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ABSTRACT 

 

Pavements play a vital role in the transportation infrastructure in the United States. 

Pavement performance modeling is an essential step in pavement design and management. 

Recently, several software and tools have been developed to help to design a pavement at the 

project level. Pavement mechanistic-empirical (ME) design is one of the AAHSHTOWare Design 

software built to design new and rehabilitated pavements with flexible, rigid, and composite 

structures. The nationally calibrated performance models in Pavement ME do not well represent 

the construction and materials specifications, traffic, and climate conditions specific to each state 

and cannot precisely reflect the pavement performance. On the other hand, at the network level, 

the pavement performance should be monitored regularly, and maintenance and rehabilitation 

(M&R) treatments should be planned to keep the pavement in good condition. An acceptable 

treatment policy maximizes the service life and returns the benefits of the constructed pavement. 

The goal of this research is to enhance designing models for the flexible pavement of Oklahoma 

and develop a new M&R decision process using the surface roughness and structural capacity of 

the pavement section.  

The nationally calibrated models show an improper prediction performance and a 

significant bias, which asserts the necessity of local calibration. Local calibration of Pavement 

Mechanistic-Empirical (ME) software improved the pavement performance prediction models and 

optimized the performance models for the pavement network of Oklahoma. The locally calibrated 

coefficients for distress and IRI models were determined for the Oklahoma pavement system. As 

a result, the error in performance prediction models was reduced through the calibration process. 
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The distress and IRI models show that the calibrated coefficients improve Pavement ME 

predictions and the design of flexible pavements in Oklahoma.   

The second objective of this research was developing a new maintenance and rehabilitation 

decision process which considers the stochasticity of the pavement performance prediction and 

suggests the optimized maintenance activities for the given section by implementing a newly 

developed predictive model. The developed M&R decision method is a Markov Decision Process 

that employs IRI from a newly developed IRI prediction model and structural number from 

historical data. The IRI prediction model predicts the IRI with high accuracy by having the 

structural number, road class, climate condition, traffic load, and subgrade and structural 

information. Several advanced machine learning techniques were investigated, and the best model 

was implemented in the MDP M&R method.  This model considers the M&R activities from 

pavement history, which affects the pavement deterioration rate, and suggests an M&R Policy for 

the given pavement system. By improving predictions and developing effective maintenance 

decision policies, machine learning algorithms can optimize maintenance and rehabilitation 

interventions and reduce maintenance costs.  

  



 

iv 

 

 

ACKNOWLEDGMENTS 

 

I would like to thank my committee chair, Dr. Sakhaei FAr, and my committee members, 

Dr. Lytton, Dr. Zollinger,and Dr. Lewis for their guidance and support throughout the course of 

this research. 

Thanks also go to my friends and colleagues and the department faculty and staff for 

making my time at Texas A&M University a great experience.  

Finally, thanks to wife for her patience and love and to my mother for her 

encouragmenmt.  

  



 

v 

 

 

CONTRIBUTORS AND FUNDING SOURCES 

 

Contributors 

This work was supervised by a thesis committee consisting Dr. Sakhaei Far, Dr. Lytton 

and Dr. Zollinger from the Department of Civil Engineering and Dr. Lewis from the College of 

Architecture. 

All other work conducted for the dissertation was completed by the student 

independently.  

Funding Sources 

This work was made possible in part by Oklahoma Department of Transportation under 

Grant Number ODOT SPR Item Number 2277. The contents do not necessarily reflect the 

official views and policies of the Oklahoma DOT. This publication does not constitute a 

standard, specification, or regulation. 

 

 

 

 

 

  



 

vi 

 

 

TABLE OF CONTENTS 

Page 

ABSTRACT .................................................................................................................................... ii 

ACKNOWLEDGMENTS ............................................................................................................. iv 

CONTRIBUTORS AND FUNDING SOURCES .......................................................................... v 

TABLE OF CONTENTS ............................................................................................................... vi 

LIST OF FIGURES ..................................................................................................................... viii 

LIST OF TABLES .......................................................................................................................... x 

1. INTRODUCTION .................................................................................................................. 1 

1.1. Objectives and Scope ........................................................................................................... 2 

2. LITERATURE REVIEWS ..................................................................................................... 5 

2.1. Pavement ME local calibration ............................................................................................ 5 
2.2. Maintenance and rehabilitation (M&R) planning ................................................................ 8 

2.3. International Roughness Index (IRI) ................................................................................... 9 
2.4. Structural Number (SN) ..................................................................................................... 12 

3. PAVEMENT ME LOCAL CALIBRATION PROCESS ..................................................... 17 

3.1. Methodology ...................................................................................................................... 17 

3.1.1. Minimum Sample Size ................................................................................................ 18 
3.1.2. Selection of Roadway Segment .................................................................................. 19 
3.1.3. Data Extraction and Evaluation .................................................................................. 22 

3.2. Pavement Performance Model Calibrations ...................................................................... 22 
3.2.1. Rutting Model ............................................................................................................. 24 
3.2.2. Fatigue Cracking Model ............................................................................................. 25 
3.2.3. Transverse Cracking Model ........................................................................................ 26 

3.2.4. IRI Model .................................................................................................................... 27 
3.3. Discussion of Calibration Analysis Results ....................................................................... 28 
3.4. Development of Input-ME Analysis Tool ......................................................................... 33 

4. OVERVIEW OF THE MACHINE LEARNING METHODS ............................................. 40 

4.1. Generalized Linear Model (GLM) ..................................................................................... 40 
4.2. Support Vector Machine (SVM) Regression ..................................................................... 42 
4.3. Multivariate Adaptive Regression Splines (MARS) ......................................................... 43 



 

vii 

 

 

4.4. Neural Network Model ...................................................................................................... 45 
4.5. XGboost Tree ..................................................................................................................... 46 

4.6. Markov Decision Process (MDP) ...................................................................................... 48 
4.7. Deep Q-Learning ............................................................................................................... 51 

5. AN INTELLIGENT M&R DECISION-MAKING FOR FLEXIBLE PAVEMENTS ........ 53 

5.1. Dataset and Exploratory Data Analysis (EDA) ................................................................. 56 

5.1.1. Pavement Sections ...................................................................................................... 56 
5.1.2. Feature Statistics ......................................................................................................... 57 
5.1.3. Data Cleaning and Processing .................................................................................... 62 

5.2. IRI Fitting Model ............................................................................................................... 65 
5.3. Extracting Pavement Structural Properties ........................................................................ 67 

5.4. IRI Prediction Models ........................................................................................................ 70 
5.5. M&R Decision-Making Model .......................................................................................... 71 

6. MODEL DEVELOPMENT AND DISCUSSION................................................................ 73 

6.1. Generalized Linear Model (GLM) ..................................................................................... 73 
6.2. Support Vector Machine (SVM) Regression ..................................................................... 77 
6.3. Multivariate Adaptive Regression Splines (MARS) ......................................................... 80 

6.4. Artificial Neural Network(ANN) ....................................................................................... 82 
6.5. XGBoost ............................................................................................................................ 85 

6.6. Performance of New Developed Predictive Models .......................................................... 88 

7. M&R STRATEGY ............................................................................................................... 92 

7.1. MDP Environment ............................................................................................................. 93 

7.2. MDP States ........................................................................................................................ 93 
7.3. Transition Matrix ............................................................................................................... 94 
7.4. MDP Actions ..................................................................................................................... 94 

7.5. MDP Rewards .................................................................................................................... 95 
7.6. MDP Q-function ................................................................................................................ 96 
7.7. Results and Discussion ...................................................................................................... 99 

8. CONCLUSION AND RECOMMENDATION .................................................................. 102 

REFERENCES ........................................................................................................................... 105 

 

  



 

viii 

 

 

LIST OF FIGURES 

Page 

Figure 3-1- Location of roadway sections identified for local calibration effort of flexible 

pavements in Oklahoma ................................................................................................................ 20 

Figure 3-2- The representative flexible pavement sections used in local calibration effort ......... 20 

Figure 3-3- Highway functional class of projects selected for ODOT Pavement ME calibration 

process........................................................................................................................................... 21 

Figure 3-4- A schematic narrow down procedure for finding the rutting model calibration 

coefficients .................................................................................................................................... 24 

Figure 3-5 -Comparisons between measured and predicted (i) rutting, (ii) top-down cracking, (iii) 

bottom-up cracking, (iv) thermal cracking; and (v) IRI models (a) before and (b) after the local 

calibration process ........................................................................................................................ 29 

Figure 3-6 - The main window of INput-ME ............................................................................... 34 

Figure 3-7- The material dialog .................................................................................................... 35 

Figure 3-8- Binder properties and mix design gradation in asphalt concrete ............................... 36 

Figure 3-9- The general traffic and vehicle class distribution tab in the traffic module .............. 37 

Figure 3-10- The axle per truck data tab in the traffic module ..................................................... 38 

Figure 3-11- The calibration coefficient module .......................................................................... 39 

Figure 4-1- Schematic of MARS vs. linear regression fitted models ........................................... 44 

Figure 4-2- Evolution of XGBoost Algorithm from Decision Trees. Reprinted from (Kumar 

2019) ............................................................................................................................................. 47 

Figure 4-3- Typical Reinforcement Learning Cycle. Adopted from (Sutton et al. 2018) ............ 49 

Figure 5-1- The proposed methodology for the MDP M&R decision model............................... 55 

Figure 5-2- Location of the LTPP sections used in this research chapter. Blue Section: out of 

study sections. Green Sections: active sections. Reprinted from (InfoPave 1988; FHWA 1988) 57 

Figure 5-3 - Correlation between numerical variables ................................................................. 60 

Figure 5-4- Sensitivity of the SN estimated from FWD data to pavement roughness ................. 61 

Figure 5-5- The distribution of the original and normalized numerical variables ........................ 64 



 

ix 

 

 

Figure 5-6- Fitted model to the IRI change versus time for LTPP section 0502- Construction 

Number 3 ...................................................................................................................................... 66 

Figure 5-7- Model fit to the measured IRI at LTPP section 0607 ................................................ 67 

Figure 5-8 - Effect of temperature adjustment on calculated SN from FWD data ....................... 68 

Figure 5-9- SN history for LTPP section 0114 ............................................................................. 69 

Figure 6-1- Hyperparameter optimization for GLM model .......................................................... 75 

Figure 6-2- Pavement performance prediction by GLM model for (a) training(%75) and (b) 

testing(%25) datasets .................................................................................................................... 76 

Figure 6-3 - Hyperparameter optimization for SVMR model ...................................................... 78 

Figure 6-4- Pavement performance prediction by SVM model for (a) training(75%) and (b) 

testing(25%) datasets .................................................................................................................... 79 

Figure 6-5- Hyperparameter optimization for MARS model ....................................................... 81 

Figure 6-6- Pavement performance prediction by MARS model for (a) training(%75) and (b) 

test(%25) datasets ......................................................................................................................... 82 

Figure 6-7- ANN model plot developed for IRI prediction .......................................................... 83 

Figure 6-8- Pavement performance prediction by ANN model for (a) training(%75) and (b) 

testing(%25) datasets .................................................................................................................... 85 

Figure 6-9- Hyperparameter optimization for XGBoost model ................................................... 86 

Figure 6-10- Pavement performance prediction by XGBoost model for (a) training(%75) and (b) 

testing(%25) datasets .................................................................................................................... 87 

Figure 6-11 - Comparison of the performance of new developed predictive models .................. 89 

Figure 6-12 - Variable Importance derived from the XGBoost model ......................................... 91 

Figure 7-1 - The deep Q-Learning algorithm used for solving the Q-function. ........................... 97 

Figure 7-2- Convergence of Q-function gradient ......................................................................... 98 

Figure 7-3 - Predicted IRI and treatment time for LTPP section 0124 ......................................... 99 

Figure 7-4- MDP suggested treatment plans and actually placed treatments for selected LTPP 

sections ........................................................................................................................................ 101 

 

  

file:///C:/Users/mahmo/OneDrive%20-%20Texas%20A&M%20University/Proposal/Proposal-Rcode/Writing/Dissertation/09132021-%20Dissertation-MT.docx%23_Toc82460636


 

x 

 

 

LIST OF TABLES 

Page 

Table 2-1- Summary of studies applying machine learning techniques for IRI prediction .......... 13 

Table 3-1- Estimated number of pavement projects required for pavement ME validation and 

local calibration ............................................................................................................................. 18 

Table 3-2- Summary of the experimental section based on the layer thicknesses........................ 21 

Table 3-3- Summary of calibration coefficients for Oklahoma flexible pavement design ........... 27 

Table 3-4- Pavement ME performance model evaluations before and after the local clibration 

effort .............................................................................................................................................. 30 

Table 3-5 - Sensitivity analysis of the prediction error reduction after calibration effort for 

selected pavement performance models ....................................................................................... 32 

Table 5-1 - List of numerical pavement properties used in prediction and M&R models ........... 58 

Table 5-2 - List of categorical pavement properties used in prediction and M&R models .......... 61 

Table 5-3- Statistics of structural number change per year for three groups of pavement M&R 

experience ..................................................................................................................................... 70 

Table 6-1- Selected features for the final developed models ........................................................ 88 

Table 7-1- Impact of taking MDP actions on the MDP state features .......................................... 95 

Table 7-2- Relative cost of M&R actions ..................................................................................... 96 

Table 7-3- MDP and LTPP M&R plan benefit/cost ................................................................... 100 

 

 



 

 

1 

 

1. INTRODUCTION 

 

Pavements play a vital role in the transportation infrastructure in the United States (US). 

About 80% of transportation and 68% of the cargo transportation were through roads and highways 

(BTS 2019). The state system of highways in Oklahoma encompasses 2.5 percent of the US 

roadways. On average, passenger vehicles, buses, and trucks traveled more than 73.7 million 

vehicle miles each day in 2018 on the state-owned highway systems. Over 90% of roadways are 

surfaced with asphalt concrete pavement (ODOT 2019). The FHA data lists 33% of Oklahoma's 

roadways in poor condition, which ranks Oklahoma as the second-worst state in overall road 

condition. Oklahoma’s roadways' current condition asserts the need for research projects to 

improve the pavement design practice and optimize the life cycle of pavement network in the state.  

Pavement performance modeling is an essential step in pavement design and management 

from project to network levels. Several software and tools have been developed to help design a 

pavement at the project level. Pavement mechanistic-empirical (ME) design is one of the 

AAHSHTOWare Design software built to design new and rehabilitated pavements with flexible, 

rigid, and composite structures. The nationally calibrated performance models in Pavement ME 

do not well represent the construction and materials specifications, traffic, and climate conditions 

specific to each state and cannot precisely reflect the pavement performance (AASHTO 2010). 

Applying Pavement ME for designing flexible pavements with nationally calibrated performance 

prediction models may result in overestimation/underestimation of the asphalt thickness and 

properties that impose extra costs on the pavement construction overdesign early deterioration of 

the pavements. Therefore, many state agencies are trying to improve software outcomes by 
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implementing different local materials, construction, climate, and traffic characteristics to evaluate 

and calibrate performance models.  

On the other hand, at the network level, the pavement performance should be monitored 

regularly, and maintenance and rehabilitation (M&R) treatments should be planned to keep the 

pavement in good condition. An acceptable treatment policy maximizes the service life and returns 

the benefits of the constructed pavement. A proper pavement management system should provide 

a comprehensive, accurate perspective of the entire network to the manager to analyze the required 

amount of funds to extend the pavement network and keep the current network in the best possible 

shape. Determining the most effective treatment type and the most appropriate treatment schedule 

needs detailed information about the pavement structure and material properties, traffic loads, 

subgrade conditions, and climate information.  

 

1.1. Objectives and Scope 

The goal of this research is to improve designing models for the flexible pavement using 

case studies in Oklahoma and develop a new M&R decision process using the surface roughness 

and structural capacity of the pavement sections. This study has two main objectives.  

The first one is local calibration and implementation of AASHTOWARE pavement ME 

performance models for Oklahoma pavement systems. The calibration effort for flexible 

pavements in the state of Oklahoma includes: a) compiling local information collected from 

previous studies for ODOT and national databases and developing a material database that is 

compatible with the Pavement ME Design software; b) calibrating Pavement ME Design by 

adjusting the distress model coefficients to eliminate the bias between predicted and measured 

pavement performance; and c) developing an analysis tool, named “INput-ME” , for converting 
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and processing the local traffic data, climatic data, and material properties into Pavement ME 

Design input formats.   

