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ABSTRACT

Design education is essential to pedagogy across fields. It helps develop creative skills and

abilities. To meet growing demand for design education, researchers are investigating novel means

for assessing and providing feedback on students’ design projects. To complement instructors’

work, we investigate the potential of artificial intelligence (AI), which has matched humans in

performing complex tasks and activities.

We build on prior research by Suchman and Dourish in showing how developing useful AI

support requires understanding situated practice. We engage instructors in co-design. In theo-

rizing, we twice invoke creative cognition’s family resemblance principle, first, to contribute new

understandings of uses and limitations of design rubrics, and then to identify an analogous role

for AI-based design creativity analytics: assessing no particular characteristic is necessary or suffi-

cient; each only tends to indicate good design work. We contribute situating analytics, a paradigm

for conveying the meaning of measures that align with design rubrics, by contextually integrating

the presentation of measures with associated design work.

We develop results across fields. We integrate the measurement and presentation of multiscale

design characteristics that provide insights into students’ use of space and scale. We find that situat-

ing analytics supports instructors in understanding what the measures mean. Through quantitative

analysis, we establish the baseline performance for AI recognition of multiscale design charac-

teristics. Through qualitative analysis of instructors’ experiences in situated course contexts, we

derive implications for conveying the meaning of measures.
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1. INTRODUCTION

Design education has become an essential part of diverse fields—such as engineering, archi-

tecture, medicine, and business—as it helps develop creative skills and capabilities that can drive

innovation [4]. However, due to high demands, the practice of teaching creative innovation through

design has become increasingly difficult to manage. Design instructors face challenges to pro-

vide students with frequent assessment and feedback, which are critical to students’ progress [5].

Alternative forms of human assistance that have proven useful in supporting instructor efforts in-

clude peer [6, 7] and crowd [8, 9, 10]. The present research investigates artificial intelligence

(AI)—which has the potential to complement human assistance by providing the ability to process

big data at speed [11]—as a means for assessment and feedback.

We draw on Suchman’s seminal work on the need for an AI system’s transparency, which al-

lows conveying its intended purpose to the users and establishing its accountability [12]. Suchman

articulates that developing such AI support requires understanding users’ situated practice, i.e.,

how their actions develop purpose and intelligibility within particular circumstances. Dourish fur-

ther breaks this principle down to focus on how translating ideas between intellectually different

domains of situated practice (social) and technology (computational) “can be both exceptionally

valuable and unexpectedly difficult” [13]. Dourish argues that making contextual properties trans-

parent is vital in addressing the difficulty, and as context acquires “meaning or relevance through

their relationship to forms of practice”, studying work practices becomes fundamentally important.

The present research takes a two-pronged approach to develop understandings of design in-

structors’ situated assessment and feedback work practices. One, we survey prior work to develop

understandings of assessment criteria, feedback processes, and sources—e.g., instructors, peer,

crowd, and computational—of assessment and feedback (Chapter 2). Simultaneously, the present

research engages co-design methods with 11 instructors from 5 fields—Landscape Architecture

& Urban Planning, Architecture, Interactive Art & Design, Mechanical Engineering, and Com-

puter Science and Engineering—to understand their situated assessment and feedback practices
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and needs (Chapter 3).

Based on the understandings from co-design engagements, to complement instructors’ efforts,

we develop ideas for AI-based analytics that align with design course rubrics. Like recent AI-

based analytics research [14, 15], we adopt a broad view of analytics, which includes not only

facts but also inferences. We contribute situating analytics, a paradigm for conveying the meaning

of measures that align with design rubrics, by contextually integrating the presentation of measures

with associated design work. Following this paradigm, we develop approaches for measuring and

presenting Fluency, Flexibility, Visual Consistency, Multiscale Organization, and Legible Con-

trast in students’ design work. To render the measures meaningful and actionable in instructors’

and students’ experiences, we develop ideas for situating their interaction with the analytics via

dashboards integrated with actual design environments in which students perform their work.

We put the situating analytics paradigm into practice (Chapter 4). We develop support for

multiscale design—a visual design characteristic—which refers to “the use of space and scale to

explore and articulate relationships, [through] the juxtaposition and synthesis of diverse design

elements” [16] (See examples in Chapter 4). We deploy a technology probe [17]—comprised by

AI-based analytics that measure the use of space and scale, presented via a dashboard integrated

with a multiscale design environment—in situated design course contexts, across fields. By inte-

grating the dashboard and design environment, we connect the dashboard presentation of analytics

with the particular sets of spatially related elements they measure. We contribute understandings

of how situating analytics affects design instructors’ assessment and feedback practices. We derive

implications for conveying the meaning of analytics to users, in situated contexts of practice, so as

to support teaching and learning.

In this chapter, we present sensitizing concepts that guided our investigation. We follow this

with our approaches for developing understandings of design instructors’ situated assessment and

feedback practices and investigating the use of AI-based analytics in design course contexts. Fi-

nally, we present the main contributions of this research.
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1.1 Sensitizing Concepts

Sensitizing concepts are background ideas that provide framing and guidance to researchers in

an investigation [18, 19]. Our investigation draws and connects sensitizing concepts from research

in design education, creative cognition, computational design, learning analytics, co-design, and

multiscale design. These concepts guide our research methods, system design, interpretation of

findings, and implications.

1.1.1 Design Pedagogy

Design education, across fields, is based on common pedagogical beliefs and practices [20].

As Dym et al. describe, design students engage in project-based learning, where they develop

multidisciplinary ideas to address challenging problems [21]. To facilitate design process, instruc-

tors engage students in prototyping [22], divergent thinking [23, 20], extensive critique [24, 25],

and working closely with end-users [23, 26]. In essence, design pedagogy inducts students into

a community of practice [27], where they learn and develop skills, often through socially situated

understandings of work that practitioners perform [28].

As Sawyer identifies, a creative process is central in design pedagogy, as students engage in de-

veloping novel solutions to challenging problems while drawing on precedents [20]. To support the

creative nature of projects, instructors define learning outcomes, project assignments, and rubrics,

but keep them open-ended and flexible [29]. However, students unfamiliar with the process strug-

gle and need structure [30]. They need frequent assessment and feedback to make progress [25].

Alas, instructor feedback is not able to keep pace with increasing design education demands [5].

Further, instructors may not be available at critical times, e.g., late the night before an assignment

is due. The present research develops novel, AI-based measures of design creativity to augment

instructors’ efforts and provide on-demand assessment and feedback.

1.1.2 Creative Cognition

Ideation is the creative process of developing and generating ideas. Design is a general activity

oriented toward creative ideation [31]. Hence, understanding how to measure creativity can prove
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beneficial in developing approaches for assessing students’ design work. At the same time, as

creativity researchers discuss, “the exact question of what is creativity is often ignored or answered

in too many different ways” [32]. Frich et al.’s recent survey recommends “looking to the well-

established tradition of psychology-based creativity research” [31].

In cognitive psychology, creative cognition is a field of investigating processes and structures

that contribute to creative thinking. Some creative processes are exploratory—e.g., attribute find-

ing, conceptual interpretation, and functional inference—while others are generative—e.g., mem-

ory retrieval, association, and mental synthesis [33]. Creative structures are representations, such

as novel visual patterns, verbal combinations, and mental blends. Building on creative cognition

theory, researchers have derived and applied ideation metrics for measuring design creativity in

particular contexts, including Fluency, Flexibility/Variety, Novelty, Emergence and Visual Presen-

tation [34, 35].

Creative cognition avoids the epistemological trap of defining creativity in any absolute way.

Alternatively, it presents the family resemblance principle, which states: while cognitive processes

and structures are indicators, no particular process or structure is necessary or sufficient for cre-

ative ideation. The present research applies this principle to develop new understanding of how

design instructors use assessment rubrics and theorize the validity of conceptually aligned AI-based

analytics.

1.1.3 Computational Design

Computational approaches have proven beneficial for a supporting a variety of design pro-

cesses, including idea generation [36, 37, 38], re-design [39, 40], and assessment [41, 42]. We

focus on the use of computational approaches for design assessment and feedback.

Reinecke et al. assessed website aesthetics by developing a model based on features such

as colors, number of words, and number of images [41]. Mackeprang et al. assess diversity by

computing semantic similarity among ideas, using external knowledge graphs such as Wikidata

and DBpedia [43]. Oulasvirta et al. assess a GUI design against a range of characteristics, such as

the number of unique colors, color clustering, edge density, and whitespace [42]. However, only
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a limited number of systems make assessment transparent to the user. For example, Oulasvirta

et al. inform the user the rationale behind the assessed characteristics, by including references

to theoretical bases for ideas, and in some cases, visualizing the characteristic. However, these

systems have not been investigated in design course contexts. As we argue in the introduction,

developing computational support that provides transparent assessment and feedback in design

course contexts requires understanding situated practice. The present research meets the gap at the

intersection of two bodies of research: one that studies situated practice in design course contexts,

and other that develops computational support for assessment of design characteristics.

Computational support for providing feedback on design has been investigated as well. Krause

et al. crowdsourced labeled examples of feedback on student designs, and then used a natural

language processing model to provide suggestions and improve crowdsourcing feedback on new

designs [5]. Ngoon et al. developed a text classifier to categorize feedback as actionable, spe-

cific, and/or justified. They used the categorization to suggest examples to the reviewers, which

improved the quality of feedback [44]. Unlike assessment systems mentioned further above, both

these feedback systems were investigated in design course contexts. The present research makes

complementary contributions by developing ideas for feedback sourced from AI assessment, as an

alternative to the crowd, as well as by identifying and addressing challenges in tracking students’

incorporation of feedback.

1.1.4 Learning Analytics and Dashboards

Learning analytics have proven useful in providing instructors means for scaling feedback [45,

46] and informing pedagogical action [47, 48]. They have supported students’ self-reflection [49,

50] and skill development [51, 52]. Example learning analytics in lecture-based contexts include

the number of times a student accessed a resource, time spent, and length of textual annotations,

which have been found to assist instructors in evaluating student understanding [53]. Likewise,

dashboards have proven effective in lecture-based contexts, providing a quick understanding of

student progress through representations such as tables and graphs [54, 55].

As we described above, design education involves project-based learning. As Blikstein dis-

5



cusses, for analytics to be useful in project-based contexts, they need to measure complex charac-

teristics, such as creativity and the ability to address ill-defined problems [56]. In design course

contexts, Britain et al.’s study surfaced this need, as they presented Fluency analytics—i.e., the

number of elements, words, and images—to design instructors [57]. While the instructors found

Fluency useful in gaining insight into students’ efforts across various dimensions, they desired

more sophisticated analytics. The present research identifies the underlying challenges and devel-

ops ideas for building analytics and dashboards suited for project-based design education.

1.1.5 Co-Design

Co-Design refers to “the creativity of designers and people not trained in design working to-

gether in the design development process” [58]. Sanders and Stappers map a repertoire of co-

design approaches across two intersecting dimensions: one defined by participatory vs expert

mindset and the other by design-led vs research-led approach. User-centered design—including

techniques such as usability testing [59] and ergonomics [60]—forms the majority of research-led

approaches with an expert mindset. Participatory design includes both design-led—e.g., enact-

ments [61] and generative [62] tools—and research-led—e.g., Scandinavian [63]—approaches,

which together form the majority of participatory mindset dimension. While probes [64] started

out as a part of critical design, which is a design-led approach with expert mindset, they have

evolved to take participatory mindset forms. As Mattelmäki notes, probes serve as tools for pro-

voking discussions, gathering data, and directing further research [65].

We use a variety of co-design approaches for involving users at different stages of research. To

understand users’ practices and needs, we use approaches similar to the AT project [66], including

individual discussions, followed by a workshop. Workshops provide a relatively neutral space, in

which designers and users openly exchange ideas and opinions [67]. This facilitates co-creation

of shared meanings and goals. We use the technology probes methodology [17] to understand

how novel AI-based assessment of students’ design work affects instructors’ situated practices.

The technology probes methodology allows simultaneously: (a) understanding users’ needs and

desires in a real-world setting, (b) collecting data through field-testing the technology, and (c)
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stimulate users’ and researchers’ thinking about technological possibilities.

1.1.6 Multiscale Design

As we introduced above, multiscale design refers to the use of space and scale to develop rela-

tionships among diverse design elements [16]. It facilitates a hierarchical or nested organization of

ideas, which has key importance in design. As Alexander describes, designers employ hierarchies

to organize each design component both as a unit and as a pattern consisting of other units, and thus

address the important challenge of building up a form from components [68]. Multiscale design

allows people to shift cognitive point of view up and down hierarchies, which supports a holistic

analysis and development of ideas [69].

Multiscale design environments, such as Photoshop, Illustrator, and IdeaMâché [70], provide

a free-form zoomable space, which allows designers to assemble visual elements, as ideas, into

nested clusters. The visual chunking of this clustering has been shown to help overcome limits of

human working memory [71]. As designers engage in thinking about and working with space and

scale, they invoke multiscale design strategies, such as map and shift perspective [72, 16]. Map

refers to defining spatial relationships among design elements through scale transitions: zooming

out shows “encompassing contexts” and zooming in shows “nested details”. Shift perspective

refers to using “views from different zoom levels and angles to gain a wider understanding of a

context” [16].

Prior work has assessed multiscale design characteristics, such as visual chunking and levels

of nesting [70, 35]. However, human raters performed these assessments, which therefore are hard

to scale. The present research develops computational approaches to measure multiscale design

characteristics.

1.2 Understanding Situated Assessment and Feedback Practices

Supporting design education with AI is challenging, as it requires translating ideas between

intellectually different social and computational domains [13]. This interface border zone [73],

where the domains intersect, is fundamentally sociotechnical. Drawing on the fundamental work of
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Suchman [12] and Dourish [13], we find that traversing the social / AI border requires identifying

and building with contextual properties, derived through understanding situated practice. The

situated practices that we focus on take place in this border zone, involving instructors’ design

assessment and feedback. We survey prior work and engage co-design methods with instructors

across diverse fields to develop understandings of situated practice.

1.2.1 Prior Work Studying Practice

Design education, across fields, is found to share pedagogical beliefs and practices [20]. Through

surveys of prior work studying assessment and feedback practices, researchers have developed un-

derstandings, such as instructor preferences for using various criteria [74] and how critique of

design work takes place across settings, modalities, and design phases [25]. These surveys demon-

strate how a systematic literature review can provide new understandings and analyses of practices

across various dimensions.

Taking inspiration, we conducted a survey to develop understandings of specific approaches

that instructors use to assess and provide feedback on a range of design characteristics, across

fields. This, in turn, had the potential to help us identify “contextual properties” of situated as-

sessment and feedback, which is vital for informing the design of computational support. To this

end, we developed a keyword search based methodology, using which we formed a corpus of 60

papers. We performed a qualitative analysis of ideas in these papers, using Charmaz’ approach to

grounded theory [18], to develop codes and categories, aka facets.

Our analysis contributes facets of: (1) assessment criteria, (2) feedback modalities, (3) process

vs. product focus, and (4) sources—e.g., instructors, peer, crowd, and computational—of assess-

ment and feedback. We identify assessment approaches that have proven useful for criteria, such

as variety and depth of solution space. We derive implications for computationally assessing and

providing feedback on design work, including the need for going beyond correlation and regression

analyses and deriving measures for a range of design characteristics. Implications also include the

need for undertaking studies that provide insights into not only what criteria instructors use, but

also how they apply these criteria, in practice. We present the approach, findings, and implications
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in detail in Chapter 2.

1.2.2 Co-Design with Design Instructors

Users are ‘experts of their experience’ [75]. Their expertise often involves forms of tacit and

shared knowledge and communication [76]. Co-design methods support designers in the elicitation

of users’ tacit expertise [75]. This elicitation, i.e., making the tacit visible, is crucial to designing

technology support for users’ work practices [77]. As we noted, prior work lacks in making the

tacit visible, in particular, how instructors apply assessment criteria, in practice. Hence, the present

research engages co-design methods to make the “how” visible and derive implications for tech-

nology support.

Similar to the approach used in AT project [66], we first engaged individual discussions with

design instructors from diverse fields. We began by contacting instructors whose work we were

aware of from previous collaborations. Based on their recommendation, we performed snowball

sampling [78], motivating new participants by identifying explicit, immediate value to them, such

as opportunities to reflect on their own processes and share perspectives with peers. After that,

we brought instructors together for a workshop for an interdisciplinary discussion of assessment

and feedback practices, as well as how technology can support them. We witnessed periodic

sighing and murmurs of enthusiasm; participants developed shared meanings, identifying common

pain points and sharing ideas for addressing them. We analyzed qualitative data gathered from

individual and workshop discussions using Charmaz’ approach [18] to grounded theory.

In theorizing, we invoke creative cognition’s family resemblance principle [33] to explain the

uses and limitations of design rubrics: no particular characteristic is necessary or sufficient; to-

gether they tend to indicate quality design work. We again invoke the family resemblance principle

to explain the analogous role for AI-based design creativity analytics—Fluency, Flexibility, Visual

Consistency, Multiscale Organization, and Legible Contrast—that align with instructors’ criteria,

i.e., they have the potential to indicate good design work, without being necessary or sufficient.

In the situated contexts of design courses, AI-based analytics and instructors’ and students’

interaction with them become inseparable. Hence, we contribute situating analytics, a paradigm for
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explaining AI-based analytics to users by integrating their measurement and presentation. For this,

we develop ideas for connecting the dashboard presentation of analytics with the particular design

elements and assemblages they measure. Further, we develop ideas for making the AI integration

controllable, providing affordances for instructors and students to make actionable changes, when

AI outcomes do not make sense to them. We present the investigation approach, findings, and

implications in detail in Chapter 3.

1.3 Situating Analytics Technology Probe

We use the situating analytics paradigm—developed based on the understandings from co-

design engagements—to guide our development of AI-based analytics and explaining them to the

users. We continue to take a co-design approach, this time in the form of a technology probe [17].

We focused on multiscale design, which involves the “use of space and scale to explore and

articulate relationships” among diverse design elements [16]. We adapted a spatial clustering al-

gorithm, AMOEBA [3], to derive novel AI-based analytics: the number of scales and clusters in a

design. Scale refers to the zoom level: elements at the same scale are equally legible at the same

viewport zoom [70]. Cluster refers to a set of elements that are spatially proximal to each other, in

comparison to distances with other elements in the design. We presented the analytics to instruc-

tors via a dashboard integrated with a multiscale design environment in which students performed

their work. The dashboard connects analytics with the particular sets of spatially related elements

within the actual design work, thus showing the characteristics that analytics measure, in context.

We performed a mixed methods study. We quantitatively evaluated the AI performance, by

deriving measures of precision, recall, and F-score. We also identified patterns where the AI does

not match humans through a qualitative analysis based on visual inspection. We interviewed nine

instructors about experiences with the integrated dashboard and design environment. We analyzed

qualitative data from interviews using Charmaz’ approach [18] to grounded theory.

We found that our approach to integrating measurement and presentation of analytics explains

them to instructors. Instructors observed the analytics’ potential as rubric elements and sources of

reflection for students. We discuss how ambiguity in the interpretation of design work becomes a
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resource for explaining what analytics and AI mean. We derive implications for improving the AI

performance, as well as explaining analytics through techniques, such as the animation of design

characteristics within the actual design environment, the indexicality of dashboard representation

of analytics, and exemplification to demonstrate a range of analytics measures. We present the

investigation approach, findings, and implications in Chapter 4.

1.4 Research Contributions

We contribute new understandings of situated assessment and feedback practices, through our

survey and co-design engagements. We develop implications for developing computational sup-

port, focusing on the use of AI, to support situated practice. Aligned with the implications, we

develop novel AI-based multiscale design analytics and an approach to explaining them. We in-

vestigate the use of novel AI-based analytics in situated course contexts. The main contributions

of the present research are:

• a new understanding of uses and limitations of project-based learning rubrics through cre-

ative cognition’s family resemblance principle;

• situating analytics, as a paradigm for conveying the meaning of measures that align with de-

sign rubrics, by contextually integrating the presentation of measures with associated design

work;

• a novel approach to measuring multiscale design, by adapting AMOEBA, a multilevel spatial

clustering algorithm;

• establishing baseline performance for AI recognition of multiscale design characteristics,

through a quantitative evaluation based on precision, recall, F-score measures; and

• implications for conveying the meaning of measures, based on a qualitative analysis of in-

structors’ experiences with multicale design analytics in situated course contexts.
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2. DESIGN EDUCATION ASSESSMENT AND FEEDBACK PRACTICES: A SURVEY

In this chapter, we perform a survey of prior work addressing practices—developing facets

across multiple dimensions—so as to advance assessment and feedback in design education, in-

volving new forms of computation. In design education, assessment and feedback are significant

in helping students make progress [25]. Although design instructors often work independently,

in differing disciplinary contexts, their practices share commonalities in assessment and feedback

[79]. Assessment plays a pivotal role, as a territory in which the valuable creative idiosyncrasies of

independent instructors become systematized as rubrics of design education accreditation [80, 81].

Feedback is a significant mechanism for advancing design students’ development of expertise [25].

It transforms a student’s point of view to be more inclusive and integrative [82].

As design education demands continue to grow, there is a need for scaling assessment and

feedback [5]. A systematic understanding of practices has the potential to inform design of novel

support. Prior surveys have compared criteria for assessing student work across the disciplines

[74] and feedback practices across dimensions, such as critique settings, teacher-student relation-

ships, communication modalities, and design phases [25]. However, these surveys do not detail

approaches used for assessing and providing feedback on various design characteristics. We ad-

dress the gap and focus on informing design of computational support. Our research questions are:

RQ1: What approaches are used for assessing and providing feedback on various design charac-

teristics, across fields?

RQ2: How, if at all, can computational means support assessing and providing feedback on vari-

ous design characteristics?

We form a corpus of 60 prior works addressing design assessment and feedback practice, then

develop facets for systematic analysis. Among these facets, we investigate the diversity of de-

sign criteria, and the modalities and sources of feedback. This enables us to identify potential

assessment and feedback opportunities, for sets of criteria, which can be useful for instructors

in structuring their design courses. Further, it enables identifying gaps in current understandings

12



of the usefulness of approaches—such as computation and crowd—for assessing and providing

feedback on particular design characteristics.

We begin by examining prior surveys on assessment and feedback practices in design educa-

tion. We then describe our methodology of how to identify prior work to survey. Next, we develop

codes and categories through analysis of these papers, using a constant comparative method. We

then use the codes and categories to define facets for conceptualizing and theorizing implications

for the design of design education, focusing on assessment and feedback.

2.1 Prior Surveys

We discuss prior surveys that contribute toward developing understandings of assessment and

feedback practices, as well as distinguish the present research from the prior surveys.

Sawyer’s review [29], focusing on pedagogical practices in design studios, includes two themes

on assessment: ‘Assessment through feedback and critique’ and ‘Use of rubrics’. In the first theme,

he discusses that assessments are designed toward guiding students on their own path rather than

being performed for a course grade and that design instructors emphasize both process and product.

Further, he notes a range of student perspectives on the critique environment, from encouraging

and supportive to valuable yet stressful to frustrating and unsafe. In the second theme, he discusses

complex viewpoints on the use of rubrics: “useful in demonstrating objectivity, but they don’t

capture the richness of a student’s work.” While the survey provides useful insights, assessment

practices only received limited attention. 9 out of 11 themes focus on practices other than the

assessment, e.g., open-ended and flexible pedagogy, tension between the open-ended nature and

the need for structure, and students’ confusion about the learning outcomes.

Two prior surveys specifically focus on design assessment practices. One is de la Harpe et al.’s

systematic review of articles focused on assessing learning in design, architecture, and art studios

[74]. The other is Oh et al.’s review of design critiquing in architecture studios [25].

We note, epistemologically, that de la Harpe et al. consider design, art, and architecture, as

separate fields. Oh et al. investigate design as an aspect of architecture. The approach of the present

research is to consider design as a sort of meta field, a transdisciplinary way of working, which
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spans constituent specific fields, such as mechanical engineering, computer science, interactive art,

and architecture.

de la Harpe et al. formed a corpus of 118 papers related to design learning and assessment

[74]. Twelve categories emerged from their comparative analysis of assessment focus in design,

architecture, and art studios: product, process, person, knowledge/content, hard skills, soft skills,

learning approach/style, technology, reflective practice, professional & innovative practice, inter-

disciplinary collaboration, and participation/ attendance. While architecture had the highest num-

ber of papers focusing on product, design ranked the product as sixth and instead had process as

the top focus. Other areas of focus in assessment in design include soft skills, hard skills, learning

approach/style, and professional & innovative practice.

