Classification

There are numerous factors that affect how a model performs. Here we focus on

the activation function, the initializer, epochs, and batch size as they are more impactful

factors. The training process involves using different combinations of these parameters.

Table 3.9 lists the mean f1 scores for training and validation using various combinations

of the four parameters. f1 score on validation data is color coded with the darkest green

indicating the best model. Based on validation performance, the best model is given by

ELU activation, He initialization with normal distribution, 20 epochs and a batch size of

25. Table 3.10 shows the f1 scores of the best model for the testing data set for all three

classes. For noise and events, the model achieved 0.9075 and 0.9021 f1 scores. f1 score

for shadow is much lower (0.7705). This is expected because among the three classes,

shadow is the least well defined. It is essentially anything that is neither noise nor

fracture-hit.

Table 3.9 Classification model training configuration and model performance (field

case).

No. Activation Initializer Epoch Batch Size Training Mean f1 Validation Mean f1 Testing Mean f1

1 relu glorot_uniform 30 50 0.9177 0.7310 0.7414

2 relu glorot_uniform 30 40 0.8697 0.7880 0.8128

3 relu glorot_uniform 30 20 0.8836 0.7588 0.7947

4 relu glorot_uniform 30 30 0.8872 0.7363 0.7922

5 relu glorot_uniform 20 20 0.8498 0.7483 0.7776

6 relu glorot_uniform 20 30 0.9152 0.8359 0.8630

7 elu he_normal 30 50 0.9248 0.8393 0.8919

8 elu he_normal 30 40 0.8773 0.7810 0.8169

9 elu he_normal 30 20 0.8457 0.7523 0.7678

10 elu he_normal 30 30 0.9108 0.7570 0.8025

11 elu he_normal 20 20 0.8779 0.8510 0.8728

12 elu he_normal 20 30 0.8934 0.8500 0.8949

13 elu he_normal 20 25 0.9065 0.8655 0.8661

73

Table 3.10 Testing f1 scores for each event type (field case).
Testing Mean f1

(Noise)

Testing mean f1

(Shadow)

Testing mean f1

(Event)

0.9075 0.7705 0.9021

Figure 3.17 Field case: history of classification model performance on training and

validation sets for all five runs. a) history of binary cross-entropy loss on training

data; b) history of binary cross-entropy loss on validation data; c) history of f1 score

on training data; d) history of f1 score on validation data.

74

3.2.4. Fracture-hit Event Localization

Similar to the synthetic case, the same model architecture (AlexNet) is trained

again for the localization task, with the output layer replaced with two linear units.

Again, various combinations of the activation function, initializer, epochs, and batch size

are used (Table 3.11). Based on validation R2, the best model is given by ELU

activation, uniform Glorot initialization, 50 epochs and a batch size of 15. This model

achieved an R2 of 0.9349 on the validation data, and 0.9565 on the testing data. He

initialization is designed for ELU activation. However, it appears that for the same

epochs and batch size, the combination of ELU activation and uniform Glorot

initialization performs slightly better on the validation data set. It is unclear to the author

why that is the case. Figure 3.18 shows the comparison of R2. For the training data (light

blue), uniform Glorot initialization and normal He initialization do not show much

difference in R2, but the difference is obvious on the validation data (dark blue). The

training history of the best model configuration is shown in Figure 3.19. Figure 3.20 and

Figure 3.21 show the cross plots of the predicted fracture-hit locations from the five

localization models versus true locations for the testing data. The accuracy is less perfect

compared to the synthetic case because the manually labeled “true” locations bears some

level of subjectivity and uncertainty. Nonetheless, an average R2 of 0.9565 is considered

effective validation.

75

Table 3.11 Localization model training configuration and model performance (field

case).

No. Activation Initializer Epoch BatchSize TrainingMeanR2 ValidationMeanR2 TestingMeanR2

1 relu glorot_uniform 40 20 0.8769 0.8835 0.8775

2 relu glorot_uniform 40 30 0.8935 0.7832 0.7691

3 relu glorot_uniform 50 20 0.8787 0.8798 0.8670

4 relu glorot_uniform 30 20 0.8793 0.8087 0.7833

5 elu he_normal 40 20 0.9549 0.9145 0.9280

6 elu he_normal 40 30 0.9502 0.8825 0.8928

7 elu he_normal 50 20 0.9573 0.9184 0.9392

8 elu he_normal 30 20 0.9417 0.9037 0.9171

9 elu glorot_uniform 40 20 0.9539 0.9184 0.9392

10 elu glorot_uniform 50 20 0.9597 0.9293 0.9426

11 elu glorot_uniform 50 30 0.9568 0.8956 0.9175

12 elu glorot_uniform 50 10 0.9497 0.8966 0.9388

13 elu glorot_uniform 50 15 0.9592 0.9349 0.9565

14 elu he_normal 50 15 0.9590 0.9033 0.9351

Figure 3.18 Comparison of R2 on training and validation data with the same

activation function but different initialization methods.