The second one is developing an intelligent M&R decision-making method for flexible 

pavements. The decision-making model has been developed based on the pavement structural 

capacity and pavement roughness and recommends the optimal M&R, which increases the 

benefit over the cost of the pavement. The developed M&R decision method is a Markov 

Decision Process that employs IRI from a newly developed IRI prediction model and structural 

number from historical data. The IRI prediction model predicts the IRI with high accuracy by 

having the structural number, road class, climate condition, traffic load, and subgrade and 

structural information. Several advanced machine learning techniques were investigated, and the 

best model was implemented in the MDP M&R method.  This model considers the M&R 

activities from pavement history, which affects the pavement deterioration rate, and suggests an 

M&R Policy for the given pavement system. By improving predictions and developing effective 

maintenance decision policies, machine learning algorithms can optimize maintenance and 

rehabilitation interventions and reduce maintenance costs.  

This research will be of interest to state road agencies with road maintenance 

responsibilities, particularly ODOT. By improving predictions and developing effective M&R 

decision policy, machine learning algorithms can optimize maintenance and rehabilitation 

interventions and reduce maintenance costs. Moreover, the approach presented for M&R 

decision planning is generic. It can be applied using different pavement performance indicators 

such as the Pavement Condition Index (PCI) and Present Serviceability Index (PSI) according to 

road agencies' needs and goals, leveraging machine learning applications' potential. 
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This study is outlined in 8 chapters. Chapter 2 presents the literature reviews of Pavement 

ME calibration efforts, pavement performance prediction modeling, and pavement maintenance 

and rehabilitation planning. Chapter 3 presents the local calibration methodology and process, 

discussing the calibration effect on the prediction models and development of Input ME.  An 

overview of the Machine Learning models was presented in chapter 4.  Chapter 5 explains the 

M&R decision-making method, including the dataset and explanatory data analysis, the IRI 

fitting model, IRI prediction models, and the Markov Decision model. Chapter 6 presents the 

machine learning model developments. Chapter 7 presents the plan for developing the Markov 

decision model. Finally, Chapter 8 presents the conclusions and recommendations based on the 

findings of this study.  
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2. LITERATURE REVIEWS 

 

This chapter provides a comprehensive literature review on the following topics: 

• Pavement ME local calibration 

• Maintenance and rehabilitation (M&R) planning 

• International Roughness Index (IRI) 

• Structural Number (SN) 

 

2.1. Pavement ME local calibration 

Pavement mechanistic-empirical (ME) design is one of the AAHSHTOWare Design 

software built to design new and rehabilitated pavements with flexible, rigid, and composite 

structures. The mechanical-empirical design supports AASHTO’s Mechanistic-Empirical 

Pavement Design Guide (MEPDG), which was generated under the National Cooperative 

Highway Research Program (NCHRP) 1-37A project (ARA 2004). This software predicts 

different pavement distress types, including top-down and bottom-up fatigue cracking, rutting 

and thermal cracking, and international roughness index (IRI) in the flexible pavements. This 

approach's mechanistic part calculates the cumulative damages over time based on the pavement 

responses to the traffic and environmental loads. Then the calculated damage will be transferred 

to pavement distresses through the existing empirical functions. These functions were calibrated 

and validated using the data gathered from the Long-Term Pavement Program (LTPP) pavement 

sections across the nation (Li et al. 2011).  

The hierarchical input levels are features of Pavement ME design, which categorizes the 

input parameters in three distinct levels (ARA 2004). Designers can provide their input values 
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from different levels based on the required data, the importance of the project, and allocated 

design time and budget. Level 1 data is calculated directly by in-situ or lab tests. This level 

provides the most precise data for input parameters with the highest data collection cost and the 

lowest uncertainty. Level 2 data has an intermediate level of accuracy and certainty. These data 

are not project-specific and can be estimated from correlation equations or the agency's database. 

Level 3 data have the lowest accuracy level and are based on the global or regional surveyed 

values. This data-level provides the least information about the input values in a specific project 

but is available at the lowest cost. In some input parameter values, which have low variance 

concerning the change in location and time, the level 3 data are excellent and reliable sources for 

designers. Designers, in any given project, may choose a combination of different levels of input 

parameters. Schwartz et al. conducted a global sensitivity analysis to capture the effect of 

variability of the design inputs on the performance prediction models (Schwartz et al. 2011). The 

calibration effort affirms the necessity and priority of the local calibration efforts' level of input 

variables. In designing flexible pavements, the variation of hot mix asphalt (HMA) surface layer 

properties have the highest effect on the predicted pavement performance. The traffic and 

climate data are listed as the next sensitive variables that impact the predicted performance 

variation.  

The nationally calibrated performance models in Pavement ME do not well represent the 

construction and materials specifications, traffic, and climate conditions specific to each state 

and cannot precisely reflect the pavement performance (AASHTO 2010). Using Pavement ME 

for designing flexible pavements with nationally calibrated performance prediction models may 

result in overestimation/underestimation of the asphalt thickness and properties that impose extra 

costs on the pavement construction due to overdesign or early deterioration of the pavements. 
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Therefore, many state agencies are trying to improve the software outcomes by implementing 

different local materials, construction, climate, and traffic characteristics to evaluate and 

calibrate the performance models (Robbins et al. 2017). 

The local calibration efforts of the MEPDG and Pavement ME reported by different state 

DOTs show an improvement in most of the performance prediction models (Darter et al. 2014; 

Kim et al. 2011; Williams et al. 2013; Hall et al. 2011; Kim et al. 2014; Li et al. 2009). The 

rutting and bottom-up fatigue cracking and IRI models were calibrated for the state of Arizona, 

and the calibration process substantially reduced the prediction error of the models. However, the 

transverse cracking model does not function properly before and after the calibration (Darter et 

al. 2014). The calibration effort for Colorado's state shows a noticeable improvement in the 

prediction of bottom-up fatigue cracking and IRI models, but the prediction errors for the rutting 

model increased (Mallela et al. 2013). The local calibration of rutting and bottom-up fatigue 

cracking models significantly reduced the prediction error and increased the models' accuracy for 

the flexible pavements of North Carolina (Kim et al. 2011). Top-down fatigue (longitudinal) 

cracking model was studied in a few calibration efforts, and a poor performance before and after 

the calibration effort was reported (Williams et al. 2013; Kim et al. 2014; Li et al. 2009). 

Generally, the rutting and bottom-up fatigue cracking and IRI models compared to the transverse 

and top-down fatigue cracking exhibit a better response to the local calibration process (Robbins 

et al. 2017). 

The previous studies on the validation of  Pavement ME distress models for flexible 

pavements of the state of Oklahoma assert the necessity of the local calibration and improving 

the accuracy of these models (Wang et al. 2014). The Oklahoma Department of Transportation 

has invested in multiple studies to improve the design of new flexible pavements and the 
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rehabilitation strategies and preparing the database for material properties required by Pavement 

ME design (Nobakht et al. 2018; Nobakht et al. 2017; Hossain et al. 2011; Cross et al. 2011; 

Cross et al. 2007). 

 

2.2. Maintenance and rehabilitation (M&R) planning 

Pavement management system (PMS) can be defined as tools that can help the managers 

to beneficially decide for planning, designing, constructing, maintaining, and or reconstructing the 

pavements considering the agency and user benefits and costs (AASHTO 1990). There are 

different types of pavements with various service load levels and other environmental conditions 

in a network of pavements at the project, district, state, and national levels.  

Determining the most effective treatment type and the most appropriate treatment schedule 

needs detailed information about the pavement structure and material properties, traffic loads, 

subgrade conditions, and climate information. This type of analysis can be funded for a limited 

number of sections at a project level. The project level needs information obtained through 

destructive tests by getting samples from the pavement layers and non-destructive evaluations 

(Santos et al. 2013). At the network level, the entire network would be considered and analyzed, 

and the proper treatments with respect to the available budget should be determined (Ferreira et 

al. 2002). The network-level analysis determines the treatment plan for the network by the cheapest 

and most informative pavement information. It estimates the impact of treatment scenarios on the 

funding and overall condition of the pavements. A proper pavement management system should 

provide a comprehensive, accurate perspective of the entire network to the manager so they can 

analyze the required amount of funds for extending the pavement network and keeping the current 

network in the best possible shape. 
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The transportation departments collect cost-effective and informative information from the 

annual condition surveying by developing new technologies and equipment, including pavement 

roughness, pavement distresses and cracking, falling weight deflectometer (FWD), and rolling 

weight deflectometer (RWD). At the network level, the managers should know the current 

condition and a reasonable estimation of the pavement's future status. International Roughness 

Index (IRI) and Pavement Condition Index (PCI) are two commonly used performance metrics to 

represent the pavement performance at both network and project levels (Fwa et al. 1991; Abaza 

2005; Jorge et al. 2012). Researchers have suggested methods for using IRI for evaluating the 

pavement condition and impact and cost analysis of M&R strategies (Kelly et al. 2016; Saliminejad 

et al. 2013; Chopra et al. 2017; Hafez et al. 2019; Kırbaş et al. 2016). Butt et al. (1994) used a 

stochastic Markovian process for predicting pavement performance. Other researchers have used 

duration models (Prozzi et al. 2000) or other stochastic modeling methods such as power spectral 

density (Sun 2003), Bayesian models (Liu et al. 2014), deterministic regression, or incremental 

nonlinear approaches(Abaza 2004; Jannat et al. 2014; Prozzi et al. 2004), and artificial neural 

networks(Roberts et al. 1998; Lou et al. 2001; Yang et al. 2003; Kargah-Ostadi et al. 2010). 

  

2.3. International Roughness Index (IRI) 

The International Roughness Index (IRI) indicates pavement roughness, which is as low as 

0.5 m/km for very smooth pavements and may reach 3 m/km for very rough and deteriorated 

pavements. Many transportation agencies use this index as a quality assurance criterion after the 

construction and as an index indicating the need for maintenance and rehabilitation at the 

pavement's terminal life (Perera et al. 2002). Pavement ME Design uses the IRI as the criterion for 

pavement design (ARA 2004). Also, studies show a strong correlation between the Present 
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Serviceability Rating or the Present Serviceability Index and IRI, which asserts IRI's application 

form indicating the pavement's serviceability over time (ARA 2004). Due to the IRI's importance 

as a pavement performance criterion, and the data's availability, the IRI modeling and prediction 

have been a topic of interest in many studies (Abdelaziz et al. 2020).  Some of the IRI prediction 

models use the traffic characteristics and structural parameters as independent variables (George 

2000; Albuquerque et al. 2011). Others use pavement distresses and site conditions as prominent 

features in the prediction model (ARA 2004; Khattak et al. 2014). The independent variables for 

IRI prediction models mainly include the pavement age, initial IRI, pavement distresses condition, 

climate features, soil properties, traffic condition, and structural parameters.  

 Researchers have applied different mathematical forms to fit a curve and predict the IRI 

change as a function of time. Linear and nonlinear models were the main regression tools for the 

prediction of IRI. The MEPDG models (ARA 2004; AASHTO 2015) are the well-known models 

that linearly fit the IRI to the independent variables, including the pavement distresses and 

structural factors. The performance of these models was thoroughly investigated in the previous 

chapters.  (Khattak et al. 2014) studied the effect of the overlay on Louisiana's flexible 

pavements and developed an IRI prediction model using nonlinear regression analysis. The 

model depends on the road's functional class, cumulative equivalent single axle load, overlay 

thickness, temperature, precipitation, and deviation of the IRI after the treatment. This model 

gives the goodness of fit of %47 using 623 observations. The structural number of the pavement 

and age and traffic load levels was manipulated by (George 2000) to predict the IRI for 

Mississippi's flexible pavements. The model yields R2 of %35 using 690 observations. (Al-

Suleiman et al. 2003) used the age as the only parameter for predicting IRI and calibrated the 

regression parameters for slow and fast traffic lanes of flexible pavements. The first model gives 
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an R2 of %80 and the second model reach an R2 of %61 using 440 observations. Other studies 

applied linear and nonlinear regression models with different input factors to predict the IRI of 

the flexible pavements (Zhou et al. 2008; Gulen et al. 2001).  

Lin et al. (2003) used neural networks for the prediction of flexible pavement IRI from 

pavement distresses using 125 flexible pavement section of Taiwan pavement management 

system. This model shows the goodness of fit of %94. Choi et al. (2004) applied neural network 

for predicting the flexible pavement IRI using pavement properties, including structural number, 

AC thickness and material properties, and traffic load. The model used 117 sections of LTPP 

database and showed R2 of %71. (Chandra et al. 2013) compared the linear regression 

performance, nonlinear regression, and ANN models in predicting the IRI from pavement 

distresses. The ANN model shows better performance compared to the linear and nonlinear 

regression models. The goodness of fit values were reported as R2 and Mean Square Error (MSE), 

which were %86 and 0.22 for the training trial and %76 and 0.43 for the testing trial.  Ziari et al. 

(2016b) used a complex polynomial model named Group Method of Data Handling (GDMH) to 

predict the flexible pavement roughness in short and long terms and compared the polynomial 

model results with a deep neural network model. The independent variables include age, traffic 

load, Annual average precipitation and temperature, AC layer thickness, and the pavement's total 

thickness.  The ANN model shows the accuracy of higher than %90 in terms of R2, and the GDMH 

model shows a performance between 80% to 90%. The ANN model was used in several other 

studies as a strong tool for IRI prediction (Kargah-Ostadi et al. 2010; Hossain et al. 2019; Mazari 

et al. 2016; La Torre et al. 1998). Other machine learning methods that were used for the prediction 

of IRI include random forest regression (Gong et al. 2018; Marcelino et al. 2019), fuzzy and gray 

model (Wang et al. 2011), Radial Basis Function (RBF) networks, and Support Vector Machine 
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(SVM) (Kargah-Ostadi 2014). Table 2-1 summarizes selected studies that implemented machine 

learning techniques, their independent variables, and the models' statistical test results. 

 

2.4. Structural Number (SN) 

The pavement structural integrity can be characterized by the structural number (SN). This 

number is an index that represents the overall strength of the pavement structure and the load-

carrying capacity of the pavement (AASHTO 1993). The Equation (1) defines this index. It is a 

function of pavement layer thickness multiplied by coefficients relative to each layer's contribution 

to the pavement's structural strength. These coefficients were developed during the AASHTO road 

test, and SN has been used as a pavement design parameter in the AASHTO Design guideline.  

SN a h mi i i
=  (1) 

Where 

ai
= Structural coefficient of layer i, 

h
i
= layer thickness of layer i (in.), and  

m
i
 = drainage coefficient of granular materials in layer i. 
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Table 2-1- Summary of studies applying machine learning techniques for IRI prediction 

Study Model Type Age IRI0 Distresses 
Climate 

Factors 
SN AC Base Sub Traffic Statistics 

Source of 

Data 

(La Torre et al. 1998) ANN 
 

  
 

 
  

  N=144, R2=0.63 
LTPP 

(Lin et al. 2003) ANN   
 

      N=125, R2=0.94 Taiwan PMS 

(Choi et al. 2004) ANN     
  

  
 

N=117, R2=0.71 LTPP 

(Kargah-Ostadi et al. 

2010) 
ANN 

  

 
 

 
 

 
 

 N= 8, R2=0.95 
LTPP 

(Chandra et al. 2013) 

L Regression 
  

 

      
N=510 India PMS 

NL Regression N=510, R2=0.79 

ANN Modeling N=510, R2=0.76 

(Liu et al. 2014) ANN 
 

  
 

 
    

N=88, R2=0.99 LTPP 

(Kargah-Ostadi 2014) 

ANN 

  

 
 

 
    

N=3361, R2=0.94 LTPP 

RBF Network N=3361, R2=0.91 LTPP 

SVM N=3361, R2=0.9 LTPP 

(Ziari et al. 2016a) SVM 
 

  
 

 
  

 
 

N=205, R2=0.91 LTPP 

(Ziari et al. 2016b) ANN 
 

  
 

 
  

 
 

N=205, R2=0.9 LTPP 

(Ziari et al. 2016c) 
GDMH & 

ANFIS  

  
 

 
  

 
 

N=205, R2=0.9 
LTPP 

(Mazari et al. 2016) ANN 
 

   
 

   
 

R2=0.99 LTPP 

(Gong et al. 2018) Random Forest 
    

 
 

  
 

N=1990, R2=0.97 LTPP 

(Hossain et al. 2019) ANN    
 

    
 

N= 10 Section 

MSE= .028-0.058 

LTPP 

(Marcelino et al. 2019) Random Forest    
    

 
 

N=7, R2=0.93 LTPP 

(Abdelaziz et al. 2020)  
ANN 

   

      N=7, R2=0.75 LTPP 

L-NL Regression N=7, R2=0.57 LTPP 

Notes: ANN: Artificial Neural network, L: Linear, NL: Nonlinear, RBF: Radial Basis Function, SVM: Support Vector Machine, ANFIS:  Adaptive 

Network-Based Fuzzy, IRI0: Initial IRI, SN: Structural Number, AC: Asphalt Concrete Properties, Base: Baselayer Properties, Sub: Subgrade properties, N: 

Number of Observation, PMS: Pavement management System, LTPP: Long Term Pavement Performance 
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The pavement structural capacity can be estimated from the Falling Weight Deflectometer 

(FWD) data (AASHTO 1993). The current structural capacity is a function of the pavement 

modulus of all layers.  

