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1
METHOD AND SYSTEM FOR ACCURATE
LONG TERM SIMULTANEOUS
LOCALIZATION AND MAPPING WITH
ABSOLUTE ORIENTATION SENSING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a 35 U.S.C. § 371 national stage
application of PCT/US2017/060954 filed Nov. 9, 2017,
which claims benefit of U.S. Provisional Patent Application
No. 62/419,624 filed Nov. 9, 2016, and entitled, “Method
and System for Accurate Long Term Localization and Navi-
gation Using On-board Sensors,” each of which is incorpo-
rated herein by reference in its entirety for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This disclosure was made with U.S. Government support
under 11S-1217991 awarded by the National Science Foun-
dation. The government has certain rights in the embodi-
ments of the disclosure.

TECHNICAL FIELD

The present disclosure relates to robotic mapping. In
particular, accurate long term simultaneous localization and
mapping with absolute orientation sensing.

BACKGROUND

When a robot is not given a priori knowledge of its
environment, it must use its sensory data and actions to
concurrently build a map of its environment and localize
itself within its stochastic map, this is referred to as Simul-
taneous Localization and Mapping (SLAM). In SLAM,
estimation errors tend to build up during exploratory motion
and are usually negated by revisiting previously seen loca-
tions. When a robot returns to a previously visited location,
this may be referred to as loop closure. Certain mobile
robotics applications, e.g., autonomous cars, precision farm-
ing, planetary exploration etc. may require robots to accu-
rately traverse long trajectories without revisiting previous
locations. During long-term point-to-point navigation when
global localization information (e.g., GPS) is unavailable or
degraded, SLAM is often used. Conventional SLAM visual-
inertial localization methods exhibit error of =0.3%-0.5%
which may be unsuitable for precision tasks, e.g. fora 25 km
trajectory, such error results in 75 m-125 m position error.

Some robots may be operated indoors where GPS is
unavailable or degraded. For example, material handling
robots that move goods (boxes, pallets etc.) in large ware-
houses and distribution centers do not have access to GPS
satellites. Installing beacons, markers, or guide cables is
expensive, and robots are often expected start without prior
knowledge of the map of their operating environment.
Further, warehouse environments are highly dynamic due to
a mix of industrial vehicles (pallet jacks, forklifts etc.) and
people moving rapidly across large floor spaces, thus a robot
must continuously update its knowledge of the map and
react to changes in its vicinity.

In some approaches, robots may be driven manually to
gather and store measurements (e.g., laser scans, visual
landmarks etc.). This data is then processed offline to build
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detailed maps. Computed maps are subsequently used for
positioning and navigation by taking measurements to
known features in the world.

Existing SLAM techniques correct estimation drift by
relying on loop closure, i.e., revisiting previously seen
locations and correctly associating sensor information to
data previously stored in the map. There are at least two
problems associated with loop closure. Loop closure is
sensitive to data association accuracy, wrong data associa-
tion can lead to catastrophic failure of the SLAM system;
and data association reliability is limited by localization
accuracy. Thus, localization drift may cause map quality to
degrade as the scale of environment increases.

SUMMARY

Described herein are embodiments of a method and
system that uses a vertical (e.g., upward facing) imaging
sensor to compute vehicle attitude (e.g., orientation or
heading) and combines the computed vehicle attitude with
range bearing measurements (from an imaging sensor,
LiDAR, sonar, etc.) to features in the vicinity of the vehicle
to compute accurate position and map estimates.

In an embodiment, a mapping system is described. The
mapping system may comprise an upward facing sensor; a
range bearing sensor; and a processor in communication
with the upward facing sensor and the range bearing sensor.
The processor may be configured to determine an attitude of
the mapping system based upon first data received from the
upward facing sensor; determine a location of local land-
marks based upon second data received from the range
bearing sensor; and determine a location of the mapping
system based upon the attitude and the location of the local
landmarks. The first data may comprise bearing measure-
ments to one or more features. The upward facing sensor
may be a camera. The mapping system may further comprise
an inertial sensor, wherein the processor may be further
configured to determine a relative pose based upon a scan
match, wherein the scan match comprises inputs of the
second data and a third data received from the inertial
sensor. The processor configured to determine the location
of the mapping system may comprise the processor config-
ured to fuse a result of the scan match with the attitude. The
processor configured to fuse the result of the scan match
with the attitude may comprise the processor configured to
input the result of the scan match and the attitude to a
Kalman filter. The processor may be further configured to
update a map based upon the location of the mapping system
and the location of the local landmarks.

In an embodiment, an autonomous vehicle is described.
The autonomous vehicle may comprise an upward facing
sensor; a range bearing sensor; and a mapping system in
communication with the upward facing sensor and the range
bearing sensor. The mapping system may comprise a pro-
cessor configured to determine an attitude of the autono-
mous vehicle based upon first data received from the upward
facing sensor; determine a location of local landmarks based
upon second data received from the range bearing sensor;
and determine a location of the autonomous vehicle based
upon the attitude and the location of the local landmarks.
The first data may comprise bearing measurements to one or
more features. The upward facing sensor may be a camera.
The autonomous vehicle may further comprise an inertial
sensor, wherein the processor may be further configured to
determine a relative pose based upon a scan match, wherein
the scan match comprises inputs of the second data and a
third data received from the inertial sensor. The processor
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configured to determine the location of the autonomous
vehicle may comprise the processor configured to fuse a
result of the scan match with the attitude. The processor
configured to fuse the result of the scan match with the
attitude may comprise the processor configured to input the
result of the scan match and the attitude to a Kalman filter.
The processor may be further configured to update a map
based upon the location of the autonomous vehicle and the
location of the local landmarks.

In an embodiment, a method for mapping is described.
The method may comprise determining an attitude of a
mapping system based upon first data received from an
upward facing sensor; determining a location of local land-
marks based upon second data received from a range bearing
sensor; and determining a location of the mapping system
based upon the attitude and the location of the local land-
marks. The first data may comprise bearing measurements to
one or more features. The method may further comprise
determining a relative pose based upon a scan match,
wherein the scan match comprises inputs of the second data
and a third data received from an inertial sensor. Determin-
ing the location of the mapping system may comprise fusing
a result of the scan match with the attitude. Fusing the result
of the scan match with the attitude may comprise inputting
the result of the scan match and the attitude to a Kalman
filter. The method may further comprise updating a map
based upon the location of the mapping system and the
location of the local landmarks.

