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A B S T R A C T   

This study examines the response of hydrological processes to different climate change scenarios 
in the Jemma sub-basin of the Blue Nile Basin. Future near-term (2021–2050) and long-term 
(2071–2100) climate scenarios were developed from six statistically bias corrected Regional 
Climate Models (RCMs) under two Representative Concentration Pathways (RCPs) scenarios: 
RCP4.5 and RCP8.5. The outputs of climate models were used as input to a calibrated and vali
dated Soil and Water Assessment Tool (SWAT) model to assess the impact of climate change on 
the hydrology of the sub-basin. For a robust hydrologic representation, the SWAT model was 
calibrated and validated at three River gauging stations and provided an acceptable result. The 
climate scenarios developed from bias corrected RCMs projected an increase in temperature in all 
models and a decrease in rainfall in the ensemble mean of the models in the near-term and long- 
term climate scenarios. Climate change may cause a consistent decrease in surface runoff and 
total water yield and an increase in evapotranspiration under all climate scenarios. This study 
recommends water management structures which can conserve water for agriculture and other 
ecosystem services in the Jemma sub-basin and in other similar areas in Ethiopia.   

1. Introduction 

Climate change is expected to influence the availability of freshwater resources through changes in evaporation, soil water and 
relative humidity in the future (Bates et al., 2008; IPCC, 2013). The most significant potential effects of climate change may include 
increase in frequency and magnitude of droughts and floods and changes in water supplies due to the expected changes in precipi
tation, temperature, humidity, soil moisture, runoff and other important components of the hydrologic cycle (Bates et al., 2008). For 
example, a rise in temperature will lead to increased evapotranspiration and in turn, further increases the demand for irrigation water 
(Wang et al., 2012). On the other hand, the expected increase in intensities of rainfall will lead to higher rates of surface runoff and an 
increased risk of flood. Such hydrologic changes will impact nearly every aspect of human well-being such as water supply, agricultural 
productivity and energy production. For instance, globally it was projected that the number of people who face water stress will 
increase from 12 to 81 million in the 2020 s and from 79 to 178 million in the 2050 s (Arnell, 2004). Thus, in order to support water 
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management under a changing climate, the impact of climate change on fresh water needs to be quantified. 
Several studies have been conducted to assess the impact of climate change on hydrological processes and water availability at 

different spatial scales. For instance, in the Matson Ditch watershed of Indiana, increases in surface runoff and subsurface flow were 
estimated using bias adjusted GCM simulations under the emission scenarios of RCP4.5 and RCP8.5 (Mehan et al., 2019). On the 
contrary, a decreases in streamflow, surface runoff, total water yield and soil water storage were projected by the mid-21st century 
using bias corrected climate models output under A2, A1B and B1 in the Skunk Creek watershed of South Dakota (Mehan et al., 2016). 
Difference in geographic location and climatic characteristics of the watersheds and variation in emission scenarios may result such 
contrasting effect of climate change. Similarly, in watersheds of the Upper Blue Nile Basin of Ethiopia, several studies (e.g. Setegn et al., 
2011; Adem et al., 2016; Worqlul et al., 2018) have explored the impact of climate change on different water balance components. At 
regional and global scales Arnell (2004); Elshamy et al. (2009) and others explore the response of hydrologic components to different 
climate projections. There is difference among studies in using climate model simulations. Some studies directly apply outputs of 
Global Climate Models (GCMs) and RCMs (e.g. Beyene et al., 2010; Setegn et al., 2011), while others used bias-adjusted and down
scaled climate models output before applying for hydrological estimations (e.g. Elshamy et al., 2009; Teutschbein and Seibert, 2012; 
Liersch et al., 2016; Mehan et al., 2019). 

However, the standard procedure of climate change impact assessment include downscaling of GCMs output into regional scales, 
tailoring (bias correction) of RCMs output, hydrological simulation and analysis of changes exclusively due to climate change (Olsson 
et al., 2016). When assessing the effects of climate change on water resources, it is also very important to understand the effect of 
spatial scale. Due to coarse spatial resolution, climate models are characterized by uncertainty to simulate local scale climate variables 
that are used to fed for hydrological models. For this reason, it is strongly recommended to downscale and bias correct climate models 
simulation before using for hydrological impact assessment (Teutschbein and Seibert, 2012). 

Hydrological simulations using the bias corrected climate models output provide reliable estimate of hydrological components for 
instance surface runoff, evapotranspiration and water yield than hydrological simulation without bias correction of climate models 
(Hagemann et al., 2011; Teutschbein and Seibert, 2012; Muerth et al., 2013; Bastola and Misra, 2013). For instance, Fang et al. (2015) 
has investigated that RCM simulations without bias correction showed large biases of streamflow simulation, while bias corrected 
RCMs were effective in streamflow simulation. Bias correction has also showed improved performance in simulating rainfall and 
discharge characteristics (Liersch et al., 2016). However, sometimes bias corrections trigger biases (Maraun, 2012; Wang and Kota
marthi, 2015). In the Canada and the central North America, bias corrected WRF (Weather Research and Forecasting) RCM has showed 
larger wet bias than the non-bias corrected WRF simulation (Wang and Kotamarthi, 2015). Therefore, it is important to identify 
appropriate bias correction method and apply bias correction on climate models simulation before using for various applications. It is 
important, however, to note that there are a relatively limited number of studies in Ethiopia (Elshamy et al., 2009; Liersch et al., 2016; 
Chaemiso et al., 2016) that incorporate bias corrected RCMs output for climate change impact assessment and climate adaptation 
decision analysis. 

In Ethiopia, the current climate has caused drought, floods, heavy rains and frosts (World Bank, 2006). Among these impacts of 
climate, drought is the most severe impact of climate change which affect the country frequently (NMA, 2007). There are also various 
watershed and basin scale studies which account the impact of climate change on the water resource. In the Awash Basin, a decrease in 
runoff which ranges from 10% to 34% was projected using a single GCM with coarse resolution (Hailemariam, 1999) which could be 
subject to uncertainty. Taye et al. (2018) has also projected a decrease in water resources in the future period at Awash River Basin 
using three GCMs from Coupled Models Inter-comparison Project phase 5 (CMIP5). In contrast to the case of Awash River Basin, an 
increase in surface runoff and total water yield was projected for the 2030 s and 2090 s climate using bias corrected RCM output in the 
Omo-Gibe River Basin of Ethiopia (Chaemiso et al., 2016). The difference in signals of change on water resources at different basins due 
to climate change imply the need to investigate hydrological impacts of climate change using appropriate climate change scenarios 
that could capture local scale climate variables. 

In the Upper Blue Nile Basin, there are some hydrological climate change impact studies which apply ensemble of various GCMs (e. 
g Elshamy et al., 2009; Setegn et al., 2011) and statistically and dynamically downscaled GCMs output (Worqlul et al., 2018; Adem 
et al., 2016; Mekonnen and Disse, 2016; Dile et al., 2013; Soliman et al., 2009). However, there are limited studies which use 
bias-corrected outputs of GCMs and RCMs (Elshamy et al., 2009; Liersch et al., 2016) as inputs to hydrological models. There are also 
studies which use a single emission scenario (Soliman et al., 2009) and different emission scenarios (Worqlul et al., 2018; Adem et al., 
2016; Liersch et al., 2016). The findings from these studies provided non-conclusive impact of climate change on hydrological pro
cesses. For example, some studies (e.g. Worqlul et al., 2018; Adem et al., 2016; Liersch et al., 2016) simulated an increase in streamflow 
while others (e.g. Elshamy et al., 2009) simulated a decrease in streamflow. There are also studies existed which projected a nonlinear 
trend of climate change impact on streamflow (e.g. Setegn et al., 2011). This suggested that there is no conclusive consensus on the 
impact of climate change on streamflow in the Upper Blue Nile Basin. Thus, it is worthwhile to recognize and characterize the un
certainties of climate change in the basin. 