76

Figure 3.19 Field case: history of localization model performance on training and

validation sets for all five runs. a) history of mean squared error loss on training

data; b) history of mean squared error loss on validation data; c) history of R2 on

training data; d) history of R2 on validation data, early epochs not shown due to large

negative values.

77

Figure 3.20 Field case: cross plots of predicted depth and time of the testing data

versus true depth and time from localization models 1-3. Red solid line represents

equality (left column shows depth predictions; right column shows time predictions).

78

Figure 3.21 Field case: cross plots of predicted depth and time of the testing data

versus true depth and time from localization models 4 and 5. Red solid line represents

equality (left column shows depth predictions; right column shows time predictions).

3.2.5. Field Case Summary

It is exciting to see how CNN can predict classes of events and fracture-hit

locations with field data. In the field case application, the entire low-frequency DAS data

from a monitoring well is divided into small segments to serve as training data samples.

The labeled and annotated samples are used to train the modified AlexNet for

recognizing fracture-hits and identifying the location of fracture-hits. A trained model

79

can be deployed in real-time to identify fracture-hits events. In practice, the model would

need to be able to recognize events from the entire live stream of DAS signals, rather

than small rectangular segments. However, since the model is trained with fracture-hit

events located anywhere inside the rectangle, it should be able to recognize the pattern as

soon as it appears on a 2D screen. With the model developed into a software package,

operators can be notified of fracture-hits instantly rather than having to wait for the

operation to be completed.

80

4. CONCLUSIONS

To the author’s best knowledge, this study is the first to demonstrate the

efficiency and accuracy of using convolutional neural networks models to classify and

localize fracture-hit events in low-frequency DAS strain rate, for both simulated and

field data. For the simulated data, both classification and localization models achieved

near-perfect predictions. The results provide a proof of concept of using CNN for real-

time event detection from low-frequency DAS data. The success was replicated with

field data. For the field case, the model architecture needed to be more complex to

accommodate the nature of field data, which was expected. AlexNet was chosen because

it is a proven architecture similar to the one used for the synthetic case but deeper. We

successfully trained AlexNet to recognize field DAS images grouped into three classes,

and to identify locations of fracture-hit events.

Training the models for the synthetic case was relatively easy compared to

training for the field case. Because simulated strain rate images have regularly shaped

strain rate patterns, simple model architecture and configuration were sufficient.

Regarding training the models for the field case, using ELU activation with normal He

initialization generally yielded better performance than using ReLU activation and

uniform Glorot initialization.

The functionality of using CNN models to identify and locate fracture-hit events

can be further developed as software packages for fiber optic sensing deployment,

enabling this technology with automated real-time event detection capability. With real-

81

time fracture-hit event identification, operators can obtain instant accurate response of

fracture propagation in terms of time and space. With prompt understanding of fracture

propagation geometry, operators can have the capability of optimizing stimulation

designs with quicker responses, potentially saving lots of time and capital on fracking

operation.

Furthermore, because of CNN's flexibility and trainable nature, its applications

extend beyond identifying strain rate patterns in low-frequency DAS data. For example,

if events associated with treatment well activities are of interest, CNN models can be

trained to recognize various in-well activities.

Edge detection is another plausible technique for locating fracture-hits, but it

relies on assumptions about the image. The cone-shaped pattern must be smoothly and

sharply defined. These assumptions often do not hold for field DAS data. The

comparison of edge detection and CNN further supports the need for using CNN for

image-based real-time event detection applications for fiber optic sensing data.

82

REFERENCES

Fukushima, K. 1980. Neocognitron: A Self-organizing Neural Network Model for A

Mechanism of Pattern Recognition Unaffected by Shift in Position. Biol.

Cybernetics 36, 193–202 https://doi.org/10.1007/BF00344251.

Géron, A, 2019. Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow,

 second edition. Sebastopol, California: O’Reilly.