BRIEF DESCRIPTION OF THE DRAWINGS

Further embodiment of the disclosure will be described
with respect to the following figures, in which:

FIG. 1 is a diagram of an embodiment of a robot config-
ured for long term SLAM with absolute orientation sensing;

FIG. 2 is a flow diagram of an embodiment of a method
for long term SLAM with absolute orientation sensing;

FIG. 3Ais a diagram of an embodiment of robot to feature
relative measurement by a robot;

FIG. 3B is a diagram of an embodiment of feature to
feature relative measurement by a robot;

FIG. 4 is a diagram of an embodiment of a robot viewing
a feature from two poses in robot to feature relative mea-
surement;

FIG. 5A is a graph of error growth in estimate of a last
pose as a function of how far a robot moves of an embodi-
ment described herein;

FIG. 5B is a graph of reduction in error growth rate as a
number of landmarks increases of an embodiment described
herein;

FIG. 5C is a graph of localization error for a feature bank
most distant from a starting location before and after loop
closure of an embodiment described herein;

FIG. 5D is a graph of localization error in a last pose after
loop closure as the trajectory length (number of banks
mapped) increases of an embodiment described herein;

FIG. 6Ais a diagram of an embodiment of a robot starting
to make observations to a first bank of features;

FIG. 6B is a diagram of an embodiment of a robot starting
to making relative observations between a second bank of
features and a third bank of features;

FIG. 6C is a diagram of an embodiment of a robot moving
towards its start location;

FIG. 6D is a diagram of an embodiment of a robot
re-observing the first bank of features;
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FIG. 7A is a graph of linear error growth in estimate of a
last pose as a function of how far a robot moves away from
its start of an embodiment described herein;

FIG. 7B is a graph of reduction in error growth rate as a
number of landmarks increases of an embodiment described
herein;

FIG. 7C is a graph of localization error for a feature bank
most distant from a starting location before and after loop
closure of an embodiment described herein;

FIG. 7D is a graph of localization error in a last bank after
loop closure as the trajectory length (number of banks
mapped) increases of an embodiment described herein;

FIG. 8A is a diagram of an embodiment of robot trajectory
over 5 square kilometers (km) with a 25.9 km trajectory;

FIG. 8B is a diagram of an embodiment of robot trajectory
over 10 square km with a 107.9 km trajectory;

FIG. 9A is a graph of average terminal pose localization
error as the bank size increases with the 25.9 km trajectory
of an embodiment described herein;

FIG. 9B is a graph of average terminal pose localization
error as the bank size increases with the 107.9 km trajectory
of an embodiment described herein;

FIG.10Ais a diagram of an embodiment of a camera view
of a ceiling; and

FIG. 10B is a diagram of an embodiment of a thresholded
image of the ceiling.

DETAILED DESCRIPTION

The following discussion is directed to various embodi-
ments of the disclosure. Although one or more of these
embodiments may be preferred, the embodiments disclosed
should not be interpreted, or otherwise used, as limiting the
scope of the disclosure, including the claims. In addition,
one skilled in the art will understand that the following
description has broad application, and the discussion of any
embodiment is meant only to be exemplary of that embodi-
ment, and not intended to intimate that the scope of the
disclosure, including the claims, is limited to that embodi-
ment.

Estimation drift during exploration may be caused by
robot heading uncertainty. In some approaches, reliable
absolute orientation measurements may not be available in
SLAM. These approaches may rely on odometery and
relative pose or feature measurements to estimate robot
orientation and position. Embodiments of the present dis-
closure may attain an accuracy (i.e., error in position as
percentage of distance travelled) of 0.0016% for a 107.9 km
trajectory without loops using absolute orientation sensor
technology. An instantaneous location and/or heading of a
robot may be referred to herein as a pose.

A robot using SLAM with a heading sensor in Extended
Kalman Filter-based SLAM (EKF-SLAM) may move much
further into unknown areas with consistent estimates. Con-
sistency in a filter implies that the estimation uncertainty
captures the true error; conversely an inconsistent filter does
not capture true error and may give a false sense of confi-
dence in the robot’s belief.

Two methods of SLAM may be used, filtering-based
methods and graph-based methods. Filtering-based methods
may maintain a recursive estimate using current robot pose
and map. Graph-based methods use robot poses as nodes of
a graph and constraints as edges. Graph based SLAM may
use a two-pronged approach, 1) a front-end which maintains
an estimate of the robot pose and computes data association
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between current and past observations, and 2) a back-end
which solves the non-linear optimization to compute the
history of robot poses.

Analysis of EKF-SLAM shows that heading, i.e., robot
orientation may be unobservable in the EKF-SLAM formu-
lation. Analysis of the consistency of EKF-SLAM further
shows that heading estimation errors may be a cause of
inconsistency due to erroneous Jacobian computations. In
the case of a stationary robot with zero process noise
observing one feature, EKF-SLAM heading estimate may
drift. The EKF-SLAM filter may be overconfident, i.e.,
uncertainty estimates may not reflect the true error and
heading uncertainty may be the major cause of inconsis-
tency.

In graph-based SLAM, non-linear optimization tech-
niques may be used to solve for the maximum likelihood
estimate. Graph-based SLAM techniques may rely on an
initial guess to bootstrap the optimizer. This initial guess
may be based on odometery and may be arbitrarily bad
leading to local minima. A special property of SLAM is that
when robot orientation is known, SLAM may be posed as a
linear estimation problem in position. Some approaches
have exploited this structural property with the aim of
decoupling non-linearities that arise due to orientation.

Estimating orientation as the first step and using these
estimates to initialize pose graph optimization may result in
a robust solution. The separation of orientation and position
may be extended to feature-based SLAM. Estimating ori-
entation first may avoid catastrophic failure, e.g. local
minima.

The embodiments described herein include autonomous
robot localization and mapping that fuses absolute orienta-
tion sensing (using cameras that track stable structural
features), with local measurements using a LIDAR, camera,
or some other imaging or sensing technique. In some
embodiments a robot or autonomous vehicle includes a long
term SLAM with absolute orientation sensing system. The
robot or autonomous vehicle may be configured to travel
over land, through air, water, or any other medium of travel.
The system may include a sensor array. The sensor array
may include one or more orientation sensors, odometery
sensors (such as inertial measurement units, wheel encoders,
etc.), and at least one exteroceptive sensor. The orientation
sensor may be, for example, a star tracker, a sun sensor, a
magnetometer, or a gyrocompass, or an upward facing
camera. The inertial sensor may include a combination of
accelerometer and gyroscope which measure the vehicles
acceleration and angular rates. The odometery sensors may
include a rotary encoder coupled to a wheel of the vehicle,
or other device for determining distance traveled by the
vehicle over a time interval. The exteroceptive sensor (i.e.,
a range bearing sensor) may include a camera, a LIDAR
system, a RADAR system, a SONAR system, or other
system for providing distance and bearing measurements to
features in view of the vehicle. For example, features
outdoors may include stars when a star tracker is used; and
features indoors may include light fixtures or other fixtures
on the ceiling. The system includes a processor (e.g., a
microprocessor, digital-signal-processor, etc.) coupled to the
sensor array. The processor receives measurements from the
various sensors of the sensor array. The navigation system
also includes memory (e.g., volatile or non-volatile semi-
conductor memory) coupled to the processor. The processor
may store the measurements received from the sensor array
in the memory. The memory may also store instructions that
can be executed by the processor to process the measure-
ments and provide the long term SLAM with absolute
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orientation sensing functionality described herein. For
example, the processor may process the measurements to
determine a location of the vehicle as described herein, to
control a motor or other propulsion system of the vehicle,
and/or to control a steering system of the vehicle based on
the determined location of the vehicle.