This study was conducted in the Jemma sub-basin of the Upper Blue Nile Basin, which is characterized by frequent drought and 
extreme temperature and rainfall events (Worku et al., 2018a). The livelihood of the majority of the inhabitants is based on rain-fed 
agriculture which is frequently affected by climate variability. This suggests that climate change will significantly affect the livelihoods 
of the smallholder farmers, which warrants detailed climate impact studies to support policy on climate change adaptation. However, 
there is limitation in integrating climate information and climate adaptation strategies to reduce climate change impacts in Ethiopia 
(World Bank, 2006; Conway and Schipper, 2011). Thus, this study is important to develop robust hydrological climate impact sce
narios for designing optimal climate based hydraulic structures. 

This study is also essential to provide climate information generated from different climate change scenarios. To develop climate 
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change scenarios, bias corrected RCMs rainfall and temperature output under different emission scenarios are essential. Bias correction 
has been found important because, even though, RCMs are able to capture mean annual and monthly rainfall and distribution of 
rainfall events, RCMs showed wet bias in the higher elevation (>2700 m above sea level) areas of the Jemma sub-basin (Worku et al., 
2018b). This highlights the need to bias adjust RCM simulations before using for hydrological climate change impact assessment. There 
is no such study in the sub-basin which has assessed the impact of climate change on water availability for agriculture and other 
services using robustly bias corrected outputs of RCMs. This study, therefore, aims at assessing the impact of different climate change 
scenarios on the availability of future water resources in the Jemma sub-basin using the Soil and Water Assessment Tool (SWAT) 
model. 

2. Materials and methods 

2.1. Description of the study area 

Jemma sub-basin is located in the south eastern part of the Upper Blue Nile Basin and has an area of ~ 15,000 km2 (Fig. 1). It covers 
~ 8% of the area and contributes ~ 14% of the total annual flow of Upper Blue Nile Basin (Yilma and Awulachew, 2009). Soil erosion is 
severe in the sub-basin where it discharges significant amount of sediment to Upper Blue Nile River (Ali et al., 2014). The annual 
rainfall in Jemma sub-basin ranges between 700 mm and 1400 mm. There are two rainfall seasons in Jemma, summer locally called 
Kirmiet (i.e. June- September) is the main rainfall season and spring locally called Belg (March-May) is the small rain season. The 
temperature in the sub-basin is mild, where the average annual temperature ranges from 9 ◦C to 24 ◦C. The elevation in the sub-basin 
ranges from 1040 m to 3814 m above sea level. 

The land use/land cover types in the Jemma sub-basin include agricultural land (56.72%), grazing land (14.64%), bare land 
(10.45%), shrubland (6.44%), woodland (6.05%) and forestland (1.20%). The remaining land is covered by afro-alpine vegetation, 
eucalyptus plantations and water bodies. The soil types in the sub-basin include Eutric Vertisols (28.07%), Lithic Leptosols (37.44%), 
Chromic Lixisols (8.07%), PellicVertisols (6.82), Haplic Luvisols (5.79%), and Haplic Acrisols (6.82). Eutric Fluvisols, Umbric Nitisols 
and Alic Niti sols cover a small fraction of the sub-basin. The land use/land cover, soil and elevation classes of the sub-basin are 
presented on Fig. 2. 

Jemma sub-basin has several watersheds. Among them, Beressa in the upstream and Robi-Gumero in the middle stream are 
important where they constitute weather station and hydrological gauge stations. The data from these watersheds were used for 

Fig. 1. Jemma sub-basin and distribution of the climatic stations and hydrological gauge stations used for calibration and validation of the hy
drological model. 
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calibration and validation of SWAT model. Beressa watershed is drained by Beressa River and it is the major tributary of Jemma River. 
This watershed has an area of about 220 km2 and it is characterized by rugged topography and high elevation which ranges from 2700 
to 3650 m above sea level. In this watershed, one climatic station (Debrebirhan) and one hydrological station (Beressa) are located. The 
baseline climate (1981–2013) mean annual rainfall in the Debrebirhan station of Beressa watershed is 908 mm with a minimum of 649 
mm in 1984 and a maximum of 1073 mm in 2007 (Worku et al., 2018a). The main rainfall season is summer (June-September) 
followed by spring season (March-May). In this watershed, the natural vegetation cover has considerably declined and substituted by 
planation forest. Soil degradation and water shortage are severe. As a result, the livelihood system of residents has changed from 
annual crops cultivation to tree planting and livestock production (Amsalu et al., 2007). Eutric Cambisols and Pellic Vertisols are the 
dominant soil types in Beressa watershed. 

Robi-Gumero watershed is drained by Robi River is also a tributary of Jemma River and located in the middle of the sub-basin. The 
area of this watershed is around 887 km2. Robi-Gumero watershed is also characterized by rugged topography and elevation ranges 
from 2300 to 3000 m above sea level. In this watershed, the nearest climatic station is Lemi and the hydrological station is Robi- 
Gumero gauge station. This watershed is among the areas of the Jemma sub-basin which receives highest amount of annual rain
fall. The baseline climate (1981–2013) mean annual rainfall of the Lemi climatic station of Robi-Gumero watershed is 1278 mm with a 
minimum of 730 mm in 2002 and a maximum of 2459 mm in 2008 (Worku et al., 2018a). The main rainfall season is summer (June- 
September) followed by spring season (March-May). Agricultural land is the main land use type in this watershed. Pellic Vertisols and 
Eutric Vertisols are the major soil types in the Robi-Gumero watershed. 

2.2. Input data 

The SWAT model requires spatial and temporal data to simulate hydrological processes. The spatial data includes Digital Elevation 
Model (DEM), soil and land cover data, while the temporal data used in the modelling process are the climatic and streamflow data. 
The DEM data which has a 30 m resolution was obtained from the Shuttle Radar Topographic Mission (SRTM). The DEM data was used 
to create the basin boundary and stream networks. The slope generated from the DEM data was used to define Hydrological Response 
Units (HRU) together with the soil and land use data. The soil data was obtained from the Ministry of Water, Irrigation and Electricity 
of Ethiopian. Soil parameters such as soil saturated hydraulic conductivity, available water capacity, soil texture, etc) are obtained 
from Water and Land Resources Centre of Ethiopia and from Harmonized World Soil Database (FAO/IIASA/ISRIC/ISS-CAS/JRC, 
2008). The land use/land cover data for the year 2008 was derived from Landsat satellite imagery and supervised image classification 
was done using maximum likelihood algorithm. The land use land cover map was prepared with Kappa (K) statistics and overall 
accuracy of 0.81% and 83% respectively. Kappa (K) statistics measures the agreement between two images as described by diagonal 
entries in the error matrix. After the different land use classes were identified, they were redefined according to SWAT land use 
database code. Thus, the land use/land cover of 2008 was used to represent the land use of the baseline period. All the spatial data were 
projected to the same projection parameters (i.e. WGS_1984_UTM_Zone_37N). 

Baseline climate (1981–2013) daily rainfall, Maximum Temperature (TMAX) and Minimum Temperature (TMIN) solar radiation, 
sunshine, wind speed and relative humidity of 15 climatic stations of the Jemma sub-basin were obtained from the Ethiopian National 
Meteorological Services Agency. However, only climate data of nine climatic stations were used in this study. Because these nine 
climatic stations have data with relatively minimal missing values range from 2% to 17% and adequate years of observation. For 
climatic stations where there is no observation of solar radiation, sunshine, wind speed and relative humidity, reanalysis dataset i.e 
Climate Forecast System Reanalysis (CFSR) was used. CFSR is designed based on coupled atmosphere–ocean-land surface-sea ice 

Fig. 2. Elevation, soil types and land use classes of the Jemma sub-basin.  
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system to provide high resolution and best estimate of climatic variables (Saha et al., 2010). These climatic data were used to calculate 
weather stations statistics which is needed to create SWAT’s weather generator input file (Arnold et al., 2012a, 2012b). Daily rainfall, 
TMAX and TMIN were also used to statistically bias correct RCMs simulation. Daily streamflow data of Beressa (1991–2008), Robi- 
Gumero (1988–2002) and Jemma (1996–1997) gauge stations was obtained from Ethiopian Ministry of Water, Irrigation and Elec
tricity. These climatic and hydrologic data were used to calibrate and validate the hydrological model and to develop baseline climate 
and hydrologic balance components. 