0.3330.0045* *SN D E
eff p

=  (2) 

Where 

effSN = Current structural number of the pavement 

D = Total thickness of pavement  

pE = Existing total pavement modulus 

Wimsatt (1999) proposed a method for estimating the current pavement modulus. The 

subgrade modulus is a function of the deflection under the 7th sensor of the deflection basin 

(AASHTO 1993). However, the Wimsatt model gives the ratio of Ep to Esubgrade through a simple 

regression model presented in Equation (3) . This method was of interest to researchers as it does 

not apply the complicated numerical-iterative method of the AASHTO Guide.  

5 / 2 3 / 2516.94*( 7 / 1) 214.46*( 7 / 1)

1/ 26.143*( 7 / 1) 1.0826*( 7 / 1)

E
p

W W W W
E

subgrade

W W W W

= −

− +

(3) 

Where: 

E
p

E
subgrade

= ratio of total pavement modulus to subgrade modulus, and 

1,7W  = deflection under 1st and 7th sensors in mils. 

The peak deflection under the loading plate is an essential feature in the FWD data. This 

deflection includes the compression of the pavement structure and deflection of the subgrade. 

Rohde (1994) concludes that the surface deflection at approximately 1.5 times the total pavement 
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thickness is related to the subgrade layer and suggested the Structural Index of pavement (SIP) as 

the difference between the peak deflection and deflection at 1.5 times the total thickness of the 

pavement.   

0 1.5HPSIP D D= − (4) 

where: 

D0 = Peak deflection under 9000 lb FWD load 

D1.5Hp = Surface deflection at an offset of 1.5 times of Hp  

Hp = Total pavement thickness 

Rohde (1994) asserted that the SIP index is highly related to the stiffness of the pavement 

and, subsequently, with a structural number. A total number of 7776 pavement sections with 

different layer types, thickness, and stiffness were used, and the relation between the SIP and SN 

derived from the AASHTO model was investigated. It was found that the SN of the pavement can 

be estimated by having the total thickness of the pavement and SIP index using the Equation (5). 

2 3

1

k kSN k SIP Hp= (5) 

where: 

SN  = Structural number of pavements; 

SIP  = Structural Index of Pavement (microns); 

Hp = Total pavement thickness(mm); and 

k1, k2, k3 = Regression coefficients = 0.4728, -0.4810 and 0.7581. 

 

The results of the model proposed by Rohde (1994) shows very high accuracy in the 

estimation of SN from FWD data. This method is simple, and it can be easily implemented in the 

IRI prediction moles.  
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Many researchers believe that the structural capacity provides valuable information for 

project-level decisions and to some extent, in network-level M&R planning and prioritization 

(Haas et al. 1994; Gedafa et al. 2014).  However, due to the expenses of deriving and analyzing 

data, the structural capacity is mostly evaluated at project levels. The FWD test is one of the most 

popular non-destructive tests for the assessment of pavement conditions. These test results can be 

used to back-calculate the modulus of different layers and estimate SN. Since performing the FWD 

test is expensive and time-consuming, FWD data is mostly available at a project level. Rolling 

weight deflectometer (RWD) is new testing equipment that can collect the pavement surface 

deflection data at highway speed. (Gedafa et al. 2010) discussed that the results of FWD and RWD 

tests are perfectly correlated, and RWD data can be collected from the pavement network at a 

reasonable time and cost. Thus, the RWD data will be available at the network level, and pavement 

structural capacity can be implemented in the M&R decision making process at the network level. 
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3. PAVEMENT ME LOCAL CALIBRATION PROCESS* 

3.1. Methodology 

The AASHTO Guide for the local calibration of the Mechanical-Empirical pavement design 

guide defines a guideline for the calibration of Pavement ME design according to the local 

material, climate, and pavement structural design (AASHTO 2010). The calibration effort for the 

state of Oklahoma follows the defined guideline, and it includes the following steps: 

• Estimating the sample size for each distress type;  

• Selecting the desired roadway segments; 

• Selecting the hierarchical input levels for use in local calibration; 

• Extracting and evaluating test section data; 

• Analysing the sections using Pavement ME; 

• Assessing bias for experimental sections; and 

• Determining local calibration coefficients to eliminate the bias and improve the error 

 
* Part of the data reported in this chapter is reprinted with permission from the following studies: 

1- Cross, Stephen A, Robel Gibbe, and Nirajan Aryal. 2011. "Development of a flexible pavement database 

for local calibration of the MEPDG, Part 2 evaluation of ODOT SMA mixtures." In. Oklahoma Department 

of Transportation, Oklahoma City, OK. 

2- Cross, Stephen A, Yatish Jakatimath, and Sumesh KC. 2007. "Determination of dynamic modulus master 

curves for Oklahoma HMA mixtures." In. Oklahoma Department of Transportation, Oklahoma City, OK. 

3- Sakhaeifar, Maryam S, Y Richard Kim, and Pooyan Kabir. 2015. "New predictive models for the dynamic 

modulus of hot mix asphalt."  Journal of Construction Building Materials 76:221-31. 

4- Sakhaeifar, Maryam S., David Newcomb, Mona Nobakht, B.Shane Underwood, Padmini P. Gudipudi, and 

Jeff Stempihar. 2015. "Selection of long lasting rehabilitation treatment using life cycle cost analysis and 

present serviceability rating." In ODOT SP&R Item Number 2261. Oklahoma Department of 

Transportation, Materials and Research Division Oklahoma City, OK. 

5- Sakhaeifar, Maryam S., Y. Richard Kim, and Pooyan Kabir. 2015. "New predictive models for the dynamic 

modulus of hot mix asphalt."  Construction and Building Materials 76:221-31. doi: 

https://doi.org/10.1016/j.conbuildmat.2014.11.011. 

6- Hossain, Zahid, Musharraf Zaman, Curtis Doiron, and Steven Cross. 2011. "Development of flexible 

pavement database for local calibration of MEPDG." In. Oklahoma Department of Transportation, 

Oklahoma City, OK. 

 

https://doi.org/10.1016/j.conbuildmat.2014.11.011
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3.1.1. Minimum Sample Size  

The minimum number of required projects for Pavement ME distress and IRI model validation 

and calibration efforts depends on design reliability level and tolerable bias for each type of 

distress and can be calculated using Equation (6). 

2

/2t s
n

E

 
=  
 

(6) 

Where n is the required number of the samples, s is the sample standard deviation of the 

mean values, E is the tolerable bias, and t/2 is determined at a 90 percent confidence interval. 

Table 3-1 shows the distress/IRI threshold values and tolerable bias and standard deviation of the 

sample mean for the global Pavement ME models and the minimum number of projects required 

for calibration effort. 

 

Table 3-1- Estimated number of pavement projects required for pavement ME validation 

and local calibration 

Performance 

Prediction Models 

Threshold 

Values 

Standard 

Deviation  

Tolerable 

Bias 

Minimum Number of 

Project 

Alligator cracking 20% lane area 5.3 2.5 13 

Transverse cracking 630 ft/mi 235 100 16 

Rutting 0.4 inch 0.11 0.05 14 

IRI 169 inch/mi 20.3 10 12 

 

Based on the statistical model, the minimum number of sample sizes for flexible pavements' 

calibration is 16. However, the local calibration guideline recommends using at least 30 

pavement segments for flexible pavements (AASHTO 2010). 
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3.1.2. Selection of Roadway Segment 

The experimental pavement sections for the local calibration effort represent the typical 

Oklahoma pavement design and construction practices and cover different pavements in poor, 

moderate, and good conditions. The LTPP database includes 53 sections of Oklahoma’s flexible 

pavements. These sections spanned the construction age from newly constructed to older 

constructed pavements and rehabilitated sections. In addition to existing LTPP sections, nine 

sections from the previous Oklahoma pavement research study (Sakhaeifar, Newcomb, et al. 

2015) were used for the calibration of Pavement ME Design. Pavement sections are located 

throughout the state of Oklahoma. However, to cover different climate conditions, three LTPP 

sections from Sherman and Ochiltree counties located in an uppermost part of Texas and one 

section from Norton County, Kansas, were also considered for the calibration effort performed in 

this study. 

 Oklahoma's state has been split by the interstate highway of I-35 into two regions of east 

and west. The east region has higher precipitation and average annual temperature, and the west 

region has lower precipitation and average annual temperature. The average annual temperature 

is between 56 to 63 ˚F, putting the two regions in the Non-Freeze climate category. Thus, to have 

better calibration results, the flexible pavement sections were divided into two groups of west 

and east regions. Figure 3-1 shows the roadway sections' location for local calibration effort of 

flexible pavements in Oklahoma, and Figure 3-2 shows typical flexible pavement groups used in 

the Pavement ME calibration effort in this study.  



 

20 

 

 

 

 
Figure 3-1- Location of roadway sections identified for local calibration effort of flexible 

pavements in Oklahoma 

 

 
Figure 3-2- The representative flexible pavement sections used in local calibration effort 

 

 

The selected pavement sections cover different types of roads and construction age. 

Many segments were constructed during the 1980s, and they experienced various kinds of 

rehabilitation and treatments. Besides, the selected sections mostly are the parts of principal 
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arterial roads, which carry most of the traffic in Oklahoma. Figure 3-3 shows the road functional 

class of selected sections for the Pavement ME calibration process. The AC layer thickness has a 

significant effect on the performance of flexible pavements.  

 

 

 
Figure 3-3- Highway functional class of projects selected for ODOT Pavement ME 

calibration process 

 

Table 3-2 summarizes the distribution of layer thickness and the subgrade soil type of the 

selected sections. About 40 of the experimental sections have an AC layer less than 8 in. and the 

base thickness and subgrade soil types are almost equally distributed.  

Table 3-2- Summary of the experimental section based on the layer thicknesses 

HMA 

Thickness 

(in.) 

Base Thickness 

(in.) 

Number of Sections 

w/ Coarse-Grained 

Subgrade Soil 

w/ Fine-Grained 

Subgrade Soil 

<8 
< 6 9 13 

≥ 6 13 5 
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≥8 
< 6 9 4 

≥ 6 5 7 

 

 

3.1.3. Data Extraction and Evaluation 

Extracting and evaluating the pavement construction data and preparing the master 

calibration database of material properties is essential and vital in the calibration process. The 

required data for the calibration of Pavement ME include asphalt concrete material properties, 

base and Subgrade/foundation field conditions and design properties, traffic information 

characteristics, climate, and environmental data. For this project, most of the required data were 

obtained from the LTPP database and previous research studies (Nobakht et al. 2017; Nobakht et 

al. 2018; Sakhaeifar, Kim, et al. 2015; Sakhaeifar, Newcomb, et al. 2015; Sakhaeifar, Richard 

Kim, et al. 2015; Cross et al. 2011; Cross et al. 2007; Hossain et al. 2011). The researchers 

obtained additional data, as needed, from climate and soil databases, including the Oklahoma 

water resource board and the U.S. Department of Agriculture (USDA) Natural Resources 

Conservation Service (NRCS) database. The missing and unreliable data were replaced by 

typical values recommended in the level 3 database. 

 

3.2. Pavement Performance Model Calibrations 

The LTPP and non-LTPP sections were analyzed using Pavement ME and collected input 

data sets. The software was run to analyze different pavement sections in various construction 

stages. Each section was considered as a new construction project until before the rehabilitation 

or reconstruction activity. After this stage, the pavement was analyzed as an overlay project, and 

the related models were calibrated. The predicted distress and IRI models were evaluated and 
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compared with the measured distress values, and the accuracy and bias terms of each model were 

determined. The rutting and IRI models show better performance compared to fatigue bottom-up 

and top-down and thermal cracking models. The reason for bias and error terms in measured 

versus predicted performance prediction values mainly comes from inaccurate input data, error 

in the distress survey, and accuracy of performance prediction models.   

The local calibration process involves investigating the causes for poor fit and bias in 

Pavement ME nationally calibrated models and modifying the calibration coefficients of distress 

and IRI models. The calibration process aims to reduce the bias and standard error of estimate 

(SEE) for the measured values versus predicted ones by changing the calibration coefficients for 

each model and finding the best set of coefficients suitable for the condition selected pavements 

in Oklahoma.  

Calibration coefficients can be divided into two groups; 1) a portion of coefficients 

causes the reduction in the bias term of local calibration effort, and 2) another portion causes the 

decrease of the standard error term and an increase in the precision of estimates. The coefficients 

that correspond to eliminate bias were calibrated outside of Pavement ME through Microsoft 

Excel Solver, and a narrow down iterative approach was used to reduce the standard error. 

Figure 3-4 shows a schematic procedure for the calibration approach for the rutting model. This 

approach consists of finding the minimum standard error of estimate (SEE) by using a wide 

range of combinations for calibration coefficients and increasing the precision of the coefficients 

by narrowing the range of coefficients and finding the set of calibration coefficients that 

correspond to the minimum SEE. 
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Figure 3-4- A schematic narrow down procedure for finding the rutting model calibration 

coefficients 

 

In the following, the performance prediction models adopted in the Pavement ME design 

will be explained, and the method of calibration for each model will be elaborated.  

 

3.2.1. Rutting Model  

Surface distress in rutting is caused by plastic or permanent deformation in HMA, 

unbound layers, and foundation soil. The approach utilized in the Pavement ME is based upon 
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calculating the incremental rutting within each sublayer. Rutting is estimated for each season in 

the middle of each layer in the pavement structure. The plastic deformation for each season is the 

summation of plastic vertical deformations in each layer. The model for calculating the total 

permanent deformation uses the plastic vertical strain under specific pavement conditions for the 

total number of trucks (AASHTO 2015). Conditions vary from month to month, so the “strain 

hardening” approach can be used to incorporate those plastic vertical strains within each month 

to estimate the cumulative deformation. The rate of accumulation of plastic deformation is 

measured in the laboratory using repeated load permanent deformation triaxial tests for both 

HMA mixtures and unbound materials. Among the five calibration coefficients affecting the 

rutting models, "βr1", "βgb" and "βsq" correspond to the amount of rutting in AC, granular base, 

and subgrade layers and were calibrated outside of the Pavement ME software by using the 

Microsoft Excel Solver. The calibration coefficients of "βr2" and "βr3" correspond to the effect 

of temperature and traffic on the AC layer, which was calibrated by numerous Pavement ME 

runs using the narrow down approach. The recommended calibration coefficients that correspond 

to the rutting of flexible pavements in east and west regions are presented in Table 3-3. 

 

3.2.2. Fatigue Cracking Model 

Two types of load-related cracks that are predicted by Pavement ME Design include 

alligator cracking and longitudinal cracking. The Pavement ME Design assumes that alligator 

cracks are triggered at the bottom of HMA layers and propagate to the surface under cyclic 

traffic load. In contrast, longitudinal cracks are assumed to initiate at the surface. The amount of 

fatigue damage to the asphalt concrete layer is a function of an allowable number of axle-load 

applications and corresponds to both types of load-related cracks (i.e., alligator and longitudinal) 
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(AASHTO 2015). The calibration coefficients which adjust the fatigue damage, i.e., "βf1", "βf2" 

and "βf3" were calibrated by iterative approach. The coefficients of C1, C2, and C3 correspond 

to the empirical transfer functions, which estimate the amount of top-down and bottom-up 

cracking of flexible pavements as a function of cumulative fatigue damage. These coefficients 

can individually be calibrated for each type of fatigue cracking by optimizing through Microsoft 

excel solver. The fatigue damage and top-down and bottom-up fatigue cracking calibration 

coefficients for east and west regions are presented in Table 3-3. 

 

3.2.3. Transverse Cracking Model 

Transverse cracking happens due to the HMA surface's shrinkage at low temperatures, 

thermal fatigue at medium temperatures, or reflective cracks caused by cracks beneath the HMA 

layer's surface or load repetition. The primary reason for transverse cracking is contraction 

strains induced by temperature drop, which leads to thermal stress in the surface layer. The depth 

of the crack induced by given thermal/cooling cycles is calculated through the Paris law. The 

amount of transverse cracking is predicted through an empirical equation as a crack depth 

function in the Pavement ME Design. Previously, the transverse cracking calibration coefficients 

were only dependent on the hierarchical level of input data. In the new version released in Jun 

2018, the transverse cracking calibration coefficients are functions of the Mean Annual Average 

Temperature (MAAT) and calibrated through the iterative approach. The resulting coefficients 

for the MAAT less and more than 57°F are presented in Table 3-3. 
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3.2.4. IRI Model 

In Pavement ME design, the IRI model is a function of all distresses and is calculated by 

an empirical equation calibrated by LTPP sections. To calibrate the IRI model, the causes of 

poor goodness of fit and bias of Pavement ME nationally calibrated models were investigated. 

