
ASSISTED SHORTEST PATH PROBLEMS AND GLOBAL OPTIMIZATION OF

MIXED-INTEGER NONLINEAR PROGRAMS WITH TRIGONOMETRIC FUNCTIONS

A Dissertation

by

CHRISTOPHER M. MONTEZ

Submitted to the Graduate and Professional School of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Dvahg Swaroop

Co-Chair of Committee, Sivakumar Rathinam

Committee Members, Prabhakar Pagilla

Lewis Ntaimo

Head of Department, Guillermo Aguilar

May 2023

Major Subject: Mechanical Engineering

Copyright 2023 Christopher Martin Montez

ABSTRACT

Cooperative behavior between mobile agents has received increasing interest in fields such as

robotics, operations research, agriculture, and more. The use of multiple agents allows for a variety

of problems to be addressed that a single agent could not complete otherwise. This dissertation

considers a particular cooperative path planning problem referred to as the assisted shortest path

problem (ASPP). In the ASPP, a primary agent, referred to as a convoy, wishes to travel from a

starting location to a destination in minimum time. The environment the convoy travels in contains

obstructions that impedes the movement of the convoy. Depending on the obstructions present, the

convoy may or may not be capable of removing these obstructions on its own. In either case, a

second agent, referred to as the support vehicle, is simultaneously deployed with the convoy. The

support vehicle can remove obstructions that impede the convoy and aims to assist the convoy to

its destination so the convoy may reach the destination in minimum time. The support vehicle may

be allowed to terminate anywhere in the environment or may have a specified destination of its

own. Multiple variations of the ASPP are presented and solved in the first half of this dissertation.

In the second half, the problem of solving factorable mixed-integer nonlinear programs (MINLPs)

with trigonometric terms is considered. An exact algorithm solving this class of problems is then

presented. The problem of identifying reasonable weights to assign to the graph used to represent

an instance of the ASPP may be posed as a MINLP with trigonometric terms and is used as a

motivating example in the discussion of solving this class of MINLPs. This approach can be further

extended to solve factorable MINLPs with differentiable, periodic terms.

ii

DEDICATION

To my friends and family that have supported me throughout my life.

I am truly a fortunate man.

iii

ACKNOWLEDGMENTS

I sincerely thank everyone who has helped me throughout the duration of my Ph.D. I have

learned a great deal throughout these years and I would not have been able to do it without the

support I received along the way.

I want to thank Dr. Darbha and Dr. Rathinam for their guidance and patience they have shown

me. They helped me grow both as an academic and as a person. They have given me opportunities

that I can never thank them enough for.

I want to thank the Department of Mechanical Engineering at Texas A & M University for their

support.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a committee consisting of Professor Swaroop Darbha (advisor),

Professor Sivakumar Rathinam (co-advisor), and Professor Prabhakar Pagilla of the Department

of Mechanical Engineering and Professor Lewis Ntaimo of the Department of Industrial & Sys-

tems Engineering. All other work conducted for the dissertation was completed by the student

independently.

Funding Sources

Graduate study was supported by the Engineering Graduate Merit Fellowship, the Continuing

Student Fellowship, and the Graduate Teaching Fellowship from Texas A&M University. Addi-

tional funding was also provided by Sandia National Laboratories, the Air Force Research Labora-

tory, and Los Alamos National Lab.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION. iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . xi

1. INTRODUCTION . 1

1.1 Focus of the Dissertation . 2
1.2 Structure of the Dissertation. 4

2. ASSISTED SHORTEST PATH PROBLEM.. 6

2.1 Introduction . 6
2.2 Problem Statement . 7
2.3 Overview . 10
2.4 Mixed-Integer Linear Programming Formulation for Restricted ASPP 10

2.4.1 MINLP Formulation . 12
2.4.1.1 Preliminary Adjustments . 12
2.4.1.2 Decision Variables . 12
2.4.1.3 Degree Constraints . 14
2.4.1.4 Time Updates . 14
2.4.1.5 Dynamic Time Window Constraints . 15
2.4.1.6 Coordination Constraints . 17

2.4.2 MILP Using Big-M . 17
2.4.3 Computational Results . 19

2.5 Approximation Algorithm for the Trailing Convoy ASPP . 21
2.5.1 Additional Notation . 21
2.5.2 Motivating Structure for the Approximation Algorithm . 22
2.5.3 Approximation Algorithm . 24
2.5.4 Proof of Approximation Ratio . 27

vi

2.5.5 Computational Results . 30
2.5.5.1 Set 1 - Heterogeneous Case . 31
2.5.5.2 Set 2 - Homogeneous Case . 33
2.5.5.3 Set 3 - Scalar Multiple Case . 34
2.5.5.4 Discussion of Results . 34

2.6 Asynchronous Generalized Permanent Labeling Algorithm. 36
2.6.1 Section Structure . 36
2.6.2 Generalized ASPP with an Unyielding Support . 36