The other temporal data used for this study was RCMs rainfall and temperature simulation. Six RCMs (Table 1) which have showed 
good performance in capturing the historical (1981–2005) mean monthly and annual rainfall and frequency of rainfall events of the 
Jemma sub-basin (Worku et al., 2018b) were considered and acquired from the Coordinated Regional Climate Downscaling Experi
ment (CORDEX) Africa project. In each RCM, RCP8.5 which represents radiative forcing pathway of 8.5 W/m2 by 2100, and RCP4.5 
which represents intermediate emission levels of 4.5 W/m2 that could start stabilization after 2100 (Moss et al., 2010) were used. 

2.3. Bias correction of regional climate models simulation 

The rainfall and temperature simulation of RCMs was further statistically bias corrected using robust bias correction method. The 
inter-comparison of different statistically bias correction method accentuates that all bias corrections methods have comparable 
performance in adjusting mean annual and monthly values. However, most bias correction methods struggle to bias correct the in
tensity and frequency of extreme values. Distribution mapping method was superior in adjusting the 90th percentile and wet day 
probability of RCMs simulation with observed counterparts (Worku et al., 2019). Different from other bias correction methods, dis
tribution mapping method fits the distribution function (CDF) of RCM-simulated rainfall and temperature values with the CDF of 
corresponding observed values (Teutschbein and Seibert, 2012). Distribution mapping uses a shape parameter (α) and scale parameter 
(β) to fit distributions of rainfall (Fig. 3). These shape (α) and scale (β) parameters control RCMs daily rainfall probability of occur
rences (distribution) and intensities, respectively (Gudmundsson et al., 2012; Teutschbein and Seibert, 2012). Thus, in this study, 
RCMs rainfall and temperature bias adjusted using distribution mapping method was used to run the hydrological model. 

2.4. Hydrological model setup 

The SWAT model is developed to predict the impact of land management practices on water, sediment and agricultural chemical 
yields in large complex watersheds with varying soils, land use and management conditions (Arnold et al., 1998). The model is 
successfully applied in Blue Nile Basin to study hydrological processes and other environmental applications (Setegn et al., 2011; 
Betrie et al., 2012; van Griensven et al., 2012). The SWAT model for the Jemma sub-basin was discretized into 150 sub-watersheds 
using a threshold area of 45 km2. Within each of sub-watersheds, Hydrological Response Units (HRUs) were created. HRUs are 
unique combinations of slope, soil and land use. Multiple HRUs were defined in a sub-basin to allow heterogeneity within the basin. 
The slope was classified into 0–8%, 8–20% and > 20% to define the HRUs. The HRU definition processes created 958 HRUs. The Soil 
Conservation Service (SCS) Curve Number method (USDA-SCS, 1972) was used to estimate surface runoff. Potential evapotranspi
ration (PET) was estimated using the Penman–Monteith method since it is a physically based model. 

2.5. Model calibration and validation 

Before analysis of climate change impacts, the hydrological model was calibrated and validated to represent the hydrologic 
conditions of the sub-basin. The calibration of the model parameters was conducted using SUFI-2 in SWAT-CUP (Abbaspour et al., 
2004). Since the SWAT model has hundreds of parameters, the most sensitive parameters which affect the simulation outputs were 
identified through sensitivity analysis. Parameters related to soil water, runoff, groundwater and evapotranspiration were considered 
for the sensitivity analysis. The highest sensitive parameters which have smaller p-value and larger t-stat were selected. 

The Jemma sub-basin is large in area and it has diverse topography. Therefore, multi-gauge calibration and validation (Cao et al., 
2006; Zhang et al., 2008; Santhi et al., 2009; Arnold et al., 2012b) approach was applied to capture the hydrological processes across 
the sub-basin. At Beressa and Robi-Gumero gauge stations which are located at the upper and middle part of the Jemma sub-basin 
(Fig. 1), streamflow data is available from 1991 to 2008 and 1988–2002 respectively. However, at the Jemma River gauging sta
tions (outlet) of the Jemma sub-basin, streamflow data is available only from 1996 to 1997. Therefore, the model was calibrated at 
Beressa (2002–2008) using observed streamflow data of this gauging station. Semi-automatic calibration procedure was used to 

Table 1 
Description Regional Climate Models used in this study.  

No. RCMs Driving GCM Labels RCM center/institute 

1 CCLM CNRM-CM5 CCLM4(CNRM-CM5) Climate Limited-Area Modelling (CLM) Community 
2 CCLM EC-EARTH CCLM4(EC-EARTH) Climate Limited-Area Modelling (CLM) Community 
3 CCLM HadGEM2-ES CCLM4(HadGEM2-ES) Climate Limited-Area Modelling (CLM) Community 
4 CCLM MPI-ESM-LR CCLM4(MPI-ESM-LR) Climate Limited-Area Modelling (CLM) Community 
5 REMO EC-EARTH CCLM4 (EC-EARTH) Max Planck Institute (MPI),Germany 
6 REMO MPI-ESM-LR CCLM4(MPI-ESM-LR) Max Planck Institute (MPI),Germany  

G. Worku et al.                                                                                                                                                                                                         



Climate Risk Management 31 (2021) 100272

6

calibrate the model (Arnold et al., 2012b). The calibrated model was also validated at Beressa (1991–1999), Robi-Gumero 
(1991–2002) and Jemma (1996–1997) using observed streamflow of these gauge stations. Since the period from 1991 to 1995 was 
government transition period in Ethiopia, we assume the quality of data after 1995 is better and consequently used for calibration. Due 
to data scarcity, only validation was performed at Jemma gauge station. The observed streamflow data was representative for cali
bration and validation since it includes relatively high, moderate and low rainfall and streamflow years. For example, during cali
bration period of Beressa, low and high streamflow was observed in the year 2003 and 2007 respectively. Whereas, high and low 
streamflow was observed in 1994 and 1997 years of validation, respectively (Fig. 4). 

The performance of the model during calibration and validation was evaluated using Nash and Sutcliffe simulation efficiency 
(NSE), percent Bias (PBIAS), RMSE-observations standard deviation ratio (RSR) and bR2 which are important goodness-of-fit evalu
ation criteria (Moriasi et al., 2007, 2015; Abbaspour, 2015). The NSE is normalized statistics that measures the relative magnitude of 
the residual variance compared to the observed data variance (Nash and Sutcliffe, 1970). Generally, the NSE value ranges between 1 
(when measured data and simulated are alike) and -∞. NSE > 0.50 is considered as an acceptable level of performance for streamflow 
simulation (Moriasi et al., 2015; Abbaspour, 2015). PBIAS measures the average tendency of the simulated data to be larger or smaller 
than the observed data. A PBIAS value ranges from -∞ to ∞ and an optimal value of PBIAS is 0 (Moriasi et al., 2015). A positive value of 
PBIAS indicates model underestimation and negative values indicates model overestimation. RSR measures the ratio of the Root Mean 
Square Error to the standard deviation of measured data. Its value ranges from 0 to large positive values. The lower the RSR considered 
as the better the model fit (Abbaspour, 2015). The bR2 is a result of R2 multiplied by the coefficient of the regression line, b between 
measured and simulated data (Abbaspour, 2015). 

The uncertainty of model simulation was evaluated using P-factor and the r-factor on the SUFI-2 algorithm (Abbaspour et al, 2004; 
Abbaspour et al., 2007). The SUFI-2 estimates uncertainty at the 95 percent prediction uncertainty (95PPU). The P-factor is the 
percentage of the measured data bracketed within the 95PPU while the r-factor measures the thickness of the uncertainty band. P- 
factor of 1 and an r-factor of 0 indicates exact fit of simulation with measurement (Abbaspour et al., 2007; Abbaspour, 2015). 