Other sensors such as magnetometers and gyrocompasses
which may be used to provide absolute orientation. Magne-
tometers may function adequately when the Earth’s mag-
netic field is not corrupted by external influences. Gyrocom-
passes measure the planet’s rotation to determine accurate
heading with respect to geographic north. Microelectrome-
chanical Systems (MEMS)-based gyrocompasses have been
proposed and may be useful for providing absolute orien-
tation. The methods presented in this disclosure may use
magnetometer or gyrocompass for orientation sensing alone
or in combination with a star tracker or sun sensor or other
upward facing sensor.

FIG. 1 is a diagram of an embodiment of a vehicle 100
with a long term SLAM with absolute orientation sensing
system. The long term SLAM with absolute orientation
sensing system may comprise an upward facing sensor 110,
a range bearing sensor 120, a camera 130, an inertial
measurement unit 140, wheel encoders 150, and a processor
160. The processor 160 may receive inputs from one or more
of the upward facing sensor 110, the range bearing sensor
120, the camera 130, the inertial measurement unit 140, or
the wheel encoders 150. Upward facing sensor 110 may be
used to determine an orientation of the vehicle 100 based
upon landmarks above the vehicle 100. For example, in an
indoor situation, the upward facing sensor 110 may be a
camera that captures images of the ceiling of a building
where the vehicle 100 is located. In another example, the
upward facing sensor 110 may be a star tracker that captures
images of stars or other landmarks in the sky. The orientation
determined by the upward facing sensor 110 may be used
with data from one or more of the range bearing sensor 120,
the camera 130, the inertial measurement unit 140, or the
wheel encoders 150 by the processor 160 to determine a
location and orientation of the vehicle 100. This information
may be used to create or update a virtual map of the
environment where the vehicle is operating. One or more of
the range bearing sensor 120, the camera 130, the inertial
measurement unit 140, or the wheel encoders 150 may be
optional in some embodiments. The range bearing sensor
120 may a LiDAR, sonar, or some other sensor that detects
objects in the environment surrounding the vehicle 100.
Camera 130 may a stereo camera or some other image
capture device that detects objects in the environment sur-
rounding the vehicle 100. The IMU 140 may be configured
to measure the movement of the vehicle 100. Likewise,
wheel encoders 150 may count revolutions of the wheels and
determine a distance traveled by vehicle 100.

FIG. 2 is a flow diagram of an embodiment of a method
for long term SLAM with absolute orientation sensing 200.
The embodiment may be implemented by a mapping sys-
tem. At block 210, an orientation sensing camera, e.g.,
upward facing sensor 110, may determine a heading (e.g.,
attitude or orientation) of a vehicle, e.g., vehicle 110. The
heading may be provided to a LOGO slam solver 260. The
LOGO slam solver 260 may be executed by a processor, e.g.,
processor 160. The heading may also be provided to a
Kalman filter 250. A scan matcher 240 may determine a
relative pose based on input from a range finding sensor 220
and/or a movement sensor 230. Range finding sensor 220
may be a LiDAR, sonar, radar or some other sensor con-
figured to detect objects and their range from the vehicle.
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Movement sensor 230 may an IMU, a wheel encoder, or any
other sensor configured to detect movement of the vehicle
and estimate a distance traveled based on the movement
detected. The relative pose information from scan matcher
240 may be provided to the Kalman filter 250. The Kalman
filter 250 may fuse the relative pose information with the
heading to determine a location of the vehicle. If the
mapping system determines with a predetermined accuracy
that the vehicle is revisiting a previously visited location,
then the mapping system may assume loop closure has
occurred. If loop closure has occurred, the LOGO slam
solver 260 may use the output of the scan matcher 240 along
with the heading to update the map. If loop closure has not
been detected, the mapping system may perform incremen-
tal mapping. While the embodiment of FIG. 2 is described
in terms of a mapping system on a vehicle, the method may
be implemented by mapping system on a handheld device or
any other device comprising the elements described in the
description of FIG. 2. Further, the vehicle may be autono-
mous or manually controlled.

Outdoor Embodiments

The following embodiments describe systems that operate
in an outdoor environment where the upward facing sensor
110 detects objects in the sky. Some of the techniques in
these embodiments may be used in either the indoor and
outdoor embodiments. Star trackers may be automated cam-
era-based devices that compute inertial attitude with high
accuracy. Some star trackers may deliver RMS error down
to 10 arcseconds or 0.0028° by using measurements to
known celestial bodies and comparing them to star charts.
Star trackers may rely on measurements to persistent bea-
cons in space whose trajectories across the sky relative to
Earth or other planets may be fixed with great precision
based on long-term astronomical observations. Star trackers
may be used when GPS is unavailable during both day and
night operation. The method of the present disclosure may
combine any combination of proprioceptive (odometery)
sensors (e.g., inertial sensors, wheel odometer etc.) and/or
exteroceptive sensors (e.g., camera, LIDARs etc.) with star
tracking or sun sensors for accurate global navigation.

In an embodiment using a star tracker or sun sensor, let

x,EX, €U, and 7 EZ represent the system state, control
input, and observation at time step k respectively, where U,

X, Z denote the state, control, and observation spaces
respectively. A keyframe pose is designated as *x. The state
evolution model f'is denoted as x,., , =f(x;,u;)+w,, where w,~
N (0, Qp) is zero-mean Gaussian process noise. The robot
belief is defined as the probability distribution over all
possible states of the robot. Let the belief at time t, be b,&
where B is the belief space. Then b, represents the
posterior over the history of the robot’s actions and obser-
vations, thus:

by=p(xlxo, ¥4 o u 1) (€]

where:

Z , is the history of observations up to time t,, and

U ,_, is the history of actions up to time t,_,.