While the survey is a valuable resource for understanding comparative focus in different dis-

ciplines, as well as criteria that fall under different categories, it does not organize and analyze

the papers by different criteria. Thus, it is not possible for a designer or researcher to understand

assessment and feedback approaches used for a specific criterion, say aesthetics or originality. For

example, it does not include sources or modalities used for assessment and feedback, which thus

does not aid the process of finding tried-and-true methods with respect to a criterion.

Oh et al. reviewed literature from a number of sources, including journals and key confer-

ences, for articles focusing on design critiquing in architecture [25]. However, they do not specify

the number of articles reviewed. They identify 11 ‘fundamental factors’ of design critiquing and

organize them into two broad categories: methods and conditions. Methods refer to how studio

instructors facilitate students’ knowledge and skills development and includes 5 factors: critiquing

settings, teacher-student relationships, communication modalities, delivery types, and delivery.

Conditions refer to the context in which critique takes place and includes 6 factors: design phases,

individual differences, knowledge/experiences, student response types, design artifacts, and learn-

ing goals.

Without going into the detail of each factor, we note that while we focus on some of the same

aspects such as the modality of assessment and feedback, other aspects of the present research
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differ—e.g., focus on various criteria and sources used for their assessment—which makes our

contribution complementary.

We note that prior surveys do not include a list of papers analyzed.

2.2 Survey Methodology

To form our corpus of 60 papers, we began by asking colleagues for their favorites that address

assessment and feedback. We studied the favorites and performed citation chaining, forming an

initial set of 19 seed papers. We expanded this set with keyword search.

We formulated a series of keyword based queries based on recurring ideas in the seed set. In

this, our approach resembles de la Harpe’s methodology of using a number of different keywords

/ descriptors [74]. We used Google Scholar for performing queries, as it allows searching across

multiple peer-reviewed collections. Gehanno et al.’s study showed that Google Scholar searches

provide 100% coverage, finding all the articles included in 29 systematic reviews, which were

originally obtained via searching individual databases [83].

One of the major challenges we faced was largely irrelevant results produced by queries includ-

ing keywords such as “design” and “education”. This is because these keywords are quite general

and occur in a variety of contexts. For example, for “design”, results range from instructional

design to study design to interface design. As we are interested in design education practices, we

decided to use an exact phrase search by using quotes around “design education”. We created

additional keywords based on recurrent ideas in the seed papers and our focus on computational

support.

To perform searches, we used “design education” as the first descriptor, followed by assessment

OR evaluation OR feedback as the second, and zero or one of the following as third: 1) “artificial

intelligence”, 2) computational, 3) “iterative design”, and 4) “creative design”. As it can be noted,

we used the phrase search method with other descriptors as well to minimize irrelevant results.

With the phrase queries, we obtained better results, but not all were focused on assessment

and feedback. Many of them minimally referred to assessment and feedback, in the larger context

of design pedagogy. For example, some of them mentioned descriptors such as “evaluation” and
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Count Publication Venue
10 Design Studies

4 ACM Conference on Human Factors in Computing Systems
4 International Journal of Technology and Design Education
3 International Journal of Art and Design Education
3 International Journal of Engineering Education
2 ACM Conference on Computer Supported Cooperative Work
2 ASEE Annual Conference and Exposition
1 ACM Conference on Designing Interactive Systems
1 ACM Interactions
1 ACM Transactions on Computer-Human Interaction
1 Annual Frontiers in Education Conference
1 Annual Meeting of the Cognitive Science Society
1 Architectural Science Review
1 ASME International Design Engineering Technical Conferences
1 Australasian Journal of Educational Technology
1 Automation in Construction
1 Bulletin of the IEEE Technical Committee on Learning Technology
1 Clothing and Textiles Research Journal
1 Communication Education
1 Computer Science Education
1 Computers
1 Computers & Education
1 Design and Technology Education
1 Design Issues
1 Educational Research Review
1 European Journal of Engineering Education
1 Higher Education Research & Development
1 IFIP International Conference on Human-Computer Interaction
1 International Conference on Computer-Aided Architectural Design Futures
1 International Journal for the Scholarship of Teaching and Learning
1 International Journal of Intelligent Systems Design and Computing
1 Journal of Architectural Education
1 Journal of Business and Technical Communication
1 Journal of Engineering Education
1 Journal of the Learning Sciences
1 Online Journal of Art and Design
1 Planning for Higher Education
1 Teaching in Higher Education
1 TechTrends

Table 2.1: We used Google Scholar to perform keyword search, which has been shown to have the
same coverage as searching individual databases. Our corpus includes papers from diverse venues
that publish design education research. The distribution simultaneously shows that there is a need
for more focused publishing opportunities for design assessment and feedback research.

“feedback” only while pointing to practices in the introduction, and some included “design educa-

tion” just in the discussion or conclusion when arguing for potential broader impact. Hence, we

did a quick first pass over search results to identify whether each paper is relevant. We first looked
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at the abstract and, if needed, at the rest of the paper. We considered up to a maximum of 100

results for each query. We stopped early if 20 of them, i.e, 2 pages were consecutively irrelevant.

We added 41 papers to the corpus through this process. Table 2.1 shows the list of publication

venues for 60 papers in our corpus.

We used a constant comparative method to analyze the papers. We used Charmaz’s approach

[84], engaging in stages of initial coding, raising codes into categories, and then performing fo-

cused coding of the data. The first author inductively developed initial codes and categories from

10 papers. The first and second authors then met to revise the codes and categories to suitably

represent the phenomena. The first author then engaged in focused coding of the rest of the papers,

revising codes and categories, as needed, based on the emergence of phenomena.

2.3 Facets

The categories and codes, aka facets, represent dimensions, across which assessment and feed-

back practices can be structured, understood, and investigated. Our constant comparative analysis

resulted in the following facets: Criteria, What/How, Modality, and Source. The Criteria facet fo-

cuses on the design characteristics on which emphasis is paid in design classrooms. The What/How

facet focuses on the creative outcome and the process used to produce it. The Modality facet fo-

cuses on the modes or forms in which feedback is provided in design classrooms. The Source facet

focuses on the channels that students receive feedback from.

2.3.1 Criteria

Design assessment encompasses a range of criteria. Firstly, design education pays emphasis on

both process and product. Secondly, while there is a broad set of indicators, disciplinary differences

exist in the focus and criteria of assessment [74]. Each design course is unique in its pedagogy and

assessment.

In the initial coding phase, we organized criteria into three subcategories: conceptual, visual,

and writing. However, as we continued the analysis, we found criteria that did not fall under these

categories. Hence, we formed one new category: other. In Table 2.2, we indicate the category of
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Assessment and Feedback

Facet→ Criteria What/How Modality Source
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Watkins [85] 1988 Textile • • • • •
Barrett [86] 1990 Art and Design • •

Sheppard et al. [87] 1997 Engr.,Graphics • • • • • • • • • •
Adams & Atman [88] + 1999 Engineering •

Jung et al. [89] 1999 Architecture • • • •
Ulusoy [90] 1999 Landscape • • • •

Brusasco et al. [91] 2000 Architecture • • •
Ochsner [92] 2000 Architecture • • •

Cardella et al. [93] + 2002 Engineering • •
Lewis & Bonollo [94] + 2002 Industrial • • • • •
Reimer & Douglas [95] 2003 HCI • • • • • • •

Shah et al. [34] + 2003 Engineering • • • •
Zimmerman [96] 2003 HCI • • • • • •
Blevis et al. [97] 2004 HCI • •
Dym et al. [21] 2005 Engineering • •

Cardella et al. [98] 2006 Engineering • • • • •
Adamczyk & Twidale [99] 2007 HCI • • • • •

Jeffries [100] 2007 Transport • • • • •
Dannels et al. [24] + 2008 Several • • • • •

Dannels & Martin [101] 2008 Several • • • • •
Linsey et al. [102] + 2008 Engineering • • •

Harpe et al. [74] 2009 Art,Architecture • • • • •
Doppelt [103] 2009 Engineering • • • • •

Cai et al. [104] + 2010 Arch., Engr. • • •
Chance [105] 2010 Architecture • •

Dow et al. [106] + 2010 Graphics • • • •
Hanington [107] 2010 Industrial,HCI • •

Lande & Leifer [108] 2010 Engineering •
Shreeve et al. [28] 2010 Several • • • •

Dannels et al. [109] 2011 Several • • •
Ham & Schnabel [110] 2011 Architecture • • • •

Kershaw et al. [111] 2011 Engineering • • • •
Palmer & Hall [112] 2011 Engineering • • • •

Park [113] 2011 Art and Design • •
Crismond & Adams [23] + 2012 Engineering • • • •

Kolko [82] + 2012 HCI • • • •
McCarthy [114] 2012 Art,Architecture • •
McLaren [115] 2012 Unspecified • • • • •

Schrand & Eliason [116] 2012 Several • •
Wong & Siu [117] 2012 Design & Tech • •

Dow et al. [8] 2013 HCI • • • • •
Oh et al. [25] 2013 Architecture • • • • • • • • •

Tinapple et al. [118] 2013 Art,Arch.,Engr. • • •
Yuan and Lee [119] + 2013 Industrial • • • • • •

Hui et al. [9] + 2014 Engineering • •
Osmond & Tovey [30] 2015 Industrial • •

Wei et al. [120] 2015 Creative • • •
Xu et al. [121] + 2015 Graphics • • • • •

Adams et al. [122] 2016 Several • • • • • • •
Christensen & Ball [123] + 2016 Industrial • • • • • •

Yilmaz & Daly [79] 2016 Several • • • • • • • •
Yuan et al. [10] + 2016 Graphics • • • • • •
Arslan et al. [124] 2017 Architecture • • • • • •
Gray et al. [125] 2017 Art,Engineering • • •

Krause et al. [5] + 2017 Unspecified • • • •
Sawyer [29] 2017 Art,Architecture • • •
Gray [126] 2018 HCI • • • •

McDonald et al. [6] 2018 Instructional •
Sawyer [20] + 2018 Art and Design • • • • • • • •

Soni et al. [127] + 2018 Industrial • • •

Table 2.2: Each paper in our corpus mapped to the categories under the assessment and feed-
back facets. ‘+’ indicates that the paper explains the assessment approaches for the criteria used.
Criteria facet focuses on design characteristics. What/How facet focuses on design process vs out-
come. Modality facet focuses on forms in which assessment and feedback are provided to students.
Source facet focuses on who provides assessment and feedback.
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abstract thinking • [74]
addressing feedback + • [23]

adherence to client’s theme • [79] [79] [106]

aesthetics + • [122, 115] [122, 115, 124] [122, 123]
[106, 119] [98] [127]

analogical thinking + • [102]
analytical thinking • [74]

autonomy • [125]
class participation • [95] [95]

click-through + • [106]
color, form, and composition + • [96] [124] [121] [89] [121, 10]

complementary visuals and text + • [10]
communication + • [24, 87] [87] [24, 87] [94]

computer aided drawing • [112]
concept generation + • [87] [87] [87] [94]

delayed decision • [23]
design rationale • [25, 96] [25] [25]
design reports • [112, 95] [95]

diversity of activities • [98]

diversity of ideas + • [125, 25]
[20, 87] [25, 87, 124]

[104, 123, 103]
[25, 20]
[87, 119]

[34] [100]

elaboration • [79] [79] [120]
exploratory searches + • [23, 74]

fluency or the no. of ideas + • [122] [122] [122] [102, 34]
functionality • [115] [115, 124] [123]
idea selection • • [20] [103, 20]

iterative design + • [88, 23]
negative space + • [20] [20]

novelty or originality + • [122] [122] [122, 106, 119] [98, 120, 34]
precedents • [25] [25] [25]

presentation + • • [112, 20, 85]
[79, 96] [79] [20] [9] [124]

problem framing • [122] [122] [122]
process and creativity correlation + • • [119]

project management + • [94]
purpose [103] [111] [10]

self-reflection • [87] [87] [103, 87] [111]
synthesis • [74, 120]

tastefulness • [106]
teamwork • [87] [87] [87]

technical feasibility • [115, 79] [115, 79] [111, 98]
time management • [125] [106]

typeface + • [96] [82] [10]
# of pages visited + • [106]

# of visitors + • [106]

Table 2.3: In order to facilitate gaining insights with respect to specific criteria, we map the criteria
and publications that discuss them. In addition, we simultaneously map the What/How nature
and the Source of assessment and feedback against each criterion. ’+’ indicates that for the given
criterion, one or more papers explain assessment approaches. In order to make the representation
concise, we merge a few criteria where they refer to same aspect, but use different name, for e.g.,
originality and novelty, variety and diversity, etc.

criteria. In Table 2.3, we develop a detailed representation, creating a grid of papers, with criteria

on one axis and the source of feedback on the other. This serves as a ready resource that helps

identify papers assessing a certain design criterion as well as how they assess it. If a paper explains

the approach for assessing a criterion, then we indicate that with ‘+’ in both the tables. Figure 2.1

shows relative distribution of papers that explain the approach vs. those that do not.
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Figure 2.1: The chart shows the relative distribution of papers that explain the assessment ap-
proaches for the criteria used vs. those that do not. Only a small subset explains the assessment
approaches.

Conceptual criteria focus on the development and generation of ideas. In our corpus, 28 out

of 60 papers discuss conceptual criteria [85, 99, 100, 79, 125, 87, 102, 10, 74, 96, 25, 98, 23,

122, 115, 20, 117, 119, 120, 34, 123, 106, 95, 103, 94, 111, 107, 104]. Examples of conceptual

criteria include variety or alternatives, originality, precedents, fluency or the number of ideas,

idea selection, functionality, adherence to client’s theme, problem framing, synthesis, analytical

thinking, abstract thinking, analogical thinking, and technical feasibility.

A common problem we found is that students tend to fixate on a certain idea or set of ideas

in the early stages of the design process [23, 111, 20]. Through feedback, from various sources,

students gain new perspectives and start exploring new aspects or alternative solutions. This not

only helps students in overcoming shortcomings of their initial solution, but also understand a

variety of approaches that could be useful in different scenarios. Hence, the variety of ideas is a

key assessment criterion [34, 104, 103, 20, 87, 125]. Likewise, originality has a major emphasis in

design assessment [34, 106, 123, 120, 117, 122, 98]. Students work on “wicked” problems [128]

that, by design, are constrained by requirements, time, and resources, and are ill-defined. Working

on these problems require students to come up with creative solutions.

Visual criteria involve the effective presentation of ideas. In our corpus, 18 out of 60 papers

address visual criteria [98, 122, 115, 119, 123, 127, 74, 96, 112, 20, 82, 5, 124, 121, 79, 106,
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10, 87]. Examples of visual criteria include aesthetics, color, form, composition, typography,

whitespace, negative space, visual representation and thinking, computer aided drawing, and facial

details.

A common criterion is aesthetics, addressed by 8 papers [123, 115, 122, 98, 124, 106, 119,

127]. Aesthetic refers to the overall visual appeal of the page. While the evaluation of aesthetics

can be subjective, adhering to various visual design principles—e.g., Gestalt laws of order, sym-

metry, and proximity—helps create an aesthetic design [129, 130]. In a similar direction, [74]

finds in their survey that multiple design education contexts emphasize the use of visual elements

and principles, such as color, form, and composition. In a study of 9 different design disciplines,

[20] finds that instructors teach students to see negative space that gets created when putting to-

gether what is visible, such as the space between letters in typeface design or 3D space created by

structures in architecture.

Writing criteria focus on the effective expression of ideas in the written form. Two papers

discuss the writing aspects, mainly in the context of design reports [95, 112]. [95] discusses that

students improve their written communication skills by engaging in documenting a report on their

design solutions. [112] motivates the need of engaging students in a series of preliminary and final

design reports, as project-based learning should provide opportunities for articulating the basis of

design solutions.

Other criteria includes a number of aspects assessed in a design. We discuss a couple of criteria

here. One is soft skills, which refer to the personality traits and interpersonal skills that enable

effective interaction with others. Example criteria include communication, teamwork, autonomy,

self-reflection, and time management. As [96] describes, students need to learn communicating

the design, as well design rationale. As [74] states, design education has a major emphasis on soft

skills of teamwork and collaboration. Another is a set of website access metrics, which include the

number of clicks, visitors, and pages visited and the amount of time spent [106].
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2.3.2 What/How

Design education puts emphasis on both the process and product [74]. “How” refers to the

process through which a creative outcome is produced, and includes various aspects such as brain-

storming, teamwork, reflection, and critique. “What” refers to the creative outcome, i.e., the prod-

uct that the process has resulted in, and whose assessment is focused more on what is produced

than how it was produced.

In the initial coding phase, we organized papers using these two subcategories: process and

product. We did not form additional categories during the later stages of analysis.

Process refers to work practices, including soft skills that enable the effective development of

a creative product. In our corpus, 22 papers discuss process criteria [74, 96, 20, 79, 87, 85, 99, 25,

23, 95, 103, 94, 86, 93, 97, 21, 24, 101, 105, 28, 109, 29]. Example criteria include presentations,

self-reflection, iterative design, exploratory searches, delayed decision, incorporation of feedback,

communication, and teamwork. As we briefly discussed soft skills, we focus on other aspects

here. [95] discusses engaging students in weekly group design activities and assessing based on

their presentation of artifacts, as well as participation during critiques and performance evaluation

by peers. [101] breaks down communication, such as through presentations, into “competencies

of interaction management, demonstration of design evolution, transparent advocacy of intent,

explanation of visuals, and the staging of the performance”.

Iterative design is emphasized, as working on the “wicked” problems require students to not

only come up with creative solutions, but also co-evolve the problem and solution spaces [131].

Students often make use of prototypes that help them elicit feedback from stakeholders [26].

Product refers to the creative outcome. Example criteria include originality, functionality, ad-

herence to client’s theme, aesthetics, and typography. In our corpus, 40 papers discuss product

criteria [74, 96, 20, 79, 87, 85, 99, 25, 23, 95, 103, 94, 86, 21, 101, 28, 29, 98, 119, 123, 127, 82,

5, 124, 121, 10, 100, 102, 117, 120, 34, 111, 107, 104, 89, 90, 91, 110, 8, 118]. A creative process

is central to design education [20]. However, as many design educators argue the ultimate goal of

the process is to develop a creative product [74]. Further, the product is usually designed with an
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Figure 2.2: Distribution of papers based on their focus on process and product assessment. Process
has received less attention.

end-user or client in mind, making the adherence to a client’s theme an important criterion. We

note Zimmerman’s point of view here: “[Students] must convince the audience to want to possess

their product or service” [96].

The what/how categorization (Tables 2.2 and 2.3; Figure 2.2) provides a different perspective

that is more suited in certain cases, than the earlier organization by specific criteria. For example,

a prior study found a need to focus on the process rather than the product when investigating self-

regulated learning in design course contexts [132]. Such studies can benefit from identifying prior

criteria and approaches using the what/how mapping. We note that the characteristics that fall

under one category in ‘Criteria’ can fall under multiple categories in ‘What/How’. For example,

the conceptual criteria category includes both process and product aspects. Process aspects include

analytical thinking, abstract thinking, analogical thinking, etc. Product aspects include variety or

alternatives, originality, precedents, fluency or the number of ideas, etc.

2.3.3 Modality

Modality refers to the mode or form in which assessment and feedback are provided to students.

Design critique takes place in a variety of settings, such as individual and group crits, interim and

final review, and informal interaction [25]. Different modalities are suited in different types of

23



interactions and for providing feedback on different types of design characteristics.

In the initial coding phase, we organized the modalities into three subcategories: verbal, digital,

and physical. We did not form additional categories during the later analysis.

Verbal communication is the primary critique modality in design courses [25]. “Desk crit”,

which is the discussion between an instructor and a student at the student’s desk, is noted to be

primarily verbal in nature. Other settings such as interim review and final review also include

significant verbal feedback. This is reflected in our corpus, with the highest number, i.e., 15 out

of 60 papers discussing verbal modality as the form of feedback [20, 79, 87, 25, 28, 123, 82, 111,

90, 24, 109, 122, 92, 126, 30]. 10 of these 15 papers discuss instructor as the source, 6 jury, and 7

peer.

As Oh et al. point out, instructors often use multiple modalities together as that helps stu-

dents in understanding their intentions [25]. Design studios are increasingly integrating digital

support tools, including that for feedback processes [91]. 15 papers in our corpus use digital tools

[87, 5, 124, 121, 10, 100, 118, 99, 115, 110, 126, 8, 89, 91, 25]. Jung et al. discuss a web-based

3D environment, which supports collaboration by allowing redlining and annotating of building

designs [89]. Gray et al. discuss that instructors and peers engaging with students through doc-

ument collaborations and backchannel chat increases the amount of feedback [126]. e-scape, a

web-based authoring system, where students upload their work for instructor and peer review, is

found to support collaboration and providing ongoing feedback [115]. Other examples include get-

ting feedback from the crowd on recorded videos via MindSwarm [8], e-mail [110], and annotation

using blogs & wikis [99].

Design studios are known for their purposely designed space that has tools and resources to

help students perform design work, and facilitates students’ collaboration with each other and

instructors [22]. The physical space, for example, is designed such that students can pin up their

drawings on the walls [95] or lay them out on desks [25] for review. Two papers in our corpus

use physical modality [90, 25]. Instructors often draw or sketch over student work to help them

develop ideas [90]. Gestures also facilitate communication and are considered ‘invisible drawings’
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Figure 2.3: The chart shows the number of times papers in our corpus used two sources together
for assessment and feedback. While traditional sources of assessment—e.g., instructor, peer, and
jury—and their pairing are frequent, other sources have not yet been employed extensively. These
include new sources, such as computation and crowd, which have the potential to scale assessment
and feedback.

[25].

2.3.4 Source

As Krause et al. point out, design classrooms have changed, to employ various sources of

feedback, as instructor-led feedback falls short in meeting the increasing scale of design education

[5]. Further, multiple sources are valued in design education, as that allows students to obtain

multiple perspectives on their design work. As Tinapple et al. [118] put, “Hearing feedback from

multiple people allows the critique recipient to blend the feedback, discounting the outlying overly

positive or negative comments, forming a better sense of the overall reception.” Figure 2.3 shows

the how frequent different sources are paired with each other in the papers in our corpus.
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During the initial coding phase, we organized sources into three subcategories: instructor,

peer, and crowd. During the later phases, as we discovered new sources through the analysis

of remaining papers in the corpus, we revised the categories. As a result, we have six categories:

instructor, peer, crowd, jury, client, and researcher.

Instructor assessing student work and providing feedback is a common approach in design

education. In general, it can be considered as the de facto approach in education, as an instructor

is well positioned to assess work performed in their course. This is reflected in our corpus as

well, with the highest percentage, i.e., 23 out of 60 papers discussing instructors as the source

[87, 115, 126, 8, 91, 25, 20, 79, 28, 82, 24, 122, 92, 30, 96, 85, 95, 101, 29, 112, 125, 113, 116].

The instructor feedback is noted to provide guidance, but at the same time, not stifle creativity. As

[122] notes, instructors use a “suggest don’t tell” approach and help students develop conceptual

connections. As [82] notes, instructors work as facilitators rather than lecturers.

Peer refers to students, who in most cases are at the same academic level, studying the same

course, while sometimes, at different levels and/or in different courses. An example of different

levels and courses is the interaction between two student cohorts: ten undergraduate students at

Penn State and 12 postgraduate students at the University of Adelaide [114]. In our corpus, it is

the second most common form of assessment, with 19 out of 60 papers discussing it as a source

[87, 115, 126, 8, 25, 79, 122, 95, 101, 113, 116, 124, 118, 110, 90, 34, 114, 6, 99]. [118] notes that

students sometimes develop a false sense of insecurity based on peer critique, and think they know

less. But if students are able to see each other’s work, then that insecurity is alleviated.

Jury refers to a set of experts, who possess the knowledge, skills, and experience required for

effective assessment of work in a specific domain. 16 papers discuss jury or experts as a source

[87, 25, 122, 101, 124, 110, 20, 24, 92, 123, 103, 119, 104, 106, 121, 114]. As [25], discusses

having a jury allows students to engage in inspiring conversations, learn from their expertise, and

observe professional skills. At the same time, the critique can sometimes be harsh and interaction

can become intimidating.

Client refers to the end-user who eventually uses or is intended to use the product or service
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being designed. Only 3 papers in the corpus discuss the client or user as the source [89, 94, 108].