2.6.2.1 Problem Statement . 36
2.6.2.2 Definitions and Algorithm . 38
2.6.2.3 Filtering Through Knowledge of the Optimal Solution Structure . . 44
2.6.2.4 Additional Filtering . 47
2.6.2.5 Generalized Permanent Labeling Algorithm - A* 49
2.6.2.6 Complexity Analysis . 50
2.6.2.7 Computational Results . 52

2.6.2.7.1 Comparison Between GPLA* and Centralized A*. 53
2.6.2.7.2 Class 1 Instances . 54
2.6.2.7.3 Class 2 Instances . 55
2.6.2.7.4 Class 3 Instances . 57

2.6.3 Generalized ASPP . 58
2.6.3.1 Problem Statement . 58
2.6.3.2 Extending Previous Results . 59

3. GLOBAL OPTIMIZATION ALGORITHM FOR MIXED-INTEGER NONLINEAR PRO-
GRAMS WITH TRIGONOMETRIC FUNCTIONS . 60

3.1 Introduction . 60
3.1.1 Problem Statement . 62
3.1.2 Structure of Chapter . 63
3.1.3 Relevance to the Assisted Shortest Path Problem . 64

3.2 Initial Overview of the Algorithm . 64
3.3 Preliminaries . 65
3.4 MILP Relaxations . 67

3.4.1 Trigonometric Terms . 67
3.4.1.1 Incremental Formulation . 68
3.4.1.2 Convergence Guarantee . 72

3.4.2 Bilinear Terms . 72
3.4.2.1 Incremental Formulation . 74
3.4.2.2 Convergence Guarantee . 76

3.5 Partitions . 76
3.5.1 Sharing Partitions . 77

3.5.1.1 Sharing Partitions Example . 78
3.5.2 Refinement Schemes - Method of Partition Refinement . 79

3.5.2.1 Bisection Refinement Scheme . 79
3.5.2.2 Direct Refinement Scheme . 81

vii

3.5.2.3 Non-Uniform Refinement Scheme . 82
3.5.2.4 Consistent Refinement Scheme . 85

3.5.3 Refinement Strategies - Selecting Partitions for Refinement. 86
3.5.3.1 Consistent Refinement Strategy . 87
3.5.3.2 Complete Refinement Strategy . 87
3.5.3.3 k-Worst Refinement Strategy . 88

3.6 Principal Domains for Periodic Functions . 89
3.6.1 Reformulation Using Principal Domains . 89
3.6.2 Impact on MILP Relaxation . 91
3.6.3 Choice of Principal Domain . 92
3.6.4 Relating Principal Domain Variables . 93

3.6.4.1 Branching Decisions . 95
3.7 Motivating Example - Markov-Dubins Path Planning Problem . 96

3.7.1 Additional Constraints . 100
3.7.1.1 Bounding Arc Lengths . 100
3.7.1.2 Restricting the Number of Segments . 100
3.7.1.3 CSC Conditions . 101

3.8 Computational Results . 102
3.8.1 Problem Generation . 103
3.8.2 Implementation Details . 103
3.8.3 Results . 104

3.8.3.1 Original Formulation vs. Principal Domain Reformulation 104
3.8.3.2 Complete Refinement Strategy vs. k-Worst Refinement Strategy . . 107

4. CONCLUDING REMARKS AND FUTURE WORK . 118

REFERENCES . 119

viii

LIST OF FIGURES

FIGURE Page

2.1 Example ASPP instance. Initially impeded edges are indicated by red edges and
initially unimpeded edges are indicated by black edges. The initially impeded edge
(0, 2) represents a path with an obstruction the convoy is well-equipped to handle.
Conversely, the initially impeded edge (2, 3) represents a path with an obstruction
the convoy is ill-equipped to handle and so the assistance of the support vehicle is
largely beneficial along this edge. 11

2.2 (a) Example instance using an L-grid. Unimpeded edges are shown in blue and
impeded edges are shown in red. (b) Optimal solution to the restricted ASPP for
(a), with the convoy path shown in blue and the support vehicle path shown in red.
In this optimal solution, neither vehicle takes any cycles. Both vehicles start from
the vertex indicated by a triangle and terminate at the vertex indicated by a star. 13

2.3 Motivating solution structure to the ASPP using an abstracted representation of the
possible paths for the convoy and support vehicle. 24

2.4 Example grid graph instance. 53

2.5 Average cost map as a function of the starting position of the support vehicle. 58

3.1 Simplified flowchart for the algorithm. 66
3.2 Example of triangles formed by overestimates, underestimates, and secant lines of

𝑓 (𝑥) = sin 𝑥 with 𝑥 ∈ [0, 2𝜋] and admissible partition 𝑝. The points on the curve
corresponding to the partition points are shown with black markers. The green
triangles correspond to the points 𝑣𝑖, 𝑣𝑖,𝑖+1, and 𝑣𝑖+1 for each sub-interval [𝑥𝑖, 𝑥𝑖+1]
of 𝑝. (a) Triangles formed when using base partition 𝑝0 = (0, 𝜋, 2𝜋). (b) Triangles
formed when using the admissible partition 𝑝 = (0, 𝜋