Fig. 3. Monthly scale parameters (β) and shape parameters (α) of the Gamma distribution fitting observed and raw RCM-simulated rainfall in 
Central (A), Eastern (B), Western (C) and North-eastern (D) areas of the Jemma sub-basin. Scale_obs, scale_sim, shape_obs and shape_sim are to 
indicate the scale and shape parameters of observed and RCMs simulated rainfall. 
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2.6. Estimating hydrological climate change impact 

To simulate hydrological impact of climate change, the ensemble mean of RCMs/GCMs is recommended (Teutschbein and Seibert, 
2010; Taylor, et al, 2012). Thus, the ensemble mean of six statistically bias corrected RCMs rainfall and temperature output under 
RCP4.5 and RCP8.5 emission scenarios at each climatic station was used as input to hydrological model. The calibrated and validated 
SWAT model was used to estimate surface runoff, evapotranspiration and total water yield under baseline climate (1981–2013) and 
future climate scenarios. The impact on the hydrological variables was studied dividing the coming century into near-term 
(2021–2050) and long-term (2071–2100) future. The impacts of climate change were therefore analysed by comparing the 
ensemble mean of RCMs under RCP4.5 and RCP8.5 emission scenarios with the baseline climate (1981–2013). Besides to the ensemble 
mean of the RCMs, hydrological simulation was made using the input of the RCM (i.e CCLM4 (MPI-ESM-LR)) which was better in 
capturing the rainfall and temperature of the baseline period. As a result, CCLM4 (MPI-ESM-LR) model was used as input to the 
hydrological model and the output was compared with the hydrology simulated with ensemble mean output. 

Fig. 4. Simulated and validated hydrographs of (a) calibration and (b) validation at Beressa gauge station of Jemma sub-basin.  
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2.7. Analysis of trends of climatic variables and water balance components 

To study trends of rainfall, TMAX, TMIN and water balance components, the non-parametric Mann-Kendal test (Kendall, 1975; 
Mann, 1945) was used. The trend result which is less than or equal to 5% was considered as statistically significant. The Mann-Kendall 
test statistic is calculated as; 

Zs =
∑n− 1

k=1

∑n

j=k+1
sgn

(
Xj − Xi

)
(1)  

sgn(x) =

⎧
⎨

⎩

1ifx > 0
0ifx = 0
− 1ifx < 0

(2) 

Where Xj and Xj are the annual values in years j and i, j > i, respectively. A positive and negative value of Zs indicates an increasing 
and decreasing trend, respectively. Mann- Kendal test was selected because this test is non-parametric (distribution-free) and not 
sensitive to single outliers and skewed distributions. Therefore, for data of climatic variables and water balance components which are 
not normally distributed, it is commendable to use Mann-Kendall test for trend detection. The slope of trends of climatic variables and 
water balance components under different climate change scenarios was calculated using the non-parametric, Theil-Sen’s slope 
estimator (Sen, 1968; Theil, 1950). The value of Sen’s slope estimator indicates the steepness of the trend. It reflects the magnitude of 
the change in the variable at each year. Theil-Sen test estimates the median of the slopes (β) using the equation: 

bSen = median(
yj − yi

xj − xi
) (3)  

Where i < j and i = 1, 2, … n-1 and j = 2, 3,…, n. 
Both Mann-Kendal and Sen’s slope estimator were estimated using the ‘trend’ package (Pohlert, 2016) which is built on R-statistical 

software (The R Core Team, 2015). 

3. Result and discussion 

3.1. Model calibration and uncertainty analysis 

Using the global sensitivity analysis, sensitivity of twenty-six hydrological parameters for streamflow was tested. The Global 
sensitivity analysis showed that CN2 (Curve number), ESCO (Soil evaporation compensation factor), SOL_AWC (Available water ca
pacity of the soil), OV_N (Manning’s “n” value for overland flow) and CH_N2 (Manning’s “n” value for the main channel) are the most 
sensitive parameters (Table 2). Most of the sensitive parameters are related to surface runoff and processes occurring at the soil and 
channel. However, groundwater related parameters; ALPHA_BF (Base-flow alpha factor) and GWQMN (Threshold water depth in the 
shallow aquifer required for return flow to occur) are also considered in the calibration based on the literature (Betrie et al., 2012; van 
Griensven et al., 2012) in the Upper Blue Nile Basin. The groundwater parameters are considered to maintain the hydrological mass 
balance since the surface and groundwater processes are intertwined. Unlike other studies in the Upper Blue Nile Basin, this study 
found OV_N as sensitive parameter to streamflow simulation. OV_N was useful to adjust the pattern of simulated monthly streamflow 
with the observed monthly streamflow. 

The comparison between the observed and simulated monthly streamflow showed a very good model performance during cali
bration and validation periods. For example, the NSE, R2, bR2, RSR and PBIAS values during the calibration of the model at the Beressa 
River gauge station were 0.78, 0.79, 0.60, 0.46 and − 4.2% respectively (Table 3 and Fig. 4a). At Robi-Gumero gauge station, the NSE 
and PBIAS values during calibration was 0.76 and 2.3% respectively (Table 3 and Fig. 5a). Similarly during the validation, at Beressa 
gauge station, the model showed NSE of 0.59 and PBIAS of 9.4% which can be considered as acceptable model performance (Moriasi 
et al., 2015). Likewise, the model validation using observed monthly streamflow at the Robi-Gumero and Jemma River gauging 

Table 2 
Calibrated model parameters, parameter ranges, and final fitted values using observed monthly streamflow at the Beressa River gauge station of the 
Jemma sub-basin. The model was calibrated for the period 2002–2008.  

Sensitive Parameters Parameter description Parameter ranges Final Fitted values 

r__CN2.mgt Curve number − 0. 1–0.2 − 0.057 
v__ESCO.hru Soil evaporation compensation factor 0.0–1.0 0.2175 
r__SOL_AWC.sol Available water capacity of the soil (mm) − 0.2–0.1 − 0.040 
r__OV_N.hru Manning’s “n” value for overland flow − 0.2–0.2 − 0.179 
v__CH_N2.rte Manning’s “n” value for the main channel − 0.0 1– 0.3 0.054 
V__ALPHA_BF.gw Base-flow alpha factor (days) 0.0–1.0 0.597 
v__GWQMN.gw Threshold water depth in the shallow aquifer required for return flow to occur (mm) 0.0–500 131.250 

The qualifier (r_) refers to a relative change in the parameter where the default values are multiplied by 1 plus a factor in the parameter range, while 
(v_) refers to the substitution of the default parameter by a value from the parameter range. The extensions (e.g., .hru, .bsn, .gw, etc.) indicate the 
SWAT parameter family. 
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stations showed NSE of 0.64 and 0.85 respectively. PBIAS values of − 5.0% and 10.4% were also found during validation at Robi- 
Gumero and Jemma River gauging stations respectively (Table 3, Fig. 5). The model also show acceptable performance of R2, bR2 

and RSR during validation at different gauges. 
The uncertainty analysis of the calibrated model provided very good P-factor and r-factor (P-factor > 70% and r-factor of close to 0) 

(Abbaspour, 2015). The calibrated model at Beressa River gauging station bracketed 80% and 71% of the observed data within the 
95PPU during the calibration and validation periods, respectively. At Robi-Gumero and Jemma River gauging stations, P-factor of 68% 
and 64% respectively was also obtained. The measure of the uncertainty using the r-factor also showed performance of 0.65 during the 
calibration at the Beressa River gauging station. The validation of the model at the Beressa, Robi-Gumero and Jemma River gauging 
stations provided an r-factor of 0.3, 0.85 and 0.51, respectively. The best r-factor (i.e. smallest uncertainty band) was observed during 
the validation period at the Beressa and Jemma River gauging station (Table 3). 

The calibrations and validations performed at different gauging stations showed very good performance in simulating the observed 
streamflow except the validation at Beressa River gauging station which could not capture the peak streamflow (Fig. 4b). This may be 
associated to poor quality of climate and/or streamflow data. The calibrated parameter sets at Beressa River gauging station simulates 
the streamflow of the Robi-Gumero and Jemma River gauging sites during validation. This suggests that the parameter sets are 
representative across the Jemma sub-basin. However, the model performance in terms of NSE was higher at the sub-basin outlet than at 
the watershed level (Table 3, Fig. 5b), which suggests that calibrating hydrological models only at the basin outlet may overrate 
performance of models than evaluating them at the watershed level. Similarly, Cao et al., (2006) and Begou et al., (2016), reported 
better performance of models at the watershed outlet than sub-watershed outlets at a large mountainous catchment of New Zealand 
and Bani Catchment of Niger River , respectively. 