[94] presents a study from an industrial design context where the client assessed student work,

with their comments largely on the quality of product designed, students’ interpersonal skills,

management of resources, and level of maturity.

Researcher here refers to people who study and aim to develop or advance understandings

of design education theory and practice, through experimenting with different tools, methods, and

environments. We formulated this category because, in a number of studies [98, 120, 102, 111, 34],

the researchers evaluate a system or environment they have designed by assessing the student

work in controlled settings. However, these studies do not provide the assessment to the students

themselves.

Crowd refers to large online communities of people, who make themselves available for un-

dertaking paid or unpaid tasks published by requesters. As Dow et al. put, the modern web makes

it possible to “leverage the scale, diversity, and immediacy of online crowds”. There are different

platforms that facilitate crowd work. In our analysis, we found 5 out of 60 papers discussing the

crowd as a source [8, 5, 9, 121, 10]. 5 papers used Amazon Mechanical Turk [8, 9, 5, 10, 121],

2 MindSwarms [8, 9], 1 Reddit [9], 1 Facebook [8], 1 Upwork [10], and 1 CrowdCrit [10]. The

purposes of use include needfinding [8, 9], ideating solutions [8, 9], testing prototypes [8, 9], and

pitching [9]. Providing structure, such as guidelines or examples to the crowd has shown to im-

prove the quality of feedback [5, 10].

Computation refers to the use of mathematical calculations to assess and provide feedback on

characteristics of design work. As Jeffries point out, the use of computation has the potential to ad-

dress the increasing scale of design education [100]. In our corpus, 4 out of 60 papers discuss using

computational approaches [100, 119, 124, 127]. A couple of these papers use assessments from

other sources—e.g., peer and jury—and then perform correlation or regression analysis [119, 124].

The other two papers assess specific characteristics, such as aesthetics [127] and consideration of

alternatives [100].
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2.4 Discussion and Implications

We connect the analysis with prior work, as well as use our observations during the bottom-

up faceted analysis toward answering initial research questions. We discuss the potential role our

analysis can play in supporting design instructors, by offering them a comparative understanding

of assessment and feedback across facets. We follow with the potential value of our analysis for

design researchers. We discuss and derive implications for: (1) studying design course contexts for

developing understandings of instructors’ assessment methods; (2) extending the use of alternative

sources to meet growing demands, and (3) undertaking possess-focused investigations.

2.4.1 A Resource for Structuring Assessment and Feedback in Design Courses

Through our faceted analysis, we contribute a resource through which design instructors can

refer to various aspects—i.e., criteria, what/how, modality, and source—and inform the structure

of their courses. Making the present analysis available to instructors has the potential to catalyze

evolution of their assessment and feedback practices. For example, an instructor—building a com-

parative understanding through facets—could incorporate additional criteria or sources used by

their peers. This includes incorporating ideas from disciplinary contexts similar to theirs, as well

as from other contexts in which similar criteria are employed. As prior research has shown, there

are commonalities in assessment and feedback across disciplines [79]. Hence, while instructors

can directly utilize ideas from similar contexts, perspectives from other contexts would also be

useful.

2.4.2 Study Design Course Contexts for Developing Understandings of Instructors’ Assess-

ment Methods

One of our motivations for undertaking this survey was to develop understanding of approaches

used for assessing and providing feedback on various design characteristics across fields (RQ1).

We expected to gain insights into approaches for a range of characteristics that are a part of design

instructors’ rubrics. While we were able to develop understandings across the facets of criteria,

what/how, modality, and source, there are opportunities for developing additional insights by un-
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dertaking studies of design course contexts.

Except for a few, the papers in our corpus do not explain the assessment approaches in detail

(Table 2.2 and Figure 2.1). For example, for novelty, Shah et al. explain a normative measure,

counting how many times an idea occurs in the entire collection of ideas [34]. They provide

measures for fluency and variety as well. Cai et al. [104] also provide a methodology for assessing

variety—based on extended linkography and distance graph—where they determine the breadth

and depth of solution space. They quantify differences among multiple ideas generated by the

designer, based on whether one idea is an alternative, or slightly different, or a more detailed

version of another idea. Another example is Yuan et al.’s work, where they list principle statements

that the crowd used as a basis for assessing student work against a set of criteria, such as choice of

typeface, use of color, and the purpose of the project [10]. However, for a large number of criteria

(Table 2.3), approaches are unknown.

Investigating design courses to make the details of assessment visible is vital. Such understand-

ings can be beneficial to develop implications for how computational means can support practices

(RQ2). As Dourish says, making contextual properties transparent is vital to developing computa-

tional support, and as context acquires “meaning or relevance through their relationship to forms

of practice”, study of work practices becomes fundamentally important [13].

2.4.3 Extend the Use of Alternative Sources to Meet Growing Demands

In the introduction, we pointed to the need for alternative sources for assessing and providing

feedback, so as to meet the growing demands of design education. In our corpus, 23 out of 60

papers discuss instructors as the source [87, 115, 126, 8, 91, 25, 20, 79, 28, 82, 24, 122, 92, 30,

96, 85, 95, 101, 29, 112, 125, 113, 116]. A majority of these, i.e., 14 papers discuss one or

more additional source of feedback [87, 34, 115, 122, 95, 25, 101, 8, 126, 113, 116, 20, 24, 92].

The observation corroborates the need and value of multiple sources in design education. Also,

instructor and peer sources co-occur in 11 papers, the most when considering any two sources

together (Table 2.2 and Figure 2.3). This may allude to the frequent critiques that are held in the

classroom, typically in a studio setting [133], in which both the instructor and peer provide their
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feedback. Similarly, jury pairs with instructor or peer 10 times, pointing to the traditional settings

where instructors invite people with valuable experience to critique student work. Hence, there is

an opportunity for new, non-traditional sources to play a role in supporting instructor assessment

and feedback efforts.

Computational: A distinct advantage of computational approaches is that they can process

large amounts of data at speed. As we can see from Table 2.2, the investigations for computational

approaches are fairly recent, as compared to that of traditional forms, which started two to three

decades back. One paper develops a computational approach that can be used for assessing aes-

thetics through the use of genetic algorithms and artificial neural networks [127]. However, others

are focused on correlation and regression analysis of human-assigned scores. For example, Arslan

et al. develop a regression model to predict jury’s scores for design presentation based on peer

ratings of specific design characteristics of form, function, flexibility, aesthetics, and authenticity

[124]. The dearth of work presents an opportunity for researchers to develop novel computational

approaches. For example, a study could be performed by substituting peer ratings in Arslan et

al.’s model with computational assessment of specific characteristics. As we pointed above, under-

standing practices is vital to developing computational support. Hence, it would be beneficial to

begin with criteria for which prior work has made the assessment approaches visible. Simultane-

ously, computational approaches that have proven successful for design assessment, but have not

yet been investigated in design education contexts—e.g., flexibility/diversity [43] and use of color

[42]—could be considered.

Crowd: A distinct advantage of crowd techniques is that they have been found to come close

to expert assessment and feedback on a variety of design characteristics [10]. In our corpus, we

observe that crowd techniques have been used for criteria of complementary visuals and text, pur-

pose, presentation, typeface, and color, form, and composition. Future investigations of crowd

assessment have the potential to inform the community regarding its suitability and effectiveness

for different types of design education criteria.
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2.4.4 Undertake Process-Focused Investigations

We note the distribution of papers across process and/or product category. As [74] discusses,

many design educators hold the view that product is the most important outcome in education. It

quotes Lindström [134], “it is ultimately the products of the creative process that count in soci-

ety.” Lately, many educators have started emphasizing the process as an equally valued outcome.

Watkins argues that while students may not work on the same product ever again, they can apply

the learning from the process to different contexts [85]. Out of 40 papers categorized under Prod-

uct, we categorized 17 as both Process and Product. While there are 23 papers that focus only on

Product, there are only 5 papers that focus only on Process (Tables 2.2 and 2.3; Figure 2.2), thus

indicating a potential opportunity for conducting process-focused investigations.

2.5 Conclusion

To advance design education assessment and feedback practices, we conducted a survey, form-

ing and analyzing a corpus of 60 papers. We used a constant comparative method to develop

facets: Criteria, What/How, Modality, and Source. The faceted analysis contributes a synthesized

resource for design educators and has the potential to inform the assessment and feedback structure

in design courses.

Our faceted analysis allowed a systematic identification of patterns and gaps in practices. To

complement traditional sources—e.g., instructor, peer, and jury—there is an opportunity to develop

computational means, which has the potential to scale design assessment and feedback. However,

as we found, prior work does not make visible how assessment and feedback is performed in

situated design course contexts. As Dourish discusses, a comprehensive understanding of socially

situated work practices is fundamental to creating technologies that support users [13]. Developing

a detailed understanding, across contexts, would be valuable for designing computational systems

that support design assessment and feedback. In addition, our analysis reveals opportunities for

establishing the suitability and usefulness of the crowd for a range of criteria, as well as undertaking

process-focused investigations.
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3. HOW COULD AI SUPPORT DESIGN EDUCATION? A STUDY ACROSS FIELDS

FUELS SITUATING ANALYTICS

In this chapter, we use co-design methods to develop understandings of design instructors’

situated practices, across fields, and derive implications for AI support for assessing and providing

feedback to students studying design. As students learn to develop creative solutions for design

problems, they need frequent assessment and feedback to make progress [25]. Design problems

are known as wicked, that is, addressing the people and needs at hand; replete with confusing

information and conflicting stakeholders’ values; open to multiple explanations; and formulated

and reformulated not absolutely, but in terms of a designer’s conception [135, 136, 128, 137, 138].

Design students are appropriately challenged by this wickedness. They sometimes struggle to the

extent that they drop out [30].

To help students learn in the face of wicked problems, design instructors structure courses

to provide frequent, helpful feedback [109]. However, as design education demands continue

to grow, instructors face challenges in providing timely assessment and feedback [5]. Further,

instructors may not be available at critical times, e.g., late the night before an assignment is due.

These conditions translate to needs for alternative channels of assessment and feedback. Human

assistance channels include peer [7, 6] and crowdsourced [10, 8, 9] design feedback. The present

research alternatively focuses on the potential of new forms of computation, which complement

the human assistance by providing the ability to process big data at speed [11].

To supplement instructor efforts, under time pressure, our objective is to derive implications

for AI-based design analytics and their presentation via dashboards. Like recent AI-based analyt-

ics research [14, 15], we adopt a broad view of analytics, which includes not only facts but also

inferences. While learning analytics have been found useful in various courses, prior work lacks

in investigating their efficacy in design education contexts. This does not mean that computational

modeling of creative design, which can constitute a basis for AI and analytics, is impossible. Gero

and Maher developed a computational model for supporting creative design based on the appli-
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cation of analogy and mutation processes to design representations [36]. Reinecke et al. demon-

strated the potential of computation to assess aesthetic quality of website design [41]. Oulasvirta

et al. provide a web service that assesses a graphical user interface design against a variety of

metrics, ranging from symmetry to colorfulness to visual clutter [42]. This dissertation addresses

the research gap of how to build AI support for design courses.

As we argued in Chapter 1, AI support for design education must provide transparent, on de-

mand assessment and feedback. How can this work? Suchman seminally articulated that designing

a useful AI system requires understanding users’ situated practice, i.e., how their actions develop

purpose and intelligibility within particular circumstances. Suchman emphasizes a system’s trans-

parency—to convey AI’s intended purpose to the users and establish its accountability—as requi-

site for effectively supporting situated practice [12]. Dourish breaks this principle down to focus

on how translating ideas between intellectually different domains of situated practice (social) and

technology (computational) “can be both exceptionally valuable and unexpectedly difficult” [13].

While focused on user experience and HCI, we find that recent studies by Yang et al. [139] and

Dove et al. [140] corroborate the difficulty of translating ideas between the domains of design

practice and AI technology. Dourish argues that making contextual properties transparent is vital

in addressing the difficulty, and as context acquires “meaning or relevance through their relation-

ship to forms of practice”, study of work practices becomes fundamentally important [13].

The present research develops a case study for human-centered AI, using qualitative, co-design

methods to undertake the ‘difficult’ work of understanding practices in design education, in order

to derive a basis of ‘contextual properties’ for AI support. While prior work has studied assess-

ment contexts in design education, and identified a range of criteria [74], it has not detailed how

instructors apply these criteria in practice. Hence, to derive implications for computational support,

we investigated how design instructors, across fields—e.g., architecture, interactive art & design,

mechanical engineering, and computer science—perform assessment. In our study contexts, these

courses are taught by each field’s faculty, in contrast with dedicated design programs—e.g., TU

Eindhoven, TU Delft, and Stanford d.school—which teach students from multiple disciplines [4].

33



The present investigation began with the goal of addressing this research question:

RQ1: How, if at all, could analytics and AI support instructors in assessing and providing

feedback on design?

Early in our investigation, we realized that co-design methods are imperative, to elicit and

build on tacit and contextualized knowledge and practices of stakeholders [75, 58]. Our focus

evolved, by performing the research, through co-design engagements. Working closely with design

instructors, we discovered another, emergent and underlying research question:

RQ2: What challenges characterize how instructors teach, assess, and provide feedback on

design (across fields)?

We present prior work relevant to various aspects of our investigation. Then, we describe our

study methodology, including aspects of co-design for involving instructors, and a grounded the-

ory approach for analyzing qualitative data acquired through co-design engagements. We follow

this by presenting findings and discussing challenges, which characterize assessment and feedback

across the diverse design courses of our study. The particulars of these situated understandings and

needs for using AI to support design education lead us to next contribute a generalized methodol-

ogy for situating AI-based analytics. We invoke this methodology to derive potential new forms

of AI support for design education. We reflect on the value of and role for co-design methods for

situating AI support. We conclude by reiterating theoretical contributions for human-centered AI,

in general, and design education, as a particular situated domain.

3.1 Prior Work

We present prior work investigating design education assessment and feedback practices and

identify gaps in current understandings of instructors’ approaches. Further, we rely on prior work

in creative cognition, computational design, and learning analytics and dashboards, which we in-

troduced as sensitizing concepts in Chapter 1.
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3.1.1 Design Education: Assessment and Feedback Practices

In Section 1.1.1, we introduced how design education, across fields, is based on common ped-

agogical beliefs and practices. Here, we focus specifically on assessment and feedback practices.

Design instructors assess student work against a range of process—e.g., problem solving, an-

alytical thinking, abstract thinking, synthesis, creative thinking, and decision making—and prod-

uct—e.g., concept, layout, color, shape, texture, and rhythm—characteristics [74]. Students need

to develop both group—e.g., teamwork and communication—and individual—e.g., abilities to act

independently and meta-cognitive skills to assess their own actions—competences [125]. While

this prior work enumerates a range of characteristics, it does not surface instructors’ approaches to

assessing these characteristics. Without this contextual knowledge, as per Suchman and Dourish

(above), it is not possible to derive implications for analytics and AI support. Hence, the present

research focuses on addressing this gap.

We next draw on prior work addressing how instructors provide structure to elicit and facili-

tate students’ learning and expertise through feedback. Feedback based on assessment of various

design characteristics plays an important role, for advancing design students’ development of ex-

pertise [25]. As students begin, they may be unfamiliar with the open-endedness of the design

work [141]. Many students have trouble working [108] on wicked design problems [128] that re-

quire ongoing formulation, while dealing with confusing information and stakeholders’ conflicting

values. Instructors scaffold students’ mastery of creative processes and development of key com-

petencies [142]. They use a “suggest, don’t tell” approach in their feedback, thus simultaneously

directing students’ attention to key aspects and empowering them to act independently [122].

To facilitate feedback, design courses schedule critique sessions, where instructors and peers

help students reflect on their work [25, 109, 82]. Critiques usually take place in studio settings:

“active sites where students are engaged intellectually and socially, shifting between analytic, syn-

thetic, and evaluative modes of thinking in different sets of activities” [133]. Critiques range

from frequent, informal “desk crits” and “pin ups” to more formal “jury” reviews at the end of a

project [25, 109]. They provide useful feedback to students and help them develop communication
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competencies—e.g., demonstration of design evolution, interaction with audience, and credible

staging of presentation performance—through understandings of disciplinary norms, expectations,

and behaviors [24]. In addition to public critique, instructors and peers engage through document

collaborations and backchannel chat [126].

As instructor and peer availability are limited, additional feedback channels have been inves-

tigated. For example, prior work focused on the potential of crowdsourcing [10, 8, 143, 9]. We

alternatively focus on computational approaches, which have received little attention in this regard.

3.2 Methodology

We engaged aspects of co-design [75, 58] to develop understandings of assessment and feed-

back practices and needs in a range of design course contexts, across fields. “We” here refers to the

resulting research team, comprised of the “initial research team” (IRT) members plus 2 design in-

structors who later chose to get more involved in the research, through the co-design process. The

IRT is a group of HCI researchers, consisting of the PI, and graduate and undergraduate students.

The PI additionally participated as a design instructor. The remainder of the section differentiates

between this larger we, and the IRT, in describing processes and methods.

The IRT employed a co-design approach, with the goal of building on tacit, shared knowledge

and communication involving users, as participants, so that outcomes support situated use. To

initiate the co-design process, the IRT recruited other design instructors via email, starting with

whose work they were aware of from past interdisciplinary collaborations. Based on instructors’

recommendations, the IRT performed snowball sampling [78]. They motivated new participants by

identifying explicit, immediate research goals of value to them, such as opportunities to reflect on

their own processes and share perspectives with peers. IRT engaged instructors in dialogue about

course learning objectives, assignment specifications, and assessment methods (See appendix A).

Furthermore, they discussed whether and how computational means could support them, in partic-

ular, in design assessment.

The IRT initiated a grounded theory approach, based on the work of Charmaz [18], to data col-

lection and analysis. In this approach, grounded theory is a rigorous qualitative method, wherein
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ID Gender Field Title UG Course Level
D1 F Architecture Associate Professor Freshman, Sophomore, Senior

D2 F Interactive Art & Design Associate Professor Junior, Senior

D3 M Architecture Professor Sophomore, Senior

D4 F Interactive Art & Design Assistant Professor Junior, Senior

D5 M
Landscape Architecture

& Urban Planning Assistant Professor Sophomore, Junior

D6 M
Landscape Architecture

& Urban Planning Associate Professor Sophomore, Junior

D7 M Architecture Dean Freshman

D8 M Mechanical Engineering Professor Senior

D9 F Mechanical Engineering Lecturer Sophomore, Senior

D10 F Mechanical Engineering Assistant Professor Senior

D11 M
Computer Science
and Engineering Professor Junior

Table 3.1: Our study participants consist of design instructors from diverse fields. We discussed
course learning objectives, assignment specification, and assessment and feedback methods. With
the exception of D7, D9, and D10, all teach graduate level courses, in addition to the undergraduate
levels included above.

researchers perform constant comparisons among pieces of data, to develop analytical codes and

categories. The method begins with sensitizing concepts—i.e., background ideas that provide re-

searchers framing and guidance—and (cross) disciplinary perspectives, which inform the formula-

tion of opening research questions. These, in turn, inform data collection and, the initial qualitative

coding (labeling) of data elements. Initial coding is followed by focused coding, in which codes

become merged and rearticulated. Conceptual categories get refined. Directions emerge through

this continuous, comparative qualitative analysis. The sensitizing concepts and research questions

continue to feed back, as researchers inductively interpret the codes and categories to derive theory

that explains investigated phenomena [18].

Our discussions resulted in ongoing discourse, spread through multiple sessions, over a pe-

riod of a year, as our understanding of teaching and assessment practices evolved by talking to

different instructors. Emergent discussion topics include students’ use of sketching, instructors’

creativity assessment, and students’ considering instructor feedback beyond a specific deliverable.

We refer to these sessions as discussions, because the IRT shared perspectives gained from prior
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work and by talking with other instructors. In total, 11 instructors from 2 universities—from 5

fields—participated in these serial discussions (Table 3.1). During these discussions, the IRT asked

instructors for example design assignments, including feedback provided to students, developing

context.

Before proceeding further, we note that, in our research, like others [144, 145, 146], co-design

methods and grounded theory are complementary approaches. Co-design supports designers and

stakeholders not necessarily trained in design to work together in defining research products and

designing solutions. This involvement generates data. However, co-design does not prescribe

a particular data analysis approach. For data analysis, we use grounded theory methods, which

enable discoveries, both expected and unexpected, to emerge through data.

The IRT organized a Design Assessment Workshop, bringing together 5 instructors, for an

interdisciplinary discussion of situated practice. These included 2 instructors from landscape ar-

chitecture, 1 from interactive art & design, 1 from mechanical engineering, and 1 from computer

science. The number of participants was limited by scheduling constraints.

For the workshop, the IRT asked each participating instructor to present one of their design

ideation deliverables, along with their methods of assessment. Participants engaged in extensive

discussion, sharing perspectives based on practices in their field and classroom experiences. To-

gether, participants identified common pain points and potential solutions. Participants responded

with periodic sighing and murmurs of enthusiasm. Topics included the sizes of courses, teaching

teams, and student teams; the level of details in assignment and rubric specifications; challenges in

tracking students’ progress and incorporation of feedback; and, difficulty assessing contributions

in team assignments. The workshop thus fostered developing comparative understanding and co-

creation of shared meanings, goals, and outcomes. Finding value in the research, two instructors

chose to participate further by writing grant proposals and papers together. We further discuss

how interests, understandings, stakes, and collaboration evolved in the section Co-Design: Build a

Design Education Stakeholders Community (Section 3.5).

Two members of the IRT transcribed the individual and workshop discussion recordings and
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then performed qualitative codings of the transcribed data. Using Charmaz’ approach [18], first,

they performed initial coding of 3 individual discussions. Then, the whole IRT met to make the

codes consistent and bring them into alignment. Next, we performed focused coding of remaining

data. Based on relationships among codes, we organized them into categories. In a subsequent

step, the larger we, including the two participating instructor co-authors, revised the codes, as

needed, to suitably represent salient themes.

We next present findings, integrated with discussion, and implications for new forms of compu-

tation to address needs and provide support. We derived 3 categories through our grounded theory

analysis of qualitative data, guided by our research questions and sensitizing concepts: 1) Design

Process, 2) Assessment and Feedback Challenges, and 3) Computational Support. As the present

research addresses how AI could support design education, which hinges on assessment and feed-

back across fields, here we only present themes from the second category and those pertaining to

assessment and feedback in the third. We detail only those findings that complement prior work.

We feature participant quotes illustrating phenomena.

3.3 Assessment and Feedback Challenges: Findings + Discussion

We present and interpret findings involving how instructors use rubrics of criteria in the as-

sessment of student design work. Instructors specify grading rubrics, in accordance with learning

objectives, through which students demonstrate performance [147]. Instructors’ rubrics for de-

sign assessment assign weights to manifestations of student work processes, as well as resulting

products. We contribute applying creative cognition’s family resemblance principle to understand

how rubrics work in practices, their functions and limitations. We problematize issues that arise in

assessing contributions to team projects.

Feedback based on the assessment of various design characteristics plays a vital role in helping

students make progress. We discuss various forms of feedback, e.g., verbal and redlining. We

discuss challenges that arise both for instructors, who need to frequently provide feedback, and for

students, who need to incorporate it.
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3.3.1 Rubrics of Criteria and their Limits

Assessment criteria, in the form of grading rubrics, operationalize a variety of design character-

istics that instructors find important for students to learn and demonstrate in an assignment. As D8

puts, criteria are “kinds of rules that you can turn into a rubric.” In comparison with fact-oriented

[148] assessment, such as through examinations that involve memorizing and reproducing, design

students are required to demonstrate ability to reflect, apply, and understand [149].

D2: I look at not just how well-functioning something is...conceptually, it meets what you

planned...and also technically, it’s been implemented correctly and functioning right. Also, aes-

thetics.

When assessing, instructors in our study are interested not only in design product outcomes,

but further, in the processes students perform to achieve them. Like de la Harpe et al. [74], we

found that the weights, which product and process are assigned, vary across contexts. In line with

Greene et al.’s work [132], we observe the need for focus on the process.

D8: We tend to grade them on the process and if the process is coherent, but we also try to look

at the outcome...In a professional context, you can look at products...and say this is a good design

or not. But in a pedagogical context, maybe we shouldn’t do this.

We found that instructors in different fields, in this study, focus on different design charac-

teristics, e.g., landscape architecture emphasizes visual aspects, mechanical engineering is more

functionally oriented, and art & design emphasizes interaction aspects. D11’s computer science

and engineering assignments simultaneously focus on visual, interaction, and functional design

characteristics. These differences in emphasis, on diverse design characteristics, is consistent both

with prior work [79] and with instructors statements: design lacks universal criteria. Assessing it

can be subjective, because in the end, some level of personal preference gets involved.