2
, 𝜋, 3𝜋

2
, 2𝜋), which is a valid

refinement of the base partition 𝑝0. 69

3.3 Convex hull of 𝑧 = 𝑥𝑦 with domain [−1, 1] × [−1, 1]. 73

3.4 Disjunctive union of three tetrahedrons containing 𝑧 = 𝑥𝑦 over the domain [−1, 1]×
[−1, 1]. The variable 𝑥 has been partitioned using 𝑝𝑥 = (−1,−0.25, 0.25, 1), shown
by the colored bars along the 𝑥-axis with tetrahedrons being colored accordingly. . . . 74

ix

3.5 Example of using a shared partition, 𝑝0 = (0, 𝜋
2
, 𝜋, 3𝜋

2
, 2𝜋), for 𝑓1(𝑥) = sin 𝑥 and

𝑓2(𝑥) = cos 𝑥 over the closed interval [0, 2𝜋]. It can be seen the 𝑖-th triangle for 𝑓1
and the 𝑖-th triangle for 𝑓2 are defined over the same sub-interval, so they can be
linked by sharing the same binary variables in the MILP relaxations. The binary
variables then indicate which sub-interval the solution is in, rather than which triangle. 78

3.6 MILP relaxation of 𝑓 (𝑥) = sin 𝑥 over [0, 𝜋] using 𝑝 = (0, 𝜋) (green) and the valid
refinement 𝑞 = (0, 𝜋

2
, 𝜋) (blue), which was constructed using a bisection refinement

scheme. The optimal solution (yellow star) of the resulting MILP, (𝑥∗, 𝑦∗), when
using 𝑝 may still lie in the triangles constructed using 𝑞. If this happens, (𝑥∗, 𝑦∗)
remains a possible solution to the MILP when using 𝑞 and so the lower bound may
not improve for that particular iteration of the algorithm. 81

3.7 MILP relaxation of 𝑓 (𝑥) = sin 𝑥 over [0, 𝜋] using 𝑝 = (0, 𝜋) (green) and the valid
refinement 𝑞 = (0, 𝑥∗, 𝜋) (blue), which was constructed using a direct refinement
scheme. The previous optimal solution to the MILP using 𝑝 (yellow star) is no
longer feasible when constructing the relaxation of 𝑓 using 𝑞. 82

3.8 Example showing partition 𝑝 = (0, 𝜋) being refined using (a) the two-point non-
uniform refinement scheme and (b) the three-point non-uniform refinement scheme.
The initial MILP relaxation using 𝑝 is shown in green. In (a) the optimal solution
(yellow star) for the previous iteration remains feasible, while in (b) it is no longer
feasible after refinement. In both cases we have set Δ1 = Δ2 = 2. 84

3.9 Example of optimal Dubins paths when 𝑛 = 2. Examples of the remaining optimal
words are obtained by reversing the initial and final heading directions (blue arrows). 97

3.10 Optimal solution for MDPPP with 𝑛 = 3. The path is LSL followed by LSR. 98

x

LIST OF TABLES

TABLE Page

2.1 Computational Results for Set 1 (|𝐾| ≈ 0.25|𝐴|) . 21

2.2 Computational Results for Set 2 (|𝐾| ≈ 0.50|𝐴|) . 22

2.3 Results for 30 instances - General heterogeneous case. 32

2.4 Computational Results for Set 1 - General Heterogeneous Case . 33

2.5 Computational Results for Set 2 - Homogeneous Case . 34

2.6 Computational Results for Set 3 - Scalar Multiple Case . 35

2.7 Computational time comparison: 𝐺𝑃𝐿𝐴∗ vs centralized 𝐴∗ . 54

2.8 Class 1 Results . 56

2.9 Class 2 Results . 57

3.1 Original formulation results. 106

3.2 Principal domain results. 107

3.3 k-Worst Results - Bisection. 110

3.4 k-Worst Results - Direct. 112

3.5 k-Worst Results - Non-Uniform Two-Point. 114

3.6 k-Worst Results - Non-Uniform Three-Point. 116

xi

1. INTRODUCTION

In recent years, much attention has been given to problems concerned with the coordination and

cooperation of two or more agents (autonomous, semi-autonomous, human-operated, or a combi-

nation thereof) in order to achieve some specified task(s). These problems find application in many

fields such as robotics [1, 2, 3], search-and-rescue [4], military combat, and vehicle routing [5, 6, 7]

to name a few, and these problems come in many forms. Large teams of cooperative autonomous

robots are used to manage automated warehouses and sortation facilities [1, 2, 3]. The use of large

teams of robots for managing such facilities leads to large improvements in the overall performance

(e.g., throughput of goods) of these facilities. Teams of semi-autonomous robots may be used to

aid in the search of those affected by a disaster [4]. Such teams of semi-autonomous robots may

be used to cover large areas that have been affected by a disaster while communicating with one

or many human operators in order to make decisions on how to proceed with the search. In both

of the examples given, a team of agents work together to accomplish some task(s) by making use

of the capabilities of the agents available. In some scenarios, all agents may be identical to one

another and the use of multiple agents leads to improvements by dividing many tasks amongst the

agents (such as moving goods in an automated warehouse). In other scenarios, agents may have

different capabilities and so an agent is able to overcome obstacles that it would not have been able

to otherwise without assistance from one or many other agents. This dissertation will focus on the

latter case, though many of the results and methods herein may be adapted to the former case.