The measurement model h is denoted as z=h(x,)+v,,
where v,~N (0,R,) is zero-mean Gaussian measurement
noise. The map (unknown at t,) is a set of landmarks (i.e.,
features) distributed throughout the environment. The j-th
landmark is defined as 1, and ij as the estimate of 1. The
observation for landmark 1. at time t, is denoted by z;/Ez,.
The inverse measurement model is denoted by g such that
for a given measurement z;/ and the state x, at which it was
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made, g computes the landmark location lj:g(xk,zkj). 4,7, is
the relative feature measurement, from feature |, to 1, in the
local frame of the robot at time t,. In the framework of the
present disclosure, a relative feature measurement is an
estimate of the displacement vector from one feature to
another. The local relative measurement is computed as
d,9='A/A,F, where ‘A,7, 'A;/ are relative positions of fea-
tures 1, and ]; respectively with respect to the robot in its local
frame. Thus it is linear in positions of the two features in the
local frame. Let C(0,) denote the direction cosine matrix
(DCM) of the robot orientation at state x,. C is a function of
the robot orientation parameter 0, (e.g., Euler angles,
Quaternions etc.). A local measurement in the robot frame
can be projected into a fixed world frame (i.e., a global
frame, the frame may be an earth centered inertial frame,
frame here refers to a cartesian coordinate frame of refer-
ence) as:

CONA=A =l @

where:
1, and p, are the feature and robot positions in the world
frame respectively.
Thus, when robot orientation 6 is known, the position
estimation problem may be linear.

Embodiments disclosed herein may include various
approaches for long-term localization. Two such approaches
are Robot to Feature Relative Measurement Model (R2F)
and Feature to Feature Relative Measurement Model (F2F).
R2F may be designed for systems where a robot moves
continuously and has access to odometery, orientation sen-
sor and exteroceptive sensing e.g., Lidar, cameras, etc. R2F
may convert local relative measurements from the robot to
features at each pose to global frame measurements as
shown in FIG. 3A. These measurement may then be used to
solve a linear estimation problem of the robot and feature
positions to attain a high-degree of accuracy. F2F may
extend the R2F for systems where extremely high-precision
is required. When extremely high-precision is required,
odometery may not provide reliable information and time
budgets may be relatively large. In this case, independent
measurements are made for relative displacements between
features which are then chained together to estimate the map
and robot position as shown in FIG. 3B.

In the scenario of FIGS. 3A and 3B, a robot may observe
four banks of features prior to final pose, i.e., last keyframe.
There may be two features in each bank. For example, the
first bank indicated by the dashed ellipse may include 1, and
L,. A bank may be described as the set of features observed
at a particular pose. FIG. 3A shows how R2F makes relative
measurements from robot to features. The relative measure-
ments are indicated by the lines with arrowheads. The
keyframes are indicated by the black and white triangles and
indicate positions where the robot may make relative mea-
surements.

The R2F approach includes the following steps. 1) Range
bearing measurements to features are converted into relative
displacement vectors from robot to features at each pose as
the robot moves as shown in FIG. 4. In FIG. 4, the robot may
detect the landmark 1, from two poses x; and x,. The
transformation of local relative measurements to the global
frame may be used to solve for robot and feature positions.
2) At keyframe poses, a linear estimation problem may be
solved for the robot pose and features using the recorded
data. 3) Once the linear estimation problem is solved,
correlations between keyframe poses and features observed
at keyframe poses may be maintained, intermediate feature
and pose estimates may be dropped. 4) An upper threshold
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may be set on the number of keyframes to keep in the map
after which the oldest keyframe is deleted. The first pose
may be saved even if it is the oldest keyframe.

The R2F approach will now be explained in greater detail.
Let

Lio=Alys bgs v s by}

be the set of landmarks visible at time t,. Let

e Mk
- 1,k
Zx = {Zk S Zgp T e

be the set of range bearing observations to the set of
landmarks visible at time t,. Using the inverse measurement
model g (described above), the position of landmark 1, in
robot’s local frame is ‘A,'='g(z,’). Hence, the vector of local
robot to feature relative measurements is:

3

8 ="g(m) = Zg(z.ikZ) ’

Zg(lff” )

Thus, ‘A~ (‘A 'Rp=V'gl, R V'g"l), where Vigl_ is
the Jacobian of measurement function in Eq. 3. At t,,
embodiments have keyframe X, whose prior belief by~
N Ro=[Py".0,".1"P,) is known. The robot starts moving and
collecting odometery, orientation, and exteroceptive mea-
surements at each timestep. At some future timestep tg,
embodiments have keyframe *x,. Abusing notation slightly,
let 'Ag,~N (Ago R Ay,) D€ the vector of all local relative
position measurements (including robot to feature and trans-
lational odometery) recorded at poses Xq.,. At each t,
embodiments have a noisy unbiased orientation measure-
ment which giV(.ss the vector 9.0:.k~N (7 Rew). Dropping
the time subscript for readability, local relative measure-
ments ‘A may be transformed to the world frame as:
vA=CT(OA, e
where:
C=C(®) is the corresponding composition of DCM matri-
ces parametrized by the heading measurements 6.
Based on equation (4), transformed global measurements
at each pose x, may be correlated to heading measurement
0,. Heading error covariances may be propagated appropri-
ately in the feature and robot position estimation. Embodi-
ments setup a new measurement model B:hB(XO,lA, 0)+vg by
stacking the transformed odometery between poses, robot to
feature displacement, heading measurements, and the prior
estimate of *x, (given). This gives the following linear
problem:

Po / Po (5)
AT n A0 P
B=|C Bos =[0 I] Lt
[ A 9
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where [pOT,pT,IT,GT]T is the vector of robot poses, landmarks,
and heading, A' is a matrix with each row containing
elements of the set {—1,0,+1}, VB~N (O,Rp) is the measure-
ment noise vector with covariance:

P, 0 O ©
Rg=Vig| 0 'Ry 0 |V &g
0 0 %

P, is the prior error covariance of “x, and Vhg is the Jacobian
of measurement function hg given by

I 0 0 @]
Vhg=|0 T MA| M=

0 0 1

The solution to the linear problem in equation (5) is given
by:

«

14
I
[

®)
= (ATR;' ) ATR; B

From equation (8), [p*”,I*7]7 are of interest. At a future
keyframe, in Eq. 5 embodiments may replace p, with esti-
mates of past keyframes and corresponding landmarks
observed at those keyframes.

The R2F approach may be analyzed for location accuracy
and the effect of loop closure as a robot explores an
unknown map. For the sake of clarity, it is assumed that the
robot makes independent measurements of global frame
displacement from robot to feature and error covariance of
every global relative measurement is R,. In practice, inde-
pendence may be achieved by capturing heading observa-
tions such that the same heading observation is not used to
transform all local measurements to world frame. The first
and last pose of the robot are considered as keyframes with
first pose known.

In an exploration task, a robot may move into unknown
areas and make measurements to a bank of features at each
timestep as shown in FIG. 3A. FIGS. 5A-5D show analysis
of the pose and map estimation error as the robot moves and
the effect of loop closure in the estimates using the R2F
approach. FIG. 5A shows that the error growth is linear as
final pose moves further away from its start. An interesting
point arises in FIG. 5B, the rate of error growth drops as
o<1/n, where ng, is the number of features in each bank. Thus
it implies that for long-term autonomy, it is beneficial to
make high-quality observations to a number of features
greater than one, but hundreds or thousands of features may
not always be needed because the additional features above
a certain threshold show decreasing improvement in accu-
racy. Thus, localization error for a given task may be
predicted and a determination made of how many features to
observe to balance computational complexity and memory
resources with accuracy.