Consistently assessing design projects is thus, in itself a wicked problem. There are many vari-

ables to consider. The projects differ in objectives, personalities within teams, tastes of instructors,

and situated aspects of sponsor capability and communication. Even when teams work on the

same problem, their approaches may significantly differ. In D8’s words, “There’s no right an-
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swer.” Instructors create rubrics to provide structure. At the same time, recognizing and assessing

the uniqueness of projects is vital. Project deliverables, criteria, and rubrics become amenable to

change [29].

We contribute a new understanding that creative cognition’s family resemblance principle [33]

models the way that rubrics function in design courses. Instructors specify rubrics, but don’t

generally believe that particular elements of their rubrics are exactly necessary or sufficient. Rather,

good solutions to the design problems tend to exhibit characteristics that the rubrics specify.

D5: This is one of those hard things, because...some students could just do something really

simple and it’s just like, “Uh yes, that’s it”. And somebody else could have something really

complex and you’re like, “Yes, that’s it”.

We use this new understanding, of how rubrics work according to the family resemblance

principle, in conjunction with ideas from instructors, to inform design of computational support,

such as AI-based design analytics and dashboards (Section 3.4).

3.3.2 Assessing Contributions to Team Projects

We find that assessing contributions in team projects is challenging and problematic. Some-

times some students get ‘floated’ in a course: other team members’ efforts carry them. It becomes

difficult for instructors to assess contributions.

The topic became a major discussion point during the workshop. One of the participating

instructors brought this idea up, while envisioning computational means for providing insights

into students’ design processes. Soon, every instructor present in the workshop started identifying

with the pain point and shared similar experiences.

D2: All the roles are defined by the team. I kind of go and check who’s doing what, but still, if

the team is all agreed on certain each individual’s role, they’re happy with it, I can’t really punish

the individual person.

D9: I had 36 teams this semester and saw different kinds of team dynamic issues...I would

be interested in things that help us in maybe more objectively gauge student contributions to the

project.
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On the one hand, these problems point to social loafing where members make less efforts as re-

sponsibility is diffused and social matching where members conform to ideas [150, 151]. Creative

cognition studies have shown that this reduces diversity of ideas [151]. Moreover, such students

advancing—without learning necessary concepts and skills—can become problematic in future

settings. In this vein, developing means for assessing individuals’ contributions seems beneficial.

However, how to use them may vary situationally. D2’s suggests that a measure of each team

members’ contributions would be useful, but instructors should not make it the single factor in

assigning grades to members.

On the other hand, the design classroom is a community of practice, i.e., “groups of people who

share a concern or a passion for [design] and learn how to do it better as they interact regularly”

[27]. In a community of practice, peripheral participation from some members is expected and

legitimate. As these members gain understandings and skills, they take more central roles and

contribute more. Learning science research has shown that in team settings, students who are less

knowledgeable learn from those who know more [152].

The present research contributes AI-based design analytics (Section 3.4) and computing them

team member-wise has the potential to address the challenge of assessing contributions to team

projects.

3.3.3 Frequent Feedback

Students need specific and actionable feedback to understand where a design is lacking and

make progress [153]. Instructors recognize that timely feedback is critical to student performance.

At the same time, like prior investigations [122], we found that instructors walk a fine line between

interfering, which could hinder students’ ideation, and providing them with sufficiently frequent

feedback to keep them on track and stimulate development. Like Oh et al. [25], we found that

instructors provide feedback using a variety of modalities. We also found that a common pain

point among instructors is that they invest time into giving feedback, then often find that students

fail to keep track of it and address it as they revise their designs. More broadly, our study reveals

students’ lack of utilization of resources and incorporation of feedback provided to them.
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3.3.3.1 Feedback Modalities

One common technique that design instructors use to provide feedback is to markup project

documents. A salient form of markup is redlining (Figure 3.1) [89, 91, 154]. Practitioners either

use a colored pen, typically red, to annotate printed materials, or do it electronically, with the help

of computer tools. In conjunction with other forms of markup, such as sketches and annotations on

tracing paper, the visual feedback helps designers iteratively formulate design problems and their

solutions [154].

Figure 3.1: D6’s feedback on a student’s design through redlining. D6 marks up the problem areas
and draws arrows connecting feedback written in respective boxes. The student receives feedback
of using too much white space on the left and right sides, title taking more than needed space, text
not styled per the instructor’s guidelines, dominating background and small building size in the
lower section, and an expected human figure.

D9: We markup the documents ...and then give them a grade based on the rubrics that we have,
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along with the feedback. Feedback includes ‘something is missing’, ‘talk about something different

here’...it may even be feedback that corrects some of their grammar.

Given overall workloads, instructors sometimes face challenges in providing quantitative as-

sessment. In order for students to understand their performance, instructors may provide verbal

feedback.

D4: I give them verbal feedback when they’re doing their presentation, but I don’t necessarily

give them the complete grade scores right after their project, which they really want to know, I

know that.

The present research builds on these understandings—in conjunction with the understandings

regarding students’ lack of incorporation of feedback (presented next)—to derive new computa-

tional support that can assist instructors in their feedback processes.

3.3.3.2 Students’ Lack of Utilization of Resources and Incorporation of Feedback

In design courses, instructors often give students a variety of feedback opportunities. For ex-

ample, D2 repeatedly says to her students that they can ask her to be a part of their ideation process

and join their group meetings. Alas, she reports that students rarely contact her. D7 described that

his course has 4 TAs, who are available to students 9-5 during the work week. This gives students

the opportunity to consult with the TAs. He reports that they rarely do. Consequently, instructors

are left with a sense that students could do better; if only.

Instructors sometimes ask TAs to regularly check student progress. This helps them become

aware of issues, such as students who did not make enough progress, problems within a team,

and lack of understanding of aspects of assignments. Balancing between interfering and guiding,

instructors intervene when necessary. However, as D2 noted, “It creates another layer. It’s not

just giving me all the information right away, so it takes some time.” A problem for students and

instructors is to maintain awareness of distributed information.

Another problem in student responses during design education is that the feedback does not

get incorporated, even though iterative design is explicitly taught. When discussing feedback

processes, this problem was brought up by one of the participating instructors during the workshop.
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Similar to the assessment of team contributions, this problem struck a chord with all participating

instructors.

D11: I say [to students that] you have to fix something...In the programming studio [course],

we’ll say, you have to use less saturation. You cannot have all these things be saturated. And

sometimes I’ll end up saying it over and over before they fix it.

D6: We have to kind of remind them, and then [our feedback] doesn’t always all get incorpo-

rated. But that is how you get such polished products...that you continuously address some of [the

feedback].

Relatedly, we note that students often do not understand instructor feedback. Bridging this gap

in understandings itself becomes an iterative process. Instructors point to the principles they taught,

which students should demonstrate in their work as an evidence of meeting learning objectives.

D11: If there are some students that are struggling, then we can give them extra feedback...[Some]

violate the principles that I teach them, and then I say hey, the principles, we talked about that.

And they’re like oh, you mean [that]...they get it.

In the next section, we develop ideas for assisting instructors in providing feedback plus ad-

dressing needs for how to track feedback.

3.4 Situating Analytics for AI

How could analytics help solve these design education problems involving assessment and

feedback? Supporting design education with AI is challenging due to fundamental differences be-

tween the social and computational domains [13]. This interface border zone [73], where the fields

intersect, is fundamentally sociotechnical. Building on the fundamental work of Suchman [12] and

Dourish [13], we find that traversing the social / AI border requires understanding situated prac-

tice. The situated practices that we focus on take place in this border zone, involving instructors’

design assessment and feedback. We build on these situated practices as a basis for discovering

new approaches for deriving and presenting AI-based design creativity analytics.

In the user experience, analytics and how users interact with them, in the context of the task at

hand, become inseparable. Thus, we define situating analytics as a methodology for conveying the
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meaning of measures that align with design rubrics, by contextually integrating the presentation of

measures with associated design work. Here, space of tasks at hand involves assessing and giv-

ing feedback on design in educational processes of project-based learning. Situating analytics is

based on identifying and building with contextual properties, derived through understanding prac-

tices. Interfaces traverse the border zone between the analytics and humans—here, students and

instructors—making the analytics material [155] in the human experience, i.e., ascribing meanings,

mediating emotions, and supporting interpretation.

We use the situating analytics paradigm to develop ideas for integration of AI as algorithm-

in-the-loop [156, 157] support for design assessment and feedback, toward validating outcomes

of instructor and student interactions with AI as accurate, reliable, and fair. As part of this, we

develop ideas for a comprehensible and controllable AI integration, which can “thereby [increase]

the users’ self-efficacy, leading to reliable... & trustworthy systems” [158].

We invoke creative cognition’s family resemblance principle as a basis for understanding the

roles and limitations of AI-based analytics. We then propose: (1) approaches for deriving AI-based

design creativity analytics that align with and support instructors’ criteria; and (2) situating instruc-

tor and student interaction with the analytics—to foster transparency as well as validate assessment

and feedback—through presentation, via dashboards integrated with design environments.

3.4.1 Situating Analytics as a Paradigm for Conveying the Meaning of Measures

We offer our approach to situating analytics, for assessing creativity in project-based design

learning, as a paradigm for making the meaning of measures transparent to users. To derive analyt-

ics, one AI approach is to extract features such as colors, number of words, and number of images,

and then use a machine learning model to predict scores with high accuracy [41]. However, such

an approach fails to provide actionable insight to users. Instructors in our study highlight the need

for approaches that can help students understand shortcomings in their work and give them insights

about how to improve. Such assessments need to be learning objectives-based, in order to bridge

the gap between instructors’ and students’ understandings. Further, instructors expressed that they

should be able to indicate whether AI is performing as expected. These needs directly correspond
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to Shneiderman’s principles: AI integration should be comprehensible and controllable [158].

Figure 3.2: Diagram of a situating analytics approach to transparent design assessment and feed-
back. Transparent, learning objectives-based design creativity analytics—based on building with
contextual properties derived through understanding practices—are presented via interactive dash-
boards to support teaching and learning, and simultaneously, to gather feedback for validating and
refining analytics. (Use of icons under Creative Commons license. See attribution [1].)

D5: There’s a kind of disconnect between [students] turning in a [design] and they getting a

number [back]...Why is it a ‘B’?...[We] need to have a better tool communicating [the assessment]

to the students.

D6: Yeah that would be cool I think if we could develop some metrics to build into a consistent

rubric. It will spit out the rubric scores and then the professor can say, well that’s right or wrong.

We diagram a situating analytics approach to transparent design assessment and feedback (see
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Figure 3.2). A co-design approach continuously involves instructor and student stakeholders in

developing transparent, learning objectives-based analytics. Project-based learning analytics are

derived using AI models that can constitute a basis for explaining the meaning of measures to

the users. Analytics are presented via dashboards integrated with learning environments. Dash-

board interaction can simultaneously support instructors and students in processes of teaching and

learning, while at the same time gathering their feedback on the validity and utility of analytics.

Dashboards need to present the approaches used to derive analytics, for intelligibility and account-

ability [159], in order to make how assessment works transparent. Through dashboard affordances,

instructors and students will indicate whether and how an analytic and its derivation align with sit-

uated practices. They will articulate expected values and rationales when a computed analytic

deviates. This data can be used to label analytics datasets that can be used to train supervised [40]

and fine-tune unsupervised models [160], as well as to in/validate analytics.

In Section 3.4.2, situating analytics in practice, we prescribe AI approaches that can constitute

a basis for conveying the meaning of design creativity analytics. In Section 3.4.3, we advocate

dashboards integrated with design learning environments for situating instructor and student inter-

action with the analytics.

3.4.2 Design Creativity Analytics

Design courses involve project-based learning. Creativity is vital. As Blikstein puts it, in

project-based environments, there is a need for analytics that can assess “much more complex

[characteristics], such as creativity [and] the ability to find solutions to ill-structured problems”

[56]. To measure creativity, its definition becomes essential. However, as discussed, established

research avoids the epistemological trap of defining creativity in an absolute way (Section 1.1.2).

Measuring creativity thus seems incompatible with most uses of learning analytics, which are to

assess “specific and limited tasks” [56].

This is where the family resemblance principle [33] enables operationalizing design creativity

analytics. Although creativity lacks an exact definition, according to family resemblance, specific

characteristics of a design are likely to indicate creativity, even while no particular characteristic is
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necessary or sufficient (Section 1.1.2). In this way, we find that the family resemblance principle

explains the rubrics that instructors specify for assignments. Solutions are expected to exhibit

characteristics, but not compulsorily. Extending the scope of this principle, design analytics have

the potential to play the same incomplete, yet useful, role as design rubrics.

Thus, we prescribe situating design creativity analytics that indicate the likelihood of quality

design, without being absolutely definitive. We argue against any one computed analytic being

seen as necessary or sufficient. Rather, we advocate suites of design analytics, each with the

potential to measure characteristics that often occur in good design solutions. Design analytics

suites need not be complete, in order to add value.

We note that situating analytics corresponding to instructors’ every rubric element may not be

possible. For example, it can be challenging to computationally assess “a spatial sequence [in

an architecture] that leads [a person] to an intense highlight moment (D1)”. Our goal here is to

augment, not replace instructors’ roles.

The instructors in our study believe that some feedback about design, which they now provide

“by hand”, can be computed—and provided on demand—in order to help students to more quickly

understand problems and correct them. We argue that AI techniques are suitable for various design

characteristics, providing means to compute on demand, transparent, learning objectives-based

analytics. Further, consistent with ongoing forays into process-oriented creative work [161, 162,

163, 164], we found that design process is important in how instructors assess student work. Thus,

a derivation of analytics would beneficially incorporate process characteristics.

We develop a set of situated design creativity analytics, to computationally derive actionable

measures for giving students feedback on project-based learning work. Each analytic is mapped,

by family resemblance, to a criterion, which we discovered in design education rubrics, across

situated contexts of our study (Table 3.1). Some design creativity analytics correspond to previous

creative cognition ideation metrics [34, 35]: Fluency, or the number of ideas (D2, D8, D9); and

Flexibility, or the diversity of ideas (D8, D9, D11). Other design creativity analytics are, as far as

we are aware, new to creative cognition: Visual Consistency (D1, D6, D11), or the presentation
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of similar information using similar attributes; Multiscale Organization (D6, D11), or the presen-

tation of ideas as a hierarchy; and Legible Contrast (D5, D6, D11), or the juxtaposition of hues

for legible presentation. To further distinguish, a prior creative cognition ideation metric, Visual

Presentation [35], assesses aspects of Visual Consistency, but it does not assess Multiscale Organi-

zation and Legible Contrast. Appendix B enumerates additional potential learning analytics, which

we identified, and find relevant to design education.

D6:...[the computer] could look and say you only got 2 drawings at the [larger] scale where

you got 35 at the [smaller] scale, [hence] you need to do more analysis of the larger scale.

D11: ...[the computer could tell] where high contrast is vs. where there is less contrast. [This

matters] because contrast takes human visual attention.

3.4.2.1 Fluency

Instructors in our study use the number of ideas—known as the Fluency ideation metric in

prior creativity research [34, 35]—as a key analytic for assessing creative design. For example,

D8 requires students to brainstorm and come up with as many ideas as possible in the beginning

phases of design, stating that the activity’s “goal is quantity”. According to Darwinian theories of

creativity, more the number of ideas, higher is the likelihood that one of them will survive and grow

to be creative [165, 166]. In the brainstorming process, students develop ideas in textual as well

as visual forms. Language and imagery represent complementary processes of human cognition

[167] and their combination is known to aid the formation of mental models [168, 169].

Prior creativity research developed computational means of assessing Fluency, such as the

number of text [35], image [35], and sketch [72] elements that comprise a free-form visual semantic

composition of ideas. A recent investigation found that Fluency assessments provide instructors

with first-order insights into student effort levels on design projects [57]. The paper reported that

instructors desire an advanced analysis of design work, such as extraction of ideas contained within

text and image elements.

To compute design creativity Fluency analytics, researchers can use state-of-the-art AI-based

content recognition—e.g., natural language processing (NLP) [170] and computer vision models
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[171]—to extract ideas contained within text, image, and sketch elements. An example is Mack-

eprang et al.’s investigation for supporting collaborative design, where they use NLP models to

extract ideas contained within participants’ text entries [43]. As computer vision models have

been found to generate highly accurate image [171] and sketch [172] descriptions, researchers can

utilize them to extend Mackeprang’s approach to designs that compose diverse types of elements,

such as text, image, sketch, video, and embedded docs and maps.

3.4.2.2 Flexibility

We invoke the ideation metric Flexibility/Variety from creative cognition [34, 35] to represent

instructors’ use of the number of categories of ideas as an analytic for assessing design work.

For example, D9 requires students to “organize [generated] ideas into concepts”, and then include

“at least four ‘different’ concepts” and “a discussion of the advantages and disadvantages of each

concept”. In design creativity research, Flexibility/Variety represents the span of the explored

solution space [33, 35]. Flexibility measures opportunities for remote associations, which are vital

in developing creative solutions [173].

Prior creativity research developed computational means for assessing Flexibility, such as the

number of different webpages, websites, and website types that the users collected ideas from [35].

Recent work on collaborative design ideation examined the use of external knowledge graphs such

as Wikidata and DBpedia to compute semantic distances among ideas, toward assessing Flexi-

bility/Variety [43]. Researchers have used computational methods to organize ideas into a tree

structure. Examples include Linsey et al.’s use of WordNet [102], Fu et al.’s latent semantic anal-

ysis in conjunction with a posterior probability based method [174], and Vattam et al.’s use of

functional hierarchies [175]. The tree structure supports analogical thinking and has been used

to assess semantic distances among ideas. A promising approach is to investigate vector word

representations to compute semantic distances [176].

To compute design creativity Flexibility analytics, first, contextualized vector representations

of words [176] can be created using text sources, such as books, scholarly articles, and patents in

a design field. As noted above, AI-based computational models can be used to extract ideas from
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text, image, and sketch elements of a design. Then, using the vector word representations, semantic

distances among these ideas can be calculated [176]. Categorizing ideas, based on these semantic

distances, has the potential to provide measures that correspond to instructors’ understandings and

assessments. Graph visualization of ideas, based on semantic distance, has the potential to support

reflection. Walking across these graphs has been shown to support analogy formation [177, 102].

3.4.2.3 Visual Consistency

Visual Consistency refers to using graphical attributes—such as size, color, and font—in sim-

ilar ways for presenting similar types of information. For example, all section headings could be

in boldface, 14-pt and all subsections headings in italic, 12-pt Helvetica font. Instructors teach

students to follow principles of visual design, through which even complex information can be

presented with clarity [178, 179]. D11 provides guiding instructions to students for developing

a visual program—which includes “a grid structure, consistent type sizes and styles, and a color

plan”—based on Meggs’ definition: “a system of parameters used consistently to unify a series or

sequence of designs” [180].

Prior creativity research lacks computational methods for assessing consistency. Human raters

assigned scores for the use of visual design principles such as whitespace, arrangement, and co-

herence, as part of assessing Visual Presentation creative cognition ideation metric [35].

To compute design creativity Visual Consistency analytics, in cases where a design schema

stores information about the type of each element (e.g., heading, subheading, caption), the attribute

values for elements of the same type can be compared. Inconsistencies can be highlighted. Alas,

such schematized feedback is absent from typical design environments, e.g., Photoshop, Illustrator,

and InDesign. In such cases, elements could first be clustered using attributes such as position and

size, as well as ideas contained in them. Then, if two clusters have similar relative positioning

of elements within them, then the attributes of the corresponding elements can be compared, to

highlight inconsistencies. Further, the number of clusters can indicate the use of whitespace for

organizing information.

Recently, clustering algorithms based on users’ implicit actions of organizing content in a 2D

52



design space have shown promising results [181]. Design environments can utilize such algo-

rithms, when process data is saved. For example, they can incorporate user actions of selecting,

moving, and manipulating elements together within the design space toward determining spatial

proximity.

3.4.2.4 Multiscale Organization

Multiscale Organization refers to the visual and conceptual representation of ideas using hier-

archy. It is a foundational element in design [69]. D6 requires students to visualize their landscape

architecture project data “from national to regional to site scale”. D11 engages students in mul-

tiscale organization, through a collaborative, zoomable design space and guides students to “use

scale to nest sets of elements, where appropriate, to create readability, since [they] are sure to have

more elements than can fit on screen, and in human working memory, at one time”.

Multiscale organization supports designers in exploring, juxtaposing, and synthesizing ideas

and their relationships across multiple scales [16]. It allows them to connect with and develop a de-

sign, by shifting their cognitive point of view to different scales or levels [69]. Design environments

supporting multiscale organization—e.g., Photoshop, Illustrator, and IdeaMâché [70]—allow go-

ing beyond 2D and assembling content at multiple zoom levels or scales. Lupfer et al. found

that, for students using IdeaMâché to perform free-form web curation, multiscale organization

supported students’ iterative and reflective ideation processes when working on design projects

[70].

To compute Multiscale Organization analytics, as a starting point, the number of scales or

zoom levels at which students have organized their ideas can be computed. Then, the assessment

can focus on consistency aspects discussed in the last section, i.e., compare clusters scale-wise to

find whether similar information is presented using similar attributes. For multiscale clustering

of student design, researchers can investigate AMOEBA, which uses Delaunay triangulation to

compare distances among different elements and recursively determine spatially nested groups

[3]. They can likewise investigate identifying nested groups using Self-Organizing Map (SOM)

techniques, which preserve topology and have proven effective for spatial clustering [182].
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Further, techniques based on process data [181] can be extended to multiscale clustering algo-

rithms. For example, user actions of zooming in or out, followed by the selection and manipulation

of a set of elements, can be used as a factor in determining different scales of content organization.

3.4.2.5 Legible Contrast

Contrast refers to color properties that can be juxtaposed to produce a range of visual effects

[183]. D11 specifies in assignment: “...appropriate use (not too much!) of contrast”. This char-

acteristic is based on visual design principles articulated by Tufte [178], which have been used by

prior creativity research for assessing visual presentation [35]. In regard to contrast, Tufte invokes

Imhof’s first rule of color composition: large adjacent areas of pure, bright colors are loud and

unbearable, but when used sparingly, can help achieve extraordinary effects [184, 178]. In Figure

3.1, such adjacent areas reduces the focus on the building in the foreground. As D6 redlined, “Tone

down photoshopped sky background. It dominates”.

To compute design creativity Legible Contrast analytics, image processing and computer vision

algorithms that are capable of identifying regions of high contrast [185] can be utilized. Such al-

gorithms operate on extremely small blocks, so one potential way is to find the percentage of such

blocks in an overall design. Another possibility is to detect thick lines or boxes by finding long

sequences of these high contrast blocks. For smaller occurrences, an interactive machine learn-

ing approach [160] would be beneficial for obtaining instructor feedback, to iteratively improve

identification of whether the use of high contrast is excessive in the context of a design.

As a large collection of examples with such feedback becomes ready, deep learning and domain

adaptation techniques [40] can be explored. As we discuss below, a learning analytics dashboard

can play a new role in this collection of labeled examples.

3.4.3 Situating Interaction with Design Analytics

Enhancing sociocultural contexts with AI is challenging due to the multitude of cognitive, af-

fective, and latent factors in play [186]. The statistical intelligence of AI/ML algorithms may

provide an interpretation that drastically differs from common sense human interpretation of data
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[140]. While algorithm-in-the-loop AI approaches have been shown to improve accuracy in mul-

tiple contexts, they are prone to bias and errors [156]. A successful human-AI system requires

“careful design of the fine structure of interaction” that makes AI integration controllable and

comprehensible, which thereby increases users’ reliability and trust in the system [158].

We propose integrating analytics dashboards with design learning environments, as a means for

jointly (1) situating human-AI interactions within the contexts of design courses; and (2) directly

meeting instructors’ and students’ practices and needs. As part of situating instructor and student

interactions with dashboards, we develop ideas for affordances through which users can in/validate

analytics and provide feedback that can be used to improve AI algorithms. Through analytics

dashboards integrated with design, instructor processes of providing feedback and students needs

for receiving such feedback have the potential to be functionally rendered as isomorphic with AI

algorithms’ iterative needs for feedback on examples, in order to constitute labeled datasets for

training recognizers. That is, we call for analytics dashboards integrated with design, in order to

pair instructors giving feedback and students receiving it, with feedback on AI-computed design

creativity analytics.