The IRI model's local calibration coefficients were modified as needed based on the information 

derived from distress models after the calibration. For this model, the site factors for each section 

were calculated. Using Microsoft Excel Solver, the coefficients were calibrated, and the best 

combination was obtained through this process.  

 

Table 3-3- Summary of calibration coefficients for Oklahoma flexible pavement design 

Model Parameter East Region West Region 

Rutting  

AC layer 

β
1
 0.79 0.21 

β
2
 0.53 0.74 

β
3
 1.48 1.03 

Granular 

base 
βgb 0.15 0.23 

Subgrade βsq 1.29 1.03 

Fatigue Damage 

k1 4.2 3.56 

k2 3.62 4.18 

k3 1.4 2.2 

Top-down 

Cracking 

C1 6.6 6.1 

C2 4.5 4.23 

C4 723 723 

Bottom-up 

Cracking 

C1 3.26 4.12 

C2 

hAC <5 in 2.16 2.16 

5 in< hAC <14 in 0.867+0.2583* hAC 0.867+0.2583* hAC 

hAC >14 in 4.5 4.5 

C3 6000 6000 

Thermal Cracking K MAAT<=57 °F 
3 ∗ 10−7

∗ 𝑀𝐴𝐴𝑇4.0319 − 54 

3 ∗ 10−7

∗ 𝑀𝐴𝐴𝑇4.0319 − 23 
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MAAT>57 °F 

0.13 ∗ 𝑀𝐴𝐴𝑇2

− 11.68 ∗ 𝑀𝐴𝐴𝑇
+ 100 

0.13 ∗ 𝑀𝐴𝐴𝑇2

− 11.68 ∗ 𝑀𝐴𝐴𝑇 + 78 

IRI 

C1 5.23 6.46 

C2 0.127 0.187 

C3 0.013 0.0098 

C4 0.0128 0.023 

 

3.3. Discussion of Calibration Analysis Results   

The nationally calibrated models show an improper performance and a significant bias before 

the local calibration process. Figure 3-5 summarizes the comparison between the predicted and 

measured values of distress and IRI performance for Oklahoma's flexible pavements before and 

after the local calibration process. Table 3-4 presents the Pavement ME performance model 

evaluation before and after the local calibration. The parameters that have been used for the 

statistical assessment of performance models include the coefficient of determination, R2, the 

standard error of the estimate, Se, and the ratio of the standard error of estimate to the standard 

deviation of measured performance, Se/Sy. The analysis results show improvement in all distress 

and IRI models' statistical measurements after the calibration process. Generally, rutting and IRI 

models have a lower error and higher accuracy than fatigue and transverse cracking models. 

  

  
(i) 
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(ii) 

  

(iii) 

  

(iv) 

  

(v) 
(a) Before Calibration  (b) After Calibration  

Figure 3-5 -Comparisons between measured and predicted (i) rutting, (ii) top-down 

cracking, (iii) bottom-up cracking, (iv) thermal cracking; and (v) IRI models (a) before and 

(b) after the local calibration process 
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The R2 value for the rutting model increased by 31% after the calibration, and Se 

decreased by 0.02 in. The Se/Sy term indicates the variation of error compared to the variation of 

measured data decreased by 0.2. Fatigue Cracking models generally underestimate the observed 

fatigue distresses and shows poor performance before the calibration process. After the 

calibration, the R2 of bottom-up fatigue cracking increased to 36%, and the standard error 

decreased to 3.04% of the total lane area. Also, the term Se/Sy decreased from 6.3 to 0.9. The 

top-down fatigue cracking standard error decreased after the calibration, but Se/Sy increased that 

affirms the local calibration's infectivity for this performance model.  

Pavement ME thermal cracking results are not consistent with Oklahoma's measured 

values. Even after the calibration, the thermal-cracking model cannot accurately predict the 

cracking for flexible pavements and shows a significant error from the observed cracking in the 

field. The same performance was reported for the MEPDG transverse cracking model conducted 

by other local calibration efforts (Ceylan et al. 2015; Hall et al. 2011; Darter et al. 2014).  

Table 3-4- Pavement ME performance model evaluations before and after the local 

clibration effort 

Model 

Model 

Calibration 

Status 

Number of 

Observation 
R2 (%) Se Se/Sy 

Rutting (in.) 
National 278 25% 0.096 0.88 

local 278 79.1% 0.044 0.45 

Top-down Cracking 

(ft./mile) 

National 342 poor 3054.13 0.123 

local 342 35% 1432.95 0.54 

Bottom-up Cracking (%) 
National 322 poor 21.3 6.31 

local 322 55.8% 2.12 0.81 

Transverse Cracking 

(ft./mile) 

National 278 Poor 1325 1.26 

local 278 47.3% 453 0.53 

IRI (in./mile) 
National 366 48% 14.7 0.4 

local 366 79.7% 10.23 0.23 



 

31 

 

 

 

 

The IRI model in Pavement ME shows an acceptable performance in the prediction of 

roughness in flexible pavements. The local calibration increased the accuracy of prediction to 

64% and decreased the standard error to 12.27 in/mile. However, there was a slight drop in Se/Sy 

from 0.4 to 0.31. 

 

The selected pavement sections identified for calibration study cover various pavement 

structures, construction age, traffic, and environmental conditions. To better understand the 

effect of local calibration effort on different pavement designs and assess the performance 

models' accuracy, a sensitivity analysis was required. Among the numerous pavement design 

inputs, the critical parameters of AC thickness, pavement age, and traffic were selected, and the 

performance prediction models error before and after the calibration were investigated. Table 3-5 

summarizes sensitivity analysis on the rutting, bottom-up fatigue cracking, and IRI models. This 

table shows the percentage of standard error (SE) reduction after calibration effort for various 

traffic load categories, AC thickness, and pavement age.  

The rutting model's error before the calibration for flexible pavements with AC thickness 

less than 4 in. was significantly high, and the calibration effort reduced the error by almost 70%. 

However, the rutting model showed a good performance for thick pavements, and the calibration 

effort reduced the standard error by approximately 20%.  

Pavements with the age of 5 to 15 years showed a very high variation in error and the 

calibration effort reduced both the average of error for all pavement ages. The average error in 

the rutting model increases by increasing the traffic volume before and after the calibration. 
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However, the calibration effort essentially decreased the error, particularly for the roads with a 

medium level of traffic volume.  

Table 3-5 - Sensitivity analysis of the prediction error reduction after calibration effort for 

selected pavement performance models 

Variable Variable Range 

Prediction Error Reduction 

IRI Rutting 

Bottom-Up 

Fatigue 

Cracking 

 

Traffic Volume  

AADTT<300 75.8% 25.0% 40.7% 

300<AADTT<1200 56.1% 20.3% 7.6% 

AADTT>1200 36.8% 33.3% 11.2% 

Pavement Age 

Age<5 69.3% 8.3% 43.5% 

5<Age<10 74.7% 34.2% -1.4% 

10 <Age <15 52.7% 49.1% 3.0% 

15<Age<20 75.6% 6.3% -7.7% 

AC Layer 

Thickness (D), 

(inch) 

  

H<2 37.8% 17.8% 14.8% 

2<H<4 69.4% 57.6% 20.9% 

4<H<6 77.0% 19.6% 26.8% 

6<H<8 73.6% 19.0% 43.1% 

H>8 74.5% 23.7% 31.3% 

*(Positive values indicate a reduction in error and negative indicate an increase in error) 

 

The bottom-up fatigue cracking model variation decreased for the whole range of AC 

thickness after the calibration process. However, the error for thicknesses ranging from 4 to 6 

inches was still high after the calibration. The fatigue cracking model's average error at the early 
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age of flexible pavements was reduced up to 40% after the calibration. For pavements older than 

15 years, the fatigue cracking model cannot properly predict the observed values of cracking, and 

the error average increased. The high error is mostly due to the overprediction of fatigue 

cracking at older ages compared to observed values on the field. The calibration effort generally 

decreased the average error for the fatigue cracking model in all traffic volume levels.  

Before the calibration, the error of IRI predictions increased by increasing the AC 

thickness. The calibration effort resulted in the error reduction, particularly for the pavements 

with a thick AC layer. This can reduce the error in distress models, especially the fatigue 

cracking model, and adjust the IRI model's corresponding calibration coefficients. Besides, for 

all the pavement ages, the average of the IRI model prediction decreased. For the low traffic 

roads, the IRI model underestimates the road surface roughness using national calibration 

coefficients while the calibration effort reduces the average of IRI prediction error by 75%.  

3.4. Development of Input-ME Analysis Tool 

Pavement ME requires an extensive amount of input data. Availability and accuracy of input 

data is a serious concern of the designers. To facilitate using the Pavement ME, interface 

software was developed. This software provides Pavement ME input data based on the 

Oklahoma material, traffic, and climate properties. A database was provided from the Oklahoma 

pavement materials, traffic, and climate data. INput-ME reads the required data from the 

database and generates input data compatible with Pavement ME import files. This software is 

developed by using QT creator. Qt Creator provides a cross-platform, complete integrated 

development environment (IDE) based on the C++ programming language. It is a tool for 

application developers to create applications for multiple desktops, embedded, and mobile device 

platforms. 
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Figure 3-6 shows the main window of INput-ME. Input ME includes three modules; (a) 

material, (b) traffic, and (c) calibration coefficients. Each module can process and compile 

specified data for the corresponding Pavement ME inputs to design a pavement in Oklahoma. 

Each dialog provides the information for three different levels of hierarchy input. At level 1, the 

user inserts the required measured values of properties for each parameter. At level 2, the 

Oklahoma-specified data collected from different sources will be offered to the user. The user 

can edit the provided data and insert its values for each parameter. At level 3, the software 

provides the data and locks the related cell while the user can review and export it as an input file 

for Pavement ME.   

 
 

 
Figure 3-6 - The main window of INput-ME 

 

 

The material module classifies the materials according to Pavement ME Design. This 

module enables the user to select materials for the subgrade soil, non-stabilized granular 

material, bound treated base material, asphalt concrete, and cement concrete materials.  
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Figure 3-7- The material dialog 

 

The subgrade soil dialog consists of two tabs, which indicate the sources of the provided 

information. Subgrade soil information was obtained through the LTPP database and a national 

database of subgrade soil developed under the NCHRP 9-23 A project. This database contains 

the soil properties for subgrade materials needed as input in Pavement ME. The database 

contains the parameters describing the soil-water characteristic curves (SWCC), which are the 

critical parameters in the implementation of MEPDG Level 1 environmental analysis. It also 

includes the measured soil index properties needed by EICM in all three hierarchical pavement 

design levels.  

Figure 3-8 shows the binder properties and mix gradation in asphalt concrete dialog. This 

dialog provides information for the asphalt concrete material in the three levels of hierarchy. At 

level 1, the user inserts the essential measured values of properties for each parameter. The mix 

designs used in the database include the common mixes used in the state of Oklahoma. The 

provided Level 2 data are gathered from the dynamic modulus and the creep compliance test 
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results reported in the previous ODOT research studies (Sakhaeifar, Newcomb, et al. 2015; Cross 

et al. 2011; Hossain et al. 2011). There is a wide range for the sieve analysis and gradation for 

each asphalt concrete mix in the ODOT research. However, the most used gradation was 

provided as Level 2 in the Input-ME database. The binder properties include PG 64-22, PG 70-

22, and PG 76-22, which are the common binder types used in the asphalt concrete of 

Oklahoma's state.  

 

Figure 3-8- Binder properties and mix design gradation in asphalt concrete 

 

In the traffic module, the information including AADTT, vehicle class distribution, axle 

load distribution, growth rate distribution, monthly adjustments, and axle per truck distribution 

based on the road class in the state of Oklahoma are processed and compiled. Figure 3-9 shows 
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the general traffic data and vehicle distribution for the selected road type. These data are 

common, typical values, and it can be edited by the user if needed. Figure 3-10 shows the axle 

per truck data tab in the traffic dialog. 

 
Figure 3-9- The general traffic and vehicle class distribution tab in the traffic module 
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Figure 3-10- The axle per truck data tab in the traffic module 

 

Figure 3-11 shows the calibration coefficients of the rutting model for East Oklahoma 

flexible pavements. The calibration coefficients for the flexible and rigid pavements will be 

generated in an XML file format readable by the Pavement ME by clicking on the Export Data 

button. This module provides a summary of the results found in this project. The calibration 

coefficients were provided in this module for flexible pavement designs. This calibration effort 

was determined for two sets of calibration coefficients for the east and west regions of 

Oklahoma's state.  
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Figure 3-11- The calibration coefficient module 
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4. OVERVIEW OF THE MACHINE LEARNING METHODS   

 

The intrinsic complexity of the pavement properties and parameters that affect the 

pavement behavior during the pavement lifetime asserts the need to try machine learning 

prediction models and compare each model's performance in predicting the IRI. Each machine 

learning algorithm has its algorithm for learning and predicting the data. Studying the mathematics 

behind the machine learning algorithms helps to get the best performance out of each model.  Each 

model's performance and accuracy vary based on several factors related to the dataset, including 

the type of the features, distribution, and correlation between variables, amount and severity of the 

outliers, number of available observations, etc. The tuning parameters, the type of loss and kernel 

functions, and validation techniques need to be studied and investigated before applying the ML 

technique. In the following, selected ML techniques used in predicting the IRI will be explained.  

4.1. Generalized Linear Model (GLM) 

A generalized linear model is a general form of linear regression. The expected value of Y 

is not directly estimated from the linear combination of explanatory features X. In linear 

regression, Y has a normal error distribution, which is not a good fit in many regression analyses 

where the response does not show a constant change by the changes in the predictor variables 

(Nelder et al. 1972). For example, in the pavement performance prediction, the difference in 

performance is lower at the early age of the pavement life; however, increasing the age increases 

the rate of pavement performance deterioration. Thus, the linear and polynomial models are not a 

good fit for pavement performance prediction. The GLM relates the linear model to the response 

variable via a link such as a log, logit, inverse functions, while the variance of the expected value 

is not constant. 
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One technique that improves the regression models is adding more useful information by 

improving overfitting problem in a model (Zou et al. 2005). This process is named regularization. 

In regularization, the regression coefficients' weights will be reduced by penalizing the sum of the 

coefficients' magnitude. In IRI prediction models, the input data consist of different variable types 

related to climate, pavement performance, pavement structure, and traffic. These variables may be 

correlated, and the regularization technique can help  reduce the effect of variable correlation and 

automatically select the most informative ones.  

LASSO and RIDGE regression are two forms of regularization techniques widely used in 

regression analysis (Fu 1998). LASSO regression adds a penalty on the number of non-zero 

regression coefficients using the L1 norm of the weight’s vector. The RIDGE regression has a 

penalty on significant regression coefficients using the L2 norm of the weight’s vector in the cost 

function. Usually, a combination of LASSO and RIDGE regression works effectively and gives 

the benefits of both L1 and L2 norm of the weights (Fu 1998). The GLM elastic net (Glmnet) is a 

form of GLM that incorporates the combination of LASSO and RIDGE regressions. The form of 

the loss function at the Glmnet model is shown in Equation (7).  

21 1( , ( )) (1 ) / 2
10 21

n
T TLoss w l y g x

i i iN i

      
 −= + + − +  
 =  

(7) 

Where β is the estimation parameters for explanatory variables, g is a link function chosen 

during the model tuning. The elastic-net penalty is controlled by α and λ. The parameter α balances 

the weights between two penalty forms, including LASSO with α=1 and RIFGE with α=0. The 

parameter λ determines the overall strength of the penalty. These two parameters are considered 

as tuning parameters and should be adjusted during training and evaluation steps.  The GLMnet 

helps linear regression models better handle collinearity and correlation among the predictors and 
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reduces the overfitting chance. It also helps the linear model be used more accurately in the results 

derived from the small sample sizes. 

 

4.2. Support Vector Machine (SVM) Regression 

Support vector machine regressor is a part of the support vector machine that is mainly 

used for classification, but the algorithm and the approach applied for support vector machines are 

also helpful in using it as a regressor (Alpaydın 2020). Researchers used this model to predict the 

pavement performances (Yan et al. 2011; Ke-zhen et al. 2011) and showed a robust performance, 

especially as the IRI prediction model (Ziari et al. 2016a; Kargah-Ostadi 2014). 