Glorot, X. & Bengio, Y. 2010. Understanding the Difficulty of Training Deep

Feedforward Neural Networks. Machine Learning Research 9:249-256.

http://proceedings.mlr.press/v9/glorot10a.html.

Google Colaboratory. Web-based Python Development Environment.

https://colab.research.google.com/.

Haustveit, K., Elliiot, B., Haffener, J. et al. 2020. Monitoring the Pulse of a Well

 Through Sealed Wellbore Pressure Monitoring, a Breakthrough Diagnostic with

 a Multi-Basin Case Study. Paper presented at the SPE Hydraulic Fracturing

 Technology Conference and Exhibition, The Woodlands, Texas, USA, February.

 SPE-199731-MS. https://doi.org/10.2118/199731-MS.

He, K., Zhang, X., Ren, S., Sun, J., 2015a. Deep Residual Learning for Image

 Recognition. https://arxiv.org/abs/1512.03385.

He, K., Zhang, X., Ren, S., Sun, J. 2015b. Delving Deep into Rectifiers: Surpassing

Human-Level Performance on ImageNet Classification. Proceedings of the IEEE

International Conference on Computer Vision (ICCV), 1026-1034.

https://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_I

CCV_2015_paper.html.

IndoML, 2021. Student Notes: Convolutional Neural Networks (CNN) Introduction.

https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-

introduction (accessed 12 February 2021).

Ioffe, S. and Szegedy, C. 2015. Batch Normalization: Accelerating Deep Network

 Training by Reducing Internal Covariate Shift. https://arxiv.org/abs/1502.03167.

Jin, G. and Roy, B. 2017. Hydraulic-fracture Geometry Characterization Using Low-

 frequency DAS Signal. The Leading Edge 36 (12): 975-980.

 https://doi.org/10.1190/tle36120975.1.

https://doi.org/10.1007/BF00344251
http://proceedings.mlr.press/v9/glorot10a.html
https://colab.research.google.com/
https://doi.org/10.2118/199731-MS
https://arxiv.org/abs/1512.03385
https://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction
https://indoml.com/2018/03/07/student-notes-convolutional-neural-networks-cnn-introduction
https://arxiv.org/abs/1502.03167
https://doi.org/10.1190/tle36120975.1

83

Jin, G., Mendoza, K., Roy, B. et al. 2019. Machine Learning-based Fracture-hit

 Detection Algorithm Using LFDAS signal. The Leading Edge 38(7): 520-524.

 https://doi.org/10.1190/tle38070520.1.

Kingma, D., P., and Ba., J. 2015. Adam: A Method for Stochastic Optimization.

 https://arxiv.org/abs/1412.6980.

Kwabi,E., 2013. Mineral, Fluid, and Elastic Property Quantification from Well Logs

and Core Data in the Eagle Ford Shale Play: A Comparative Study. Master of

Science thesis, The University of Texas at Austin. Austin, Texas (August 2013).

LeCun, Y., Bottou L., Bengio Y., and Haffner, P. 1998. Gradient-based Learning

Applied to Document Recognition, Proceedings of the IEEE, 86(11), 2278-2324,

November. https://doi.org/10.1109/5.726791.

MakeSense.AI. Online Open-source Image Labeling Tool. https://www.makesense.ai/.

McCulloch, W.S., Pitts, W. 1943. A Logical Calculus of the Ideas Immanent in Nervous

Activity. Bulletin of Mathematical Biophysics 5, 115–133.

https://doi.org/10.1007/BF02478259.

Molenaar, M. M., Fidan, E., and Hill, D. J. 2012. Real-Time Downhole Monitoring of

 Hydraulic Fracturing Treatments Using Fibre Optic Distributed Temperature and

 Acoustic Sensing. Paper presented at the SPE/EAGE European Unconventional

 Resources Conference and Exhibition, Vienna, Austria, March 20-22. SPE-

 152981-MS. https://doi.org/10.2118/152981-MS.

Molenaar, M. M. and Cox, B. E. 2013. Field Cases of Hydraulic Fracture Stimulation

 Diagnostics Using Fiber Optic Distribution Acoustic Sensing (DAS)

 Measurements and Analyses. Paper presented at the SPE Unconventional Gas

 Conference and Exhibition, Muscat, Oman, January 28-30. SPE-164030-MS.

 https://doi.org/10.2118/164030-MS.

NN-SVG. Neural Networks Architecture Schematics. https://alexlenail.me/NN-SVG/.