Turnbull explains indexicality as involving maps over space and time, which convey informa-

tion that “can only be [completely] understood within the ... specifics of the circumstances and

cannot be generalized beyond that context” [187]. We use this idea to motivate the need for con-

necting design analytics dashboards with learning environments. Design analytics dashboards are

indexical, i.e., they derive and present analytics based on characteristics that exist and can best

be understood within the context of actual design work. Indexically connecting AI-based design

creativity analytics with design elements in learning environments can improve comprehensibility.

Such indexical connections can support users in understanding the basis of analytics and in/vali-

dating them, and through this process, providing feedback that AI designers can utilize to improve

recognition.
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3.4.3.1 Design Analytics Dashboards

In our study, instructors brainstormed ways in which analytics [188] and visualizations [189]

could help them gain insight into students’ performance. They expressed needs for tracking design

processes across multiple levels. For example, D2 would like to be able to compare points a

student got last week, or on previous projects, to find out if the student has improved. D4 imagined

visualizations that would reduce time and effort to make reports at the end of a semester, or at the

end of the project, so that there isn’t a need to “write every single thing from scratch”. D6 wants

to see measures of how an individual student or team worked with an artifact (process scores /

analytics), coupled with characteristics of that artifact product.

D6: Is there a way...we can keep track of whether or not they got better presentation scores,

based on how many times they practice?...We can see where they fixed [their design] before they

actually come in and present.

Dashboard, defined as “a visual display of the most important information needed to achieve

one or more objectives” [190] can be useful in these regards. The tabular format—each row pre-

senting an observation, with columns corresponding to attributes—supports “flexible querying and

many perspectives for data exploration” [191]. Prior learning analytics dashboards [54] have facil-

itated quick understanding of the progress of student teams and individuals.

However, their efficacy has mostly been investigated in lecture-based learning contexts. Using

dashboards for project-based learning requires personalization [192]. As design assessment lacks

absolute criteria, design analytics dashboards specifically need to enable each instructor to select

and combine characteristics, based on their pedagogic orientation and the project at hand.

In design education contexts, AI-based design creativity analytics will measure complex char-

acteristics. As Bellamy et al. discuss, bias can result from systematic error in AI training data

or models; bias can produce unfair outcomes for individuals or groups within a population [193].

Greene et al.’s algorithm-in-the-loop research advocates for users’ rights to challenge assessments

that affect them, as AI algorithms often fail to adapt to novel circumstances [156]. According to

Woodruff, users’ ability to challenge and change AI decisions—thus allowing contestability and
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recourse—are approaches for addressing algorithmic bias [194]. Further, to design AI technology

that users can trust, Woodruff et al. discuss the need for strong participation of stakeholders and

consideration of multiple perspectives [195].

Design analytics dashboards have the potential to situate instructor and student interaction in

forms that mitigate complex problems posed by the use of AI. Dashboards can actively engage

instructor and student stakeholders in continuous validation and refinement of AI models and de-

rived design analytics. Dashboards can concurrently make analytics available in design learning

contexts and gather data about how the analytics, as well as their presentation, affect design learn-

ing experiences. In situating stakeholders’ interaction, comprehensibility and controllability will

be vital.

Comprehensibility: In Section 3.3.3.2, we described how explaining the basis of assessment to

students is important in helping them improve their work. As D11 expressed, “[Some] violate the

principles that I teach them, and then I say hey, the principles, we talked about that. And they’re

like oh, you mean [that]”. Analogously, instructors expressed the need for AI-based analytics to be

comprehensible. Recalling D5, (Section 3.4.1): “There’s a kind of disconnect between [students]

turning in a [design] and they getting a number [back from AI]...why is it a ‘B’?”.

To aid comprehensibility, dashboards need to explain (make visible) the underlying basis for

computing analytics. For Fluency analytics, dashboards can present ideas extracted from text,

image, multimedia, and sketch elements. For Flexibility analytics, dashboards can relate extracted

ideas by visualizing semantic distances among them. For Visual Consistency analytics, dashboards

can identify elements that use dissimilar attributes despite being of the same type (Figure 3.3). For

Multiscale Organization analytics, similarly, dashboards can identify inconsistent elements scale-

wise. For Legible Contrast analytics, dashboards can present regions of high contrast. Connecting

the presentation with learning environment can further aid in comprehensibility (Section 3.4.3.2).

We note that our approach of explaining analytics involves making the lower-level inferences

that AI makes transparent. These include various conceptual and visual aspects present in the de-

sign (as detailed in Section 3.4.2). Examples of conceptual lower-level inferences include ideas
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extracted from text, image, and sketch elements. Examples of visual lower-level inferences in-

clude clusters and areas of high contrast present in the design. High-level inferences are the

analytics—Fluency, Flexibility, Visual Consistency, Multiscale Organization, and Legible Con-

trast—derived using these lower-level inferences. To maintain focus, the present research only

develops approaches for explaining how analytics are derived using lower-level inferences, not the

lower-level inferences themselves, and so on. For example, for comprehensibility and controllabil-

ity of Fluency analytics, we present to the user the ideas considered toward computing the Fluency,

but not how AI determined whether a given image is of a cat or a dog.

Controllability: In case the AI assessment does not make sense, instructors want outcomes to

be controllable. As D6 expressed (Section 3.4.1), “the professor can say, well [the assessment

is] right or wrong”. The presentation of the underlying basis allows instructors and students to

challenge not only an analytics score, but also the approach used to compute it. To aid control-

lability, dashboards can include affordances for instructors and students to express if and how a

given design analytic makes sense.

Human-AI interaction through dashboards can also be structured as a form of labeling data, to

enable instructors to simultaneously give feedback to students and developers, and about datasets.

For example, if instructors disagree with any computed score and/or approach, they can be pre-

sented with affordances to enter an alternative score and the rationale behind it. With an increasing

number of examples, machine learning algorithms—including deep learning with attention mecha-

nisms [196]—can be investigated to more closely model instructors’ rationale and assign scores for

a new design in the given context. Further, using transfer learning [197], the data can potentially

be utilized in other course contexts.

In the context of situating instructor and student interaction via dashboards, we note that the

purpose is to make AI integration controllable and comprehensible, as an approach for addressing

algorithmic efficacy and bias. We are not advocating poorly performing AI algorithms, which

can increase the load on students and instructors, by requiring extensive input from them when

algorithms produce incorrect results.
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Figure 3.3: A mockup of dashboard integration with design learning environments to support com-
prehensibility and controllability. Design analytics dashboards are indexical: they present analytics
that can be understood more effectively within the context of actual design work. This mock-up
shows clusters (in orange) used as the basis for Visual Consistency analytics and inconsistencies
identified (in red). Users can challenge assessment (activating cross symbols) and input rationale
(in the presented text box). See attribution for ‘NASA Technology’ design example [2].
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3.4.3.2 Integrating Dashboards with Design Environments

As described above, dashboards are indexical: they present design creativity analytics—based

on characteristics valuable to the instructor and student users—which refer to and can be under-

stood, more completely, within the context of the actual design work. The indexicality of the dash-

board can function as a mediating mechanism between AI-based analytics and design work. This

integration can improve the comprehensibility of analytics by connecting them to corresponding

design elements in learning environments.

For Fluency and Flexibility design creativity analytics, if the user wants to understand the spa-

tial and conceptual contexts in which an extracted idea occurs, a dashboard can support activating

the idea and highlighting its occurrences within a design. The user could then indicate whether

the AI-algorithm correctly extracted an idea from respective spatial and conceptual contexts, and

input if a different idea would be more suitable. For Visual Consistency and Multiscale Organi-

zation, likewise, if the user wants to see the basis of comparison of attributes of two elements,

a dashboard can support redlining inconsistencies and presenting—within the design—the scales

and clusters based on which different sets of elements are being compared to each other (Figure

3.3). The user can then indicate whether the AI-algorithm correctly identified scales and clusters.

For Legible Contrast, a dashboard can likewise support redlining the regions determined as high

contrast and viewing them within the design, in the context of surrounding elements, to allow the

user in validating whether the use of contrast is indeed excessive.

Tracking Feedback: Integrating dashboards with design can help students and instructors track

feedback. Further above, we discussed students’ lack of incorporation of feedback, despite re-

minders, is a common pain point for the instructors in our study. Instructors find it frustrating, as

they put significant efforts into providing frequent feedback. Verbal critique and physical redlining

of physical copies are often lost and feedback provided via learning management systems [198]

also does not get incorporated. The problems that instructors point out continue to exhibit across

iterations.

Firstly, to enable connecting verbal and physical feedback with design elements, in learning
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environments, computational support needs to facilitate digitization. Secondly, the needs for con-

necting and tracking immediately suggest a combination of node-link [199, 200], compound [201],

and spatial hypertext [202] approaches. Using these approaches as the basis, dashboards can vi-

sualize where the feedback originated and how the design changed over iterations, including feed-

back incorporation, or failure to incorporate, to varying extents. Design versioning features such

as visual “diffs” [203] will facilitate making design feedback and iteration visible.

Direct support for redlining [89, 204] students’ assignments, within digital environments of

design tools—and creating connected dashboard representations—also needs to be investigated.

Redlining can be added, as a special CSCW layer, in tools such as Photoshop and InDesign. In

conjunction with community feedback on creative design [205], this design process integration

has the potential to transform the processes of teaching and learning. As students iterate on design

work, they can respond using this layer, which will trigger notifications to instructors that students

have addressed particular feedback. In addition, the layer can support instructors’ needs to flag the

presence of feedback and if it has been addressed.

D6: ...if students could just show their work and we could just draw straight on it. That would

help us a lot. It’s instant feedback, you know.

D2: Yeah, and also sometimes if I can kind of put a flag, and give me a reminder if this person

[incorporated the particular feedback].

By identifying commonalities, involving feedback across deliverables, recurrent problems from

this layer can be highlighted to instructors and students on dashboards. This information can stim-

ulate instructors’ pedagogical intervention and students’ seeking helpful resources. The problems

can be categorized at student, team, and course levels for effective understanding.

3.5 Co-Design: Build Stakeholder Community to Support with AI

We advocate using co-design methods for investigating AI support for human and social com-

puting contexts. These methods actively involve users across stages of design processes [75, 58,

206]. The methods situate users as the ‘experts of their experience’ [75]. Their expertise involves

forms of tacit and shared knowledge and communication [76]. Making the tacit visible plays a cru-
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cial role in designing support for participants’ work practices [77]. Co-design provides designers

with methods that support users in expressing and sharing their expertise [75].

We actively involved our “users” through co-design approaches. Their stakes in the process and

levels of engagement increased. They valued the work more. They become more forthcoming and

more available. Participating instructors shared ideas on addressing common pain points. Findings

and implications are derived with them, not for them. Design with stakeholders, rather than for

stakeholders, deepens involvement [207].

As described in the methodology (Section 3.2), finding value in the research, two instructors

chose to participate further. Participating instructors expressed interest, and began adopting a de-

sign ideation environment [208] that the initial research team is developing. They have begun using

assessment and feedback support capabilities designed in conjunction with ideas presented in the

dissertation. The PI and one of the participating instructors, who became a co-author, together

published a work-in-progress based on user experiences with an initial version of design creativ-

ity analytics and dashboards in course contexts. Further, the PI and two participating instructors

who became co-authors have started writing grant proposals together, addressing design education

challenges, identified across course contexts, through the co-design process.

Learning analytics and dashboard environments that represent them to users, function as bound-

ary objects [209]: “physical or conceptual entities that each [stakeholder] interprets in its own way,

but that provide common referents or points of articulation to ground conversations” [210]. These

boundary objects, in conjunction with co-design methods, can facilitate addressing “the ‘middle

space’ where learning and analytics meet” [210], and answering questions such as whether ana-

lytic computations provide actionable insights to stakeholders. In the course contexts of our study,

design creativity analytics, presented via dashboards integrated with learning environments, have

started providing common referents for instructors, students, and developers of AI-based compu-

tational support. In our initial observations, a triumvirate of situated artifacts—design rubrics, AI-

based analytics, and dashboards that enable controlling and comprehending outcomes—support

grounding conversations among stakeholders. Further research is needed.
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Stakes and engagement evolve through co-design, to manifest growing interest, usefulness, and

involvement. We envision the community growing further, while providing new opportunities for

multidisciplinary design discourse and collaboration.

3.6 Conclusion

We developed a case study for human-centered AI, engaging aspects of co-design with instruc-

tors across diverse fields and developing understandings of situated practices, in order to investigate

whether and, if so, how new forms of computation, e.g., AI, could support teaching and assess-

ing design. Our findings are affirmative. Using a grounded theory approach to analyze data from

workshops and discussions, as well as design artifacts from courses, we formulated categories and

presented relevant themes, focusing on: 1) assessment and feedback challenges and 2) implications

for AI-based analytics.

Our case study contributes new theory: (1) understanding of uses and limitations of rubrics

through creative cognition’s family resemblance principle; (2) situating analytics, as a paradigm

for for conveying the meaning of measures that align with design rubrics, by contextually integrat-

ing the presentation of measures with associated design work; (3) operationalizing design creativ-

ity analytics, based on family resemblances in design rubrics, which has the potential to provide

students with actionable, on demand feedback, and thus support them in learning to do design

through iterating on their design work; and (4) dashboards, integrated with design environments,

for situating instructor and student algorithm-in-the-loop interaction with AI-based analytics.

We invoke the family resemblance principle to contribute new understanding of how rubrics

work, and likewise for how AI-based design creativity analytics, derived from process and product

data, can productively be incorporated into education. Family resemblance tells us that no par-

ticular characteristic is essential, but together—in a rubric or analytics dashboard—they tend to

indicate good design work. As D5 expressed, one student could do something really simple, while

another something really complex; both may produce good designs. Hence, while rubrics and an-

alytics provide vantage points, they do not provide a God’s eye view [211]. Analytics’ purpose is

to augment, not replace, instructors’ ongoing interpretation and engagement.
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We lay out situating analytics as a paradigm for conveying the meaning of measures to the

users. In the present research, this means for assessing design in educational processes of project-

based learning. Goals are to bridge comprehensibility, controllability, and actionability gaps be-

tween users and AI. Gaps between users and AI have been recognized in the healthcare domain,

where despite success in lab settings, AI-based clinical decision support tools sometimes fail in

practice, due to, “a lack of consideration for clinicians’ workflow” [212]. Through a situated, co-

design approach, we discovered characteristics that instructors seek when assessing design. Next,

based on these contextual properties, we identified analytics corresponding to salient conceptual

and visual characteristics, such as Fluency, Flexibility, Visual Consistency, Legible Contrast, and

Multiscale Organization of ideas. Then, for deriving these analytics, we focused on AI-based

approaches that can constitute a basis for conveying the meaning of measures to the users.

We argue that explaining AI outcomes is vital to human-centered AI; it will make AI more

valuable to people and society. A ‘father’ of modern AI tweeted, “Suppose you have cancer and

you have to choose between a black box AI surgeon that cannot explain how it works but has a

90% cure rate and a human surgeon with an 80% cure rate. Do you want the AI surgeon to be

illegal?” [213]. In response, there was a huge debate. Many opposed the black box AI, arguing

that the 90% rate system might not have been trained on a representative sample and the system

cannot explain or make that transparent to the patient. In the present research, without explaining

analytics, students would fail to understand why they are assigned certain scores, and especially,

how they can improve their designs. Instructors would not relate analytics to design processes.

One common pain point for instructors in our study is assessing contribution in team projects.

Further research can investigate computing design creativity analytics, team member-wise, to un-

derstand efficacies of providing instructors and students with insights that are complementary to

teamwork assessment—e.g., peer ratings on contribution to work, interaction with others, and

skills—using tools such as CATME [214].

Kerne identified the interface as an integrated conceptual and sensory border zone, which sup-

ports interplay among humans and technologies [215]. To address challenges of traversing social
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/ AI border zones for supporting design course contexts, we developed ideas for how to give de-

sign analytics dashboards participatory, multi-function roles in algorithm-in-the-loop assessment.

Dashboards that situate presentation of and interaction with analytics have the potential to stimu-

late instructors’ intervention and students’ continuous improvement of work. The dashboards are

expected to help students, by giving them new forms of on demand, transparent feedback on their

design work. The dashboards will help instructors, by giving them new views, both individual and

aggregate, which provide insights about what is going on in their classes, in terms of how students

are accomplishing and failing. In turn, instructors can use these dashboard views to formulate new

plans for what students need.

In addition to meeting instructor and student practices and needs, dashboards can simultane-

ously situate their algorithm-in-the-loop interactions to iteratively refine and validate derived ana-

lytics. By providing these stakeholders with affordances for indicating whether or not an analytic

and its derivation make sense, and input of expected value and rationale when AI does not match,

dashboards have the potential to help generate and refine labeled analytics datasets, and so make

models work better.

To increase the intelligibility of analytics, we propose integrating dashboard presentations with

design learning environments. Connecting the instructor, as well as AI assessment and feedback,

with design elements of concern can help address problems of how students lose track of feedback,

another common pain point for instructors in our study. We further developed ideas involving

digital redlining over student work, as a special feedback layer, in various design tools, to assist

with tracking.

Situating instructor and student interaction with analytics—by integrating dashboards with ac-

tual design work, in design environments—has the potential to transform design education. To

keep pace, tools such as Photoshop, Illustrator, and Sketch need to incorporate support for learning.

We expect such integrated environments to become vitally important in project-based education.

The situating analytics approach can be expected to, further, add value to writing tools, such as

Word and Docs.
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A bonus is that the feedback features have the potential to be repurposed in professional design

and writing work. Inasmuch as students learn and create in integrated environments, they are

likely to want to keep using them, as they graduate and become professionals. Project-oriented

work, involving creative tasks, is the least susceptible to being eliminated by automation [216].

Ironically, the incorporation of AI—as scaffolding in design education—into project-based work,

thus has the potential to become a mainstay of human involvement and performance in the future

of work.

Understanding beneficial practices and challenges is critical to developing AI support for ed-

ucating skilled designers, who can solve complex, sociocultural problems [217]. Building a com-

munity of stakeholders, through a co-design approach, creates a supportive environment and pro-

vides a foundation for sharing complementary expertise. This is vital for conceptualizing trans-

formational tools, techniques, and environments [218]. Future research can beneficially involve

more stakeholders—such as students, teaching assistants, graders, administrators, industry repre-

sentatives—and span a range of institutions. It can employ additional qualitative methods—such

as participant observation and contextual inquiry during various forms of assessments within a

course—to further understand situated practices and identify contextual properties. Further, future

research can further develop and validate situating analytics for design education. It can investi-

gate how situating analytics can contribute both to other design contexts and to other educational

contexts.

This research has the potential to enable transforming the role of AI in project-based education

and work. New forms of computation can take support roles, based in situating analytics that

provide on demand assessment and feedback. Situating analytics will integrate interaction with

them into user experiences, supporting learning and work. That is, derivation of and interaction

with analytics need to be interwoven, in order for the analytics to be rendered meaningful and

actionable components of education and work experiences. The role of algorithms-in-the-loop is to

give assistance. We do not advocate replacing or reducing instructors. Rather, we theorize situating

analytics as an alternative, complementary channel or modality of assessment and feedback, which
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can add value to design education. In this vision, instructors and students sustain as inceptors,

facilitators, and arbiters of creativity.
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4. INTEGRATING MEASUREMENT AND PRESENTATION OF A VISUAL DESIGN

CHARACTERISTIC FOR EXPLAINING AI-BASED ANALYTICS

We use the situating analytics paradigm, which we developed in the last chapter, to guide our

derivation and presentation of AI-based analytics. We focus on providing instructors insights into

students’ visual design work, regarding how they use space and scale to organize elements.

Design education demands continue to grow, resulting in larger class sizes; instructors face

challenges in providing timely assessment and feedback [5]. Actionable and justified assessment

and feedback, which students can utilize for improvement, are critical to their learning and progress

[44]. Alternative forms of human assistance that have proven useful in supporting instructor efforts

include peer [6, 7] and crowd [8, 9, 10]. The present research investigates AI support, which can

complement human assistance by providing the ability to process big data at speed [11].

Multiscale design, according to Lupfer et al., is “the use of space and scale to explore and ar-

ticulate relationships, [which] involves the juxtaposition and synthesis of diverse design elements”

[16]. Scale refers to the zoom level: elements at the same scale are “equally legible at the same

viewport zoom” [70]. The juxtaposition and synthesis of elements, across scales, often results in

nested spatial groups or clusters (See example in Figure 4.1). Prior computational approaches pro-

vide effective approaches for the assessment of visual organization—e.g., in website design—at

a single scale [42, 41, 219]. The research gap is a dearth of prior computational approaches to

assessment of multiscale design.

Why does multiscale design matter? Ray and Charles Eames demonstrated how we humans

conceptualize our knowledge of the universe across powers of ten [220]. Tufte articulates micro /

macro readings, a strategy for constructing data narratives in which designers employ “fine details”

that accumulate to form “larger coherent structures” [178]. Perlin and Fox conceptualized and

actualized the importance of organizing information across scales, in the form of a zoomable user

interface (ZUI) [221]. Bederson discusses how a ZUI helps people in developing a mental map of

the information by taking advantage of human memory and spatial perception [222]. According
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Figure 4.1: Multiscale design produced by a student in instructor I4’s human-computer interaction
project. The student organized different phases of the project as clusters of design elements, nested
across scales of magnification. At the outer scale, the crown, its caption, and spikes connected with
each phase together form an overall cluster. In the bottom left, we see the view as the user zooms
in. Elements deeply nested in one scale become legible at the next. We observe nine nested clusters
at the inner scale.

to Barba, multiscale design supports a holistic analysis and development of ideas, across multiple

scales, by allowing people to shift cognitive point of view up and down hierarchies [69]. Bar-

Yam describes multiscale design as an approach to manage increasing complexity [223]. Design

environments supporting multiscale design—e.g., Photoshop, Illustrator, InDesign, and IdeaMâché

[70]—enable going beyond 2D by organizing content across scales, i.e., across a range of zoom

levels. Lupfer et al.’s investigation of a landscape architecture classroom found that creating and

connecting representations across scales pervades student design work on projects that analyze

conditions, and then conceptually and schematically form design proposals to meet the situated

needs of sites involving waterways and land use [16]. Design students’ use of a multiscale design

environment has been found to support them in iterative and reflective ideation [70].
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Summers and Shah discuss that deriving objective measures of complex characteristics within

a design can benefit educators in assessing student capabilities [224]. To our knowledge, there is

no empirical evidence yet that objective measures of students’ multiscale design benefit instructors

in their educational processes of design. Hence, our first research question is:

RQ1: Is multiscale design a significant characteristic of visual design that instructors

value in situated course contexts?

To probe this, the present research begins to explore AI techniques that allow derivation and

presentation of analytics—the number of scales and clusters—measuring multiscale design orga-

nization. Like recent AI-based analytics research [14, 15], we adopt a broad view of analytics,

which includes not only facts but also inferences. In deriving and presenting AI-based analytics,

we focus on conveying the meaning of measures, by supporting instructors in relating the analytics

to students’ design project work. If instructors find the analytics useful and think that the ana-

lytics can be given to students on-demand, then the ability to relate analytics to design work can

also later support students in understanding shortcomings and improving their work. Hence, our

corresponding research questions are:

RQ2: How, if at all, can multiscale design be computationally modeled so as to constitute

a basis for deriving and conveying the meaning of AI-based analytics?

RQ3: How, if at all, do AI-based multiscale design analytics and how they are presented

support instructors’ assessment and feedback experiences in situated course contexts?

In order to develop a computational model of multiscale design that constitutes a basis for

conveying the meaning of AI-based analytics, we explored AMOEBA clustering algorithm, which

recursively determines spatially proximal groups of elements [3]. We chose AMOEBA for three

main reasons: 1) its ability to computationally model nested spatial relationships; 2) the possibility

of making the basis of clustering visible to the user, which thus aids conveying the meaning of

derived analytics; and 3) AMOEBA’s computational efficiency and the ability to operate without

the number of clusters as an input, which one does not expect to be fixed in advance for design

works. We adapted AMOEBA for design contexts where elements have dimensions, i.e., width and
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height, as the algorithm had previously been used for point elements. Using the adapted AMOEBA

as the basis, we derived multiscale design analytics. We derived quantitative measures of scale and

cluster recognition performance, including precision, recall, and F-score.