Loop closure may be considered a necessary action in
SLAM to limit error growth. However, in the case of
long-term point-to-point navigation, loop closure may not be
possible. The effect of loop closure on the bank of features
farthest from the start location in a loop and on the last pose



US 11,536,572 B2

11

is analyzed in FIGS. 5C and 5D. For the error in farthest
bank, FIG. 5C shows that the effect of loop closure dimin-
ishes as the bank size increases as shown by the gap between
solid and dashed lines, e.g., after mapping 9 feature banks,
with 1 feature in each bank error drops to 60.49% and with
4 features drops to 66.14% after loop closure. Note that the
ratio of error growth rate after and before loop closure is
0.5185, i.e., loop closure approximately halves the error
growth in the farthest bank. In point-to-point navigation, the
same effect may be achieved by taking twice the number of
measurements to each feature. FIG. 5D shows that error in
last pose after loop closure converges to a fixed value as the
trajectory length increases. This indicates that estimation
error in the last pose is dominated by the relative measure-
ment to the first bank; i.e., as the trajectory length grows, the
effect of the longer “pathway” from start may have almost
no effect on estimation accuracy.

In the F2F approach, the mapping algorithm may trans-
form range bearing observations from robot to features into
relative position measurements between features by fusing
them with heading estimates from a heading sensor. FIG. 3B
shows how F2F estimates keyframe poses and may neglect
odometery between poses. Localization accuracy may be a
function of how far the robot has moved and the number of
features in each bank. The key steps of F2F include the
following. 1) Range bearing measurements to features may
be converted into relative displacement vectors between the
features at each pose as the robot moves. 2) Robot to feature
relative position measurements may be acquired at key-
frames, then a linear estimation problem may be solved for
keyframe poses and map features using the recorded data. 3)
Once the linear estimation problem is solved, correlations
between keyframe poses and features observed at keyframes
may be maintained and intermediate feature estimates may
be dropped. 4) An upper threshold may be set on the number
of keyframes to keep in the map after which the oldest
keyframe is deleted. The first pose may be saved even if it
is the oldest keyframe.

The F2F approach will now be explained in detail. At time
1> the position of features 1, and 1, in the robot’s local frame
are ‘A, and A}/ respectlvely Thus embodiments may com-
pute the displacement vector from 1, to 1, in the robot frame
as

"IN N g2 ). ©

Equation (9) shows that ‘d,” is independent of robot

position p, and orientation 0,. Hence, the vector of local
relative measurements is as follows:

’gd(z;ikl, z:kz) o

by iy
~ g Tk T T
tdy ='galzs) = ( ) )

I i
; 1k
gd(Zk nl, Zk”)

Note in Equation (10) that though measurements to each
feature are independent, the set of relative feature measure-
ments may be correlated due to the correlations between
relative measurements using the same range-bearing mea-
surement. This is where a difference from some approaches
arises. There may be a benefit of capturing independent
measurements of relative feature displacements. Indepen-
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dence may be achieved by capturing heading and range
bearing observations by stopping the robot at certain times
(e.g., keyframes)

Let ‘d~N (d,, R, =Vig,I.R_V'g 1) be the vector of
1ndependent relative fleature mheasurements at time t, with
error covariance ‘R, where V'g |_ is the Jacobian of the
local relative measurement function in Equation (10). At t,,
embodiments have keyframe X, Whose prior belief by~
N Ko=Ipo7,0,71%, P,) is known. The robot starts moving
and collecting orientation and exteroceptive measurements
at each tlmestep At some future tlmestep tk, embod]ments
have keyframe *x,. Let ‘d, . ,~N (d,._,, ) be the
vector of local relative feature measurements captured from
time t, to t,. At keyframes "x, and * Xz; embodiments have
robot to feature relative measurements ‘A, N (AO —IALS,
‘AT, ZRAO 7b1kdlag([ Rup ZRAk])) At each pose embodi-
ments have a noisy unbiased heading measurement which
gives the vector of orientation estimates 6, ,~N" (8,4, Ry, 0"
Dropping the time subscript, the vector of local relatlve
measurements ‘d can be transformed to the world frame as:

wh o ¥ (D
~ = C ~
“A ‘A
where:
C=C(0) is the corresponding composition of DCM matri-
ces.

Heading error covariances may be propagated appropriately
in the feature and robot position estimation. Thus, embodi-
ments set up a new measurement model y=h,(x,,'A,’d,0)+v,
by stacking the transformed relative position and heading
measurements. This gives the following linear problem:

Po a2
.7, Po
Cld [ A0 ] 1
= = vy,
T | Tho ) e [T
A A (4
where:
[por1%p7,671" is the vector of robot poses, landmarks and
heading,
A' is a matrix with each row containing elements of the set
{-1,0,+1}, and
v~V (0, R,) is the measurement noise vector, where:
P, 0O 0 O (13)
0 ‘Ry 0 0
Ry=Viy| o 0 'Ry 0 |7 hy
0 0 >
é
Vh, is the Jacobian of measurement function h, given by
10 0 0 a4
o 0 0o ¢ M4 . &
= s M=— .
"o o o MA where 30 o=t
00 0 1
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The solution to the linear problem in equation (12) is
given by:

Po (15)

= (ATR A TATR .

In some embodiments, the localization error grows as a
robot explores an unknown map. It may be assumed that the
robot makes independent relative feature measurements and
the error covariance of each global relative measurement is
R,,. The first and last pose of the robot are considered as
keyframes with the first pose known.

Referring to the case depicted in FIG. 3B, i.e., the robot
maps four banks of two features each (n,=2) followed by a
final keyframe pose and inspection of the estimation error in
the final keyframe. Let the vector of relative measurements
be y. Further, odometery may be discarded as it is superflu-
ous to map estimation when global orientation measure-
ments are available and robot observes common features
between successive keyframes (recall that relative feature
displacements in world frame are independent of robot
position). Embodiments can setup a linear estimation prob-
lem for landmark and keyframe pose estimation for FIG. 3B
as:

1 (16)
7=A[ ]4—\/),.
p

Solving the linear least squares problem in equation (16),
the information matrix €2 then is given by:

-1 (17)
Q=3 =ATR;'A=

3R 0 -R}Y -R' 0 0 0 0 0
0 3R} -R}! -R' 0 0 0 0 0
-R' -R' 4R 0 R -RY 0 0 0
-R;Y -R;Y 0 4R} R} -RY O 0 0
0 0 -R}' -RY 4R 0 -R -RY 0
0 0 -R}' -R' 0 4R} R} -RY 0
0 0 0 0 -RrR' -R' 3R} 0o -R!
0 0 0 0 -RrR' -R' 0 3R} -R!
0 0 0 0 0 0 -R}' -R;' 2R}

Q has a symmetric tridiagonal structure that permits an
analytical inversion to compute the error covariance matrix.
An analytical solution of the error covariance matrix may
allow prediction of feature localization uncertainty at the
goal given certain environment characteristics, e.g., the
number of features in each bank and how many banks the
robot may map as it traverses to the goal. The capability to
predict future localization uncertainty implies that given a
desired goal accuracy, active sensing to control error growth
may be applied.