The linear regression models work by minimizing the RMSE between the predicted and 

measured values and estimates the population means of dependent variable Y, which is sensitive 

to extreme observations and outliers. In support vector regression, the model can be estimated by 

minimizing the error using the new loss function known as ε-insensitive loss. The loss function 

used in the SVMR is robust to extreme observations and ignores any observation with small 

residuals. The observations that are not ignored by the SVMR is known as the support vectors. 

The Equation (8) shows the Loss function at the SVMR model that considers a penalty on large 

regression coefficients.  

2
( , )

0 21

nC T TLoss l y x
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   = + +
=

(8) 

In this model, C is known as the cost parameter. As C increases, the models give more 

weight to the ε-insensitive loss and works more like an unpenalized method. On the other hand, as 

C decreases, the model removes the features with broad estimation parameters. Thus, the tuning 

parameters that must be tuned in the SVMR model are ε, which controls the number of close 

observations ignored by the model, and C, which balances the weight between the training error 
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and the penalty term. Usually, there is a strong relationship between these two tuning parameters. 

It generally suffices to set one at some default value and adjust the other one (Cherkassky et al. 

2004). Another term in SVMR is the kernel that transforms the features to make better predictions 

and increase the SVMR model's flexibility. Different SVM algorithms implement different kernel 

functions such as linear, nonlinear, polynomial, radial basis function (RBF), and sigmoid. The best 

kernel function can be selected in the model evaluation using a cross-validation technique 

(Alpaydın 2020).  

 

4.3. Multivariate Adaptive Regression Splines (MARS) 

Multivariate adaptive regression splines (MARS) form a linear regression model that 

automatically incorporates the nonlinearity and interactions between the features (Friedman et al. 

2001). MARS acts as a polynomial model that can catch both the degree of nonlinearity and the 

features interaction simultaneously. Attoh-Okine et al. (2003) used MARS as a new model for 

the prediction of flexible pavement roughness. Since the MARS model is a useful tool for fitting 

nonlinear multivariate functions, the generated model was fitted perfectly to the IRI data. The 

model gave a roughness equation based on the available input information and evaluated each 

variable's contribution to the roughness equation. Attoh-Okine et al. (2009) applied the MARS 

regression technique for the doweled pavement performance modeling. It is reported that the 

MARS model has a better performance compared to traditional regression analysis and is more 

robust to the anomaly and outlier in the input variables.  

This model breaks the range of independent variables, X into n number of bins, and fits the 

best line for each bin. Figure 4-1 shows the schematic of the MARS model fitted to nonlinear data. 

In this example, the MARS model consists of two knots that break the independent variable into 
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three bins. A linear model is fitted to each bin, which reduces the amount of total error compared 

to a linear regression model. The fitted model to each bin could be linear or multivariate nonlinear. 

By this technique, the MARS change the continuous variables into clusters that optimally can be 

estimated by a nonlinear function.   

The Equation (9) can represent the MARS model. 

0 ( , )1
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= +  (9) 

 

 

  

 

Figure 4-1- Schematic of MARS vs. linear regression fitted models 

 

Where y is the dependent variable, ci is a vector of regression coefficients, bij(xv(j,i)) is the 

truncated basis functions, v(i,j) is the index of the independent variable used in the ith term of the 

jth product, and Ki is the parameter that controls the degree of the freedom of the model. The 

number of bins can be tuned during model training by using the knots parameters, which indicate 
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the number of breaks in the model. Besides, the degree of freedom is another tuning parameter that 

controls the nonlinearity and interaction between the features.  

The MARS regression model works well with many predictor variables and automatically 

detects the interactions between variables. Despite its complexity, it has a fast and efficient 

algorithm and is robust to outliers. The limitations of the MARS model include the disability of 

handling the missing data and susceptibility to overfitting.  Also, it is more difficult to understand 

and interpret than other analytical models.  

 

4.4. Neural Network Model 

Artificial Neural networks (ANN) are one of the well-known machine learning techniques 

used by researchers as a prediction model(Kargah-Ostadi 2014; Liu et al. 2014; Ziari et al. 2016b; 

Hossain et al. 2019; Abdelaziz et al. 2020). ANN includes simple elements named neurons that 

contribute to a mathematical process that contains the interaction of the features and transfers the 

results through transfer functions to increase the prediction accuracy. A linear combination of 

features is passed through a nonlinear transformation in successive layers. Fitting a curve under an 

external neural network containing a single neural layer can be represented in Equation (10). 
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The h(X) is a nonlinear transformation of the linear combination of the features. H is the 

number of hidden neurons in the first layer, and βi is the estimation coefficients or the network's 

weights vector. By adding a new layer to the model, the same form will be followed, in which the 

output of the neurons of the previous layer is the input features for the next layer. By adding more 

layers, the features' interaction level will increase, which usually increases the accuracy of the 

prediction. On the other hand, increasing the neural network model's complexity results in 
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overfitting and increasing the variance term of the error. The parameters which should be 

optimized for the NN model include the number of layers, the number of nodes in each layer, the 

learning rate, and the activation function type. The learning rate controls the gradient descent 

algorithm's step size and should be selected through model evaluation. Lower learning rates require 

more training iterations, and higher learning rates lead to divergence of the model. The NN 

common activation functions are linear, sigmoid, and rectified linear unit (ReLU) functions.  

The ANN models are black boxes, meaning that it does not give information on each 

parameter's contribution in predicting the dependent variable. Also, due to the complexity of the 

model, it is computationally expensive and time-consuming. The ANN model highly depends on 

the training data, and the chance of the overfitting is higher than the other ML models; However, 

by increasing the observations, the ANN model's accuracy significantly increases (Alpaydın 

2020). 

4.5.  XGboost Tree 

Extreme gradient boosting (XGBoost) is a form of tree-based machine learning algorithms 

recently developed by (Chen et al. 2016). XGboost has extensively been used as a supervised 

learning method for structured and tabular data (Nwanganga et al. 2020). Researchers have used 

the XGboost model for enhancing the distress models of the pavement ME (Gong et al. 2019), 

analysis of asphalt overlay performance (Zhang et al. 2020), and aggregate shape classification 

(Pei et al. 2020).  

The inherent structure of the pavement prediction features is a good fit for XGBoost tree 

regression. The sub algorithms implemented in the XGBoost tree are decision tree regression, 

bagging, and gradient boosting. The decision tree algorithm model learns how to assign the values 

through a tree decision process of the selected features. For example, based on the given 
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observations, the model learns the closest clusters of the observations with almost similar features 

and assigns an average value to the pavement performance of any observation fitted in that cluster.  

The bagging and bootstrapping algorithm help increase the tree model's accuracy by repeating the 

tree decision process and averaging the outcomes. Random forest is a particular case of a decision 

tree with a bagging algorithm in which a random subset of features will always be used in the 

decision process. It decreases the computation time substantially and increases accuracy. The 

boosting algorithm helps the model by giving feedback to the model after each iteration of the 

decision. The feedback can be defined as the magnitude of the error for the assigned value to the 

observation, and by decent gradient algorithm, the features ‘contribution to the error will be 

identified. Figure 4-2 shows a summary of the XGBoost tree sub algorithms and the XGBoost 

model's evolution from decision tree models.  

 

Figure 4-2- Evolution of XGBoost Algorithm from Decision Trees. Reprinted from (Kumar 

2019) 

 

The XGBoost tree model ensemble tree-based method works well with the tabular data and 

is one of the best models for pavement performance prediction. Compiling a comprehensive 
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pavement database is always challenging due to the complexity of datasets and missing 

information. A subset of the data in some of the sections can be missed due to the differences in 

the strategies adopted by highway agencies in the data collection process and extension of the 

pavement network. For example, FWD data can be missed in some pavement segments for a few 

sections. The XGBoost model can handle the missing values in model since it does not necessarily 

need all the independent variables in the decision process. Thus, the number of observations 

increase and none of the sections will be discarded due to the lack of information on some features. 

Other benefits of the XGBoost tree model are parallelization, regularization, and cross-validation, 

leading to increase the computational speed and avoid overfitting in the model.  

The XGBoost model parameters that should be optimized are the maximum depth of the 

tree models, the total number of trees to grow in each cycle, the minimum number of variables 

used in the tree model, and the minimum number of samples leaf of the tree and few others. 

 

4.6. Markov Decision Process (MDP) 

Markov Decision Process is a framework that were used for solving reinforced learning 

problems. The Markov decision process (MPD) models have been introduced as a vital tool for 

optimizing decisions in decision-making problems (Bellman 1957). Butt et al. (1994) applied a 

stochastic MDP to modeling the infrastructure deterioration. The developed model can 

dynamically determine the optimized M&R plan at the network level. However, the pavement 

performance prediction and the model has limited pavement type and section. This causes the lack 

of capturing the uncertainty in the M&R plan. Recent research on M&R plan models using the 

MDP shows promising results and asserts the feasibility and flexibility of MDP models. Narh-

Dometey (2019) developed an M&R policy method by applying the MDP model using the 
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pavement roughness and road class. This policy can balance the user and agency costs and optimize 

the maintenance plan of the pavement. Markov models were used to assess the rehabilitated 

pavement's structural potential and the cost-effectiveness of the rehabilitation policy (Osorio-Lird 

et al. 2018).  

 Reinforcement learning is one of three basic machine learning paradigms, alongside 

supervised and unsupervised learning processes. Reinforcement learning (RL) is an area concerned 

with how a decision-maker, referred to as an agent, must take actions in a different state of an 

environment to maximize some notion of cumulative reward (Sutton et al. 2018). Figure 4-3 shows 

the learning cycle in reinforced learning.  

 

Figure 4-3- Typical Reinforcement Learning Cycle. Adopted from (Sutton et al. 2018) 

  

The environment is the setting that compromises any possible state that the agent can get 

and interacts with other states by taking possible actions. The state is a specific snapshot of the 

environment at any time-step. Taking action in any state causes the agent to move to a new state 

or stay in the same state. Any action at any state can give a reward (negative or positive) to the 

agent, and the reward accumulates after taking a series of actions.  Moving from one state to 

another state is named state transition, which can work in a deterministic or stochastic 
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environment. The transition probability is the probability of reaching state St+1 by taking action 

At in the state St.  

A Markova Decision Process (MDP) model is a reinforce learning model that contains a 

set of possible states (S), a set of possible actions (A), a reward function R(s, a), and a transition 

function T(s, a). An MDP has Markovian property in which the transition from state S(t) to S(t+1) 

is entirely independent of the past, and the S(t) itself can have all the necessary information for the 

decision.  

By having the MDP model, the agent can explore the environment by taking actions and 

visiting different states, and accumulating rewards. After exploring the environment, each state 

can get a value that determines the goodness of being in that state and is a function of expected 

total reward gained from that state. MDP model aims to find the value function and the optimum 

policy. An optimum policy is an instruction for the agent that determines the best action at each 

state, which leads to the maximum reward. 

Several algorithms have been developed for solving the MDP and finding the optimum 

policy. Q-learning is a model-free reinforcement learning algorithm that was extensively used to 

solve reinforcement learning problems that do not require an explicit definition of a Markov 

decision process. It trains an agent to learn an optimal policy from a dynamic environment, and 

the optimal learned policy tells the agent what action to take at each state. Given an environment, 

let 𝑆 denote the state space, and 𝐴 means the action space. In Q-learning, the expected total long-

term reward in a given state 𝑠, and an action 𝑎 is predicted by the Q-function Q(s, a). The agent 

should take the optimal action (𝑠) for a state 𝑠 such that the expected long-term reward is 

maximized. The optimum policy can be derived from an Equation(11). 

( ) ( )  argmax ,  as Q s a = (11) 
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where 𝜋 denotes the optimal policy.  

Q-learning applies a modified form of a Bellman equation to learn the optimal policy. If 

we only consider 1-step transition 〈𝑠t, 𝑎t, 𝑟t, 𝑠t+1⟩ where 𝑟 is the immediate reward of the current 

step, and 𝑠t+1 is the next state, then we have: 

 ( ) 1, max ( , )t t t tQ s a r Q s a += + (12) 

where 𝛾 ∈ [0,1] is the discount factor specifying how far ahead in time the algorithm should 

look. This means the optimal long-term reward (𝑠t, 𝑎t) for the current state 𝑠t and action 𝑎t , is the 

immediate reward plus a discounted optimal long-term reward for the next state.  

Q-Learning algorithm is difficult to deal with large and continuous state space. There are 

methods to deal with this problem, such as discretization techniques, but the implementation is 

hard, and the performance could be decreased. Another method is to use a neural network to solve 

the Q-function in the Q-learning. 

4.7. Deep Q-Learning 

The Deep Q-learning is an extension of the Q-Learning algorithm by modeling the Q-

function (𝑠, 𝑎) as a (deep) neural network. In this approach, the Q-function is a complicated 

composition of various parameterized functions, taking the input 𝑠, 𝑎, and making predictions of 

long-term utility. A loss function 𝐿 is designed to measure how well 𝑄 makes the prediction. 

Finally, the parameters of 𝑄 are trained by calculating gradients of 𝐿 and applying optimization. 

The objective of Q-learning is to make the iterative process converge, and one choice of the loss 

function is the “squared difference.” 

( ) ( )( )
2

1, max ,t t t t
a

L Q s a r Q s a +
 = − +
  

(13) 
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Where max (𝑠t+1, 𝑎)  is evaluated using the current NN prediction model, and 𝑟t + 𝛾 max 

𝑄(𝑠t+1, 𝑎) is the target value in the regression model. Q-learning needs to consider the exploration-

exploitation tradeoff like other reinforcement learning algorithms. First, It is needed to explore the 

environment to get a complete picture of transition and outcomes, which means some random 

action will be chosen rather than the optimal action; on the other hand, the current optimal action 

should always be executed to train the agent effectively. In this condition, a mixed strategy can be 

the solution by defining a trade-off parameter 𝜖 ∈ [0,1]. The agent has probability 𝜖 to randomly 

choose an action for the loss, rather than optimal action. Also, 𝜖 dynamically will be changed over 

time. 

•When training beings, the Q-function is not trained enough to make a good prediction. In 

this case, going for the optimal action is not useful. Therefore, larger 𝜖 at the early stages are 

needed. 

•As the training goes on, the Q-function gains more predictive power, and trust in the 

predicted utilities gradually increases. Therefore, 𝜖 should decrease over time. 

To achieve the above heuristics, three parameters 𝜖start, 𝜖min, and decay rate were defined. 

𝜖t at the state transition decreased by a factor of 𝜖 decay after every state transition be calculated 

by the following: 

1

minmax( , )t

t decay start   −= (14) 

 In deep, Q-Learning is implemented by the optimizer, and the learning rate 𝛼 is the 

learning rate of the optimizer. This value is a hyperparameter and will be tuned for each problem. 
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5. AN INTELLIGENT M&R DECISION-MAKING METHOD FOR FLEXIBLE 

PAVEMENTS 

 

Pavement performance modelling is an essential step in pavement design and 

management from project to network levels. The pavement performance should be monitored 

regularly, and maintenance and rehabilitation (M&R) treatments should be planned to keep the 

pavement in good condition and maximize the service life and returned benefits of the 

constructed pavement (Smith et al. 1993). A proper pavement management system should 

provide a comprehensive, accurate perspective of the entire network to the manager to analyze 

the required amount of funds for extending the pavement network and keeping the current 

network in the best possible condition. Determining the most effective treatment type and the 

most appropriate treatment schedule needs detailed information about the pavement structure and 

material properties, traffic loads, subgrade conditions, and climate information. A comprehensive 

data collection for a network of pavements is costly and unnecessary since the managers should 

balance the study and experimental phase cost and the benefit that will be obtained (Mbwana et 

al. 1996).  Thus, the network level's objective is to outline the treatment plan for the network by 

the cheapest and most informative pavement information and determine the impact of treatment 

scenarios on the funding and overall condition of pavements. 

In this chapter, a new M&R decision process for flexible pavements was developed. The 

decision-making process considers the stochasticity of the pavement performance prediction and 

suggests the optimized M&R activities for the given section by implementing a newly developed 

predictive model. The experimental sections were selected from Oklahoma and few other states, 

and the required data were extracted from the long-term pavement performance (LTPP) 

database. 
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The M&R decision method is a Markov Decision Process (MDP) which employs IRI 

from a newly developed IRI prediction model and structural number from historical data. The 

IRI prediction model predicts the IRI with high accuracy by having the structural number (SN), 

road class, climate condition, traffic load, and subgrade and structural information. To get a high 

accuracy for the IRI prediction, several advanced machine learning models were developed, and 

the best model with the highest accuracy was implemented in the MDP model. This M&R 

decision process incorporates the most informative available information from the surface and 

underneath layers of the pavement. The model is compositionally cheap, and the application of 

the model can be extended to North America's flexible pavement networks.  