To investigate whether and how multiscale design analytics—as well as how they are pre-

sented—support instructors’ assessment and feedback, we introduced the analytics into course

contexts. We situated instructors’ interaction with the analytics, via a dashboard technology probe,

integrated with a free-form, multiscale design environment. Through this integration, we made

relationships visible between the analytics and particular design element assemblages that they

measure. We used the technology probe [17] methodology to simultaneously: (a) understand in-

structors’ needs and desires in a real-world setting, (b) collect data through field-testing of analytics

and their presentation, and (c) stimulate instructors’ and our own thinking about technological pos-

sibilities. We derived initial findings from a qualitative analysis of instructors’ interviews regarding

their experiences with multiscale design analytics.

In the next section, we present prior work relevant to various aspects of our investigation. We

then describe our probe, comprised by the adapted AMOEBA algorithm and the dashboard inte-

grated with multiscale design environment. We follow with a mixed methods evaluation methodol-

ogy and findings, including quantitative measures of precision, recall, and F-score, and qualitative

analyses of both the AI recognition and instructor experiences. We discuss how ambiguity in the

interpretation of design work serves as a resource for explaining AI-based analytics. We derive

implications for users’ independent assessment and interactive understanding of AI outcomes. We

reflect on the role of perceptual grouping principles in visual organization and potential for im-

proving the AI performance. We conclude by reiterating the contributions of the present research

and potential broader impacts.

4.1 Prior Work

We situate amidst and differentiate from prior research that investigated multiscale design or-

ganization and its assessment, computational approaches for design analysis, the use of spatial

clustering algorithms for modeling design organization, and the use of learning analytics and dash-
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boards.

4.1.1 Multiscale Design Organization: Strategies and Assessment

We draw on multiscale design strategies introduced in Section 1.1.6, in particular, the use of

scale transitions for defining spatial relationships among design elements: zooming out shows

“encompassing contexts” and zooming in shows “nested details”. Prior work assessed multiscale

design organization by counting the number of scales, based on the number of times one needs to

zoom in, in order to make inner elements, i.e., the nested details legible [70]. Prior work used the

organization of ideas in spatial groups as one of the criteria for a holistic evaluation of ideas in

a free-form environment [35]. However, human raters performed these assessments. The present

research develops computational methods for assessing the number of scales and clusters present

in a design.

4.1.2 Computational Design Assessment

Gero and Maher show that computational models for creative design, such as based on AI,

have improved our understanding of design [225]. Researchers’ investigation contexts include

idea generation [36, 37, 38], re-design [39, 40], and assessment [41, 42]. We focus on the use

of computational approaches for design assessment, in particular, the visual organization of ideas.

Simultaneously, we consider whether these prior approaches make the visual and conceptual basis

underlying assessment visible to the user.

Reinecke et al. assessed website aesthetics by developing a regression model based on at-

tributes such as color, symmetry, and the number of images and text groups [41]. The aim of

the work, however, was to predict users’ first impression of a website, not the presentation of the

underlying basis or actionable insights to any end-users per se. Oulasvirta et al.’s Aalto Interface

Metrics web service is aimed at providing assessments of a graphical user interface design, to

help designers in identifying and addressing the shortcomings [42]. In addition to providing the

computed metrics—for characteristics, such as visual clutter, colorfulness, and whitespace—they

make visible the approach used for computing the metric, as well as, in some cases, provide a
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visualization of the corresponding design characteristic.

Our work most closely resembles Koch and Oulasvirta’s computational layout perception of

website design [226], in regard to computationally identifying the hierarchical groupings in the

given design. The differences, however, are that the website design is typically legible at a single

zoom level and it is not performed in a free-form space. To our knowledge, the present research is

the first attempt to assess free-form, multiscale design organization.

4.1.3 Spatial Clustering

Spatial clustering refers to the partitioning of “spatial data into a series of meaningful sub-

classes called spatial clusters, such that [elements] in the same cluster are similar to each other,

and are dissimilar to those in different clusters” [227]. Taking inspiration from recent success

on the use of clustering for modeling design in 2D space [181], we investigate the potential of

algorithms that identify clusters within clusters, for the purpose of modeling multiscale design

organization.

Liu et al. and Deng et al. classify spatial clustering algorithms into seven groups: parti-

tioning (e.g., K-Means and CLARANS), hierarchical (e.g., CURE, CHAMELEON, and BIRCH),

density-based (e.g., DBSCAN, OPTICS, and ADACLUS), graph-based (e.g., AMOEBA and AU-

TOCLUST), grid-based (e.g., WaveCluster and STING), model-based (e.g., EM and Geo-SOM),

and combinatorial (e.g., CSM and ICC) [227, 228]. Further, as they discuss, a majority (19 out

of 23, except AMOEBA, AUTOCLUST, ADACLUS, and ICC) of these algorithms require prior

knowledge, such as the number of clusters and merge/split conditions. In design contexts—where

differences in the representation of ideas are a rule rather than an exception [225]—one does not

expect the number of clusters to be fixed in advance.

Out of the four algorithms that are not heavily reliant on prior knowledge, only AMOEBA

[3] and AUTOCLUST [229] have been employed for multiscale clustering, i.e., clusters within

clusters. AUTOCLUST is an extension of AMOEBA, with additional criteria addressing adjacency

of sparse and high-density clusters. Both these algorithms take a Delaunay triangulation based

approach to determine the nested clusters. The algorithms, however, were previously used for
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contain several numbers of sub-clusters. These sub-clusters may consist of smaller sub-
clusters. This kind of hierarchy can be easily found in real world due to its hierarchical
nature. For instance, a big city is usually surrounded by several numbers of small cities.
Each small city may contain a number of towns in it. Therefore, a robust exploratory
clustering method should be able to report clusters hiding in the data and reveal cluster
hierarchy to help users explore and examine patterns at a different geographical scale.

(a) A point data set (n =  370, points represent Asian shops)       (b) A cluster hierarchy
Figure 1. A point data set and its cluster hierarchy.

Intuitively, we can recognize that there are three large-scale clusters in Figure 1(a): a
circle-shaped cluster, a triangle-shaped cluster and a rectangle-shaped cluster. Each large-
scale cluster is composed of small-scale sub-clusters. For instance, the circle-shaped
cluster consists of three sub-clusters. The diagram in Figure 1(b) reveals this hierarchy.
With the aid of diagram, users not only recognize the total number of clusters, but also
grasp easily the hierarchical structure of the data.

Definitions of what constitutes a cluster or noise vary from method to method. DBSCAN
(Ester et al., 1996) takes a cloud of high density as a cluster while a maximal set of
connected dense units in k-dimensions is a cluster for CLIQUE (Agrawal et al., 1998).
Points merged based on a variety of criteria are clusters in bottom-up hierarchical
clustering (Zhang et al., 1996; Guha et al., 1998; Karypis et al., 1999). A cluster is a group
of objects, which have similar characteristics, more homogeneous among themselves that
with respect to others, closer within themselves. Since clustering is for knowledge
discovery, that is for revealing information and patterns in data, it should not be
confirmatory, but exploratory (Openshaw, 1994). The methods should not impose a unique
definition of neither cluster nor noise. In other words, exploratory approaches should not
confirm whether a set of points is a cluster or not, but rather suggest all possible clusters. It
is implicitly assumed in the clustering methods that clusters are of great importance for
further analysis. Each cluster is of potential interest. Therefore, missing a cluster can cause
incomplete and imprecise analysis. For example, the small-scale clusters in Figure 1(a)
may represent concentrations of Asian shops while the large-scale cluster may represent
suburbs. By missing out large-scale clusters, we are not able to analyze the relationship
between suburbs and Asian shops. Similarly, it is no longer possible to examine the correct
relationship between blocks and Asian shops without small-scale clusters. Naturally,
detecting clusters is the fundamental task in clustering.

An essential characteristic of spatial entities is that they are correlated with each other in
the sense of time, location, theme and attribute. As Tobler’s famous proposition (1970)
states: ’Everything is related to everything else, but near things are more related than

Figure 4.2: The AMOEBA algorithm performs multiscale clustering of point elements [3]. We
adapted the algorithm to perform multiscale clustering of design elements that have dimensions,
i.e., width and height. Reprinted from [3].

multiscale clustering of point elements (Figure 4.2). The present research adapts the Delaunay

triangulation based approach for design contexts, in which the elements typically have dimensions,

i.e., width and height (Figure 4.1). We evaluate the efficacy of the adapted algorithm through

precision, recall, and F-score measures.

4.1.4 Learning Analytics and Dashboards

Learning analytics and dashboards technologies have been found to support instructors in iden-

tifying student problems and intervening, which improved student retention and success [230]. For

design education contexts, which involve project-based learning, we draw on the need for measur-

ing complex characteristics that can provide instructors insights into students’ creative processes

(Section 1.1.4). The present research begins to address the need by deriving and presenting AI-

based analytics—the number of scales and clusters—corresponding to students’ multiscale design

organization. We focus on conveying the meaning of analytics. We report findings from qualitative

analysis of instructors’ interviews, regarding the usefulness and limitations of AI-based analytics

and their presentation.
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4.2 Technology Probe

Our probe is comprised by: (1) a free-form, multiscale design environment, in which students

work; (2) the adapted AMOEBA algorithm for multiscale clustering of student design work; and

(3) a dashboard integrated with the multiscale design environment, which makes relationships

visible between analytics and student design work.

4.2.1 Multiscale Design Environment

We draw on a free-form, multiscale environment that supports real-time collaborative design

ideation, by helping users discover and interpret relationships through visual thinking [208]. Users

flexibly organize design elements, across space and scale, by invoking creative strategies of collect,

assemble, sketch, write, shift perspective (pan and zoom), and exhibit [72]. Design element types

include text, image, video, shape, sketch, Google docs, and Google maps. Users collect elements

by dragging and dropping a variety of content types from the web. They assemble these elements

through transformation operations, such as scale (resize), rotate, layer, crop, and blend. They pan

and zoom to compose content across space and scale. They annotate ideas through sketching and

writing. They exhibit their work using permanent URLs. Figure 4.1 shows an example work

produced using the environment.

The environment stores design representations, as JSON, including semantic information, such

as position (x and y), width, height, and any transforms applied to the constituent elements. We

used this semantic information as input to our adapted multiscale clustering algorithm.
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Figure 4.3: Adapting AMOEBA for elements having width and height. The adapted algorithm
adds four aspects to the original algorithm: (a) compute Delaunay graph using all vertices of an
element, (b) instead of using Delaunay edges directly, find the shortest distance between elements
represented by the edge, (c) relatedly, ignore any edges between vertices of the same element, and
(d) when calculating subgraphs, add edges among all vertices of an element. See detailed reasoning
in Section 4.2.2.

4.2.2 Adapted AMOEBA Multiscale Clustering Algorithm

AMOEBA has been used for multiscale clustering of point elements, using Delaunay triangu-

lation to recursively determine nested clusters based on distances among elements [3]. It compares

the lengths of edges that are incident on each element with the average global edge length among

all elements in the Delaunay graph. A single hyperparameter α (alpha) controls the homogene-

ity/heterogeneity of clusters: the bigger the value of this hyperparameter, the more heterogeneous

distances exist amongst elements in a cluster. The algorithm does not need the number of clusters

as input, and it is computationally efficient, requiring only O(nlogn) time.

We adapted the algorithm to cluster design elements that are dimensional, i.e., have width and

height. We added four aspects to the original algorithm (see Figure 4.3; the combined algorithm

with these changes can be seen in Appendix C):

(a) When computing the Delaunay graph, input each element as its four vertices. If we only

consider the center, then elements having large width/height will have an incorrect large sep-

aration with nearby elements, in the graph.

(b) When iterating through the edges of the Delaunay graph for computing distances, instead of
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directly using the edge length, find the shortest distance between the two elements connected

by each edge. Delaunay triangulation forms edges with nearby elements, but the edges in the

Delaunay graph are not always the shortest distance.

(c) Relatedly, ignore any edges between the vertices of the same element. The distance of an

element to itself is zero.

(d) When calculating subgraphs, collapse vertices of each element by adding edges among all its

vertices. Without such intra-element edges, two vertices of the same element having inter-

element edges with two nearby elements will incorrectly fall into two different subgraphs.

4.2.3 Dashboard Integrated with the Multiscale Design Environment

We developed a dashboard interface that allows instructors to manage a course, its assignments,

and submission to the assignments. We put the situating analytics paradigm we developed in

Chapter 3 into practice, connecting the dashboard presentation of the analytics with the design

environment in which students performed their work. When an instructor views an assignment

page (see Figure 4.4 top) on the dashboard, it presents to them the students submissions and scale

and cluster analytics derived through the AI (i.e., adapted AMOEBA) analysis of submissions.

Instructors can click the ’Submitted Design’ link to view the design submitted design in its original

form (e.g., Figure 4.1), or they can click on an analytic to view its basis within the submitted design.

When an instructor clicks an analytic on the dashboard assignment view, it opens the respec-

tive submission within the design environment and presents to the instructor an animation of the

scales and clusters—determined by AI—within the design (Figure 4.4 bottom). This makes the re-

lationships visible between design element assemblages and the analytics that measure them, thus

allowing instructors to view the basis of derived analytics. All clusters that are at the same scale

are presented using the same background color, so as to help discern nested relationships.
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Figure 4.4: We integrated a dashboard with the actual design environment with the goal of explain-
ing the analytics to users, in context. Clicking an analytic presented on the dashboard interface
opens the actual design environment and shows the corresponding AI identified nested scales, with
all clusters at a particular scale rendered in the same background color. In the above figure, the out-
ermost scale has one cluster—including all design elements—which is rendered in yellow color.
The next inner scale has three clusters (one at top and two at bottom), which are rendered in blue.
The innermost scale has three clusters—within the top blue cluster—which are rendered in brown.
The visualization makes relationships visible, between particular design element assemblages and
analytics that describe and measure them. It enables instructors to interpret and comprehend what
the analytics mean.
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4.3 Methodology

We describe our methodology of: (1) creating a labeled dataset of scales and clusters; (2)

deriving precision, recall, and F-score measures for multiscale spatial clustering by adapting prior

information retrieval measures; and (3) qualitative data gathering through instructor interviews and

its analysis drawing on Charmaz’s approach to grounded theory.

4.3.1 Labeling Scales and Clusters

Prior work evaluates clustering performance against a set of 30-60 labeled clusters. This in-

cludes both quantitative [231, 232] and qualitative [233, 227, 3] evaluations. As we evaluated both

scales and clusters, we aimed to have at least as many labels as prior work for both. We selected

designs from a variety of courses, in proportion to the number of works produced in each course.

At an operational level, the selection criteria were: design work with a non-trivial number of ele-

ments (∼30 or more), which were organized at multiple scales (2 or more), i.e., zoom levels. We

also selected a few designs having a single scale or a small number of elements, to validate that the

AI does not fail in such cases.

We developed guidelines for human raters to label clusters across scales. Following the guide-

lines, two raters labeled scales and clusters within a total of 39 student design works. Through

the labeling process, we obtained an average total of 107 scales and 653 clusters. The inter-rater

reliability score (Cohen’s kappa) for scales was 0.88, indicating a near-perfect [234] agreement.

The inter-rater reliability score for clusters was 0.71, indicating a substantial agreement.

In the absence of labels, it is challenging to ensure apriori that a sample set is representative

of the population. Hence, we did a posterior analysis of the scale and cluster distribution within

the labeled set. The distribution plot (Figure 4.5) indicates a variety of organizations within the

labeled set. A majority of the designs use 2 or 3 scales (average = 2.79), which aligns with prior

work [70].
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Figure 4.5: The distribution of the numbers of clusters across different scales, in our labeled set, in-
dicates a variety of organizations used as the basis for evaluating the multiscale analysis approach.
We used cluster bins of size 3 to smoothen the y-axis representation.

4.3.2 Precision, Recall, F-Score Measures for Multiscale Clustering

Precision, recall, and F-score are widely used measures for evaluating clustering performance

in both spatial and non-spatial domains [231, 235]. However, in spatial domains, these measures

have only been used for evaluating clusters at a single scale. For multiscale spatial clustering,

prior work only performed qualitative evaluation. Hence, for quantitative evaluation, we adapted

measures developed for multilevel clustering in data mining and information retrieval [236].

Let human labeled clusters be represented by classes (L1, L2, L3, ..., Lc). Then, given a class

Lr of size nr and an algorithm-identified cluster Ci of size ni , if nri elements in the cluster Ci

belong to Lr, then precision (P), recall (R), and F-Score (F) are computed as:

P (Lr, Ci) =
nri

ni

, R(Lr, Ci) =
nri

nr

F (Lr, Ci) =
2 ∗ P (Lr, Ci) ∗R(Lr, Ci)

P (Lr, Ci) +R(Lr, Ci)

Then, for each Lr, its F-score is the maximum F-score value attained at any node in the tree T
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of nested clusters, i.e.,

F (Lr) = max
Ci∈T

F (Lr, Ci)

The net F-score of the clustering algorithm is then the aggregate individual class F-Score

weighted by the class size:

F -Scorecluster =
c∑

r=1

nr

n
F (Lr)

Extending this approach for evaluating scale recognition performance, given sh human-labeled

scales and sa algorithm-identified scales, for each human-labeled scale Mr, form its pair with the

maximum matching scale Si, based on the sum of F (Lri) values, i.e., the F-scores of matching

clusters present on the scale i:

F (Mr, Si) =
∑
ri

nr

n
F (Lri) F (Lri) : F (Lr) that matches on scale i

F (Mr) = max
1≤i≤sh

F (Mr, Si)

If more than one human-labeled scales match the same algorithm-identified scale, form the pair

with the human-labeled scale for which the sum of F (Mr) values is higher. Then, for sha matches

between sh human-labeled scales and sa algorithm-identified scales:

Pscale =
sha
sa

, Rscale =
sha
sh

, F -Scorescale =
2 ∗ Pscale ∗Rscale

Pscale +Rscale
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ID Gender Course Field Role Semester

I1 F
Digital Media Design,

UI/UX for Games Interactive Art & Design Course Instructor Spring 20

I2 F Interaction Design Interactive Art & Design Course Instructor Spring 20

I3 F Engineering Design Mechanical Engineering Course Instructor Summer 20

I4 M Programming Studio Computer Science and Engineering Course Instructor Spring 20

I5 M Programming Studio Computer Science and Engineering Course Instructor Spring 20

I6 F Programming Studio Computer Science and Engineering Lab Instructor / TA Spring 20

I7 M Programming Studio Computer Science and Engineering Lab Instructor / TA Spring 20

I8 M Programming Studio Computer Science and Engineering Lab Instructor / TA Spring 20

I9 M Programming Studio Computer Science and Engineering Lab Instructor / TA Spring 20

Table 4.1: Five design course professors and four teaching assistants in the role of lab instructor
interacted with AI-based analytics, presented via the dashboard integrated with multiscale, free-
form design environment.

4.3.3 Design Course Deployments: Instructor Interviews

Five design course instructors and four teaching assistants (TAs) in the role of lab instruc-

tor—across three departments—interacted with AI-based analytics, presented via the dashboard

integrated with multiscale, free-form design environment, during Spring and Summer 2020 (Ta-

ble 4.1). We conducted semi-structured interviews with the instructors and TAs regarding their

experiences at the end of the respective courses. At times, instructors explored analytics during

the interview. Due to Covid-19’s impact, instructors spent significant time moving courses online,

which adversely affected planned use.

Drawing on Charmaz’ approach to grounded theory qualitative data analysis [18], two authors

first performed initial coding of three interview transcripts. They met to bring their initial codes

into alignment, and formed tentative categories. Then, they performed focused coding of the re-

maining interview transcripts, revising codes and categories, as needed, to suitably represent the

salient phenomena. We present the categories, including participant quotes illustrating the phe-

nomena, in Section 4.4.3. Interview questions can be seen in Appendix D.
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Figure 4.6: Hyperparameter tuning: AMOEBA uses a single hyperparamater α to control the het-
erogenity of distances among elements that are clustered together. We used 10% of the labeled data
to tune the hyperparameter, searching for optimal values on both sides of default value suggested
by prior work (α=1). Observing two peaks (A and B), we inspected the values of the hyperparame-
ter at a finer level of granularity near these peaks (bottom charts). We selected two hyperparameter
values (-0.04 and 0.475) from the analysis.

4.4 Mixed Methods Findings

We begin with quantitative measures—precision, recall, and F-Score—of AI performance. We

next present patterns of AI mismatch with human labels, found through a qualitative analysis of

AI scale and cluster recognition. We follow this with findings from our qualitative analysis of

instructor interviews, regarding their experiences with the AI-based analytics, presented via the

dashboard integrated with the multiscale design environment.

83



α Precision Recall F-Score
Scale -0.040 0.531 0.686 0.599

0.475 0.720 0.628 0.671

Cluster -0.040 0.658 0.911 0.694

0.475 0.536 0.979 0.61

Table 4.2: Precision, Recall, and F-Score measures, for the two values of hyperparameter α at
which we observed peak aggregate performance for scale and cluster recognition in the tuning
phase.

4.4.1 AI Performance: Precision, Recall, F-Score Measures

Using the approach specified in Section 4.3.2, we computed the precision, recall, and F-Score

measures. In Section 4.2.2, we described that AMOEBA uses a hyperparamater α to control the

heterogenity of distances among elements that are clustered together. As we adapted the AMOEBA

algorithm in a new domain (i.e., design), we used 10% of the labeled data to tune the hyperparam-

eter. As shown in Figure 4.6, searching on both sides of the default hyperparameter value (α=1)

suggested by prior work [3], we found two peaks (A and B) for the aggregate F-Score of scale and

cluster recognition. We further checked the values at a finer level of granularity near both the peaks

(bottom charts in Figure 4.6). Based on the performance plots, we selected the value of -0.04 for

peak A and 0.475 for peak B. We report precision, recall, F-Score measure for scale and cluster

recognition for both the hyperparameter values (Table 4.2). We note that the range near peak B

(α=0.45-0.5) is more stable, i.e., there is no sharp increase or decrease in performance near that

value. We discuss the results in Section 4.5.4. The adapted AMOEBA algorithm’s use of α can be

seen in Appendix C.
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Figure 4.7: Patterns where current recognition falls short due to only using spatial proximity as the
basis: (a) Extra scales and clusters: A human rater labeled (left) a cluster of all three images based
on legibility vs AI (right) further clustered the top images at a new scale based on spatial distances;
(b) Fewer clusters: A human rater labeled (top) two clusters vs AI (bottom) identified one cluster
combining heading with the elements below due to their small distance from the bounding box of
the heading; (c) Fewer clusters: A human rater labeled (top) nine clusters based on similarity of
representation vs AI (bottom) identified two clusters due to relatively smaller distances at places;
and (d) Fewer scales: A human rater labeled (top) an inner scale as the content becomes legible on
further zooming in vs AI (bottom) identified only one scale based on spatial distances.
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4.4.2 AI Performance: Qualitative Analysis

Similar to prior work, we performed visual inspection of output clusters, to qualitatively eval-

uate AI performance. We found four patterns where the current recognition falls short, due to only

using spatial proximity as the basis:

(a) Extra scales and clusters: As Figure 4.7 (a) shows, while the AI is identifying extra scales

and clusters on that scale, based on spatial distances, a human would not do so, as all content

is equally legible. Such occurrences, therefore, result in lower scale precision as well as lower

cluster precision scores.

(b) Fewer clusters (headings): As Figure 4.7 (b) shows, due to small spatial distances with the

bounding box of a heading, AI collapses multiple clusters into one and includes the heading

with these otherwise distant clusters. Hence, the AI not only does not find many clusters a

human rater labeled, but rather, it finds an additional, different cluster. Such occurrences,

therefore, result in both lower cluster precision and recall scores.

(c) Fewer clusters (similarity): As Figure 4.7 (c) shows, a human rater labeled more clusters due

to similarities of representation whereas AI is based on proximity. Similar to (b), not identify-

ing clusters labeled by a human rater, and identifying additional ones, such occurrences result

in both lower cluster precision and recall scores.

(d) Fewer scales: As Figure 4.7 (d) shows, a human rater identified an inner scale because the

content becomes legible on zooming in, whereas due to similar spatial distances, AI identified

only one scale. Such occurrences, therefore, result in a lower scale recall score.

4.4.3 Qualitative Analysis of Instructor Interviews

We developed four categories through the analysis of interview data, which illustrate (1) how

analytics provide useful information, (2) use of analytics for assessment and feedback, (3) potential

benefits of analytics for students, and (4) support for exploration and understanding of analytics.
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4.4.3.1 Analytics Provide Useful Information

Instructors in our study reported that analytics help them develop understandings of students’

work. They gain insights such as how students developed and presented structure in their design,

and whether students are able to effectively use the multiscale design environment.