OpenCV, 2021. Morphological Transformations.

 https://docs.opencv.org/master/d9/d61/tutorial_py_morphological_ops.html

 (accessed 15 January 2021).

Pakhotina, I., Sakaida, S., Zhu, D. et al. 2020. Diagnosing Multistage Fracture

 Treatments with Distributed Fiber-Optic Sensors. SPE Prod & Oper 35 (2020):

 0852–0864. SPE-199723-PA. https://doi.org/10.2118/199723-PA.

Polyak, B. T., 1964. Some Methods of Speeding Up the Convergence of Iteration

https://doi.org/10.1190/tle38070520.1
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/5.726791
https://www.makesense.ai/
https://doi.org/10.1007/BF02478259
https://doi.org/10.2118/152981-MS
https://doi.org/10.2118/164030-MS
https://alexlenail.me/NN-SVG/
https://docs.opencv.org/master/d9/d61/tutorial_py_morphological_ops.html
https://doi.org/10.2118/199723-PA

84

Methods. USSR Computational Mathematics and Mathematical Physics. 4(5), 1-

17. https://doi.org/10.1016/0041-5553(64)90137-5.

Prabhu, 2018. Understanding of Convolutional Neural Network (CNN) — Deep

Learning. Medium. (published online 4 March 2018).

https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-

network-cnn-deep-learning-99760835f148 (accessed 19 January 2021).

Rosenblatt, F. 1958. The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain. Psychological Review, 65(6), 386–408.

https://doi.org/10.1037/h0042519.

School of Computer Science at the University of Auckland, 2021. Morphological Image

Processing.

https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing

-html/topic4.htm#compound (accessed 5 March 2021).

Script Reference, 2021. Neural Networks from Scratch.

https://scriptreference.com/neural-networks-from-scratch/#neural-networks-

backpropagation-summary (accessed 21 March 2021).

Simonyan, K. and Zisserman, A. 2014. Very Deep Convolutional Networks for Large-

 Scale Image Recognition. https://arxiv.org/abs/1409.1556.

Stork, A. L., Baird, A., F., Horne, S. A. et al. 2020. Application of Machine Learning to

 Microseismic Event Detection in Distributed Acoustic Sensing Data. Geophysics

 85: KS149-KS160. https://doi.org/10.1190/geo2019-0774.1.

Tang, J. and Zhu, D. In press. Characterize Fracture Network Development Through

 Strain Rate Measurements by Distributed Acoustic Sensor (DAS). Paper

 submitted to 2021 SPE International Hydraulic Fracturing Technology

 Conference and Exhibition (IHFTC).

Tanimola, F. and Hill, D., 2009. Distributed Fibre Optic Sensors for Pipeline Protection.

Journal of Natural Gas Science and Engineering. 1(4-5), 134-143, November.

https://doi.org/10.1016/j.jngse.2009.08.002.

Ugueto C., G., A., Huckabee, P., T., Molenaar, M., M. et al. 2016. Perforation Cluster

 Efficiency of Cemented Plug and Perf Limited Entry Completions; Insights from

 Fiber Optics Diagnostics. Paper presented at the SPE Hydraulic Fracturing

 Technology Conference, The Woodlands, Texas, USA, February. SPE-179124-

 MS. https://doi.org/10.2118/179124-MS.

https://doi.org/10.1016/0041-5553(64)90137-5
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://doi.org/10.1037/h0042519
https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm#compound
https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm#compound
https://scriptreference.com/neural-networks-from-scratch/#neural-networks-backpropagation-summary
https://scriptreference.com/neural-networks-from-scratch/#neural-networks-backpropagation-summary
https://arxiv.org/abs/1409.1556
https://doi.org/10.1190/geo2019-0774.1
https://doi.org/10.1016/j.jngse.2009.08.002
https://doi.org/10.2118/179124-MS

85

APPENDIX A

MODEL ARCHITECTURE SPECIFICATIONS

The four tables listed below summarize the model architecture specifications for the

classification and localization models used in the synthetic case and the field case.