The linear estimation problem of equation (12) may be
analytically solved and error covariance X computed for
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multiple cases by varying bank size n, and the number of
banks that the robot maps. FIGS. 7A, 7B, 7C, and 7D show
results of analysis of the feature mapping and localization
error as the robot moves and the effect of loop closure. FIG.
7A shows that localization error grows linearly as the robot
moves away from the start location. Further, the error
growth rate shown in FIG. 7B is inversely proportional to
the square of the size of each feature bank, i.e.,

o —

2
"

where ng, is the number features in one bank. Thus error
growth may be controlled by the number of features mapped
in each bank.

FIGS. 6A, 6B, 6C, and 6D show a simple graphical
depiction of loop closure, the left half of each figure shows
the robot 600 making range bearing measurements and the
right half shows the map being built. FIG. 6D concerns the
estimation error of the farthest feature bank (encircled by
ellipse 610) and the last pose (encircled by ellipse 620).
Thus, FIGS. 6A, 6B, 6C, and 6D depict loop closure when
a robot makes relative feature measurements while moving
in a circular trajectory. The exercise of solving equation (16)
is repeated, albeit with loop closure and the error covariance
2 is computed. The results of this analysis are plotted in
FIGS. 7C and 7D. The ratio of error growth rate with loop
closure to error growth rate without loop closure is a
constant value of 0.5181 for all values of n,, computed as the
ratio of slopes of curves plotted in FIG. 7C before and after
loop closure. FIG. 7D shows that error in last pose after loop
closure converges to a fixed value as the trajectory length
(number of banks) increases.

Looking at FIG. 6D (right half), there are two “pathways”
that link the farthest bank of features to the first bank. Prior
to loop closure there is only one path for the relative
measurements to constrain feature estimates to the first
bank, however, after loop closure there is a second pathway
from the opposite direction. An interesting point to be made
is that if two observations (R, is halved) were taken for each
relative feature displacement, embodiments would effec-
tively end up with the same estimation error at the farthest
bank were the robot not to close the loop. The second
observation shows that the estimation error in the last bank
of features is dominated by the relative measurement to the
first bank, i.e., as the trajectory length grows, the effect of the
longer “pathway” from start has almost no effect on esti-
mation accuracy.

FIGS. 8A and 8B present simulation scenarios for way-
point following in a 2D environment. These simulations
study the case of a long term exploration task where a robot
may not visit prior locations. The robot may be equipped
with three sensors: a star tracker with noise standard devia-
tion 0g=0.005° (18 arcseconds); a range bearing sensor with
a 360° field-of-view, range of 20 m and noise standard
deviation of 0,=0.1 m in range and 0,=1.0° in bearing; and
wheel odometery with noise standard deviation oy, 5, =0.1 m
in translation and 0ge=1.2° in rotation. The robot may move
at a speed of 10 m/s and simulation time step is 0.05 s. FIG.
8A shows a scenario with a 2D world (5 kmx5 km) with a
trajectory of length 25.9 km. FIG. 8A shows a scenario with
a 2D world (10 kmx10 km) with a trajectory of length 107.9
km. Both scenarios are obstacle free and landmarks are
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randomly placed along the trajectory. Both trajectories ter-
minate far from the start location and there are no loop
closures.

Using the R2F approach, for the scenarios of FIGS. 8A
and 8B, multiple versions of the environment were gener-
ated varying the number of features visible at each pose.
Using the F2F approach, for the scenarios of FIGS. 8A and
8B, multiple versions of the environment were generated
varying the number of features visible at each pose. FIGS.
9A and 9B respectively compare the average terminal local-
ization error obtained using the R2F approach in each of the
scenarios of FIGS. 8A and 8B with the average terminal
localization error obtained using the F2F approach in each of
the scenarios of FIGS. 8A and 8B.

Trigonometric functions of robot orientation are the pri-
mary source of non-linearity in SLAM which makes pre-
dicting long-term error growth difficult. Analysis shows that
given unbiased heading measurements, localization error
growth is linear as a robot moves away from its start
location. The error growth rate may be controlled by the
quality and number of measurements. Further, loop closure
may be avoided when absolute heading is available as the
same effect may be achieved by taking prolonged measure-
ments. Feature estimates may be consistent due to the linear
nature of the problem which may lead to a global minimizer.
Consistent feature estimates may lead to better localization
as the robot has a reliable notion of uncertainty about its
estimated mean.

Indoor Embodiments

The following embodiments describe systems that operate
in an indoor environment where the upward facing sensor
detects objects on or attached to the ceiling of an indoor
environment. Some of the techniques in these embodiments
may be used in either the indoor and outdoor embodiments.
In indoor settings the system may use stable structural
features as structural cues, for example, in a warehouse
building, the ceiling corrugation or ceiling lights are usually
aligned along one direction. Thus, the orientation of the
building may be fixed in the direction of ceiling direction
and a vehicle may estimate its orientation with respect to the
building by observing the ceiling.

In an embodiment, let x={x,, . . ., x,} be a set of n+1
poses, describing the robot position and orientation at each
time k. In 2D (planar) problems, x,=[p,”8,]’ESE(2), where
p«ER? is the position and 6,ES0(2) is the heading. Let &,
be a measurement pose of j w.r.t to pose i then,

o Ay =Ri(p; - p:)
v 0,-6

where R, is the rotation matrix composed by 6,. In the
general setting, & is corrupted by noise, thus éy‘: Vi
where v,; is zero-mean Gaussian. Let ‘A be the vector of
relative position measurements in the local frame at each
pose and. If robot orientation 6* is known at each pose, then
the SLAM problem becomes,

YA=R(0*)TA

YA=A'p where A' is a matrix composed of elements in the
set {~1,0,1} and p is the vector of robot positions in the
global frame. Thus, when robot orientation 0 is known, the
position estimation problem is linear. Moreover, when unbi-
ased global heading measurements are available, the prob-
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lem may be very accurately linearized. This may provide
localization accuracy leading to robustness in the front-end
and enabling computationally low-cost linear-least squares
solutions for the back-end. The same concept may be used
with 3D problems where the relative orientation measure-
ment 6,-6, may be represented as RJRZ.T.