In much of the robotics literature concerning the cooperation of multiple agents, the path plan-

ning algorithms used require the robots avoid “collisions” on a graph used to represent the envi-

ronment the robots operate in. These “collisions” do not necessarily correspond to a true, physical

collision, as a vertex in the environment’s graph representation may represent a large region. Re-

gardless, by requiring the path planning algorithms avoid “collisions”, many complications and true

collisions may be avoided. This, however, limits how the agents may cooperate. For example, if

the power of two or more agents is required to move an obstruction in a search-and-rescue scenario,

1

these agents necessarily must occupy the same region in the environment and hence likely occupy

the same vertex or edge in the environment’s graph representation. Such a scenario cannot be han-

dled when requiring the agents avoid “collisions” in the graph. As such, this requirement will be

avoided to further facilitate cooperation between agents.

1.1 Focus of the Dissertation

This dissertation considers the problem of a primary agent (robot, UAV, etc.) traveling in a

graph representing an impeded environment to a destination in minimum time while being assisted

by secondary agent (robot, UAV, etc.). The primary agent is referred to as the convoy and the

secondary agent is referred to as the support vehicle. The obstructions present in the environment

impeding the convoy’s travel may be physical, such as debris, or abstract, such as requiring a certifi-

cate of safety after inspection. The obstructions are represented by assigning an additional weight

to select edges in a graph representing the environment. These edges are referred to as initially

impeded edges. All other edges in the graph without obstructions are referred to as unimpeded

edges. All edges have an unimpeded travel cost (time) associated with them and all impeded edges

have a second, higher impeded travel cost (time) associated with them. The act of removing an ob-

struction from an edge is referred to as servicing an edge and is accomplished when an appropriate

vehicle fully traverses the edge. When an edge is serviced, it is assumed to always remain serviced,

i.e., the obstruction never returns, and the edge’s cost is changed to the unimpeded travel cost. The

convoy is permitted to service an initially impeded edge at a relatively high cost (travel time). In

the problem’s slightly more restricted form, the convoy is unable to traverse an impeded edge and

must wait for the support vehicle to service the edge before taking it. In either case, the support

vehicle assists the convoy by servicing impeded edges in the graph so as to reduce the cost (travel

time) for the convoy when taking these edges. The support vehicle is typically (but not required to

be) better equipped for servicing an edge and hence the cost of servicing an edge with the support

vehicle is typically lower than the cost of the same with the convoy. The convoy and support vehicle

are permitted to wait at any vertex and the support vehicle is permitted to terminate at any vertex

in the general case. The problem is then to find a pair of paths, one for the convoy and one for the

2

support vehicle, such that the convoy reaches its destination in minimum time while being assisted

by a support vehicle (which may not be deployed in general). This problem is herein referred to as

the assisted shortest path problem (ASPP).

The ASPP as described is defined on a graph representing a real-world environment in which

obstructions are present that limit the primary agent’s mobility. In order to properly define the

ASPP, weights must be assigned to each edge in the graph (with multiple weights being assigned

to each edge to account for there being two vehicles and an edge being obstructed or unobstructed).

In the most classical case, these edge weights will correspond to travel times along some path in

the real-world environment and the path taken is typically a shortest path of some sort. An edge

(𝑖, 𝑗)may represent a path in the real-world environment where the agent must travel through various

waypoints specified by a designer, with the first waypoint being 𝑖 and the final waypoint being 𝑗. The

intermediate waypoints between 𝑖 and 𝑗 may take into account the constraints on terrain and motion

of the agents. To account for the motion constraints of each agent, each agent may be modelled as a

Dubins vehicle [8], where the agent operates in a plane, travels at a constant speed along a path, and

has a minimum turning radius determined by the construction of the agent. The problem of finding

the shortest path through a sequence of points using a Dubins vehicle is herein referred to as the

Markov-Dubins path planning problem (MDPPP). The MDPPP is a difficult problem to solve and

currently an analytical solution is only known for up through 3 points [9]. In [10], it is shown the

MDPPP can be posed as a mixed-integer non-linear program (MINLP). The non-linearities present

in the MINLP formulation correspond to bilinear and trigonometric terms. The bilinear terms can

currently be handled using existing methods, but the presence of the trigonometric terms leads to

many difficulties. As of writing this dissertation, there are only two solvers known to the author that

claim to have the capability of handling trigonometric terms in an MINLP (LINDOGlobal [11] and

Couenne [12]), but these solvers struggle both in speed and accuracy even for a moderate number

of trigonometric terms. In this dissertation, a new global optimization algorithm is presented to

solve MINLPs with trigonometric terms and a comprehensive computational study is performed to

illustrate the effectiveness of this new approach when applied to solving the MDPPP. This approach

3

can therefore be used by a designer to determine appropriate edge weights for the graph used to

define the ASPP.