3.2. Hydrologic balance analysis under baseline climate scenario 

The long-term mean annual water balance analysis of the sub-basin under baseline climate accentuates large proportion of the 
rainfall becomes evapotranspiration (51.68%) and surface run-off (40.32%) (Table 4). Jemma sub-basin has a total water yield (refers 
the sum of surface runoff, lateral flow and groundwater minus transmission losses) of 501 mm which is 48.21% of the total rainfall. In 
this sub-basin, surface runoff has high proportion (83.63%) to the total water yield. This is in contrast to the headwaters of the Upper 
Blue Nile Basin where, for example, Setegn et al. (2009) reported that in the Lake Tana sub-basin, groundwater flow contribution is 
higher than surface runoff contribution. 

Water balance dynamics at dry (2002) and wet (1997) years and in different seasons (Table 4) of the study period was examined. 
Here, the term “dry” and “wet” is relative which represent years with lower and higher rainfall during the baseline climate. During 
these dry and wet years, surface runoff has showed large deviation than other components of hydrological balance. During the wet year 
(1996), there is high surface runoff and water yield and in this wet year, 90% of the water yield is generated from surface runoff 
(Table 4). 

The hydrological system of the Jemma sub-basin is strongly responsive to rainfall occurrence and has high rainfall-runoff coeffi
cient (45%) during the rainy season. Comparative estimates were also reported the rainfall to runoff conversion in different catchments 
of the Jemma sub-basin. For example (Hurni et al., 2005) reported 55% rainfall is converted into runoff in Andit-tid catchment of the 
Jemma sub-basin, whereas Gebrehiwot and Ilstedt (2011) reported that the rainfall-runoff coefficient at Beressa and Weizer catchment 
of the Jemma sub-basin is 57% and 80%, respectively. Thus, water resources management strategies which focus on surface runoff are 
to be designed for sustainable water resources development in the Jemma sub-basin. Because, surface runoff is the dominant hy
drological component which is highly dependent on rainfall. 

3.3. Bias correction of regional climate models simulation 

Using distribution mapping bias correction method, the overestimation and underestimation of RCMs simulation of mean monthly 
rainfall was sufficiently attuned with observed mean monthly rainfall of the entire sub-basin (Fig. 6). The bias correction also adjusted 
the monthly rainfall distribution particularly the peak rainfall values. In the observation from 1981 to 2005, the highest observed 

Table 3 
Calibration and validation performance of the SWAT model at the Beressa, Robi Gumero and Jemma river gauging stations of Jemma sub-basin. 
Beressa, Ribit-Lemi and Jemma river gauging stations are located at the upper, middle, and downstream areas of the Jemma sub-basin.  

Objective functions River Stations 

Beressa Robi Gumero Jemma 

Calibration (2002–2008) Validation (1991–1999) Validation (1991–2002) Validation (1996–1997) 

NSE 0.78 0.59 0.61 0.85 
R2 0.79 0.59 0.62 0.86 
PBIAS − 4.2 9.4 − 2.1 10.4 
bR2 0.60 0.32 0.42 0.70 
RSR 0.46 0.64 0.62 0.39 
P-factor (%) 80 71 68 64 
R-factor 0.65 0.30 0.85 0.51  
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Fig. 5. Calibration and validation of SWAT model at Robi Gumero and Jemma gauge stations of the Jemma sub-basin. a) Calibration at Robi 
Gomero b) validation at Robi Gumero and c) validation at Jemma gauge station. 

Table 4 
Water balance components of the Jemma sub-basin in annual, dry and wet years. The estimates are based on the calibrated and validated model under 
baseline climate.   

Average (1981–2013) Dry Year (2002) Wet Year (1996) Dry Season (Dec-Feb) Rainy Season (Jun- Sep) 

Rainfall (mm yr− 1) 1039 801 1286 47.97 786.28 
ET(mmyr− 1) 537.30 510 645 50.00 282 
SURQ(mm yr− 1) 419.33 268 554 9.79 351 
GWQ(mm yr− 1) 67.81 27 77 3.43 41 
LATQ(mm yr− 1) 15.59 14 20 3.00 9.0 
WYLD(mm yr− 1) 500.84 303 642 16 390 
PERC(mm yr− 1) 86.12 27 81 0.72 57  
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monthly rainfall occurred in July and August, whereas some RCMs (CCLM (CNRM-CM5) and CCLM (EC-EARTH)) simulated higher 
rainfall occurred in September, October and May. In this regard, the bias correction effectively adjusts the RCMs simulation of mean 
monthly and seasonal rainfall biases. There are also other studies which have investigated that bias correction methods are able to 
correct climate models simulation (Elshamy et al., 2009; Teutschbein & Seibert, 2012; Fang et al., 2015; Bhatta et al., 2019). 

RCMs simulation of TMAX and TMIN is characterized by steady overestimation and underestimation of TMIN and TMAX (Fig. 7). 
The overestimation of TMIN and underestimation TMAX by the RCMs was effectively adjusted with observed mean monthly TMAX and 
TMIN using bias correction (Fig. 7). Concomitantly, distribution mapping method was effective to adjust TMAX and TMIN simulation 
of GCMs at Addis Ababa of Ethiopia (Feyissa et al., 2018). Besides, different bias correction methods were also able to adjust mean 
daily, monthly and seasonal TMIN and TMAX of different RCMs simulation in Finchaa watershed of Blue Nile Basin (Geleta and 
Gobosho, 2018). 

3.4. Rainfall and temperature under future climate scenarios 

Future climate scenarios for the Jemma sub-basin were developed by blending different GCMs, RCMs, emission scenarios and 
robust bias correction method i.e distribution mapping. In the ensemble mean of RCM (E-RCMs), a consistent reduction of rainfall 
which ranges from 19% to 23% under all climate scenarios is detected. Large difference in rainfall change signal is observed among 
RCMs (S-RCMs) than among the ensemble mean of RCMs in the near and long-term climate scenarios. In the individual RCMs (S- 

Fig. 6. Performance of bias correction method in adjusting mean, distribution and intensity of rainfall. a) Raw RCM simulations and RCM simu
lations after bias correction. b) Performance of bias correction technique in adjusting daily rainfall as measured by 90th percentile (mm) and 
probability of wet days (%). Values are area-weighted across the Jemma sub-basin. 
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RCMs), a subsidence of future rainfall is in the order of − 43% to 0.5% for the near-term and from − 42% to 12% for the long-term under 
RCP8.5 scenario. Whereas unpredictable response of rainfall to emission scenarios is projected. Higher reduction of rainfall is projected 
in the near-term than long-term climate condition under RCP8.5 emission scenario (Fig. 8). In the RCP4.5 emission scenario, higher 
reduction of rainfall is projected in the long-term climate condition than the near-term climate condition. 

Seasonally, all seasons showed a reduction of rainfall except autumn season in which persistent increase of rainfall in future climate 
scenarios is projected (Table 5). High volumetric reduction of rainfall is projected in summer season, but high percentage reduction of 
rainfall is estimated in spring (March-May) followed by winter (December–February) seasons than summer under future climate 
scenarios. Positive change on autumn rainfall indicates there will be slight shifts of seasonal rainfall from summer to autumn. 
Concomitantly, multi-model ensemble mean project a shift in seasonal patterns of rainfall, with decreasing and increasing of rainfall in 
the June to July and August to November respectively in the Upper Blue Nile Basin (Liersch et al., 2016). In contrast to change on the 
dry season (spring and winter), Worqlul et al. (2018) has investigated an increase of dry season rainfall in future climate in Upper Blue 
Nile Basin using the downscaled outputs of HadCM3 climate model. 

All individual RCM outputs showed a decrease in mean monthly rainfall in the near-term and long-term future except GCMs 
downscaled using REMO model (Fig. 9). Consequently, the ensemble mean monthly rainfall under all climate scenarios showed a 
decrease under both RCP scenarios. Concurrently, ensemble of different RCMs have projected a decrease of rainfall during the 2060 s 
and 2080 s periods under RCP4.5 and RCP8.5 scenarios in the Himalayan River Basin (Bhatta et al., 2019). Besides, the ensemble mean 
of multiple models also project a decrease of rainfall during the mid (2040–2069) and late (2070–2099) century under A2 and B1 
emission scenarios in the Nile River Basin (Beyene et al., 2010). 