The indoor approach includes three aspects. 1) Sensing
absolute orientation of the robot using structural cues. 2)
Fusing absolute orientation measurements to the front-end,
i.e., a scan matching algorithm. 3) Solving the batch opti-
mization problem to compute global estimates at loop clo-
sure.

Independent absolute orientation estimates of the robot
heading may be determined. In an indoor environment the
relative heading of the robot with respect to the building’s
true north may be used as the absolute heading. The orien-
tation sensing method may detect structural features of the
environment. In most indoor environments, e.g., offices,
factories, warehouses etc. the ceiling structure usually has
straight line features. For example, ceiling corrugation or
ceiling lights in most industrial buildings are aligned along
one direction which may be detected by a ceiling facing
camera. Ceiling direction may be estimated as follows.

First, extract line features from a ceiling image, the line
features may be an edge of a light fixture or a part of a
corrugated ceiling. Next, compute orientation of the line
features in the image frame. The system may then create a
histogram of the orientation data with bins of width b in
range [0, 2w). The system may then create a window of
width W around the bin with highest frequency, i.e., the bin
with maximum observations. The system then computes the
weighted mean of observations in the window. The ceiling
direction may then be computed as an angle $6_€[0, m).

Line direction may be ambiguous, i.e., it may be difficult
to differentiate north from south. Therefore, gyro data may
be used in the intermediate time between absolute orienta-
tion measurements. Gyros may provide data at >100 Hz and
therefore may be used to account for the angle wrap-around
issue in absolute orientation detection. To estimate the robot
heading, initial heading at time t, is assumed to be known.

To a regular scan matching based front-end we add a
Kalman filter after the scan match step. This Kalman filter
fuses relative orientation estimates from scan matching with
absolute orientation estimates as computed previously (us-
ing a ceiling facing camera and gyro). Let

?,(va(Ok, 03]

Ok

be the absolute orientation measurement at time t, and 6,_,*
be the heading estimate of the robot at t,_,. Let 6ék_1,k~
N (88;_, GéeHﬁz) be the relative orientation measurement
from pose x;_, to X, as computed by scan matching, Then 6,
is computed as follows.

First the relative orientation estimate is used to compute
a prediction,

6,7=0;_,"+06;_,

2 2+ 2
O g o 611080, 1,

Then, the absolute orientation measurement is used to
compute the update as follows:

)7k:§k— 0,

o 20 2
SE=0%; +07 o
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Fusing orientation information may add robustness to the
front-end. Small errors in relative orientation measurements
may add up over time to create a super linear growth in
localization error. This problem may arise from the non-
linear nature of the orientation.

In an embodiment, the SLAM back-end may use the
graph generated by the front-end along with absolute ori-
entation data and solve a two-step optimization problem.
The first step may be the estimation of robot orientation
using the absolute orientation and relative orientation mea-
surements followed by a second step in which a linearized
least-squares optimization problem may be solved for the
robot position.

Robot orientation 6&(-m,xt], thus as the robot navigates,
the relative orientation measurements may not provide infor-
mation about the angle wrap around. Let 88, ; be the relative
orientation measurement from pose x, to x;, then

50, ,=9(6,-6,)

where:
¢ is the module operator such that ¢(0)E(-m,x].
Thus the regularized relative orientation measurement 0 is

50, ~0-0,+2k,m

Here k;; is the integer ambiguity. In our approach, since
absolute orientation measurements are available, the integer
ambiguity can be simply be calculated as:

ky=round((86; ,~(6,-6,))/2x)

Once the regularization constants are computed, we for-
mulate a linear estimation problem by stacking together the
absolute orientation measurement vector 8 and regularized
relative orientation measurement vector 88 as

which can be solved for the global orientation estimate as
6=(B"R,"'B)'BR, ‘B
and the estimate error covariance is (B'Rg™'B)™*
Once a global orientation estimate 0 1s computed, we
proceed to compute robot position at each pose. We know

that a relative pose measurement from pose X, to X, contains
a relative position measurement A as

IAij:Ri(pj_pi)
where:
ZAl.j is the displacement measured in the local frame of
pose X, and p,, p; are the 2D positions.

Let ‘A~ (‘A,’R,) be the vector of all local relative position
measurements. The vector of local relative measurements
can be transformed to the global frame. Thus the linear
estimation problem may be formulated as:

YA=RIA=A'p+"v,.

R=R() is the corresponding composition of rotation matri-
ces parametrized by the estimated heading 0, p is the vector
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of robot positions, A' is a matrix with each row containing
elements of the set [-1,0,+1] and *v,~N (0, *R,=C* R,C)
is the noise vector.
After computing the orientation estimates 8 along with the
transformed global relative position measurements they are
stacked to give a new measurement vector y:

.
o R4
v =ho(A, 0 +v, =

The error covariance R, of measurement vector y is given
by:

Ry 0
Ry=Vh| 3 v I

[

where:
Vh,, is the Jacobian of measurement function h,, given by:

= R M ‘A
Vhy = E
0 1
nere < €
where = W
Thus:
"Ry + MY MT MY
é @
Ry = .

)

2]

2m
[

Thus, the solution to the linear estimation problem is
given by:

v
g

Note that the above involves the inversion of a large
sparse matrix R, which may not be suitable for implemen-
tation due to complexity and potential numerical issues.
However, this inversion may be avoided by analytically
computing the information matrix Q,=R,™" using block-
matrix inversion rules as:

] = (ATR'A) T ATR Yy

"Ryl ~ vRi'M

W=y "R Qo+ MT YRIM |

In an embodiment, a robot may be configured with a
LiDAR with 360 sensing, a monocular ceiling facing cam-
era, an IMU, and a processor. The robot may be deployed in
a warehouse where GPS signal is degraded or unavailable.
The ceiling of the warehouse may be equipped with rect-
angular light fixtures at regular intervals which may be
leveraged for orientation estimation. In some embodiments,
the processor may threshold the image such that a binary
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image is created. Thus the ceiling lights may appear as
rectangular bright spots while rest of the image appears
black. FIG. 10A shows the ceiling camera’s view and FIG.
10B shows the thresholded binary image. Heading estimates
may be computed at 30 Hz. A first image captured by the
camera may be used to determine an orientation of the robot.
For example, the edge of the light fixture in the picture may
be determined to be 0 degrees. As the robot travels and takes
a subsequent image of the ceiling the angle of the light
fixture in the subsequent image may be determined relative
to O degree angle. This determination may be used to
determine the absolute orientation. The processor may use a
bin size b=0.5 degrees for the histogram operation used for
orientation estimation. The processor may create a map of
the warehouse based on inputs from the LiDAR, camera,
and IMU using the techniques described above.