1.2 Structure of the Dissertation

This dissertation is divided into two main chapters following this chapter and a final chapter

with concluding remarks and a discussion on future work. While both of the subsequent main

chapters may be related to each other as done in this dissertation, the work in each chapter may be

extended to a larger class of independent problems without reference to each other. Therefore, the

work is divided into two self-contained main chapters for clarity in their impact on differing areas

of research.

In Chapter 2, the ASPP is formally defined in Section 2.2 and three variants are presented in

the subsequent sections. The first variant, referred to as the restricted ASPP, is covered in Section

2.4 and has the following additional constraints: (i) the convoy and support vehicle must take paths

without cycles, (ii), the support vehicle is required to terminate at a specified vertex, and (iii) the

convoy is unable to traverse initially impeded edges unless they have been serviced by the support

vehicle. A mixed-integer non-linear programming (MINLP) formulation of the restricted ASPP is

presented in Section 2.4.1. In Section 2.4 this MINLP formulation is converted to an equivalent

mixed-integer linear programming (MILP) formulation using the standard big-M [13] technique.

This MILP formulation is then solved for many test instances in Section 2.4.3. The second variant,

referred to as the trailing convoy ASPP, differs from the ASPP only in that the convoy is unable to

service edges, but it is permitted to trail behind the support vehicle as the support vehicle services

an impeded edge. The convoy and support vehicle are permitted to take paths with cycles and the

support vehicle is permitted to terminate at any vertex as in the ASPP. Due to both vehicles be-

ing permitted to take cycles, any MINLP formulation for the trailing convoy ASPP will prove to

be computationally prohibitive to solve. With this in mind, a (2 + 𝜀)-approximation algorithm is

presented for the trailing convoy ASPP in Section 2.5 and a corresponding computational study is

given in Section 2.5.5. In order to handle the ASPP without additional constraints or restrictions,

an asynchronous permanent labeling algorithm is presented in Section 2.6. This labeling algorithm

4

is an extension of the generalized labeling algorithm used to solve the closely related shortest path

problem with time windows (SPPTW) [14]. The presented labeling algorithm provides a means of

solving cooperative routing problems with general path structural constraints (such as the interac-

tions between the convoy and support vehicle as in the ASPP).

In Chapter 3, a global optimization algorithm that can be applied to factorable MINLPs with

differentiable, periodic functions in the constraints, with the primary focus being on trigonomet-

ric functions such as sine and cosine is presented. The global optimization algorithm solves a se-

quence of MILPs with the solutions of these MILPs approaching the optimal solution of the original

MINLP in the limit. In Section 3.2, a general overview of the algorithm is shown. In Section 3.3,

preliminary notation and terminology is given. In Section 3.4, relaxations for trigonometric and

bilinear terms used to construct an MILP relaxation of the original MINLP are presented. These

relaxations are constructed using a collection of partitions of the relevant variables’ domains and

these partitions are the subject of Section 3.5. In Section 3.6, a novel procedure is presented to

significantly reduce the domain of the original MINLP (and hence also the MILP relaxations). In

Section 3.7, the Markov-Dubins path planning problem [10] is presented as a motivating example.

In Section 3.8, a computational study illustrating the effectiveness of the presented algorithm is

given.

In Chapter 4, concluding remarks and a discussion of future work is given.

5

2. ASSISTED SHORTEST PATH PROBLEM∗

2.1 Introduction

Cooperative behavior between mobile autonomous robots has received increasing interest in the

robotics community due to its many applications such as traffic control, cooperative manipulation

(box-pushing) [17], [18], and foraging [19]. Cooperation between multiple mobile robots leads to

potential improvement in performance when compared to that of a single robot performing the same

task. Additionally, cooperation between multiple robots with different capabilities allows a wider

variety of problems to be solved. We refer an interested reader to [20] for a comprehensive survey

of existing research related to the cooperative behavior of multiple autonomous mobile robots.

The focus of this chapter is the path planning of two autonomous agents operating in a par-

tially impeded environment with the express goal of a designated agent reaching its destination

in minimum time while being assisted by the other agent. We refer to the agent whose goal is to

reach the destination in minimum time as the convoy vehicle and we refer to the agent assisting

the convoy as the support vehicle. The starting positions of the convoy and support vehicle may

be distinct in general. The support vehicle may or may not have a specified destination. The im-

peded environment is represented by a graph whose vertices and edges are chosen by a designer a

priori. Select edges are used to represent the obstructions present in the environment and we refer

to these edges as impeded edges. There are two scenarios to consider: (i) the convoy is capable of

traversing impeded edges at an additional cost and (ii) the convoy is strictly unable to traverse an

impeded edge. In both cases, the support vehicle is capable of removing obstructions so as to assist

the convoy’s travel. In the first case, this amounts to reducing the cost of the convoy traversing an

initially impeded edge. In the second case, this amounts to making a previously unavailable edge

available to the convoy. The objective is then to find a pair of paths, one for the convoy and one for

the support vehicle, such that the convoy reaches its destination in minimum time, where the con-

voy may only take an impeded edge if it has first been attended to by the support vehicle. We refer
∗Material presented in this chapter has been previously published by the author. See [15] and [16].