In all climate scenarios, an increase of TMAX and TMIN is projected in the RCMs and in the ensemble mean of RCMs. In the 
ensemble mean of RCMs, a consistent increase of TMAX which ranges from1.01 ◦C to 3.13 ◦C is detected under future climate sce
narios. Similarly, a consistent increase of TMIN which ranges from 1.14 ◦C to 5 ◦C is projected under future climate scenarios. In 
contrast to the projected rainfall, large difference in projected TMAX and TMIN is detected among emission scenarios than among 

Fig 7. Mean monthly TMAX and TMIN (◦C) of observed, RCMs simulation and statistically bias corrected RCMs outputs using distribution mapping. 
Values are area-weighted across the Jemma sub-basin. 

G. Worku et al.                                                                                                                                                                                                         



Climate Risk Management 31 (2021) 100272

13

RCMs. Higher increase of TMIN and TMAX is estimated from climate scenarios under RCP8.5 emission scenarios. The Fifth IPCC 
assessment report has also attributed that emission scenarios are major drivers of temperature change (IPCC, 2013). Again in 
agreement with the projected concentration of greenhouses gases, high increase of TMAX and TMIN is projected in the long-term 
future than the near-term future. The individual RCMs and the ensemble mean of RCMs project higher increase of TMIN than 
TMAX under near and long-term climate scenarios. In general, TMAX and TMIN under all climate scenarios have shown strong 
agreement with the projected global temperature. This substantiates there will be high increase of temperature unless substantial and 
sustainable measures are to limit greenhouse gases emission by the global society are realized. 

Fig. 8. Mean annual rainfall (mm) in baseline and future climate scenarios in each sub-watershed of the Jemma sub-basin; a) baseline climate, b) 
ensemble mean (2021–2050) RCP4.5, c) ensemble mean (2021–2050) RCP8.5, d) ensemble mean (2071–2100) RCP4.5 and e) ensemble mean 
(2071–2100) RCP8.5. 

Table 5 
Mean seasonal rainfall (mm) under baseline and future climate scenarios. The changes in the water balance components were estimated for an 
ensemble mean of RCMs under RCP4.5 and RCP8.5 emission scenarios.  

Rainfall (mm yr− 1) Baseline (1981– 
2013) 

Near-term 2021–2050 
(RCP4.5) 

Near-term 2021–2050 
(RCP8.5) 

Long-term 2071–2100 
(RCP4.5) 

Long-term 2071–2100 
(RCP8.5) 

Summer (June - 
September) 

786 637(-19%) 628(-20%) 626(-20.35%) 673(-14%) 

Spring (March - May) 168 118(-30%) 108(-36%) 101(-40%) 90(-46%) 
Winter(December - 

February) 
48 20(-58%) 17(-65%) 16(-67%) 19(-60%) 

Autumn (October - 
November) 

36 39(8%) 41(14%) 45(25%) 49(36%)  
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3.5. Trends of rainfall and temperature under baseline and climate scenarios 

Rainfall, TMAX and TMIN under different climate change scenarios exhibited different trends. Rainfall under baseline climate 
scenario showed an increasing but insignificant trend. However, the rainfall in the near-term climate scenarios revealed a negative 
trend. Even statistically significant negative change is detected in the rainfall under RCP8.5 (2021–2050) climate scenario (Table 6 and 
Fig. 10). Despite negative change from the baseline rainfall, the trend of rainfall under the long-term climate scenarios is positive. This 

Fig. 9. Mean monthly rainfall under future climate scenarios. A) near-term (2021–2050) RCP4.5, B) near-term (2021–2050) RCP8.5, C) long-term 
(2071–2100) RCP4.5 and D) long-term (2071–2100) RCP8.5. The scenarios were done using the RCPs (Representative Concentration Pathways) 4.5 
and 8.5. Values are area-weighted across the Jemma sub-basin. 

Table 6 
Trend of Rainfall, TMAX and TMIN under baseline and future climate scenarios in the Jemma sub-basin.  

Stations Rainfall TMAX TMIN 

Zs bsen Zs bsen Zs bsen 

Baseline (1983–2013)  1.22  2.4 0.05 *  3.90 0.05 *  3.90 
RCP4.5 (2021–2050)  − 0.49  − 1.16 4.67**  0.03 5.67**  0.08 
RCP8.5 (2021–2050)  − 2.34**  − 10.99 4.64**  0.05 5.31**  0.10 
RCP4.5 (2071–2100)  0.68  0.45 1.89  0.01 1.50  0.01 
RCP8.5 (2071–2100)  0.21  0.59 5.56**  0.06 6.20**  0.10 

Zs and bsen are Mann-Kendal test and Sen Slope values respectively. 
*Statistically significant trends at the 5% significance level. 
**Statistically significant trends at the 1% significance level. 
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indicates there is an increase in rainfall within the climate window of 2071 – 2100. 
Concomitant to global trend and consecutive IPCC reports, TMAX and TMIN showed statistically significant increase but differ in 

magnitude under baseline and future climate scenarios (Table 6). In most climate scenarios, the trend in TMAX and TMIN is statis
tically significant (at 1% and 5% level). It is only in the RCP4.5 (2071–2100) climate scenario the trend is not significant. This is 
simultaneous with the mean change in TMAX and TMIN which show a positive deviation from TMAX and TMIN of the baseline climate. 
In most of the climate scenarios, the trend in TMIN is higher than TMAX. The mean of future climate scenarios also show higher 
increase in TMIN than TMAX from the baseline climate. The trends in TMAX and TMIN under different climate scenarios suggest that 
climate change is behind the increase in temperature in the Jemma sub-basin. This study also investigated great similarity between the 

Fig. 10. - Trend of annual rainfall under baseline and different future climate change scenarios. a) Baseline climate scenarios, b) near-term 
(2021–2050) ensemble mean of RCP4.5, c) near-term (2021–2050) ensemble mean of RCP8.5, d) long-term (2071–2100) ensemble mean of 
RCP4.5 and e) long-term (2071–2100) ensemble mean of RCP8.5. 
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results of Mann-Kendall and Sen’s slope statistical tests. 

3.6. Water balance components under different future climate scenarios 

The change in rainfall and temperature due to the future climate was seen to trigger a change on the water balance components in 
the Jemma sub-basin. Although there is a difference in magnitude, the surface runoff showed a decline under all the future climate 
scenarios. The highest reduction of surface runoff (-65%) was observed in the near-term period (2021–2050) and under RCP8.5 climate 
scenario. Over long-term climate scenario (2071–2100), the reduction in surface runoff was smaller both in the RCP4.5 and RCP8.5 
emission scenarios (Table 7 and Fig. 11). This may be attributed to the better rainfall in the long-term climate scenarios compared to 
the near-term climate scenarios. Generally, the reduction in surface runoff is related to the reduction in rainfall. The highest reduction 
in surface runoff occurred during the main rainy season (June-September) (Fig. 14). Spatially, in the sub-watersheds located in the 
northern and southern areas, there will be higher reduction of surface runoff under the near term and long-term climate scenarios 
(Fig. 11). 

For the coming century, annual rainfall and surface runoff may decrease, however evapotranspiration may increase. The increase in 
actual evapotranspiration is in partly due to a consistent increase in temperature. Similar to the surface runoff, there will be lower 
actual evapotranspiration in the northern part of the sub-watersheds under all future climate scenarios (Fig. 12). Lower soil water and 
rainfall in the northern part of the sub-watersheds could result low actual evapotranspiration since it is changed due to changes in 
temperature and soil water (Olsson et al., 2016). 

The total water yield may decrease for the coming century due to the impact of future climate change. The magnitude and spatial 
pattern of change was similar to the impact to surface runoff (Table 7). The largest reduction of water yield (-56%) was estimated from 
the near-term ensemble mean of RCP8.5 and long-term RCP4.5 scenarios, where the highest reduction of rainfall and surface runoff 
was projected (Table 7). Higher water yield is projected in the long-term ensemble of RCP8.5 than other future climate scenarios 
primarily due to the higher projected rainfall and surface runoff in this climate scenario. The reduction of total water yield may cause 
rampant impacts on the agriculture, domestic and livestock water supply and other ecosystem services in the Jemma sub-basin. The 
northern and the southern sub-watersheds will be characterized by lower water yield than other areas of the basin (Fig. 13). These 
areas of the sub-basin are also characterized by low water yield under the baseline climate scenario and in these areas, low surface 
runoff is projected. 