The current methods of M&R planning are mainly using the performance metrics driven 

from a selected number of sections, including PCI or International IRI. The mentioned metrics 

are a good indicator of the current pavement condition and can be used to categorize a network 

into different subgroups based on the severity of the surface distresses. Using a structural number 

together with IRI in M&R decisions increases the reliability of the decisions and lead to better 

budget allocation management. In this research chapter, an MDP model was generated for 

optimizing the M&R policy selection using IRI and effective SN of the flexible pavements. The 

MDP model gives a pavement management planning based on the pavement structural integrity 

and pavement roughness. The results of this planning can be used to recommend the optimal 

M&R treatment, which increases the benefit over the cost of the pavement. This model 

dynamically predicts the pavement's roughness during the desired time frame using the 

developed IRI prediction model. 

Figure 4-1 presents a summary of the proposed methodology for developing the MDP 

M&R planning model for the flexible pavement using the data collected from the LTPP 
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database. The experimental sections for this research chaper were extracted from the long-term 

pavement performance (LTPP) database (InfoPave 1988), NCHRP 9-23B soil database (Zapata 

et al. 2012), and MERRA climate database. The input data for the IRI prediction and MDP M&R 

decision-making models include pavement structural properties, pavement performance 

characteristics, subgrade soil properties, and climate and traffic properties. A comprehensive 

exploratory data analysis of the features is presented in section 5.1.  

 

Figure 5-1- The proposed methodology for the MDP M&R decision model 

 

In order to have a reliable M&R strategy, predicting the pavement IRI deterioration before 

and after applying any kind of treatment is essential. The IRI prediction model aims to predict the 

IRI change versus time given the structural properties of the pavement section, including structural 

features, FWD data, subgrade soil properties, climate, traffic information, road type, etc. In the 
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following, the dataset used in this chapter will be presented and IRI prediction model, SN analysis, 

and MDP model will be explained.   

5.1. Dataset and Exploratory Data Analysis (EDA) 

In this section, the dataset used in for the M&R planning method was explained, and an 

exploratory data analysis was conducted to obtain detailed information about datasets, variables, 

and the relationship between different features.  

The LTPP program was established to collect the pavement performance data as one of the 

major research areas of the Strategic Highway Research Program (SHRP). The LTPP program 

monitored and collected pavement performance data. The collected data include information on 

seven modules: Inventory, Maintenance, Monitoring (Deflection, Distress, and Profile), 

rehabilitation, materials testing, traffic, and climate. These in-service pavement sections are 

classified in the LTPP program as General Pavement Studies (GPS) and Specific Pavement Studies 

(SPS). The GPS program is a series of studies on selected in-service pavements structured to 

develop a comprehensive national pavement performance database. These studies are restricted to 

pavements that incorporate materials and designs representing good engineering practices and 

strategic importance. SPS's objective is to provide a more detailed and complete base of data to 

extend and refine the results obtained from the GPS studies.  

5.1.1. Pavement Sections  

The state of Oklahoma has 38 flexible pavement sections in the LTPP study. These sections 

are spanned across the state and are a good candidate for the state's road functional class, traffic 

load, and environmental characteristics. However, increasing the number of sections can help 

reduce errors in the prediction models. Thus, the LTPP sections from the neighbor states were 

added to the existing Oklahoma LTPP sections. A total number of 419 flexible pavement sections 
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from Oklahoma, Texas, Arkansas, Missouri, Kansas, Colorado, and New Mexico were selected. 

Figure 5-2 shows the selected LTPP sections used for the IRI prediction and M&R decision 

planning. These sections have a good variety in layer thickness, road functionality, the load of 

traffic, climate, and experienced M&R. 

 

Figure 5-2- Location of the LTPP sections used in this research chapter. Blue Section: out 

of study sections. Green Sections: active sections. Reprinted from (InfoPave 1988; FHWA 

1988) 

 

5.1.2. Feature Statistics 

The main factors affecting the roughness of flexible pavement can be categorized as material 

properties, structural properties, climate, environmental conditions, and loading volume. The 

pavement properties were collected and prepared for each section from various sources. Table 

5-1 and Table 5-2 present the list of derived properties and the source of data used for 

developing the IRI prediction and MDP M&R decision making models. In Table 5-1, the 

numerical type features with their minimum, maximum, mean, and standard deviation values 
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were presented. IRI is the dependent variable, and the rest of the features are the independent 

variables in IRI prediction models. The structural properties include the asphalt concrete and 

total thickness of the pavement, IRI, and FWD-related features collected from the LTPP 

database. The climate features include the average annual temperature, average annual 

precipitation, average annual freezing index, and average annual evaporation. The freezing index 

is the cumulative number of degree-days when air temperatures are below 32 degrees Fahrenheit. 

This index is a standard metric for determining the freezing severity during winter season, which 

triggers thermal distresses in the pavement. The average difference between precipitation and 

evaporation rate corresponds to the wetting/drying cycles of the subgrade. Subgrade of the 

pavements with a higher average difference between evaporation and precipitation has a higher 

settlement/swelling rate, which leads to weakening pavement structure and increasing pavement 

roughness (Byrne et al. 2009).    

Table 5-1 - List of numerical pavement properties used in prediction and M&R models 

Parameter Description Source Min Mean Max SD 

IRI   

(in/mi) 

International Roughness 

Index 

LTPP  24.15 255.7 82.16 34.5 

Age (Year) Pavement age  LTPP  0.08 4.64 21.21 4.01 

SNeff 

(in) 

Effective structural 

number 

Equation 

(2) 

1.2 6.1 19.6 2.8 

SIP 

(micron) 

Structural index of 

pavement 

Equation 

(4) 

8.4 156.64 1255.6 155.1 

PD1.5 

(microns) 

Peak Deflection at 1.5 

times Dtotal  

LTPP 

FWD 

0 81.78 420.29 52.23 
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Parameter Description Source Min Mean Max SD 

DAC (in) Asphalt concrete thickness LTPP  1.2 6.4 20.5 3.4 

Dtotal (in) 

Overall pavement’s 

thicknesses 

LTPP  6.4 20.9 54 8.2 

AADTT 

Annual Average Daily 

Truck Traffic 

LTPP  56 629 2996 531 

Temp (°F) 

Annual average 

temperature 

MERRA 44.8 62.36 77.5 7.1 

FI  

(°F-Days) 

Annual average Freezing 

Index 

MERRA 0 72.88 657.0 103.84 

Precip (in) 

Water equivalent of 

precipitation over the year 

MERRA 5.08 32.8 80.2 14.2 

Evap (in) 

Surface evaporation over 

year  

MERRA 6.91 29.1 50.3 10.07 

 

Figure 5-3 shows the correlation between numerical variables in the dataset. Data 

correlation is a tool to investigate the relationship between multiple variables and attributes in the 

dataset. If the dataset shows perfectly positive or negative attributes, the impact of the 

multicollinearity problem on the model's performance will increase. Multicollinearity  is defined 

when one predictor variable in a regression model can be linearly predicted from the other 

predictors and can lead to skewed or misleading results (Farrar et al. 1967). 

To help with the multicollinearity, regularization techniques can be used. These techniques were 

applied in machine learning models in this study. Also, decision trees and boosted tree algorithms, 
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such as the XGBoost model, can perfectly handle the multicollinearity by choosing the best 

predictors in their decisions(Chen et al. 2016).  

 

Figure 5-3 - Correlation between numerical variables 

 

Pavement roughness shows a positive correlation with deflection magnitude, precipitation, 

evaporation, age, and AADTT. The pavement's average roughness decreases by an increase in 

asphalt and total thicknesses, structural number, and temperature. Figure 5-4 shows the relation 

between the structural number estimated from FWD data and pavement roughness values. 

Pavement roughness is higher for structurally weaker sections, and the presence of SN in predictors 

features can help boost the accuracy of the IRI prediction models.  

 



 

61 

 

 

 

 

Figure 5-4- Sensitivity of the SN estimated from FWD data to pavement roughness 

 

Table 5-2 presents categorical type properties, each category's levels, and the mean value 

of the IRI of the level. The impact of categorizing the observation into several levels in each 

variable has been tested through statistical mean difference tests. For two-level variables including 

Base_type, PL, and Road_Class, a standard two-sample t-test, and the M&R variable with three 

levels, the one-way ANAVOA test was used. The p-value of statistical tests for all categorical 

variables was less than %5, indicating a significant difference in mean IRI value between levels.  

Table 5-2 - List of categorical pavement properties used in prediction and M&R models 

Parameter Description Source P-value Level N Mean IRI 

M&R 

Past construction and 

M&R experiences 

LTPP  2.2e-6 

No M&R 1736 83.3 

Maintenance 393 99.22 

Rehabilitation 339 68.77 
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Base_type 

Treated base/ 

Granular base 

LTPP  4.17e-3 

Granular Base  1467 87.9 

Treated base 1001 77.92 

PL 

Plasticity of the 

Subgrade soil 

NCHRP 

9-23B  

5.82e-3 

Non-Plastic 899 77.5 

Plastic 1569 87.5 

Road_Class Road classification LTPP  5.881e-4 

Rural 2211 82.24 

Urban 257 97.69 

 

The average IRI for the pavement with no M&R is higher than pavements under maintenance. It 

shows that maintenances can reduce the increase in roughness but generally cannot reduce the 

roughness in the long term. Applying rehabilitation reduces the average roughness and helps to 

keep the pavement structure in better condition. 

The average roughness for pavements with treated base is lower compared to pavements with 

granular bases. Due to the granular layer's low strength, the chance of failure of the pavement 

structure under cracking and rutting is higher. Treated bases are a better alternative to the 

conventional granular base and provide higher pavement structure strength. The effect of the 

subgrade's plasticity is in the swelling and settlement severity cycles during the wet/dry seasons. 

Plastic subgrade causes higher swelling severity and deteriorates the pavement structure.  

5.1.3. Data Cleaning and Processing  

One of the LTPP database problems is the inconsistency between the survey dates and 

FWD test dates. To handle this problem, the missed IRI value for each date were estimated from 

the fitted model explained in section 5.1.  

The numerical variables mostly have non-normal distribution. Also, there is a big 

difference between the scale of the numerical variables. A transformation of the independent 
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variables and having the same scale between variables will help achieve the model residuals' 

normality. Features with non-normal and skewed distributions were transformed and normalized 

to boost the performance of machine learning algorithms. Figure 5-5 shows some examples of 

the row data distribution and normalized distributions after applying Yeo Johnson's power 

transformation. 
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Figure 5-5- The distribution of the original and normalized numerical variables 

 

A few of the features used in IRI prediction models were categorical. Most  

machine-learning algorithms (e.g., XGBoost, logistic regression, support vector machine, neural 

network) require all input variables and output variables to be numeric; thus, the categorical 

variables need to be encoded. Therefore, the one-hot encoding process was applied to categorical 

features such as Base_type, M&R, Road_Class, and PL to make them act as numerical variables 

in machine learning models.  

After data processing, the data was prepared to be used in machine learning algorithms. After 

removing the outlier and missing data from the dataset, data were reduced to 2468 IRI data 

points. 75% of the dataset was randomly selected for model training and evaluation, and 25% of 
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the data were kept as test data for evaluating and comparing the prediction models' performance. 

The results of the prediction models were presented in the next section.  

 

 

5.2. IRI Fitting Model 

The pavement roughness in many of the LTPP sections was not reported in a standard 

timeframe. On the other hand, there is variation in the DateTime of the IRI survey and the FWD 

test. To overcome the variation between measured pavement roughness survey date and visit date 

for FWD test, this research followed a similar method suggested by the literature (Elhadidy et al. 

2019).  For each section, a regression model was fitted to the measured IRI and pavement age, 

considering the traffic opening date as the first date. For the pavements experiencing 

rehabilitation and reconstruction treatments, the IRI model was refreshed, and a new model was 

fitted to the reconstructed pavement. Exponential and sigmoidal functions were used as proper 

fitting curves for predicting distresses and material behaviors in pavement studies (Ling et al. 

2019). The mathematical form of the IRI fitting model used in this study is presented in Equation 

(15). 

( )

0
tIRI IRI e




−

= + (15) 

Where IRI is the international roughness index (m/km), IRI0 is the initial roughness of the 

pavement, and α, β, ρ are the maximum threshold, scale parameter, and shape parameter of the 

fitting curve. Figure 3 shows IRI change versus time for section 0502, construction number 3 

fitted by the proposed model.   
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Figure 5-6- Fitted model to the IRI change versus time for LTPP section 0502- 

Construction Number 3 

 

This model was fitted to the experimental sections, and the best fitting parameters were 

determined for each section. The root mean square error (RMSE) and R2 for fitting the model to 

all experimental sections is 0.078 m/km and 93%. The statistics show that this model can 

accurately be fitted to the IRI change as a function of time.  

The proposed model can perfectly be fitted to the IRI field data at separate construction 

groups. Figure 5-2 shows the IRI change versus time and the M&R history for LTPP section 

0607, located in the state of Oklahoma.  
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Figure 5-7- Model fit to the measured IRI at LTPP section 0607  

 

 By knowing the fitting parameters, the IRI value versus time can be plotted, and the 

pavement roughness at any given time after the construction can be estimated. The developed 

fitted model was then used for handling the inconsistency in reported IRI survey date and FWD 

test date by proving the IRI value at any given date of the pavement age.  

 

5.3. Extracting Pavement Structural Properties 

In the next step, the FWD was processed, and the required parameters were extracted. The 

FWD data were adjusted to the reference temperature of 68°F. Figure 5-8 presents the effect of 

temperature adjustment on the average calculated SN from FWD data. For the FWD tests at 

temperatures higher than the adjustment, the factor is greater than 1, which means the adjusted 

SNs have higher values after eliminating the effect of temperature. On the other hand, at lower 

temperatures, the calculated SN values should be decreased to be adjusted to the reference 
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temperature. After temperature adjustment, the effective structural number (SN) was calculated 

using Equation (5).  

 

Figure 5-8 - Effect of temperature adjustment on calculated SN from FWD data 

 

For each section, the structural number change versus time was determined and fitted with 

a linear model. The extracted features from FWD data were used as input into the IRI prediction 

model, and the rate of SN deterioration was used in the MDP decision-making model. Figure 5-9 

shows the structural number for LTPP section 0114 calculated from FWD data and the 

deterioration rate of the SN per year. 
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Figure 5-9- SN history for LTPP section 0114 

 

 The developed MDP model requires the average deterioration rate for estimating the 

structural number of next years. The rate of deterioration helps the model to predict the pavement 

condition and roughness better. This parameter contributes to understand the structural strength of 

the pavement depreciation during its lifetime and how the M&R plans can help to extend its life. 

Table 5-3 shows the statistics of Structural Number deterioration rate for three different 

construction groups, including 1) pavements with no M&R; 2) pavements with maintenance (such 

as crack sealing, tack coat, fog seal Coat, etc.), and 3) pavements with rehabilitation (such as 

overlay with AC, mill existing pavement and overlay with HMAC, RAP, WMAC, etc.). The p-

value obtained from the one-way ANOVA test is 0.016, which indicates a significant difference 

in the distribution of SN deterioration rate in three different groups assuming 5% confidence.  
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Table 5-3- Statistics of structural number change per year for three groups of pavement 

M&R experience 

Group M&R 

Min 

(ΔSN/year) 

Max 

(ΔSN/year) 

Mean 

(ΔSN/year) 

SD 

(ΔSN/year) 

1 No M&R -2.10 0.718 -0.29 0.61 

2 Maintenance -0.511 0.418 -0.052 0.21 

3 Rehabilitation -0.529 0.868 -0.16 0.35 

 

The M&R experience has considerable influence on the mean of the structural number 

deterioration rate. Pavements with no M&R show the highest rate of change, which is because of 

the deterioration of the pavement structure during its lifetime and lack of proper maintenance for 

the pavement.  Applying routine maintenance can decrease the deterioration rate of the pavement 

structure. Rehabilitation of the pavement also helps the sustainability of the pavement structure.  

 

5.4. IRI Prediction Models 

This model aims to predict the IRI change versus time given the pavement section's 

structural properties, including structural features, FWD data extracted features, subgrade soil 

properties, climate and traffic information, road type, etc. The intrinsic complexity of the pavement 

properties and parameters which affect the pavement behavior during the pavement lifetime asserts 

the need to try different machine learning predictive models. Each model's performance and 

accuracy vary based on several factors related to the dataset, including the type of the features, 

distribution, and correlation between variables, amount and severity of the outliers, number of 

available observations, etc. In this study, generalized linear (GLMnet), Support Vector Regression 

(SVM), Multivariate Adaptive Regression Splines (MARS), Artificial Neural Network (ANN), 
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and XGBoost models were investigated and used for predicting the IRI of the flexible pavements. 