6

to the case where there is a single support robot as the Assisted Shortest Path Problem (ASPP) for

ease of discussion. We will focus on the case where there is a single support robot, but this problem

can naturally be generalized to 𝑛 support robots. It should be noted typically in multi-robot path

planning problems, it is assumed multiple robots may not simultaneously share an edge in the graph

[20]. In our formulation (see Section 2.2), we do allow the cardinal and support robot to share an

edge, but we add a restriction. In the event the support robot is traversing an impeded edge for the

first time, the cardinal robot must remain behind the support vehicle if it is sharing this edge with

the support robot. In this case, the support robot is interacting with or altering the environment and

so the cardinal robot must remain behind the support robot as it makes the path accessible to the

cardinal robot.

2.2 Problem Statement

Let𝐺 = (𝑉 ,𝐸) be a simple, connected, undirected graph representing an impeded environment.

𝑉 is the set of vertices and 𝐸 is a set of undirected edges. These vertices and edges are chosen by a

designer a priori and are assumed to reasonably represent the environment. The convoy and support

vehicle start at vertices 𝑝 and 𝑞, respectively, where 𝑝 and 𝑞 need not be distinct. Let 𝑑 ∈ 𝑉 be the

destination of the convoy. The support vehicle is permitted to terminate at any vertex (the presented

work may be modified to assign a destination to the support vehicle). Let edges 𝐾 ⊆ 𝐸 denote the

impeded edges in the graph. An edge may be impeded due to a physical obstruction (debris, broken

road, etc.) or an abstract obstruction (permission to take a path, verify certain condition is met, etc.).

The impeded edges 𝐾 are assumed to be known a priori by the designer. The remaining edges (i.e.,

𝐸 ⧵𝐾) are referred to as the unimpeded edges of the graph. We will say an impeded edge has been

serviced if either the convoy or support vehicle has completely traversed that edge. An impeded

edge being serviced is equivalent to the relevant obstruction (physical or abstract) being removed

in the impeded environment. We will use the term impeded travel cost to refer to the cost for a

vehicle to take an impeded edge that has not yet been serviced. We use the term unimpeded travel

cost to refer to the cost for a vehicle to take an initially unimpeded edge or a serviced impeded

edge. Each edge 𝑒 ∈ 𝐸 has four positive edge weights of the form (𝑇 𝑢
𝑒 , 𝑇

𝑖
𝑒 , 𝜏

𝑢
𝑒 , 𝜏

𝑖
𝑒). 𝑇 𝑢

𝑒 and 𝑇 𝑖
𝑒 are

7

the unimpeded and impeded travel cost for the convoy, respectively. The terms 𝜏𝑢𝑒 and 𝜏 𝑖𝑒 are the

unimpeded and impeded travel cost for the support vehicle, respectively. The costs 𝑇 𝑢
𝑒 , 𝜏𝑢𝑒 , and 𝜏 𝑖𝑒

are taken to be finite, but 𝑇 𝑖
𝑒 is permitted to be infinite. A positive infinite cost 𝑇 𝑖

𝑒 corresponds to

the convoy being unable to take the impeded edge 𝑒 without the assistance of the support vehicle.

For unimpeded edges, we have 𝑇 𝑖
𝑒 = 𝑇 𝑢

𝑒 and 𝜏 𝑖𝑒 = 𝜏𝑢𝑒 . For impeded edges, we require 𝑇 𝑖
𝑒 > 𝑇 𝑢

𝑒 and

𝜏 𝑖𝑒 > 𝜏𝑢𝑒 , i.e., for any vehicle, the cost of taking an initially impeded edge after it has been serviced

is at most the corresponding cost for the unimpeded or serviced edge. All edges are undirected and

so the cost in both directions are considered to be identical. When an impeded edge is serviced,

it is assumed to remain serviced. To avoid ambiguity, unless an initially impeded edge has been

completely serviced, the cost associated with a vehicle taking this edge is taken to be the impeded

cost.