Groundwater is another water balance component which will be affected by anticipated climate change. In this study, there will be 
higher drop of groundwater under climate scenario of RCP4.5 (2071–2100) (Fig. 14). This could be due to high loss of water through 
evapotranspiration in this climate scenario in which an increase and higher evapotranspiration is projected than other climate sce
narios. Different from surface runoff and total water yield, there is no sharp decline of groundwater in the months of September to 
November, the maximum groundwater flow is during September (Fig. 14d). The monthly hydrography of the groundwater flow also 
indicates there is one-month lag-time between surface runoff and groundwater flow (Fig. 14). 

Seasonally, a reduction of surface runoff, groundwater discharge and water yield are estimated in all seasons under future climate 
scenarios. However, the magnitude of change is different among seasons. High volumetric reduction of surface runoff and water yield 
is estimated in summer season, while high percentage reduction of surface runoff, water yield and groundwater discharge is estimated 
in spring (March-May) followed by winter (December–February) seasons than summer season under future climate scenarios (Table 8). 
This indicates dry seasons will be more water constrained in the future climate condition. Even though, persistent increase in autumn 
season rainfall is projected under future climate scenarios, this season is among the seasons showed higher subsidence of water 
availability. This could be due to the increase in temperature which trigger loss of water through evapotranspiration. 

In contrast to surface runoff, groundwater and water yield, future climate will be characterized by an increase and more loss of 
water through evapotranspiration during different seasons. This might be attributed to an increase in temperature in the future climate 
scenarios. This corroborates that the increase in evapotranspiration alone could trigger the sub-basin become more water constrained, 
which is the case for Blue Nile Basin (Elshamy et al., 2009). Lower loss of water through evapotranspiration is estimated in spring and 

Table 7 
Mean annual water balance components under baseline climate future climate scenarios. The changes in the water balance components were esti
mated for an ensemble mean of RCMs under RCP4.5 and RCP8.5 emission scenarios.   

Baseline (1981– 
2013) 

Near-term 2021–2050 
(RCP4.5) 

Near-term 2021–2050 
(RCP8.5) 

Long-term 2071–2100 
(RCP4.5) 

Long-term 2071–2100 
(RCP8.5) 

Rainfall (mm 
yr− 1) 

1039 799 (-20%) 782(–22%) 791 (-21%) 812(-19%) 

ET(mm yr− 1) 537.30 584.39(9%) 574.60(7%) 565.40 (5%) 557.29(4%) 
SURQ (mm 

yr− 1) 
419.33 191.46(-57%) 185.27(-58%) 190.41(-57%) 226.07(-48%) 

GWQ (mm yr− 1) 67.81 37.61(-44%) 36.20(-47%) 32.17(-52%) 40.41(-40%) 
LATQ(mm yr− 1) 15.59 11.99(–23%) 8.73(-44%) 10.95(-29%) 8.62(-45%) 
WYLD 

(mmyr− 1) 
500.84 231.02(-54%) 220.02(-56%) 222.19(-56%) 266.03(-47%) 

PERC(mmyr− 1) 86.12 47.77(-44%) 45.90(-47%) 40.83(-53%) 51.28(-40%) 

ET = evapotranspiration, SURQ = surface runoff, GWQ = groundwater contribution to streamflow, LATQ = lateral flow into stream, WYLD (total 
water yield) = SURQ + LATQ + GWQ-LOSSES, PERC = percolation below root zone (groundwater recharge). 
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winter seasons under future climate scenarios than the baseline scenario. This might be due to the reduction of water available for 
evapotranspiration in spring and winter seasons in the future climate scenarios (Table 8). 

The effect of climate change on water balance components was also investigated using the bias corrected output of CCLM4 (MPI- 
ESM-LR), which has showed better performance in capturing the rainfall and temperature of the historical (1981–2005) period. A 
concomitant change on water balance components is estimated using the output of CCLM4 (MPI-ESM-LR) and ensemble mean of 
RCMs. However, lower subsidence of surface runoff, water yield and groundwater flow are estimated using CCLM4 (MPI-ESM-LR) 
model than the ensemble mean of RCMs. For instance, a decrease of surface runoff by 47%, 51%, 54% and 53% is estimated using 
CCLM4(MPI-ESM-LR) model under, 2021–2050 (RCP4.5), 2021–2050 (RCP8.5), 2071–2100 (RCP4.5) and 2071–2100 (RCP8.5) 
climate scenarios respectively (Table 9). Correspondingly, a decrease of surface runoff by 57%, 58%, 57% and 48% is projected using 
the ensemble mean of RCMs under, 2021–2050 (RCP4.5), 2021–2050 (RCP8.5), 2071–2100 (RCP4.5) and 2071–2100 (RCP8.5) 
climate scenarios respectively (Table 7). In general, comparable signal of change on rainfall, surface runoff evapotranspiration, total 
water yield and groundwater is estimated using the output of ensemble mean of RCMs and CCLM4 (MPI-ESM-LR) model. 

In the Upper Blue Nile Basin, there are different studies which project the negative and positive impact of climate change on the 
water resource base of the basin. For instance, in Tana sub-basin of Upper Blue Nile Basin, a reduction in surface runoff and an increase 
in evapotranspiration is also projected using the output of 15 GCMs and SWAT hydrologic model (Setegn et al., 2011). Worqlul et al., 
2018 also project a reduction of average streamflow and an increase of evapotranspiration in the Beles basin of the Upper Blue Nile 
Basin. Conversely, an increment of streamflow is projected using the output of single GCM (HadCM3) and SWAT hydrological model in 
the Upper Gilgel Abay Catchment of Blue Nile Basin (Adem et al., 2016). Even with and without a change on rainfall, an increase in 
temperature and potential evapotranspiration lead reduced wet season runoff and the Upper Blue Nile Basin may become more 

Fig. 11. Mean annual surface runoff (SURQmm) under baseline and future climate scenarios in each sub-watershed of the Jemma sub-basin. a) 
baseline (1981–2014), b) near-term (2021–2050) ensemble mean of RCP4.5, c) near-term (2021–2050) ensemble mean of RCP8.5, d) long-term 
(2071–2100) ensemble mean of RCP4.5 and e) long-term (2071–2100) ensemble mean of RCP8.5 climate scenarios. 
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moisture constrained in the future (Elshamy et al., 2009). In Jemma sub-basin and other studies particular to Upper Blue Nile Basin 
(Elshamy et al., 2009; Setegn et al., 2011; Liersch et al., 2016; Worqlul et al., 2018), a consistent increase in temperature is projected 
and this would intensify a decline in water availability through evapotranspiration. 

3.7. Trends of hydrologic components under baseline and future climate scenarios 

Similar with climatic variables, trend of water balance components under different climate scenarios was analyzed. Parallel to an 
increasing trend of rainfall and temperature under the baseline climate scenario, surface runoff, total water yield, groundwater and 
actual evapotranspiration revealed a positive trend (Table 10). While surface runoff, total water yield and groundwater showed 
consistent decreasing trend under most of future climate scenarios (Table 10). Particularly, statistically significant reduction of surface 
runoff is detected under RCP8.5 (2021–2050) and RCP4.5 (2071–2100) climate scenarios. In contrast actual evapotranspiration 
showed consistent increase under baseline and future climate scenarios. Even the change in actual evapotranspiration is statistically 
significant (at 5% level) under RCP8.5 (2021–2050) and RCP8.5 (2071–2100) climate scenarios. Such trend on water balance com
ponents and climatic variables could trigger compound effects which heighten effect of climate change in the sub-basin. 