Q1 I1: I think using the dashboard and using the analytics is really helpful for me to

kind of get an understanding of what [students are] doing.

Q2 I2: I’ve been thinking like, you know, [scales and clusters] could be a very useful

information for me, you know in terms of how students developed structure and present

that structure at different levels.

Q3 I9: If there are multiple scales and clusters...they are at least using the environ-

ment efficiently. So if this number is extremely low for everybody...then maybe you

need to take a tutorial on [the environment].

4.4.3.2 Using Analytics for Assessment and Feedback

Instructors had a range of responses regarding the use of analytics for assessment and feedback.

I1 and I4 think that the analytics can become a part of their rubrics and feedback they give to

students. And that can motivate and provide students guidance on what instructors are looking for

in their design.

Q4 I1: I think [these analytics and my rubrics] complement each other. I think it will

be very helpful...if there’s a way that I can just sort of make a rubric on [dashboard]

and attach to when they get their feedback.

Q5 I4: You know, give them something to shoot for...I think that I would say...here

are the things that I’d like to see in your design...I think that I would definitely like to

assign scales as a part of the rubric to say, I would like to see the big picture from out

here, and then when you zoom in, see more.
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I9 shared that instead of directly using analytics for assessment and feedback, they find analyt-

ics a quick-to-use indicator of underlying problems.

Q6 I9: So, I won’t use the values in the column to directly give them points...But it’s

better than having to go to every [design] and look for every single issue or having a

much larger rubric that I ran by...So think of the analytics as the symptoms and [then]

you actually identify diseases.

A couple of instructors expressed that they did not find much use of utilizing multiscale ana-

lytics for assessment.

Q7 I6: If I was going to use it in a project [as a student] then I think it would be

[more] helpful to me as compared to like if I’m just grading someone else’s work.

Q8 I7: I didn’t find much use as such like of scales and clusters...how can I use these

as an instructor?

4.4.3.3 Potential Benefits of Analytics for Students

Instructors expressed that students can benefit from seeing these analytics, as these can become

a source of reflection, as well as help students in understanding their progress.

Q9 I5: I’m all for giving students as much information as they can use and you

know...they can use [analytics] to look at their progress.

Q10 I1: Yeah, I would love students to explore more zoom levels...because usually, I

think it is more like...I see it as an overall picture...but they don’t really utilize being

able to kind of go in to certain areas or zooming in to certain parts and elaborating.

Q11 I1: [Show students] maybe spatial clusters just so that they could be more aware

about how they separate.
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Instructors shared that students would benefit by seeing the analytics, but they do not want

to enforce a specific organization. Their goal is to help students effectively use and reflect on

multiscale organization.

Q12 I4: I wouldn’t want them all to look the same like you don’t want to go somewhere

and see every painting looks the same but it was almost as if some people were painting

with boards and nails and hammers versus paintbrushes and paint. They just didn’t

really get what they’re supposed to be putting on the [design]. So then it was just like

not as effective.

Q13 I1: [While] they have to become a little bit more mindful of [space]...okay, then

my sketches have to be in this area and my flower research is going to this area...Just

seeing how they lay out everything themselves...I would rather not control whether

intentionally or unintentionally at all how they see spatial clusters.

4.4.3.4 Means for Exploration and Understanding of Analytics

Instructors found features that support exploration and understanding of analytics useful. These

include analytics links that take the user to the actual design and the animation of scales and clusters

within the design.

Q14 I1: I think I’m really enjoying these like little links that I can kind of click on

it...with the scales or clusters like they can take me to those.

Q15 I9: So, regarding scales, what I was able to infer [from animation] was that...

there is one zoom level that has a particular region... and then they have a different

zoom level that focuses on different regions and so on.

As instructors were able to inspect the basis underlying the analytics, they expressed where AI

has a mismatch with their interpretation.
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Q16 I1: I think I now have a better understanding of spatial clusters...the animation

of colors changing...the outer cluster...one...two...I think I just get confused by the one

added [extra] on scale 3.

Q17 I3: There are only four [clusters] here...and I’m not sure why [it shows here] two

different ones...you’ve got a couple [extra] clusters.

Further, instructors provided recommendations to enhance understandings of analytics, such

as by including examples and interactive means of exploring design examples that use scale in

different ways.

Q18 I4: An example of how scales would work.. maybe one two and three static

images [on dashboard] showing a zoom level of 0, at 1, and at 2.. and what additional

information you can see suddenly at that [level]. And sort of an example of best

practices instead of students just try to figure it out.

Q19 I5: So, how do I maneuver to other scales?

Q20 I1: Okay. I was wondering if.. whether it would be possible to kind of.. maybe

like pinpoint or just kind of go to the precise scale.

4.5 Discussion + Implications

We put the situating analytics paradigm into practice, to develop a new approach of explaining

AI-based analytics, by integrating their measurement and presentation. We compare and contrast

our alternative emphasis on ‘explaining’ AI-based analytics to prior research on ‘explainable AI’.

We follow by considering how ambiguity in the interpretation of design work can serve as a re-

source for explaining AI-based analytics. We next interpret our initial research questions in terms

of our findings. We discuss the significance of multiscale design in situated course contexts. We

discuss and derive implications for: (1) modeling multiscale design, including incorporation of

additional perceptual grouping principles; and (2) developing novel support for assessment and

feedback in design courses by explaining analytics.
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4.5.1 Integrating Measurement and Presentation: An Approach to Explaining AI-based

Analytics

Suchman seminally articulated that designing a useful AI system requires understanding users’

situated practice, i.e., how their actions develop purpose and intelligibility within particular cir-

cumstances. Suchman emphasizes a system’s transparency—how it conveys an AI’s intended

purpose to users and establishes accountability—as requisite for effectively supporting situated

practice [12]. Dourish breaks this principle down to focus on how translating ideas between in-

tellectually different domains of situated practice (social) and technology (computational) “can be

both exceptionally valuable and unexpectedly difficult” [13].

In the present study, the AI is the adapted AMOEBA clustering algorithm. The context in-

volves design courses in interactive art & design, mechanical engineering, and computer science.

The characteristics of multiscale design that we measure are based on design practice [16]. The

analytics measuring these characteristics—the number of scales and clusters—are based on AI’s

identification of nested clusters in a design using spatial positions and dimensions of the con-

stituent elements. We built on the situating analytics paradigm we developed in Chapter 3, to make

the basis of analytics visible to the instructors. We integrated a dashboard with an actual design en-

vironment, connecting analytics with the particular sets of spatially related elements they measure

(Figure 4.4). Through this approach, instructors were able to get a quick sense of students’ design

organization, and then drill down to the work, as well as to pinpoint where the analytics mismatch

their interpretation ( Q2 , Q16 , Q17 ). Our argument for this approach is two-pronged:

1. We chose a particular characteristic, multiscale design, to measure. We did this instead of

just getting grades for a large set of assignments and building a bottom up recognizer from

that data. Such a recognizer is typically based on an arbitrary aggregation of high dimensional

features ("black box") that would likely map to characteristic not explicitly discernible to design

instructors or students. On the other hand, our analytics make sense to the design instructors.

They can potentially inform students’ design process for improving the characteristic; and
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2. The interface directly presents the linkages between the analytics and the design data that they

are derived from.

We found that the current approach "explains" the analytics by showing the instructors what is

being measured in the design work. We argue that interface’s ability to work this way is jointly

dependent on the choice of the visual design analytic, because this characteristic is based on design

practice, and so makes intuitive sense to designers. While there is a great scope for improving the

AI performance (Section 4.5.4), in the present form, in terms of constituting a basis for explaining

analytics, it is already able to serve instructors at a level where they are able to relate the measures

to students’ design organization.

Explainable AI (XAI) is a related approach, which heretofore has referred to work supporting

human interpretability and comprehensibility [237], focused on how users “understand, appropri-

ately trust, and effectively manage” the function of AI algorithms, in practice [238]. For example,

Samek et al. explain AI in terms of descriptions of their algorithms, e.g., decomposition and par-

tial derivatives [239]. In contrast, explaining analytics refers to giving users understanding of what

analytics are describing and how they work. Using XAI can further support explaining analytics,

by drawing on relationships between how AI functions and the characteristics that make sense to

users, in context.

An XAI approach can superimpose a simple visualization of the present AI’s Delaunay graph

in a view of the design elements. This enables users to see the lengths of edges that the AI used

to determine whether a cluster is nested. Another use of XAI in the present case would be a slider

that allows users to see how changing the hyperparameter (Section 4.2.2, Appendix C) affects AI

output of scales and clusters. Our findings suggest that AI designers support users’ understand-

ing by enabling making the Delaunay graph visible and providing a slider for showing affects

of varying the hyperparameter. Likewise, at present, the only features our AI uses are positions

and dimensions of design elements. In Section 4.5.4, we advocate other features—e.g., similarity

based on size, color, and font—which AI can utilize. In that scenario, an XAI approach that shows

the contribution of different features in determining the overall distance among elements can be
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useful.

4.5.2 Ambiguity as a Resource for Explaining AI-based Analytics

We need labeled data or ground truth to train and validate AI models, to make machines “arti-

ficially intelligent”, to make them do what we humans do. But, which human(s) amongst us? For

example, two humans looking at a picture can interpret it differently [240]. Hence, when humans

label data, their interpretations, assumptions, and biases creep into AI, which is trained by / tuned

to particular instance-label mappings. Addressing such AI biases, which can result in unfair out-

comes, such as for individuals or groups within a population, is a key challenge that researchers

are working to recognize and address [193, 194, 157].

In our study, while the two raters had a near-perfect agreement on scales (kappa=0.88)—i.e.,

how many times they needed to zoom in to see content legibly—and substantial agreement on

clusters (kappa=0.71), sometimes one of the raters would label one more scale and several clusters

on that scale. Likewise, the two raters, sometimes clustered certain elements differently, based on

how they interpreted relative proximity.

Gestalt theory explains how humans perceptually group elements based on principles, such as

proximity, symmetry, and continuity [241]. While certain principles have more effect than others,

it is possible for two raters to group a set of elements differently, based on the relative degree

to which different principles play a role in their perception [242]. Based on the same reasoning,

the actual users of our system, at times, may perceptually group elements differently than one or

both of the raters, i.e., different from what the AI has become tuned to recognize. Moreover, the

analytics are not meant to constrain creative processes ( Q12 , Q13 ). Rather, novelty is preferred

( Q12 ). Further, there can be additional reasons for a mismatch, e.g., difficulty in comprehending

AI outcomes or AI performance limitations [243].

Implications. AI solutions that form the basis of design analytics should account for diverse

perspectives and interpretations. As Gero and Maher express, in design, “inconsistencies are a rule

rather than an exception” [225]. According to Gaver et al.’s maxim, in designing technology, the

need for interpretation or the presence of ambiguity “is a resource that [we] should neither ignore
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nor repress” [244]. Gaver et al.’s prescription is to cast doubt on sources to provoke independent

assessment [244]. We observe that this corresponds to recent guidelines for human-AI interaction,

which prescribe, make clear why the system did what it did [245]. Our approach to explaining

analytics aligns with these prescriptions. The ambiguity does not prevent the analytics from being

useful.

Incorporating additional Gaver et al. and human-AI interaction guidelines can further benefit

AI-based analytics research. For example, Gaver et al.’s use imprecise representations to empha-

size uncertainty can be incorporated, e.g., by presenting scales and clusters as ranges of numbers,

factoring in inter-rater reliability and AI performance measures.

Going further, AI support can be made contestable, providing users affordances that allow them

to argue for where the AI fails to match their interpretations ( Q16 , Q17 ). According to Woodruff

et al., the ability to challenge and change AI decisions is critical to addressing bias in AI models

[194]. Such input from users can become a source of diverse labeled data for the designers of AI,

enabling them to bring the artificial closer to human intelligence, over time.

4.5.3 Significance of Multiscale Design in Situated Course Contexts

Our study shows that instructors value multiscale design as a characteristic of visual design, in

situated course contexts. I4 would like students to present the big picture and then details when

one zooms in ( Q5 ). I1 would “love students to explore more zoom levels” as she does not see

them “zooming in to certain parts and elaborating” ( Q10 ). I9 would like see that students are

able to effectively use the multiscale design environment ( Q3 ). I2 values students’ presentation of

structure at different levels ( Q2 ). At the same time, multiscale design analytics were not expected

to serve as a catch all measure for design. I4 talks about not wanting all designs to look the same

( Q12 ). I1 says, “I would rather not control...how they see spatial clusters” ( Q13 ).

We consider creative cognition’s family resemblance principle, according to which, no partic-

ular characteristics are required in the designation of a work’s creativity [33]. Rather, a family of

traits tends to serve as indicative. Multiscale design, as measured here, becomes one such trait.

Improving the current measures, therefore, can further aid instructors in their design education
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processes. Simultaneously, deriving analytics for a family of traits—e.g., aesthetics, feasibility,

and originality [123, 122]—is a fruitful research avenue. As no particular trait is sufficient, there

is literally no way for the analytics to be perfect. But if they work well enough, they can provide

instructors and students with sufficient insights so as to (1) provide first order feedback; and (2)

stimulate ongoing work.

4.5.4 Multidimensional Modeling of Multiscale Design: Improving AI-based Analytics

Design education, across fields—such as art, design, and architecture—values visual organi-

zation principles. [74]. In certain contexts, visual design has become a dominant factor in how

a work is perceived [246]. The industry at the same time is producing a plethora of tools—e.g.,

Photoshop, Illustrator, Canva, Sketch, and Figma—to help people perform visual design. Thus,

developing means for assessing peoples’ visual designs and providing them instantaneous feed-

back, through transparent analytics, has the potential to prove transformational in supporting their

creative enterprises.

Our study focused on developing multiscale design analytics. We adapted the AMOEBA al-

gorithm for multiscale clustering of design work and evaluated the performance of the adapted

algorithm using precision, recall, and F-score measures (Table 4.2). If we compare the cluster F-

Score measure (0.694) with that for single-scale spatial clustering (0.79-1.0) [231], we find a drop

of 0.1 to 0.3 points in performance. But determining nested clusters is more complex. Drawing

analogy from natural language processing, the state-of-the-art model for named entity recogni-

tion achieves 0.95 F-score, entity linking 0.82, and relationship extraction 0.76 [247], i.e., as the

complexity of the cognitive task increases, performance decreases.

Lower precision scores (Table 4.2; scale: 0.531/0.72, cluster: 0.658/0.536, for two values of

α) and qualitative analysis of AI performance (Figure 4.7 (a)) correlate with instructor experiences

( Q16 , Q17 ), that AI is identifying extra scales and clusters. Lower scale recall (0.686/0.628) cor-

responds to analysis that shows AI is identifying fewer scales (Figure 4.7 (d)). Recall measure

for clusters, albeit higher, is not perfect (0.911/0.979). In Figure 4.7 (c), correspondingly, analysis

shows AI identifying fewer clusters. In these mismatches, we observe that grouping principles
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other than proximity—e.g., similarities of size, shape, and font—come into play. On the one hand,

students seeing a mismatch between AI recognition and their intent can stimulate iterating on de-

sign to consistently separate elements. On the other hand, while proximity is a salient factor [248],

humans don’t always reduce spatial organization to distances.

Implications. Incorporating additional intelligence will be beneficial for improving AI per-

formance. Similar to how we adapted AMOEBA for dimensional design data, it seems promising

to adapt AMOEBA’s variations, such as those incorporating attribute similarity [227]. In addition

to proximity and similarity, incorporating the gestalt principle of ‘common region’—that Koch

and Oulasvirta found useful in the hierarchical grouping of website design [226]—can potentially

benefit. Similar to how modeling based on user actions has proven effective in a 2D design environ-

ment [181], incorporating process data such as the user’s zooming in/out can help model multiscale

design. Determining visible area of design elements can further help address AI’s identification of

fewer clusters (Figure 4.7 (b)).

4.5.5 Supporting Assessment and Feedback in Design Courses by Explaining Analytics

Learning analytics have been found to serve a variety of purposes, including providing means

for scaling feedback [45, 46], informing pedagogical action [47, 48], and supporting students’ self-

reflection [49, 50] and skill development [51, 52]. However, for learning analytics to be effective

in open-ended, project-based contexts, there is a need to assess complex characteristics that can

give insights into students’ creative strategies and abilities [56]. Gero’s function-behavior-structure

framework supports AI analysis of complex creative design processes, such as mutation and anal-

ogy [249]. Summers and Shah discuss that quantifiable measures of complex characteristics—e.g.,

information entropy, coupling between components, and solvability—can help assess students’

abilities to address real-world problems [224].

Our study investigates complex multiscale design organization characteristics and provides ev-

idence for the usefulness of learning analytics in open-ended and creative project-based learning

contexts of design courses. Instructors in our study reported that multiscale design analytics can

support them directly or indirectly in assessment and feedback processes ( Q4 , Q5 , Q6 ). Instructors
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found that multiscale analytics have the potential to inform pedagogical intervention, based on

whether or not students are able to effectively utilize the design environment ( Q3 ). They shared

that providing these analytics to students can help them reflect ( Q9 , Q11 ) and improve their multi-

scale design skills ( Q5 ).

Implications. The community should investigate new analytics based on assessments of com-

plex characteristics in project-based learning contexts. While challenging to develop, these ana-

lytics have the potential to give insights into higher-order learning processes. In the present study,

organization principles that design instructors expect their students to demonstrate ( Q5 , Q13 ) map

to the synthesis category—including higher-order processes such as create, compose, and orga-

nize—in Bloom’s taxonomy [250, 251]. Likewise, other project-based learning contexts—e.g.,

arts and humanities [252]—will likely benefit from analytics based on assessments of complex

characteristics.

Simultaneously, we note an opportunity of investigating the potential of existing computa-

tional analysis work, toward supporting assessment and feedback in course contexts. For example,

courses that teach website design can utilize computational support that quantifies website aesthet-

ics—e.g., Oulasvirta et al.’s interface metrics service [42] or Reinecke et al.’s machine learning

model [41]—for assessment and feedback.

In line with prior work advocating interactive explanations [253], we argue that users will

benefit when interfaces to complex analytics draw on an ensemble of pedagogical and visualization

techniques. Based on instructors’ experiences and suggestions, we find initial evidence for these

techniques, for facilitating understanding and interaction:

• Animation: As Tversky explains, animations can aid perception and comprehension of the fine

structure of spatial and temporal relationships among different pieces of content [254]. Mayer

and Moreno found that adding animations enhances learner understanding, when compared with

only using verbal forms of study material [255]. In our study, we found that animation aids the

understanding of complex characteristics ( Q15 , Q16 ). Further, according to Tversky, interactivity

such as close-ups, zooming, and control of speed is likely to lead to a better understanding [254].
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These can prove useful in addressing participants’ desires, such as maneuvering to different

scales ( Q20 , Q19 ).

• Indexical Representation: Turnbull explains indexicality as maps over space and time which

convey information that can only be completely understood within the specifics of the given

context [187]. In this present study, we found the indexicality of dashboard—i.e., connecting

analytics with the actual design element assemblages that they measure—supported instructors

in understanding the analytics. ( Q14 , Q15 ). In addition, an intermediate representation on the

dashboard, which indexically connects with the actual design work can further support the un-

derstanding of complex analytics. For example, a tree-like pendogram visualization of scales

and clusters [3] on the dashboard can support understanding the nested structure and exploring

a specific scale or cluster ( Q20 ).

• Exemplification: The use of examples in teaching provides a device for explanation and com-

munication [256, 257]. It helps students in concept formation and development of skills. Ex-

emplification has the potential to help students understand analytics’ complexity and so inform

their design processes, to meet instructors’ expectations ( Q18 ).

Investigating whether and how these techniques contribute to interfaces for presenting a range

of complex analytics would be a fruitful avenue for future research. Such research can pinpoint

whether particular techniques are more useful in certain educational disciplines, in comparison to

others.

The current research provides evidence for descriptive analytics, i.e., analytics provide insights

into student work [258]. Going ahead, with data from the past iterations of a course, these ana-

lytics have the potential to function as prescriptive analytics, i.e., provide instructors and students

alerts and suggestions based on computational modeling of the relationship between analytics and

students’ course performance [230, 258].

Also, so far, to probe the potential usefulness, we presented the analytics to all the instructors.

However, in our study, not all instructors found all analytics to be useful ( Q7 , Q8 ). Hence, for
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returning users, the analytics can be made selectable, i.e., instructors can configure a subset of

analytics when setting up a course and its assignments.

4.6 Conclusion

Our study demonstrates the potential of design analytics for providing instructors transparent

insights into student design work and so support their assessment and feedback efforts. The present

research contributes: (1) how to explain multiscale design analytics derived using AI—thus val-

idating the usefulness of situating analytics paradigm—by linking dashboard presentation of de-

sign analytics with the actual design work that they measure and characterize; (2) the adapted

AMOEBA algorithm, for addressing multiscale clustering of dimensional elements; (3) measures

of spatial scale and cluster recognition derived based on prior work in information retrieval; (4) es-

tablishing baseline performance, through a quantitative evaluation of AI’s recognition of multiscale

design characteristics; and (5) implications for explaining AI-based analytics through a qualitative

analysis of instructors’ experiences with the analytics in situated course contexts.

While we are yet to achieve the best possible recognition, we have identified multiscale design

as a significant characteristic and begun to address how to use AI for measuring it. We have

created a technology probe that enables us to begin to understand the implications of multiscale

design analytics, in practice.

We invoked creative cognition’s family resemblance principle to explain that there is no single

way to define or interpret creativity. Although this poses a challenge toward measuring creativity, it

simultaneously creates opportunities for the interface to “explain” the specific way AI is measuring

particular characteristics, which allows users to agree or disagree with the AI. Our integration of the

dashboard presentation with the actual design environment allowed instructors to independently

assess the basis of analytics, i.e., the particular sets of design element assemblages that the AI

determined as nested clusters. This makes the interface to the AI-based analytics visible, or as

Bellotti and Edwards said, intelligible and accountable [159].

Explaining AI-based analytics is vital—similar to the needs observed for healthcare [259, 260]

and criminal justice [261] domains—as the measures can directly impact outcomes for an indi-
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vidual. Analytics that do not connect with students’ design work would have little meaning for

instructors, if at all. Students, if provided with analytics, would fail to understand and address the

shortcomings that they indicate. Further, explaining analytics creates opportunities for developing

interface affordances that allow users to contest the AI outcomes, which is particularly important

when AI recognition may not match human interpretation due to multiple reasons, such as the

training/tuning data used, limited AI performance, and insufficient clarity in the presentation of AI

outcomes.

Significant implications for future research are stimulated by the current level of investigation

of the particular multiscale design analytics in particular situated course context classrooms. We

need further investigation of how these as well as new multiscale design analytics affect other

design education contexts and design in industry. Such research can investigate the extent to which

different pedagogical and visualization techniques—e.g., animation, indexical representation, and

exemplification—are beneficial in specific contexts. Transparent insights on design work can prove

vital in improving learners’ creative strategies and abilities, which in turn can stimulate economic

growth and innovation [262]. Continued efforts toward simultaneously satisfying the dual goals

of explainability and performance, across a range of contexts, has the potential to create broader

impacts by providing inroads to addressing complex sociotechnical challenges, such as ensuring

reliability and trust [158] in the use of AI systems.
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5. IMPLICATIONS AND CONCLUSION

In this chapter, based on our investigations, we derive implications for supporting creative

human learning experiences through the use of AI. We begin by discussing the transformational

impact that making AI useful for complex human activity can bring to society, focusing on mea-

sures for assessment and feedback on creative learning. We follow with the need and value of

studying practices and how engaging stakeholders in co-design facilitates the process. We then

focus on the need for making AI transparent, including the foundational role that the situating ana-

lytics paradigm can play in future research. Lastly, we advocate aligning the role of analytics with

instructors’ approach of scaffolding but not constraining creativity.

5.1 Investigate How AI Can Be Useful for Supporting Complex Human Activity

As Rikakis points out, the usefulness of AI is being realized in contexts ranging from image

search to purchase recommendation to manufacturing. However, there is a need for addressing

AI’s slow progress in education contexts, which involve “rich experiences aimed at advancing

human intelligence” [186]. The value of addressing the need is visible from the U.S. National

Science Foundation’s (NSF) designation of ‘AI-Augmented Learning’ as one of eight key areas

for fundamental research in AI, for advancing national competitiveness and transforming society

[263].