In the following discussion and in the claims, the terms
“including” and “comprising” are used in an open-ended
fashion, and thus should be interpreted to mean “including,
but not limited to . . . .” In addition, the term “couple” or
“couples” is intended to mean either an indirect or a direct
connection. Thus, if a first device couples to a second device,
that connection may be through a direct connection, or
through an indirect connection accomplished via other
devices and connections. Further, the term ‘“software”
includes any executable code capable of running on a
processor, regardless of the media used to store the software.
Thus, code stored in memory (e.g., non-volatile memory),
and sometimes referred to as “embedded firmware,” is
included within the definition of software. The recitation
“based on” is intended to mean “based at least in part on.”
Therefore, if X is based on Y, X may be based on Y and any
number of other factors.

The above discussion is meant to be illustrative of the
principles and various embodiments of the disclosure.
Numerous variations and modifications will become appar-
ent to those skilled in the art once the above disclosure is
fully appreciated. For example, while some embodiments
have been described herein with respect to facility inspec-
tion and risk assessment, those skilled in the art will under-
stand that the principles disclosed herein are applicable to
assessing risk associated with a wide variety of tangible
inspection subjects or units. It is intended that the following
claims be interpreted to embrace all such variations and
modifications.

What is claimed is:
1. An electronic mapping system comprising:
an upward facing sensor oriented to capture data in a
direction perpendicular to a surface upon which the
electronic mapping system travels;
a range bearing sensor; and
a processor in communication with the upward facing
sensor and the range bearing sensor, the processor
configured to:
determine an absolute orientation estimate of the elec-
tronic mapping system based upon first data received
from the upward facing sensor, wherein the first data
is indicative of a line feature of a building structure;
determine a location of local landmarks based upon
second data received from the range bearing sensor;
determine a relative orientation estimate based on the
location of the local landmarks;
fuse, using a Kalman filter, the absolute orientation
estimate and the relative orientation estimate;
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determine a location of the electronic mapping system
based upon a result of the fuse of the absolute
orientation estimate and the relative orientation esti-
mate, and

create a new map of the building structure based only
on the first data from the upward facing sensor and
the second data from the range bearing sensor.

2. The electronic mapping system of claim 1, wherein the
line feature is of an edge of a light fixture or a part of a
corrugated ceiling.

3. The electronic mapping system of claim 2, wherein the
upward facing sensor comprises a camera.

4. The electronic mapping system of claim 1 further
comprising an inertial sensor, wherein the relative orienta-
tion estimate comprises a relative pose based upon a scan
match, wherein the scan match comprises inputs of the
second data and a third data received from the inertial
sensor.

5. The electronic mapping system of claim 4, wherein the
processor configured to determine the location of the elec-
tronic mapping system comprises the processor configured
to estimate an orientation of the electronic mapping system
based on the fuse of the absolute orientation estimate and the
relative orientation estimate.

6. The electronic mapping system of claim 5, wherein the
processor configured to determine the location of the elec-
tronic mapping system further comprises the processor
configured to solve a least-squares optimization problem.

7. The electronic mapping system of claim 1, wherein the
processor is further configured to update the map based upon
the location of the mapping system and the location of the
local landmarks.

8. The electronic mapping system of claim 1, wherein the
processor is further configured to:

extract the line feature from the first data received from

the upward facing sensor; and

determine an orientation angle of the extracted line fea-

ture,

wherein the absolute orientation estimate is with respect

to the determined orientation angle.

9. An autonomous vehicle comprising:

an upward facing sensor oriented to capture data in a

direction perpendicular to a surface upon which the
autonomous vehicle travels;

a range bearing sensor; and

an electronic mapping system in communication with the

upward facing sensor and the range bearing sensor, the

electronic mapping system comprising a processor con-

figured to:

determine an absolute orientation estimate of the
autonomous vehicle based upon first data received
from the upward facing sensor, wherein the first data
is indicative of a line feature of a building structure;

determine a location of local landmarks based upon
second data received from the range bearing sensor;

determine a relative orientation estimate based on the
location of the local landmarks;

fuse, using a Kalman filter, the absolute orientation
estimate and the relative orientation estimate;

determine a location of the autonomous vehicle based
upon a result of the fuse of the absolute orientation
estimate and the relative orientation estimate; and

create a new map of the building structure based only
on the first data from the upward facing sensor and
the second data from the range bearing sensor.
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10. The autonomous vehicle of claim 9, wherein the line
feature is of an edge of a light fixture or a part of a
corrugated ceiling.

11. The autonomous vehicle of claim 10, wherein the
upward facing sensor comprises a camera.

12. The autonomous vehicle of claim 9 further comprising
an inertial sensor, wherein the relative orientation estimate
comprises a relative pose based upon a scan match, wherein
the scan match comprises inputs of the second data and a
third data received from the inertial sensor.

13. The autonomous vehicle of claim 12, wherein the
processor configured to determine the location of the
autonomous vehicle comprises the processor configured to
estimate an orientation of the electronic mapping system
based on the fuse of the absolute orientation estimate and the
relative orientation estimate.

14. The autonomous vehicle of claim 13, wherein the
processor configured to determine the location of the elec-
tronic mapping system further comprises the processor
configured to solve a least-squares optimization problem.

15. The autonomous vehicle of claim 9, wherein the
processor is further configured to update the map based upon
the location of the autonomous vehicle and the location of
the local landmarks.

16. A method for mapping implemented by an electronic
mapping system, the method comprising:

determining an absolute orientation of the electronic

mapping system based upon first data received from an
upward facing sensor oriented to capture data in a
direction perpendicular to a surface upon which the
electronic mapping system travels, wherein the first
data is indicative of a line feature of a building struc-
ture;
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determining a location of local landmarks based upon
second data received from a range bearing sensor;

determining a relative orientation estimate based on the
location of the local landmarks;

fusing, using a Kalman filter, the absolute orientation

estimate and the relative orientation estimate;
determining a location of the electronic mapping system
based upon a result of fusing the absolute orientation
estimate and the relative orientation estimate; and
creating a new map of the building structure based only on
the first data from the upward facing sensor and the
second data from the range bearing sensor.

17. The method of claim 16, wherein the line feature is of
an edge of a light fixture or a part of a corrugated ceiling.

18. The method of claim 16, wherein the relative orien-
tation estimate comprises a relative pose based upon a scan
match, wherein the scan match comprises inputs of the
second data and a third data received from an inertial sensor.

19. The method of claim 18, wherein determining the
location of the electronic mapping system comprises esti-
mating an orientation of the electronic mapping system
based on the fuse of the absolute orientation estimate and the
relative orientation estimate.

20. The method of claim 19, wherein determining the
location of the electronic mapping system further comprises
the processor configured to solve a least-squares optimiza-
tion problem.

21. The method of claim 16 further comprising updating
the map based upon the location of the mapping system and
the location of the local landmarks.

* * * * *