3.8. Uncertainties 

The observed rainfall and temperature is captured by the raw simulation of RCMs and it is within the uncertainty range of rainfall 
and temperature simulated by different RCMs (Fig. 6a and Fig. 7). The ensemble mean is within the uncertainty range of different 
RCMs simulation and capture the seasonal pattern of the mean monthly observed rainfall, TMAX and TMIN. Particularly, the ensemble 

Fig. 12. Mean annual actual evapotranspiration (ETmm) under baseline and future climate scenarios in each sub-watershed of the Jemma sub- 
basin. a) baseline (1981–2013), b) near-term (2021–2050) ensemble mean of RCP4.5, c) near-term (2021–2050) ensemble mean of RCP8.5, d) 
long-term (2071–2100) ensemble mean of RCP4.5, and e) long-term (2071–2100) ensemble mean of RCP8.5. 
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mean is superior in capturing the observed mean monthly TMAX than other S-RCM. The uncertainties between the RCMs simulation 
and observation were adequately adjusted through bias correction (Fig. 6 and Fig. 7). Therefore, this was germane to use the ensemble 
of bias adjusted RCMs output to input hydrological model. The RCM i.e CCLM4 (MPI-ESM-LR) simulation which showed better 
performance in capturing the historical climate of the basin was also used to fed the hydrological model. Most of the RCMs and the 
ensemble mean showed uniformity in climate change signal, but with different magnitude. The GCMs downscaled through REMO 
model project lower reduction of rainfall in the future climate than GCMs downscaled by CCLM4 model. 

In some cases bias correction methods showed poor representation of extreme climatic and hydrologic values (Maraun, 2012; Wang 
and Kotamarthi (2015); Liersch et al. (2016). For instance, Liersch et al., (2016) investigated weakness of bias correction techniques in 
reproducing high and low streamflow and deterioration of hydrological simulation by bias correction techniques. This could be the 
inaccuracy of the bias correction methods in developing scale and shape parameters which impact the distribution and intensity of 
climatic and hydrological values. In this study, the selected bias correction technique i.e distribution mapping technique was effective 
in adjusting the 90th percentile and wet day probability of RCMs simulation with observed counterparts (Fig. 6b). The RCMs before 
and after bias correction consistently showed a decrease of rainfall and an increase in temperature, which mean bias correction triggers 
no change in climate change signal. 

In hydrological modelling, P-factor (95PPU) and the r-factor measure input uncertainty, conceptual model uncertainty and parameter 
uncertainty (Abbaspour et al., 2007). This study showed good performance of P-factor and the r-factor, however, only 64%-80% of the 
observed data was bracketed by the 95PPU. This accentuates the observed streamflow data is not high quality (Abbaspour et al., 2007) 
and contains some outliers. For instance, in the year 1994, high observed discharge is recorded and the 95PPU did not bracketed such 

Fig. 13. Mean annual water yield (WYLDmm) under baseline and future climate scenarios in each sub-watershed of the Jemma sub-basin. a) 
Simulated water yield for the a) period 1981–2013, b) near-term (2021–2050) ensemble mean of RCP4.5, c) near-term (2021–2050) ensemble mean 
of RCP8.5, d) long-term (2071–2100) ensemble mean of RCP4.5 and e) long-term (2071–2100) ensemble mean of RCP8.5 climate scenarios. 
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like high flows. In general, this study provides a comprehensive understanding of the hydrology of the basin and the response of 
hydrological components to different climate scenarios for the stakeholders of the basin and the policymakers. 

4. Conclusion 

The livelihood of the inhabitants of the Jemma sub-basin is highly dependent on rain-fed agriculture. On the other hand, the rain- 
fed agriculture is frequently affected by climate change and variability. Since rainfall is the main source of water yield of the Jemma 
sub-basin, a change in climate could trigger repercussion on the water resources of the basin. This study used bias adjusted ensemble 
mean of RCM simulations (E-RCM), single RCM simulation (E-RCM) and the SWAT model to explore impact of climate change on the 
water balance components of the Jemma sub-basin using the SWAT model. Multi-site calibration and validation of the model 
reproduced the baseline hydrological conditions of the sub-basin. The sensitivity analysis showed that streamflow is highly sensitive to 
parameters related to surface water processes. A strong relationship was found among rainfall, surface runoff and total water yield both 
spatially and seasonally. 

This study used bias adjusted ensemble mean of RCM simulations (E-RCM) and single RCM simulation (E-RCM) to explore hy
drological climate change impact. Ensemble mean of RCM simulations and single RCM simulation revealed comparable climate change 
signal. This indicates low uncertainty between the RCMs in the ensemble mean and single RCM simulation. However, this study 
recommends to use the ensemble mean which can capture under and over estimation of single RCM simulation. In fact other studies 
(Bates et al., 2008; Teutschbein and Seibert, 2010; IPCC, 2013) also suggest ensemble mean of RCM simulations for climate to change 
impact assessment that single RCM simulation. 

A decrease in rainfall and an increase in temperature and evapotranspiration will cause a decrease in surface runoff and water yield 

Fig. 14. Mean monthly distribution of the hydrologic components for baseline, the near term (2021–2050) and long-term (2071–2100) 
climate scenarios. 

G. Worku et al.                                                                                                                                                                                                         



ClimateRiskManagement31(2021)100272

21

Table 8 
Mean seasonal rainfall (mm) under baseline and future climate scenarios. The outputs of the water balance components were estimated for an ensemble mean of RCMs under RCP4.5 and RCP8.5 emission 
scenarios.   

Baseline (1981– 2013) Near-term 2021–2050 (RCP4.5) Near-term 2021–2050 (RCP8.5) Long-term 2071–2100 (RCP4.5) Long-term 2071–2100 (RCP8.5) 

ET(mm yr− 1) 
Summer (June – September)  271.83 333.89(23%) 337.01(24%) 332.26(22%) 332.48(22.3%) 
Spring (March-May)  133.86 122.29(-9%) 116.76(-13%) 117.43(-12%) 123.90(-7.4%) 
Winter(December–February)  51.32 30(-41%) 26.20(-49%) 23.64(-54%) 24.34(-53%) 
SURQ (mm yr− 1) 
Summer (June – September)  362.49 172.86(-54%) 166.26(-56%) 172.24(-54.3%) 203.52(-45%) 
Spring (March-May)  37.53 8.69(-89%) 8.98(-88%) 7.90(-91%) 9.69(-86%) 
Winter(December–February)  8.49 3.28(-77%) 3.99(-82%) 4.53(-72%) 4.68(-69%) 
GWQ (mm yr− 1) 
Summer (June – September)  43.50 24.54 (-44%) 24.69 (-43%) 20.16 (-54%) 27.52 (-37%) 
Spring (March-May)  4.44 1.24 (-72%) 1.18 (-73%) 0.88 (-80%) 0.97 (-78%) 
Winter(December–February)  4.22 () 2.18 (-48%) 1.82 (-57%) 1.97 (-53%) 2.15 (-49%) 
WYLD (mmyr− 1) 
Summer (June – September)  406.76 194(-52%) 186.11(-54%) 188.72(-54%) 226.36(-44%) 
Spring (March-May)  41.69 7.62(-82%) 7.39(-82.3%) 6.15(-85%) 7.96(-81%) 
Winter(December–February)  17.35 8.41(-52%) 7.07(-59%) 7.84(-55%) 8.45(-51%)  
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under different future climate scenarios. There is no strong seasonal shift of rainfall, runoff and water yield between the current and 
projected future climate conditions. The highest decrease in water yield may be observed during the rainy season (June-September) 
suggesting that the rainfed agricultural production will be severely impacted. This rainy season is the main agricultural cultivation 
season, as a result a decline on rainfall and water yield will decrease crops growing season, soil water for crops, crops productivity and 
water availability to livestock and other domestic uses. 

Climate change and its hydrologic impact in the Jemma sub-basin prompts to implement sustainable surface water resource 
management strategies. To avert future climate change impact on each sub-watershed of the sub-basin, surface runoff management 
alternatives would be essential to maintain water availability, since surface runoff contributes large proportion to the total water yield. 
To develop surface water resource management strategies, the projected climate change scenarios and the simulated impacts of climate 
change are to be incorporated in the adaptation decisions analysis. Such strategies may provide optimal benefits in maintaining the 
water resources availability, to mitigate and adapt adverse impacts of climate conditions and thereby maintain or even enhance 
agricultural production. However, a detailed study is warranted to identify water management technologies that suits the biophysical 
and socio-economic conditions in the Jemma sub-basin. 
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