We will assume the following: (i) the convoy and support vehicles can share vertices and edges

without conflict, (ii) the two vehicles start at the same time, (iii) the two vehicles communicate

at all times and information is shared in a negligible amount of time. The convoy is permitted to

wait at any vertex to give the support vehicle time to service an impeded edge. Waiting will incur

some additional cost. For the sake of simplicity, the cost will simply be the time elapsed since the

start of the mission. The work presented in this chapter can be easily modified to accommodate

more complex costs. The support vehicle is also permitted to wait, but doing so will incur zero

additional cost unlike in the case of the convoy. This is done for two reasons. First, depending on

the application, the support vehicle may be able to temporarily shut off or idle and incur a negligible

power consumption cost (should the cost be related to power rather than strictly time itself). Second,

in many applications the support vehicle will correspond to a vehicle such as a fixed-wing UAV

which does not have the capability to easily stop in the environment. It should be noted in the case

of 𝑇 𝑖
𝑒 = ∞ for all impeded edges (i.e., the convoy is strictly unable to traverse impeded edges),

the support vehicle will only stop at a vertex to terminate its journey rather than wait in an optimal

solution. In such a case, which is the subject of Section 2.4, neglecting the waiting cost of the

support vehicle simplifies the model. This zero waiting cost may be modified for cases where the

8

support vehicle is physically capable of waiting at a vertex. Introducing a non-zero waiting cost for

the support vehicle is addressed at the end of Section 2.6.

Let 𝑋𝑝𝑎 be a path from 𝑝 to 𝑎 ∈ 𝑉 for the convoy and 𝑋̄𝑞𝑏 be a path from 𝑞 to 𝑏 ∈ 𝑉 for the

support vehicle. A vehicle’s path may also include waiting at one or more vertices. The two paths

are coupled by the vehicles’ interactions. That is, the cost of 𝑋𝑝𝑎 will depend on the decisions made

by the support vehicle in 𝑋̄𝑞𝑏 and vice-versa. Note that the support vehicle is permitted to remain

at 𝑞 for the duration of the mission, corresponding to the convoy traveling to its destination without

any assistance from the support vehicle. For the sake of simplicity, the cost of the two paths will be

taken to be the time the convoy reaches its destination, 𝑑, while adhering to the previously described

travel cost rules. As previously mentioned, a more general cost scheme may be considered and the

following work may be modified to accommodate this change. The cost of the coupled paths will be

denoted by 𝐶(𝑋𝑝𝑎, 𝑋̄𝑞𝑏). The assisted shortest path problem (ASPP) is then to find the two coupled

paths 𝑋𝑝𝑑 and 𝑋̄𝑞𝑣, where 𝑣 is any vertex in 𝑉 , such that 𝐶(𝑋𝑝𝑑 , 𝑋̄𝑞𝑣) is minimized.

A simple example instance of the ASPP is shown in Figure 2.1. In this example, the costs

represent units of time elapsed when taking an edge. In Figure 2.1, initially impeded edges are

indicated by red and initially unimpeded edges are indicated by black. Suppose the convoy and

support vehicle both start at vertex 0 (i.e., 𝑝 = 0 and 𝑞 = 0). In the instance shown in Figure

2.1, both impeded edges have finite costs and so the convoy is permitted to take an impeded edge

without the assistance of the support vehicle, but at a higher cost. From Figure 2.1, the optimal

solution is 𝑋∗
𝑝𝑑 = (0, 3, 2, 𝑑) and 𝑋̄∗

𝑞2 = (0, 3, 2). In this solution, both the convoy and support

vehicle travel to vertex 3, with the convoy and the support vehicle taking 2 units of time and 1 unit

of time, respectively. The support vehicle then immediately takes the edge (3, 2) to service it. Once

the convoy arrives at vertex 3, it will wait 1 unit of time for the support vehicle to finish servicing

edge (3, 2). After the support vehicle reaches vertex 2, it terminates and the convoy takes the now

serviced edge (3, 2) and finally the unimpeded edge (2, 𝑑) to reach its destination. The total time

elapsed for the convoy to reach 𝑑 is 10 units of time. In this example, the two impeded edges (0, 2)

and (2, 3) represent two kinds of obstructions that may be present in a real-world scenario. Impeded

9

edge (0, 2) has a relatively small difference between the convoy’s impeded and unimpeded travel

costs and so this edge represents path containing an obstruction in which the convoy is well-suited

to handle, but the time needed to take this path is large. Conversely, impeded edge (2, 3) has a

relatively large difference between the convoy’s impeded and unimpeded travel costs and so this

edge represents a path containing an obstruction in which the convoy is ill-suited to handle, but the

time needed to take this path without the obstruction is small. In both cases, the support vehicle is

well-suited to handle the obstruction and so the presence of the support vehicle leads to an alternate

path being made available that would have otherwise been discarded when planning the path for

the convoy. This alternate path leads to an improved solution when compared to any path for the

convoy without the assistance of the support vehicle.