The present research focused on the use of AI for addressing the growing demands for design

education. Aligned with Rikakis’ observation, our survey in Chapter 2 provides evidence that there

is a scarcity of computational approaches, including AI, for assessing and providing feedback on

students’ design work. Because design education is so based in contextualized human experiences,

ideas for supporting assessment and feedback using AI may appear like pie-in-the-sky. Realizing

such ideas would seem akin to a magician pulling a rabbit out of a hat.

In Chapter 3, building on the fundamental work of Suchman [12] and Dourish [13], we showed

that understanding situated practices is vital to developing AI support for sociotechnical design
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education contexts. We used co-design methods to understand situated practices. Based on the

understandings, we developed approaches for deriving AI-based analytics for measuring a range of

design characteristics, i.e., why and how a rabbit can be pulled out of a hat. In Chapter 4, we pulled

one rabbit out of a hat, developing AI-based analytics that measure multiscale design organization

and studying how they affect instructors’ assessment and feedback, in situated course contexts. We

discussed how these analytics correspond to higher-order learning processes. We discussed how

insights into these processes can prove vital in improving learners’ creative strategies and abilities.

Our investigation holds implications for developing AI support for design education and in-

dustry contexts, as well as other contexts that involve creative learning. While we pulled out one

rabbit, there is a need for pulling many. Based on the understandings developed using creative

cognition’s family resemblance principle [33], we advocate suites of AI-based analytics: together

they tend to indicate good design work. Future research can develop AI support for forms of

measuring and presenting Fluency, Flexibility, Visual Consistency, Multiscale Organization, and

Legible Contrast, for which we presented approaches in Chapter 3. Likewise, develop AI support

for measuring complex characteristics in a range of creative contexts, including arts, writing, and

computer programming.

Improving people’s creative abilities is vital, as it can stimulate innovation and thus economic

growth. Further, in Chapter 3, we note that creative tasks are the least susceptible to being elimi-

nated by automation. Hence, the incorporation of AI for supporting these tasks has the potential to

become a mainstay of human involvement and performance in the future of work.

5.2 Understand Situated Practices Through Co-Design

Design education inducts students into a ‘community of practice’ [27], where students learn and

develop skills, often through socially situated understandings of work that practitioners perform

[28]. Developing technology support for socially situated practices is fundamentally challenging,

as it requires bridging intellectually different domains [13]. To address the challenges, it becomes

vital to identify contextual properties by studying situated practices [13].

Future research investigating AI support for rich human experiences will benefit from taking
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co-design [75, 58] approaches for studying practices. In the present research, co-design approaches

facilitated studying practices through:

• Involving Stakeholders: We engaged co-design approaches—particularly, ongoing discourses

through individual discussions and workshops—to identify contextual properties pertaining

to how instructors assess and provide feedback on student work, in practice (Chapter 3). Us-

ing co-design approaches allowed us to not only elicit tacit forms of knowledge but involve

stakeholders at a deep level. Instructors co-created shared meanings, discussing problems

in assessment and feedback and potential solutions to address them. Finding value in re-

search, two instructors in our study chose to participate further, by writing papers and grant

proposals together. Through co-design approaches, “stakes” continued to increase, which

facilitated iteratively developing better understandings of practices and needs.

• Field-testing Technology: We reaped benefits by using the co-design method of technology

probes [17] to understand how analytics affect instructors’ situated assessment and feedback

practices. We deployed a technology probe—comprised by AI-based analytics and a dash-

board integrated with a multiscale design environment—in situated course contexts (Chapter

4). It allowed instructors to experience the technology in a real-world setting. It allowed us

to collect data from field-testing. Based on their experiences, instructors provided us with

rich feedback regarding the significance of analytics, their potential as rubric elements, and

suggestions for explaining the analytics measures. This way, the probe method allows con-

tinuous refinement of technology to make it suited for users’ situated practice.

5.3 Explaining Analytics: A Key to Intelligent Support for Design Education

Much research has addressed explainable AI, which focuses on conveying, to users, the algo-

rithms that recognizers invoke. An emergent finding of this research is that what matters to various

users, alternatively, is explaining AI analytics, that is, conveying what measures mean, so that they

derive value from them, in situated contexts of practice.
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The need here is to explain the what the capabilities of an AI mean, in practice, as part of

user experiences. We argue that this matters more than, or at least complements, explaining the

algorithms that make up the underlying mechanism. As Doran et al. describe, explaining the

mechanism involves showing users how inputs are mathematically mapped to outputs [237]. This

necessitates a level of technical understanding by users. On the other hand, explaining what the

capabilities of AI means involves providing users with means through which they can understand

how an AI makes high-level inferences, based on certain lower-level inferences. According to

Doran et al., it corresponds to aspects of comprehensibility, e.g., AI making a high-level inference

that a given image is of a factory, because lower-level inferences include halogen lights, floor, and

machines. In the present case, of design education, explaining a capability involves conveying

what analytics mean in the context of the design work whose characteristics they measure. High-

level inferences involve how the present design analytics are based on lower-level conceptual (e.g.,

ideas) and visual (e.g., clusters) inferences from design work.

Transparency of AI-based systems is vital, to convey an AI’s role in supporting situated prac-

tice and establish its accountability to users [12]. According to Bellotti and Edwards’ landmark

findings, an intelligible context-aware system should “provide users with an account of its actions,

interpretations, and decisions” [159]. Subsequently, Shneiderman shows why user interface design

that supports human comprehensibility is critical to developing reliable AI systems [158]. With-

out transparency, questions and concerns regarding the accountability and reliability of AI would

only grow. For example, what if an AI-based clinical decision support system makes an incorrect

diagnosis? Or what if a self-driving car misreads the speed limit? Or what if an AI system always

filters out women or people of color job candidates? Unless the AI explains its decisions, placing

trust in “black box” operations can result in unfair, dangerous, or even catastrophic outcomes.

We argue that the need for explaining AI outcomes is likewise important to address in educa-

tion. What if the AI makes an incorrect determination of a student’s performance? It could affect

their career and well-being. Moreover, even if AI makes a correct determination, it would be of

limited use without explaining outcomes. For example, AI showing to students that their ‘Visual
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Consistency’ score is 80 out of 100—without explaining where they earned 80 points and where

they lost 20—would leave it to the students to figure out what could be right or wrong. This may

cause them stress and anxiety. It is not clearly actionable.

Instructors in our study highlighted the importance of explaining outcomes on assignments to

students. Explaining the basis of assessment is already a substantial challenge that human graders

deal with in situated practice. D11’s experience exemplifies: “[Some of the students] violate the

principles that I teach them, and then I say hey, the principles, we talked about that. And they’re

like oh, you mean [that]”. Instructors recommend an analogous role for AI-based assessment.

According to them, explaining analytics based on learning objectives is vital toward bridging the

gap between instructors’ and students’ understandings. Recalling D5’s statement from Chapter 3

(Section 3.4.1), “There’s a kind of disconnect between [students] turning in a [design] and they

getting a number [back from AI]...Why is it a ‘B’?”. Without addressing this need, AI would not

be able to help students improve their work. Instructors would not be able to relate AI outcomes

to student work.

In Chapter 3 (Section 3.4.1), we introduced situating analytics, a paradigm for conveying the

meaning of measures that align with design rubrics—by contextually integrating their presentation

with what and how they are measuring—here, associated design work. Building on the ideas, in

Chapter 4 (Section 4.2.3), we integrated a dashboard with its corresponding design environment,

thereby making connections visible between the analytics and particular sets of design element

assemblages that they measure. We found that our approach explains the AI-based multiscale de-

sign analytics to instructors. They were able to use our multiscale analytics to garner a sense of

students’ design organization, and so pinpoint where the AI-based analytics did not match their

interpretation. We thus expect the situating analytics paradigm to play a foundational role in future

research, for explaining a range of analytics. For Fluency, Flexibility, Visual Consistency, Multi-

scale Organization, and Legible Contrast, future research can build on the approaches we presented

in Chapter 3.

In Chapter 4 (Section 4.5.1), we discussed how explainable AI (XAI) [237]—which focuses on
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Figure 5.1: A mockup showing how explainable AI (XAI) approaches can further support con-
veying the basis of analytics. We overlay the Delaunay graph—used to determine nested clusters
based on spatial distances—on the top of Figure 4.4’s scale and cluster renderings. Making the
Delaunay graph visible supports users in seeing the lengths of edges that the AI uses to determine
whether a cluster is nested.

the human interpretability and comprehensibility of how an AI algorithm functions—can further

support explaining AI-based analytics. For example, for multiscale design analytics, presenting the

Delaunay graph can enable users to see the lengths of edges that the AI used to determine whether

a cluster is nested. Figure 5.1 shows a mockup we created by overlaying the Delaunay graph on
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the Figure 4.4’s presentation of nested clusters. Likewise, beneficial future research can use XAI

techniques to augment the approaches we developed for explaining other analytics.

In Chapter 4 (Section 4.5.5), we also presented initial evidence for techniques—animation,

indexical representation, and exemplification—that can improve explaining AI-based analytics.

Future research can investigate these techniques in diverse contexts, so as to determine the extent

to which they support explaining various analytics.

5.4 Make AI Interactive and Controllable

According to Bellotti and Edwards, providing users with control of a computational system

is essential, as the system cannot deterministically predict the desired course of action, due to

too many contextual variables involved [159]. To give users this control of AI, Shneiderman em-

phasizes the need for carefully designing human-AI interaction [158]. Controllability can help

AI adapt to users’ practices, as well as prevent harmful or fatal situations. For example, in lan-

guage translation, AI is able to adapt based on the user edits and retranslate similar occurrences

[264]. An example of the fatal behavior is the use of AI for excessive automation in the Boeing

MAX 737 MCAS system. Analyzing the MCAS failure, among the lessons learned, Mongan and

Kohli include: “AI systems...should have a simple, fast, and lasting mechanism for override” [265].

Woodruff explains the need for controllability in terms of ‘contestability’ and ‘recourse’, to allow

users to challenge and change AI outcomes, through actionable inputs [194].

Our investigation highlights the need for controllability in designing AI support for education

contexts. As we discussed in Chapter 3 (Section 3.4.3), AI approaches are prone to systematic er-

rors in training data or models. Thus, derived analytics may lack accuracy. Instructors in our study

expressed the need for indicating whether AI is performing as expected. Recalling D6’s statement,

“spit out the rubric scores and then the professor can say, well that’s right or wrong”. Relatedly,

in Chapter 4 (Section 4.4.3), instructors reported multiscale design analytics not matching their

interpretation at times.

The situating analytics paradigm focuses on designing user interaction to gather feedback on

the validity and utility of AI outcomes. We developed ideas for providing affordances to instructors
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and students, for controllability, through the dashboard integrated with the design environment

(Chapter 3, Section 3.4.3 and Figure 3.3). Through these affordances, users can indicate when their

interpretation does not match with the AI assessment. The affordances allow the users to indicate

mismatches for both high-level (e.g., visual consistency analytic) and low-level (e.g., clusters)

inferences. As we discussed in Chapters 3 and 4, providing instructors means to override AI

will not only correct the outcomes, but further can be expected to provide a continuous source of

new labeled data to the designers of AI, which, in turn, can help them iteratively bring the artificial

closer to human intelligence. In Section 3.4.3, we argued that the processes of frequent feedback in

design classrooms have the potential to be functionally rendered as isomorphic with AI algorithms’

iterative needs for labeled examples for training recognizers.

Part of controllability thus involves giving users the ability to “label” examples in which the

feedback from the AI’s model runs counter to their own mental models. In this regard, we note

that users’ mental models do not remain fixed. Instructors in our study, as well as prior work [29],

described that design rubrics evolve based on the direction that a project takes. The evolution

of design rubrics has the potential to be functionally rendered as isomorphic with the resulting

evolution in the needs for labeled data. Beneficial future research can develop controllable AI

interfaces and investigate how they affect instructor and student experiences, as well as how AI

can evolve based on new labeled examples, in order to support situated course contexts.

5.5 Scaffold Creativity Without Constraining

Pedagogical processes that lead students to creative outcomes are central in design educa-

tion [20]. Deliverables, rubrics, and criteria are amenable to change, so as to support students

in emergent creative directions [29]. At the same time, instructors need to scaffold creative pro-

cesses—e.g., prescribing activities while encouraging design reasoning, positioning themselves as

a source of expertise, and facilitating further development of interesting aspects of the project—so

as to help students make progress in their creative work [142]. Hence, instructors need to walk a

fine line between encouraging creativity and providing structure.

We find that AI-based analytics have the potential to provide analogous support to instructors’
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walking a fine line, where they scaffold students’ creative processes but not constrain them. In

Chapter 3 (Section 3.4.2), we interpreted our findings using the creative cognition’s family re-

semblance principle [33], to identify the same incomplete, yet useful role for analytics, as design

rubrics: no particular analytics are necessary or sufficient; together they tend to indicate creative

work. As D7 said, “There is no right answer”. As D5 expressed, “some students could just

do something really simple and it’s just like,‘Uh yes, that’s it’. And somebody else could have

something really complex and you’re like, ‘Yes, that’s it”’.

Chapter 4 echoes this, in the study of instructors’ experience with multiscale design analytics

(Section 4.4.3). According to instructors, analytics can help students reflect and become conscious

of their design processes. For example, I1 suggested showing scale and cluster analytics to students

so that they can explore zoom levels and become aware of how they separate. I4 suggested pro-

viding students with examples of multiscale organization, so as to scaffold their processes. At the

same time, the goal is not to constrain creativity. As I4 expressed, “I wouldn’t want...all [designs]

to look the same like you don’t want to go somewhere and see every painting looks the same”.

Likewise, I1 does not want to control how students organize elements in clusters.

Hence, we do not advocate setting specific analytics values as goals, unless instructors require

students to meet certain quantitative performance, as measured by the analytics. Rather, analytics

are expected to serve as grist for reflection and stimulate ongoing work. Like design rubrics,

analytics cannot be perfect. They do not need to be perfect in order to provide value. Their

purpose is to augment, not replace, instructors’ ongoing interpretation and engagement.

5.6 Conclusion: Situating Analytics for Design Education

We investigated the potential of AI for supporting situated design education assessment and

feedback practices. We took an interdisciplinary approach, drawing and connecting ideas from

human-computer interaction, design education, co-design, creative cognition, and multiple areas

of computer science. We sustained this interdisciplinary approach through and across phases

of research: conceptualizing, defining methods, designing, developing, interpreting, and theory-

building.
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To understand practices and needs, we engaged instructors—from Landscape Architecture &

Urban Planning, Architecture, Interactive Art & Design, Mechanical Engineering, and Computer

Science and Engineering—in co-design. We closely involved them in different phases of research

through individual discussions, workshops, and technology probes methods. We developed under-

standings of how instructors perform assessment, including approaches they use for diverse design

characteristics, as well as challenges they face in providing and tracking students’ incorporation

of feedback. By interpreting our findings using creative cognition’s family resemblance princi-

ple, we identified an opportunity for AI-based analytics to play the same incomplete, yet useful,

role as design rubrics. Drawing on computational techniques—e.g., natural language processing,

computer vision, and machine learning—we developed approaches for measuring diverse design

characteristics. We employed human-computer interaction principles for conveying the meaning

of measures and effectively integrating the computational support into instructors’ and students’

experiences.

Based on understandings of practices, and drawing on prior research by Suchman and Dourish,

we show that making AI-based systems transparent is vital for supporting design education expe-

riences. We contribute situating analytics as a paradigm for conveying the meaning of measures,

which align with design rubrics, by contextually integrating the presentation of the measures with

associated design work. Following this paradigm, we developed approaches for deriving and pre-

senting AI-based design creativity analytics—Fluency, Flexibility, Visual Consistency, Multiscale

Organization, and Legible Contrast—which measure complex characteristics in students’ design

work. Building on the ideas, we realized AI-based multiscale design organization analytics. We

introduced them in situated course contexts, via a dashboard integrated with an actual design en-

vironment. We found that linking the analytics with design element assemblages they measure

helped instructors in understanding what analytics mean. Based on instructors’ experiences, we

derived implications for conveying the meaning of complex measures, including techniques such

as animation, indexical representation, and exemplification, as well as representations that take

into account the ambiguity in the interpretation of design work and uncertainty associated with
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AI-based approaches.

The present research has implications for developing AI-based approaches to support rich hu-

man experiences, as situated in creative contexts of education and industry. Developing a range of

AI-based analytics that measure complex characteristics in creative human enterprises can trans-

form learning by doing, through instantaneous, on demand feedback. Understanding situated prac-

tice will remain vital to developing transparent AI support, so as to establish its intelligibility and

accountability to users. While analytics have the potential to stimulate ongoing creative work, they

could result in people’s increased attention to those aspects of their work for which automated as-

sessment and feedback become available. How does this affect their design creativity as a whole?

Likewise, it will be important to continue identifying further significant characteristics of design,

which may be general or context specific, and how AI can measure them. On the whole, for de-

sign education, continuing investigation can beneficially address how AI-based situated analytics

affect the education experiences and outcomes of instructors and students, how to keep improv-

ing interaction that explains AI capabilities, and how combinations of design analytics contribute.

More broadly, we need to understand how these principles can benefit other fields, or turn out to

be domain specific.
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APPENDIX A

CO-DESIGN: DISCUSSION TOPICS AND QUESTIONS

We engaged design instructors in an ongoing discourse—spanning a period of more than one

year—discussing their course learning objective, assignment specifications, assessment and feed-

back practices. We discussed whether and how computational means could support them in their

assessment and feedback. We term these as discussions because we shared perspectives that we

gained from prior work and by engaging with other instructors. In addition to below, emergent

topics included students’ use of sketching, instructors’ creativity assessment, and students’ consid-

ering instructor feedback beyond a specific deliverable.

A.1 Individual Discussion

• What design courses do you teach?

• How do you define learning objectives for each course? What are the guiding principles?

• As a design instructor, why do you think these specific objectives are important?

• How do you prioritize?

• What assignments do you define for meeting the objectives?

• Do the assignments vary at times? How? Why?

• How do you formulate the grading rubric for an assignment?

• Are there weights for the design product and process?

• What is given more weight in assignments: understanding course material, application of

learned principles, visual design, creative ideas, other factors?

• Do weights vary across assignments? How?
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• How are grading rubrics applied? Are there macro and micro level guidelines based on the

learning objectives of that assignment?

• What instructions are TAs / graders given toward applying the rubric? How is consistency

ensured?

• Do you use peer review for grading? Do the guidelines differ? How?

• How do you understand the picture of a class? for e.g., How is a class doing overall? What

are common and specific problems?

• How do you address the common and specific problems?

• Do you think that the design process / addressing of problems could be better supported by

seeing students’ progress more regularly?

• What do you think about our intention to design computer algorithms that measure aspects

of design work that are representative of the criteria in your grading rubrics?

• Would some kind of analytics based on the grading rubric be helpful?

• Would some representations of their work be useful, e.g. conceptual themes, assignment

sections?

• Would a dashboard interface help in this regard (show a mockup)?

• What else could be useful?

• What features would you like to see? Examples, sorting, mean, median, outliers?

• What other features do you think would be useful?
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A.2 Workshop Discussion

For workshop, while we had put together a list of topics, the discussion emerged on its own after

instructors finished presenting their design ideation assignments, along with assessment approach.

Topics that emerged included:

• the sizes of courses, teaching teams, and student teams;

• the level of details in assignment and rubric specifications;

• challenges in tracking students’ progress and incorporation of feedback; and

• difficulty assessing contributions in team assignments.
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APPENDIX B

USE OF DESIGN CHARACTERISTICS ACROSS FIELDS

In Section 3.4.2, we developed a set of situated design creativity analytics—Fluency, Flexi-

bility, Visual Consistency, Multiscale Organization, and Legible Contrast—that can provide AI-

based, on demand, actionable assessment to design students. Here, we enumerate additional char-

acteristics identified through co-design engagements with design instructors across fields (Table

B.1).

Analytic
Landscape

Architecture &
Urban Planning

Computer
Science and
Engineering

Mechanical
Engineering

Interactive
Art & Design Architecture

Fluency • •
Flexibility • • •

Visual Consistency • • •
Multiscale Organization • •

Legible Contrast • •
Team Members’ Contribution • • • •

Novelty • •
Relative Object Sizes • •
Number of Iterations • •

Use of Small Multiples [178] •
Range of Colors •

Coverage of Assigned Sources •
Edits during Practice •

Table B.1: Learning analytics relevant to design education. In the top part, we list analytics for
which we developed AI-based approaches in Chapter 3. In the bottom part, we list additional char-
acteristics that instructors in our study emphasize. We prioritized developing analytics based on:
a) the number of contexts which emphasize a design characteristic and b) the extent of concep-
tual and empirical evidence we identified in regard to developing an effective AI approach for the
corresponding analytic.
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APPENDIX C

ADAPTED AMOEBA: ORIGINAL ALGORITHM COMBINED WITH THE CHANGES

In Section 4.2.2, we described changes for adapting AMOEBA for multiscale clustering of

dimensional design elements. We include the adapted algorithm below, i.e., original algorithm

combined with the changes. We reproduce the visual representation of the changes here (Figure

C.1), to make it convenient to connect it with corresponding textual annotations on the original

algorithm.

Figure C.1: The adapted algorithm adds four aspects to the original algorithm: (a) compute De-
launay graph using all vertices of an element, (b) instead of using Delaunay edges directly, find
the shortest distance between elements represented by the edge, (c) relatedly, ignore any edges
between vertices of the same element, and (d) when calculating subgraphs, add edges among all
vertices of an element. The below algorithmic representation highlights these added aspects.

procedure ADAPTED_AMOEBA(Graph)

begin

Graph = CreateDelaunayGraph(ElementVertices); // (a): Add each vertex
of the element

WriteCluster(Graph); // Write the Graph as a cluster

// (b): Find shortest distance between elements represented by each
edge in the graph
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// In the process, add edges connecting vertices of the same element
to IntraElementEdges

DistanceMap = FindShortestDistance(Graph, IntraElementEdges);

// (c): Delete edges connecting vertices of the same element

Graph.del_edges(IntraElementEdges);

// Use the shortest distance when computing global mean and standard
deviation

NumberOfEdges = CalculateMeanandStDev(Graph, GlobalMean, GlobalStDev,

DistanceMap)

if (NumberOfEdges <= 1)

return;

for each node v in Graph do {

EdgeList = Graph.adjacent_edges(v); // Extract edges incident to

node v

// Use the shortest distance when computing local mean

LocalMean = CalculateLocalMean(EdgeList, DistanceMap);

for each edge e in EdgeList do {

ToleranceValue = ALPHA * GlobalStDev * GlobalMean / LocalMean;

if (e.distance() >= (GlobalMean + ToleranceValue))

DeleteEdgeList.append(e);

}

}

Graph.del_edges(DeleteEdgeList); // Eliminate passive edges

if (Graph.degree(v) == 0)

Graph.delete_node(v);

AddIntraElementEdges(Graph); // (d): Add edges among all vertices of
the same element

ConnectedComponents(Graph, ComponentNumber); // Calculate connected

components

for each connected component c do {

SubGraph = ConstructSubGraph(Graph, ComponentNumber, c);
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if (NumberOfEdges != SubGraph.number_of_nodes());

ADPATED_AMOEBA(SubGraph);

}

end
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APPENDIX D

MULTISCALE ANALYTICS STUDY: INTERVIEW QUESTIONS

We used the following questions to guide our semi-structured interviews:

• Please briefly describe your experiences with the courses dashboard.

• Do you think the class would be different with and without the dashboard? If so, how?

• How does how you use the courses dashboard compare with other learning management systems

and environments? What is similar? Is anything different?

• Has using the dashboard shown you anything new or unexpected about your students’ learning?

If yes, what?

• What do you understand about the analytics presented on the dashboard with submissions?

• Do you utilize analytics? If so, do they support in monitoring and intervening? Assessment and

feedback? How?

• If the answer to ‘Do you utilize analytics’ is ‘No’: Do you think these analytics have the potential

to become a part of the assessment and feedback that you provide to the students? If so, how?

• What do you think about showing these analytics to students on-demand?

• Did you click on ‘Scales’ analytics? How did seeing its relationship with the actual design work

affect your utilization (or potential utilization) for assessment and feedback?

• Did you click on ‘Clusters’ analytics? How did seeing its relationship with the actual design

work affect your utilization (or potential utilization) for assessment and feedback?

• Has using the dashboard to follow and track student design work changed how you teach or

interact with the students? If so, how?
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• What would you do different, if anything, next time you teach the class?

• What are your suggestions for making the dashboard more suited for your teaching and assess-

ment practices? Or for design education in general?
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