Each method incorporates a different mathematical technique in the process, which was explained 

in the previous sections. All the proposed models were optimized to get the best performance out 

of them, and the best prediction model was implemented in the MDP M&R decision model. The 

results of the prediction models were discussed in the following section.  

5.5. M&R Decision-Making Model 

Pavement deterioration is a process of reducing the carrying capacity of the pavement. The 

surface condition is the primary and essential indicator of the structural integrity of the pavement. 

Pavement roughness is susceptible to the deterioration of the pavement structure and can be used 

as a parameter in M&R policy decisions. However, the surface roughness may not fully capture 

the structural integrity since, in many cases, the distresses are internally growing, but the surface 

does not show any signs of deterioration. These kinds of instabilities can be captured by FWD 

non-destructive test. The structural number is an index that can be estimated from the FWD data 

with a reliable level of confidence. Thus, IRI and SN act as two powerful indexes in predicting 

pavement performance and the effect of M&R strategies. The MDP model in this study aims to 

develop a stochastic pavement management planning based on the pavement structural integrity 

and pavement roughness. 

The developed MDP model recommends the maintenance and rehabilitation policies 

helping from a pavement roughness index (IRI) and a structural integrity index (SN) deterioration, 

and the optimized policy which will be determined based on cost analysis of the plan.  In the 

following, the elements of the developed model will be explained. The MDP model will use the 

developed IRI prediction machine learning model, rate of SN deterioration, and predicted traffic 

load as inputs. The optimized M&R plan will be introduced by implementing a proper reward as 
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a function of the treatment benefit/cost. In the following, the detailed methodology and initial 

results will be explained. 

To consider the effect of M&R on the IRI change and pavement deterioration, the period 

of the IRI survey were divided into three major groups based on the applied treatment:  

1- Pavement with no applied M&R treatment;  

2- Pavement with regular maintenances such as crack sealing, cheap seal, slurry seal 

coating, etc., and  

3- Pavement with rehabilitation treatments such as milling and AC overlaying and 

resurfacing. 

Several algorithms have been developed for solving the MDP and finding the optimum 

policy. Q-learning is a model-free reinforcement learning algorithm that was extensively used to 

solve the reinforcement learning problems that do not require an explicit definition of a Markov 

decision process. It trains an agent to learn an optimal policy from a dynamic environment, and 

the optimal learned policy tells the agent what action to take at each state. The MDP experimental 

model for this study was explained in the following sections.  
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6. MODEL DEVELOPMENT AND DISCUSSION 

 

After data perpetration, several machine learning models were used for the prediction of the 

IRI. Each model has advantageous that can help to increase prediction accuracy. The algorithm 

behind each machine learning model and its advantages and disadvantages were discussed in 

section 4.  Each machine learning model has parameters that govern and tune the training 

process. These parameters are named hyperparameters and need to be optimized during the 

training process. A 5 fold cross-validation was used for hyperparameters tuning and model 

validation. The total data were randomly divided into training and testing datasets with a ratio of 

0.75 and 0.25, respectively. Machine learning models were trained on the training datasets, and 

their performances were evaluated using the testing dataset.  In the following, the tuning results 

and the performance of the models on training and test dataset were presented. In the end, the 

best model that can be used for IRI prediction was introduced.  

6.1. Generalized Linear Model (GLM) 

Generalized Linear Models (GLM) extend the linear modeling framework to variables that are 

not normally distributed. If the relationship between independent variables (X) and dependent 

variables does not look linear or the dependent variable (Y) variance does not look constant 

regarding X, the GLM model can be helpful. For example, in the pavement performance 

prediction, the change in performance is lower at the early age of the pavement life; however, 

increasing the age increases the rate of pavement performance deterioration. The relationship 

between the IRI and structural number is shown in Figure 5-6 cannot be adequately explained by 

linear fitted models. The GLM relates the linear model to the response variable via a link such as 
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a log, logit, inverse functions, while the variance of the expected value is not constant. For this 

model, the logarithmic link function was used.  

The regularization technique, explained in section 4, was used for reducing the complexity of the 

model. This technique reduces the model parameters weights and increases the model flexibility. 

Thus, the model shows a lower error variance on the testing dataset. The regularization 

parameters, α, and λ, are part of the model hyperparameters that need to be optimized during the 

model training. The parameter α balances the weights between two penalty forms, including 

LASSO with α=1 and RIDGE with α=0. The parameter λ determines the overall strength of the 

penalty. By Increasing the λ, the model parameters’ weights will be reduced, and less important 

features will be zeroed out. In other words, the λ keeps the important features and removes less 

correlated features from the model. A set of α = [0, 0.01, 0.1,0.5,1] and λ = [1e-4, 5e-4, 1e-3, 1e-

2] was optimized based on the best performance by the lowest root mean square error. For α= 0.5 

and λ = 1e-4, the GLM model shows the best performance with a root mean square error 

(RMSE) of 0.28. Figure 6-1 shows the hyperparameter optimization for the GLM model 

developed for the pavement performance prediction. The optimized model at λ = 1e-4 removed 

the Temp, Road_Class, Base_Type features.  
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Figure 6-1- Hyperparameter optimization for GLM model 

 

The model was trained and evaluated using 5-fold cross-validation, and root mean square 

error as an accuracy metric by finding the best tuning parameter. Figure 6-2 shows the prediction 

results for the training and testing datasets. The GLM model shows RMSE of 19.4 in/mile and 

coefficient of determination of %68. The model prediction using the test dataset shows RMSE of 

18.8 in/mile and R2 of %74. This model performs better than the linear regression models; 

however, for higher IRI values, the GLM model underpredicts the IRI. This can be because of a 

lack of enough data on the high values of IRI. The number of observations with high values of IRI 

is much less than lower values, and this is the reason for data imbalance error in the GLM model. 

Other ML models can be used to reduce the error of the prediction in higher IRI values.  
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Figure 6-2- Pavement performance prediction by GLM model for (a) training(%75) and 

(b) testing(%25) datasets 
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6.2. Support Vector Machine (SVM) Regression 

Support Vector Machine is a machine learning method that can be used for classification 

and regression problems. In this model, a non-linear function maps the dependent variables into 

high dimensional kernel named feature space. This mapping helps to reduce the effect of outliers 

on the prediction values. The SVM regression is a nonparametric method looking for the best fit 

to the training data to construct a mapping function while the ability to generalize to unseen data 

is maintained. Thus, they can fit a large number of functional forms and does not assume anything 

about the form of the mapping function other than patterns that best represent the dependent 

variable. In the IRI prediction model, an SVM regression model with nonlinear kernel can get the 

nonlinear relation between the roughness and pavement features at high IRI values.  The SVMR 

model developed for the prediction of IRI has a radial kernel that works better than other choices 

in this example. Figure 6-3 shows the hyperparameter optimization for the SVMR model 

developed for the pavement performance prediction. A set of C = [0.01, 0.1, 1, 10, 50] and ε=[0.1, 

0.5, 0.1] were optimized based on the best performance considering the lowest root mean square 

error. In the SVM model, ε controls the number of close observations ignored by the model, and 

C balances the weight between the training error and the penalty term. For C= 10 and ε = 1, the 

SVMR model shows the best performance with a root mean square error (RMSE) of 10 in/mile.  
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Figure 6-3 - Hyperparameter optimization for SVMR model 

 

 

The mole was trained and evaluated using 5-fold cross-validation, and root mean square 

error as an accuracy metric by finding the best tuning parameter. Figure 6-4 shows the prediction 

results for the training and testing datasets. The SVM model shows RMSE of 10.6 in/mile and a 

coefficient of determination of 91%. The model's prediction using the test dataset shows an RMSE 

value of 17.19 in/mile and R2 of 77%. This model works better than the GLM model, especially 

for higher values of IRI. This is because of the radial kernel, which better represents the high IRI 

values in the prediction. 
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Figure 6-4- Pavement performance prediction by SVM model for (a) training(75%) and 

(b) testing(25%) datasets 
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6.3. Multivariate Adaptive Regression Splines (MARS) 

Multivariate Adaptive Regression Splines (MARS) is a non-parametric function estimation 

technique that shows excellent performance for fitting non-linear multivariate functions. This 

model breaks the range of independent variables, X into n number of bins, and fits the best line for 

each bin. A linear model is fitted to each bin, which reduces the amount of total error compare to 

a linear regression model. The fitted model to each bin could be linear or multivariate nonlinear. 

By this technique, the MARS change the continuous variables into clusters that optimally can be 

estimated by a nonlinear function.  The number of bins can be tuned during model training by 

using the knots parameters, which indicate the number of breaks in the model. In addition, the 

degree of freedom is another hyper tune parameter that controls the level of nonlinearity and 

interaction between the features. Figure 6-5 shows the parameter hyperparameter optimization for 

the MARS model developed for the pavement performance prediction. The number of breakpoints 

= 5, 6, 7, …, 20, and polynomial degrees of 1,2,3 and 4 were chosen for optimization using the 

RMSE metric. For knots= 10 and n = 3, the MARS model shows the best performance with root 

mean square error (RMSE) of 17.14 in/mile. 
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Figure 6-5- Hyperparameter optimization for MARS model 

 

 

The model was trained and evaluated using 5-fold cross-validation and root mean square 

error as an accuracy metric by finding the best tuning parameter. Figure 6-6 shows the prediction 

results for the training and testing datasets. The MARS model shows RMSE of 17.14 in/mile and 

the coefficient of determination of 78%. The model's prediction using the test dataset shows RMSE 

of 17.6 in/mile and R2 of 80%. This model does not show good performance, such as other machine 

learning techniques. One of the reasons could be the presence of categorical variables. The MARS 

model gives low bias but high variance. This is because of the overfitting problem in this model. 

The overfitting problem was compensated by hyperparameter optimization, but the model still 

shows the high variance in prediction results using the test dataset.   
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Figure 6-6- Pavement performance prediction by MARS model for (a) training(%75) 

and (b) test(%25) datasets 

 

 

 

 

6.4. Artificial Neural Network(ANN) 
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An ANN model was developed for the prediction of IRI in this study. Researchers often 

use neural networks for prediction IRI because of their predictive accuracy(Roberts et al. 1998; 

Kargah-Ostadi 2014). One of the strengths of neural networks is their ability to model highly 

nonlinear data. Neural networks were shown to produce results similar to MARS in modeling 

nonlinear functions(De Veaux et al. 1993). The neural network results are susceptible to model 

complexity. The number of layers, the number of hidden units in each layer, and the type of 

transfer functions are essential parameters that should be tuned during the training and 

evaluation. After the hyper tuning process, the optimized model with the lowest RMSE error was 

developed. The optimum model compromise of 3 layers with 9,12 and 9 neurons. The ReLU 

function was chosen as the activation function of all layers in the ANN model. 

 

Figure 6-7- ANN model plot developed for IRI prediction 

 

The model was trained by finding the best ANN setup, and the root mean square error was 

used as an accuracy metric. Figure 6-8 shows the prediction results for the training and testing 
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datasets. The ANN model shows RMSE of 13.9 in/mile and coefficient of determination, R2, of 

85%. The model performance using the test dataset shows RMSE of 16.2 in/mile and R2 of 81%. 

This model shows good performance compared to previous models and can be used as a prediction 

model to predict pavement performance during its lifetime. However, we need better accuracy for 

the IRI prediction model to increase the MDP decision model performance. 

 



 

85 

 

 

 

 

Figure 6-8- Pavement performance prediction by ANN model for (a) training(%75) and 

(b) testing(%25) datasets 

 

 

6.5. XGBoost 

The XGBoost tree model ensemble tree-based method works well with the tabular data and 

is one of the best models for pavement performance prediction. The XGBoost model can handle 

the model's missing values since it can skip the missed variable and work with other existing 

variables. Thus, the number of observations increases, and none of the sections will be discarded 

due to lack of information on some features. Other benefits of the XGBoost tree model are 

parallelization, regularization, and cross-validation, leading to increasing the computational speed 

and avoiding overfitting in the model.  

The parameters of the XGBoost model that should be optimized are the maximum depth 

of the tree models, total number of trees to grow in each cycle, the minimum number of variables 

used in the tree model, minimum number of samples in the batch of observations, or measured 
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data and few others. Figure 6-9 shows the parameter hyperparameter optimization for the XGBoost 

model developed for the pavement performance prediction. The maximum depth of the tree, 

including 3, 5, 7, 10, and a maximum number of iterations of 10 to 3000, were chosen for 

optimization using the RMSE metric. For the maximum depth of 5 and n value considered 3000, 

the XGBoost model shows the best performance with root mean square error (RMSE) of 5.92 

in/mile. 

 

Figure 6-9- Hyperparameter optimization for XGBoost model 

 

The model was trained by finding the best XGBoost parameters, and root mean square 

error was used as an accuracy metric. Figure 6-10 shows the prediction results for the training and 

testing datasets. The XGBoost model shows RMSE of 5.92 in/mile and the coefficient of 

determination of 95%. The model's prediction using the test dataset shows RMSE of 13.1 in/mile 

and R2 of 91%. This model shows outstanding performance and can be used as a prediction model 

for predicting pavement performance during its lifetime. 
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Figure 6-10- Pavement performance prediction by XGBoost model for (a) training(%75) 

and (b) testing(%25) datasets 
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6.6. Performance of New Developed Predictive Models 

After developing the prediction models using different machine learning techniques, the 

models' performance needs to be compared, and the contribution of the features in each model 

being investigated. Table 6-1 shows the input variables used in the final developed model after 

regularization and removing less important and correlated features. Removing these features from 

input variables decrease model complexity and increase the accuracy of the prediction.  

Table 6-1- Selected features for the final developed models 

Performance  GLM SVM MARS ANN XGBoost 

Training RMSE (in/mile) N=1853 

(75%) 

19.4 10.6 17.14 19.9 5.92 

Training R2 68% 91% 78% 78% 95% 

Testing RMSE (in/mile) N=617 

(75%) 

18.8 17.19 17.6 16.2 13.1 

Testing R2 78% 77% 80% 81% 91% 

Input Variables GLM SVM MARS ANN XGBoost 

Age      

SNeff      

SIP -- -- -- -- -- 

PD1.5      

DAC  -- --    

Dtotal  -- --   -- 

AADTT      

Temp --  -- -- -- 

FI   -- -- -- -- 

Precip       

Evap  -- --  -- -- 

M&R      

Base_type --   --  

Plasticity --   --  

Road_Class -- --  -- -- 
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Age, effective structural number (SNeff), Deflection at 1.5 times of pavement thickness 

(PD1.5), traffic load (AADTT), precipitation, and M&R history were used in all of the models. 

SIP had a very high correlation with the structural number and was removed from the input 

variables. Asphalt and total Pavement thickness were used in MARS, ANN, and XGBoost model. 

The SVM and GLM models allocated very low weights to these features and removed them from 

the prediction model. This could be because of the correlation of these variables with SN of the 

pavement. The correlation between the IRI and temperature was not as good as other 

environmental characteristics, and thus, the average temperature was not selected as a good 

predictor in IRI prediction models. 

 

Figure 6-11 - Comparison of the performance of new developed predictive models 

 

Figure 6-11 shows the comparison between the performance of IRI prediction models. 

Most of the newly developed models show acceptable performance. However, the XGBoost model 

shows the best RMSE and the highest R2 between the developed models. This is because of the 
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novel cutting edge algorithms that were implemented by this model. The tree-based regression, 

boosting algorithm, cross-validation, regularization of the features helps to have a robust, accurate 

model that can precisely predict the IRI based on the available information collected for the 

pavement section.  

The next step is an assessment of how the input variables are working with the model. 

The developed models and the contribution of each input variable should be investigated. The 

XGBoost model does not provide an estimation parameter or weight for each feature, which can 

be used to interpret the relationship between a specific feature and the supervisor. The feature 

importance in XGBoost is a parameter that indicates the contribution of that feature in the 

model's decision tree process and performance. One of the essential metrics is gain, which 

implies the corresponding input variable's relative contribution to the model calculated by taking 

each feature's contribution to each tree model. The sum of the gain of all input variables is equal 

to one.  When compared to another feature, a higher value of this metric implies it is more 

important for generating a prediction. Figure 6-12 shows the feature importance of the developed 

XGBoost model for the prediction of IRI. Features that contribute most to predicting IRI by the 

XGBoost model are effective structural number and peak deflection at 1.5 times of pavement 

thickness.  
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Figure 6-12 - Variable Importance derived from the XGBoost model 
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7. M&R STRATEGY 

Pavement deterioration is a process of reducing the carrying capacity of the pavement. The 

surface condition is the primary and essential indicator of the structural integrity of the pavement. 