Table A.4.1 Synthetic case classification model architecture specifications.
Layer Name Type Output Shape Kernel Size Stride Padding Param #

input_1 InputLayer 224, 224, 3 - - - 0

conv0 Conv2D 224, 224, 5 11×11 1, 1 same 1820

bn0 BatchNormalization 224, 224, 5 - - - 20

act0 Activation 224, 224, 5 - - - 0

max_pool0 MaxPooling2D 112, 112, 5 2×2 2, 2 valid 0

conv1 Conv2D 112, 112, 10 5×5 1, 1 same 1260

bn1 BatchNormalization 112, 112, 10 - - - 40

act1 Activation 112, 112, 10 - - - 0

max_pool1 MaxPooling2D 56, 56, 10 2×2 2, 2 valid 0

flat Flatten 31360 - - - 0

fc0 Dense 100 - - - 3136100

fc1 Dense 50 - - - 5050

class Dense 1 - - - 51

Total params: 3,144,341 Trainable params: 3,144,311 Non-trainable params: 30

86

Table A.4.2 Synthetic case localization model architecture specifications.
Layer Name Type Output Shape Kernel Size Stride Padding Param #

input_1 InputLayer 224, 224, 3 - - - 0

conv0 Conv2D 224, 224, 5 11×11 1, 1 same 1820

bn0 BatchNormalization 224, 224, 5 - - - 20

act0 Activation 224, 224, 5 - - - 0

max_pool0 MaxPooling2D 112, 112, 5 2×2 2, 2 valid 0

conv1 Conv2D 112, 112, 10 5×5 1, 1 same 1260

bn1 BatchNormalization 112, 112, 10 - - - 40

act1 Activation 112, 112, 10 - - - 0

max_pool1 MaxPooling2D 56, 56, 10 2×2 2, 2 valid 0

flat Flatten 31360 - - - 0

fc0 Dense 100 - - - 3136100

fc1 Dense 50 - - - 5050

regress Dense 2 - - - 102

Total params: 3,144,392 Trainable params: 3,144,362 Non-trainable params: 30

87

Table A.4.3 Field case classification model architecture specifications.
Layer Name Type Output Shape Kernel Size Stride Padding Param #

conv0 Conv2D 56,56,96 11,11 4,4 valid 34944

bn0 BatchNormalization 56,56,96 - - - 384

max_pool0 MaxPooling2D 27,27,96 3,3 2,2 valid 0

conv1 Conv2D 27,27,256 5,5 1,1 same 614656

bn1 BatchNormalization 27,27,256 - - - 1024

max_pool1 MaxPooling2D 13,13,256 3,3 2,2 valid 0

conv2 Conv2D 13,13,384 3,3 1,1 same 885120

bn2 BatchNormalization 13,13,384 - - - 1536

conv3 Conv2D 13,13,384 3,3 1,1 same 1327488

bn3 BatchNormalization 13,13,384 - - - 1536

conv4 Conv2D 13,13,256 3,3 1,1 same 884992

bn4 BatchNormalization 13,13,256 - - - 1024

max_pool2 MaxPooling2D 6,6,256 3,3 2,2 valid 0

flat Flatten 9216 - - - 0

dense0 Dense 4096 - - - 37752832

dropout0 Dropout 4096 - - - 0

dense1 Dense 4096 - - - 16781312

dropout1 Dropout 4096 - - - 0

class Dense 3 - - - 12291

Total params: 58,299,139 Trainable params: 58,296,387 Non-trainable params: 2,752

88

Table A.4.4 Field case localization model architecture specifications.
Layer Name Type Output Shape Kernel Size Stride Padding Param #

conv0 Conv2D 56,56,96 11,11 4,4 valid 34944

bn0 BatchNormalization 56,56,96 - - - 384

max_pool0 MaxPooling2D 27,27,96 3,3 2,2 valid 0

conv1 Conv2D 27,27,256 5,5 1,1 same 614656

bn1 BatchNormalization 27,27,256 - - - 1024

max_pool1 MaxPooling2D 13,13,256 3,3 2,2 valid 0

conv2 Conv2D 13,13,384 3,3 1,1 same 885120

bn2 BatchNormalization 13,13,384 - - - 1536

conv3 Conv2D 13,13,384 3,3 1,1 same 1327488

bn3 BatchNormalization 13,13,384 - - - 1536

conv4 Conv2D 13,13,256 3,3 1,1 same 884992

bn4 BatchNormalization 13,13,256 - - - 1024

max_pool2 MaxPooling2D 6,6,256 3,3 2,2 valid 0

flat Flatten 9216 - - - 0

dense0 Dense 4096 - - - 37752832

dropout0 Dropout 4096 - - - 0

dense1 Dense 4096 - - - 16781312

dropout1 Dropout 4096 - - - 0

regress Dense 2 - - - 8194

Total params: 58,295,042 Trainable params: 58,292,290 Non-trainable params: 2,752