Pavement roughness is susceptible to the deterioration of the pavement structure and can be used 

as a parameter in M&R policy decisions. However, the surface roughness may not fully capture 

the structural integrity since, in many cases, the distresses are internally growing, but the surface 

does not show any signs of deterioration. These kinds of instabilities can be captured by FWD 

non-destructive test. The structural number is an index estimated from the FWD data with a reliable 

level of confidence. Thus, IRI and SN act as two powerful indexes in predicting pavement 

performance and the effect of M&R strategies.  

A Markova Decision Process (MDP) model is a reinforced learning model that contains a 

set of possible states (S), a set of possible actions (A), a reward function R (s, a), and a transition 

function T (s, a). By having the MDP model, the agent can explore the environment by taking 

action, visiting different states, and accumulating rewards. After exploring the environment, each 

state can get a value that determines the goodness of being in that state and is a function of the 

expected total reward gained from that state. MDP model aims to find the value function and the 

optimum policy. An optimum policy is an instruction for the agent that determines the best 

action at each stage, which leads to the maximum reward. 

The developed MDP model recommends the maintenance and rehabilitation policies 

helping from a pavement roughness index (IRI) and a structural integrity index (SN) 

deterioration, and the optimized policy with be determined based on cost and future benefit of 

the plan.  In the following, the elements of the developed model will be explained.  
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7.1. MDP Environment 

The pavement network has an infinite number of pavement sections with different 

pavement types, traffic load, functional class of the road, current roughness and SN, and many 

other features that may vary or not during its lifetime. To formalize this environment and use that 

in the MDP model, the features were divided into variable and non-variable features during the 

pavement lifetime. The non-variable features are the features that show low or no changes during 

the design period, including the annual average climate parameters, road functional class, 

pavement type, pavement base type, and subgrade soil plasticity. The pavement's variable features 

are the pavement roughness, pavement structural number, pavement surface thickness, and traffic. 

The environment compromises infinite pavement states with variable and non-variable features 

and a series of M&R decisions as actions. This kind of environment cannot be implemented in 

simple MDP models, and exceptional cases of the MDP algorithm, such as deep Q-learning, should 

be applied. The MDP has a sequential frame, and the goal is to maximize the benefit/cost of M&R 

plans.  

7.2. MDP States 

The structural number and traffic volume are the features that are changing during the 

pavement lifetime and have a significant effect on the ride quality of the pavement, and together 

with the pavement roughness index, can be used in M&R policy optimization. The states in the 

developed MDP model have a vector of variable pavement features with respect to time. The states' 

vector can be defined as St =<IRIt, SNt, KESALt, CN> in which t denoted time up to the design 

period and IRIt, SNt, and KESALt are the predicted pavement roughness, structural number and 

traffic in the given time. CN is the construction number that will be set based on the applied M&R 

plan. 
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7.3. Transition Matrix 

The developed MDP has a stochastic transition, and the developed XGBoost model will 

determine the resulting states from the given pair of the state and action. The developed XGBoost 

model gives the prediction of the IRI vs. time considering the pavement features. The model will 

implement the pavement features into the developed model and respond by distributing estimated 

IRI for the next year. The annual increase in the KESAL determines KESALt+1, and the SN 

deterioration rate determines the SNt+1.  

7.4. MDP Actions 

The considered actions in the MDP model is including M&R decisions. The actions are 

defined as 1-Do Nothing, 2- Maintenance, 3-Rehabilitation, and 4- reconstruction. By acting “Do 

nothing”, the pavement will deteriorate, and next year state’s vector will be determined by the 

XGBoost model, SN deterioration rate, and traffic increase rate. The maintenance action is the 

regular pavement maintenances, including the crack sealing, fog seal, slurry seal, patching that 

affects the ride quality and help reduce the rate of deterioration but does not affect the structural 

integrity of the pavement. The IRI will be updated the minimum thresholds by taking this action, 

but the SN deterioration will get just a discount factor.  The resurfacing action is including full 

depth and partial milling and resurfacing, cold-in place resurfacing, and overlay. The roughness 

index will be updated to the minimum value by taking this action, and the SN number will get the 

maximum threshold. The maximum threshold of the SN will be estimated from the initial 

pavement condition and SN. The pavement will be set to a new pavement with the new feature by 

taking the reconstruction action. It will be assumed that the pavement will be reconstructed with 

the same layer thicknesses. In this case, the IRI and SN number will be updated to the min and 
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max values, and the construction number will be set to zero. Table 7-1 shows the impact of taking 

actions on the MDP state features and updating the method at each transition.  

Table 7-1- Impact of taking MDP actions on the MDP state features 

Action Impact on Features 

Do Nothing • IRIt+1 from XGBoost model  

• SNt+1 from SN deterioration rate  

• CN remains the same 

Maintenance • IRIt+1 will be set to the min value 

• SNt+1 from SN deterioration rate considering a discount 

factor 

• CN number will be updated 

Rehabilitation • IRIt+1 will be set to min 

• SNt+1 from SN deterioration rate considering a discount 

factor 

• CN number will be updated 

Reconstruction • IRIt+1 will be set to min 

• SNt+1 will be set to Max value 

• CN number will be set to 0 

 

7.5. MDP Rewards 

The benefit/cost ratio has been assigned as the reward function for the suggested MDP 

model. The optimal policy derived from the MDP model has the highest benefit/cost ratio between 

all the suggested M&R plans. IRI value of 3.5 m/km has been selected as the threshold for a poor 

pavement condition that needs immediate action (Smith et al. 2004). The area between the 

predicted IRI curve and the threshold value has been selected as a benefit of the M&R and has 

been assigned as AUPC in cost over benefit calculation. Agency cost of the M&R strategies 

depends on various parameters such as extension and material of treatment. Since the model is 

comparing the benefits/cost of strategies, the actual costs of the treatments are not required.  An 

estimation of the relative costs of the treatment types has been presented in the literature(Wilde et 

al. 2014; Gu et al. 2019). Table 7-2 shows the estimated relative action cost of the treatment actions 

used in the MDP model.  
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Table 7-2- Relative cost of M&R actions 

  Relative action cost  

Do Nothing 0  

Maintenance 1 

Rehabilitation 3.2 

Reconstruction 12 

 

The user's cost was neglected in calculating the strategy costs due to uncertainties in the 

work zone type, the number of lanes, and the duration of work. The Equation (16)  was used for 

calculating the benefit over the cost of the treatment strategies. These strategies  

Reward
AUPC

NPV
=   (16) 

Where: 

1

1
Initial Cost *

(1 )

n

k n
k

NPV TC
i=

 
= +  

+ 
  (17) 

AUPC = Area under the performance curve 

TC = Treatment Cost 

i = discount rate = %2 

n = Analysis Period 

The calculated reward for each strategy was used in the MDP model, and the best action at each 

state was determined.  

 

7.6. MDP Q-function 

In Q-learning, the expected total long-term reward in a given state 𝑠, and an action 𝑎 is 

predicted by the Q-function Q(s, a). The agent should take the optimal action (𝑠) for a state 𝑠 such 

that the expected long-term reward is maximized. The Equation (12) gives the Q-function that 

needs to be solved for the given environment. Q-Learning algorithm is difficult to deal with large 
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and continuous state space like our pavement environment. There are methods to deal with this 

problem, such as discretization techniques, but the implementation is complex, and the 

performance could be decreased. Another method is to use a neural network to solve the Q-function 

in the Q-learning. Deep Q-learning is an extension of the Q-Learning algorithm by modeling the 

Q-function (𝑠, 𝑎) as a (deep) neural network. In this approach, the Q-function is a complicated 

composition of various parameterized functions, taking the input 𝑠, 𝑎, and making predictions of 

long-term utility. The deep Q-learning process were well explained in section 4.7. 

 

 

The deep Q-learning Algorithm 

Initialize input parameters of Q, replay memory, epsilon, episode number.  

Loop for each episode in range episodes:  

• Reset environment, step_size; 

• Reset Rewards 

• While the step is less than steps_size: 

o Choose action a: 

▪ With prob 𝜖, random choose action 

▪ With prob(1-𝜖), chose a that maximize Q(s,a) 

o Apply action <a> and get the next state from XGBoost model, and reward 

from reward function 

o Add st, a, rt, st+1 to replay memory. 

o  If enough sample is in replay memory: 

▪ Sample a batch of state transition. 

▪ Update Q through ANN and loss function of MSE  

o    Decay 𝜖 

o    Update rewards 

• End 

End 

 
Figure 7-1 - The deep Q-Learning algorithm used for solving the Q-function. 
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Figure 7-1 shows the algorithm used for solving the Q-function by the deep Q-learning 

method. First, the Q (s, a) will be initialized to 0 for all the states. The replay memory is an array 

of the temporary state and rewards that will be fed to the ANN as a batch of input observations. 

Epsilon is a trade-off parameter for exploration vs. exploitation rate explained in section 4.7. The 

number of episodes determined the simulation iteration and were set to 1000000. Step size in this 

problem is the duration of the M&R planning and was set to 20 years.  

The objective of deep Q-learning is to make the iterative process and update the Q-function. 

The updating process will be stopped when the Q-function converges to a fixed value. The 

difference between the Q-function values at each iteration is an indicator of Q-function 

convergence. Figure 7-2 shows the normalized gradient of the Q-function, indicating convergence 

of the q-values to fixed values. By having the Q-function and using Equation (11), the optimum 

policy at each state can be determined.  

 

Figure 7-2- Convergence of Q-function gradient 
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7.7. Results and Discussion 

After convergence of the Q-function, the optimum policy and best action at each state can 

be determined. Figure 7-3 shows the predicted IRI and optimum treatment type and time for LTPP 

section 0124. The blue region shows the area between the poor IRI condition threshold and 

predicted IRI. This area representing the benefit of the treatment plan and is equal to 41.185 

(m/km) *(year).  This area was used as AUPC in Equation (16). The present value of the treatment 

was calculated using Equation (17) and is equal to 24.3, and the total reward of the optimum policy 

is equal to 0.59. The MDP model is suggesting only one optimum policy, and alternative policies 

cannot be generated.  

 

Figure 7-3 - Predicted IRI and treatment time for LTPP section 0124 

 

 

The MDP model should be run for each section separately. This model needs to be trained 

based on the characteristics of each section and gives the optimum treatment for the given section. 

Figure 7-4 shows the MDP suggested treatment plans and actually placed treatments for selected 
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LTPP sections. The MDP model has mostly suggested rehabilitation as a treatment for the given 

sections. Information on the type of the sections and benefit over cost (B/C) ratio for treatments 

suggested by MDP and actually performed treatments were presented in Table 7-3. The M&R plan 

suggested for section 0124 includes a rehabilitation at year five and a reconstruction at year 12. 

The reason for reconstruction was poor SN that showed a defect in the structure of the pavement. 

The B/C for the treatment suggested by the MDP plans has a higher benefit than the performed 

plans. This also can be found for sections 0607 and 0118.   

 

Table 7-3- MDP and LTPP M&R plan benefit/cost 

LTPP section Section 0607 Section 0118 Section 0124 

Layer Information 

16“ Unbound 

(granular)base 

9" Bound treated base 

3.8 “ HMAC 

8”  Lime Treated Subbase 

3.6 “ Unbound 

(granular)base 

8" Bound treated base 

4.8 “ HMAC 

6”  Lime Treated 

Subbase 

4 “ Bound (treated) Base 

6.6 “ HMAC 

Benefit/Cost 

of M&R 

Plan 

MDP 

M&R 
0.95 1.23 0.59 

LTPP 

M&R 
0.91 1.12 0.23 

 

The MDP model did not suggest maintenance because of the inaccuracy of the IRI reports 

by LTPP. In most of the LTPP sections, the observed pavement roughness after applying the 

maintenance increased. This could be due to the inaccuracy of the surveying or the inefficiency of 

the applied maintenances. The prediction model uses the provided data from LTPP and follows 

the given IRI patterns. The MDP model predicts an increase in IRI after taking maintenance as the 

action. This will reduce the area under the curve and benefit of the plan. Thus, the model will not 

select maintenance as the optimum treatment.  
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Figure 7-4- MDP suggested treatment plans and actually placed treatments for selected 

LTPP sections 

 

 

The MDP model can suggest a plan for the treatment of the flexible pavements. The 

suggested plans are comparable with the actually performed treatments. The model can be 

improved by using more data, considering both users and agency costs, differentiating between the 

type of the rehabilitations, and customizing the costs based on the given treatments.  
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8. CONCLUSION AND RECOMMENDATION 

 

This research study was aimed to enhance designing models for the flexible pavement of 

Oklahoma and develop a new M&R decision process using the surface roughness and structural 

capacity of the pavement section.  

Pavement mechanistic-empirical (ME) design is one of the AAHSHTOWare Design 

software built to design new and rehabilitated pavements with flexible, rigid, and composite 

structures. The nationally calibrated performance models in Pavement ME do not well represent 

the construction and materials specifications, traffic, and climate conditions specific to each state 

and cannot precisely reflect the pavement performance. Local calibration of Pavement 

Mechanistic-Empirical (ME) software improved the pavement performance prediction models 

and optimized the performance models for the pavement network of Oklahoma.  In chapter 3, the 

calibration effort of Pavement ME design prediction models using local inputs and performance 

data for the state of Oklahoma was presented. A total number of 66 sections from LTPP and few 

more asphalt pavement sections in Oklahoma were identified for this project's purpose. The 

selected projects represent flexible pavement construction practices in the state and cover various 

pavement conditions, construction age, and environmental conditions. The material, structural, 

and traffic data were gathered from LTPP, Oklahoma, and NCHRP datasets. The material input 

data were evaluated, and the most accurate available data was selected. For each pavement 

section, the Pavement ME design analysis was conducted. The predicted values from distress and 

IRI models were evaluated and compared with the measured ones, and the accuracy and bias of 

each model were determined. The nationally calibrated models show an improper prediction 

performance and a significant bias, which asserts the necessity of local calibration. The rutting 

and IRI models show better performance compared to fatigue bottom-up and top-down, and 
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thermal cracking models. The reason for bias and error in the measured versus predicted distress 

values mainly comes from inaccurate input data, error in the distress survey, and accuracy of 

prediction models. By the calibration effort, the error in performance prediction models was 

reduced. The locally calibrated coefficients for distress and IRI models were determined for the 

Oklahoma pavement system. The distress and IRI models show that the calibrated coefficients 

improve Pavement ME predictions and the design of flexible pavements in Oklahoma. Rutting 

and IRI models show lower error and higher accuracy than the fatigue and transverse cracking 

models after the calibration. Fatigue cracking models underestimate fatigue distress before the 

calibration, but these models show better performance after the calibration. The results of 

Pavement ME transverse cracking are not consistent with the measured values in Oklahoma. 

Even after the calibration, the transverse cracking model cannot correctly predict the amount of 

cracking. 

The second objective of this research was to develop a new maintenance and rehabilitation 

decision process which considers the stochasticity of the pavement performance prediction and 

suggests the optimized maintenance activities for the given section by implementing a newly 

developed predictive model. The developed M&R decision method is a Markov Decision Process 

that employs IRI from a newly developed IRI prediction model and structural number from 

historical data. The IRI prediction model predicts the IRI with high accuracy by having the 

structural number, road class, climate condition, traffic load, and subgrade and structural 

information. A total number of 419 flexible pavement sections from the states of Oklahoma, Texas, 

Arkansas, Missouri, Kansas, Colorado, and New Mexico were selected, and the input variables for 

the machine learning model were extracted from the selected sections. Several machine learning 

models, including GLM, SVM, ANN, MARS, and XGBoost, were developed and compared to 
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predict the IRI. The XGBoost model shows an RMSE of 5.92 in/mile and the coefficient of 

determination of 95%. The model's prediction using the test dataset shows RMSE of 13.1 in/mile 

and R2 of 91%. This model shows excellent performance and can be used as a prediction model 

for predicting pavement performance during its lifetime.  

By improving predictions and developing effective maintenance decision policies, machine 

learning algorithms can optimize maintenance and rehabilitation interventions and reduce 

maintenance costs. A Markov Decision Processing (MDP) model for suggesting the optimum 

treatment for the given flexible pavement section has been developed. This model considers the 

M&R activities from pavement history, which affects the pavement deterioration rate, and suggests 

an M&R Policy for the given pavement system. The MDP model can suggest a plan for the 

treatment of the flexible pavements. The suggested plans are comparable with the actually 

performed treatments. The model can be improved by using more data, considering both users and 

agency costs, differentiating between the rehabilitations, and customizing the costs based on the 

given treatments. The results of this planning can be used to recommend the optimal M&R 

treatment, which increases the benefit over the cost of the pavement. This model dynamically 

predicts the pavement's roughness during the desired time frame using the developed IRI 

prediction model. 
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