2.3 Overview

This remainder of this chapter is divided into three major parts: (i) solving a restricted vari-

ant of the ASPP using mathematical programming, (ii) an approximation algorithm for the ASPP

described in Section 2.2, and (iii) an asynchronous generalized permanent labeling algorithm for

general ASPP variants. In part (i), the convoy and support vehicle will be restricted to taking ele-

mentary paths (i.e., paths with no cycles), the support vehicle will be assigned a destination rather

than be allowed to terminate at any vertex, and the convoy is unable to traverse impeded edges

without the assistance of the support vehicle. A mixed-integer linear programming (MILP) formu-

lation will be presented for this variant. This MILP can then be solved using standard commercial

solvers. In part (ii), an approximation algorithm for the ASPP from 2.2 is presented for the case 𝑇 𝑖
𝑒

is infinite for each impeded edge. In part (iii), a permanent labeling algorithm is presented that can

be extended to solve many variants of the ASPP, though at a high computational cost.

2.4 Mixed-Integer Linear Programming Formulation for Restricted ASPP

In this section we present a mixed-integer non-linear programming (MILP) formulation for the

problem previously described, with the additional requirements that the support vehicle must take

a path without cycles, the support vehicle must terminate at a specified vertex 𝑑′ ∈ 𝑉 , and the

10

Figure 2.1: Example ASPP instance. Initially impeded edges are indicated by red edges and initially
unimpeded edges are indicated by black edges. The initially impeded edge (0, 2) represents a path
with an obstruction the convoy is well-equipped to handle. Conversely, the initially impeded edge
(2, 3) represents a path with an obstruction the convoy is ill-equipped to handle and so the assistance
of the support vehicle is largely beneficial along this edge.

11

convoy is unable to traverse impeded edges without the assistance of the support vehicle. We first

construct a mixed-integer nonlinear programming (MINLP) formulation and use the standard big-

M technique [13] to convert the MINLP into an MILP. The additional constraints are necessary to

make the MILP formulation manageable for a commercial solver. The material presented in this

section closely follows [16] by the author and colleagues.

2.4.1 MINLP Formulation

2.4.1.1 Preliminary Adjustments

For this formulation, we will treat 𝐺 = (𝑉 ,𝐸) as an equivalent directed graph 𝐺′ = (𝑉 ,𝐴)

where 𝐴 is the set of arcs where for each (𝑖, 𝑗) ∈ 𝐸 we have (𝑖, 𝑗) ∈ 𝐴 and (𝑗, 𝑖) ∈ 𝐴. For each

impeded edge (𝑖, 𝑗) ∈ 𝐾 , we say (𝑖, 𝑗) ∈ 𝐴 and (𝑗, 𝑖) ∈ 𝐴 are impeded arcs and denote the set of

impeded arcs by 𝐾 ′. The arc weights are taken to be symmetric. In 𝐺′, the treatment of an impeded

edge is bi-directional. Therefore, when impeded arc (𝑖, 𝑗) ∈ 𝐾 ′ is serviced by the support vehicle,

we also say (𝑗, 𝑖) ∈ 𝐾 ′ has also been serviced. The support vehicle’s travel time is only affected by

the arc it has taken. We add the additional requirement that the support vehicle must take a path

with no cycles. Finally, we also assume the convoy is unable to traverse an impeded edge (arc)

without the assistance of the support vehicle. This is equivalent to 𝑇 𝑖
𝑎 being infinite for all impeded

arcs 𝑎 ∈ 𝐾 ′.

An example instance and its optimal solution is shown in Figure 2.2. In this example, both the

convoy and the support vehicle take simple paths (i.e., paths with no cycles). In this particular ex-

ample, the support vehicle assists the convoy by servicing the impeded edge (15, 16) (in particular,

by servicing arc (16, 15) while noting servicing is bi-directional) before continuing its journey to

its destination, vertex 41.

2.4.1.2 Decision Variables

For each arc (𝑖, 𝑗) ∈ 𝐴, we introduce two binary variables 𝑥𝑖𝑗 and 𝑦𝑖𝑗 . The variable 𝑥𝑖𝑗 (resp.

𝑦𝑖𝑗) takes on the value 1 if the convoy (resp. support vehicle) takes arc (𝑖, 𝑗) in its path and the value

0 otherwise. For each vertex 𝑣 ∈ 𝑉 , we introduce two continuous variables 𝑡𝑐𝑣 ≥ 0 and 𝑡𝑠𝑣 ≥ 0,

12

(a)

(b)

Figure 2.2: (a) Example instance using an L-grid. Unimpeded edges are shown in blue and impeded
edges are shown in red. (b) Optimal solution to the restricted ASPP for (a), with the convoy path
shown in blue and the support vehicle path shown in red. In this optimal solution, neither vehicle
takes any cycles. Both vehicles start from the vertex indicated by a triangle and terminate at the
vertex indicated by a star.

13

where 𝑡𝑐𝑣 and 𝑡𝑠𝑣 represent the time the convoy and support vehicle, respectively, first arrive to vertex

𝑣. By definition, we have 𝑡𝑐𝑝 = 0 and 𝑡𝑠𝑞 = 0 for any instance.

2.4.1.3 Degree Constraints

We require the convoy and support vehicle take continuous paths. This is modeled using flow

constraints, also known as degree constraints. Let 𝑁 𝑐 = 𝑉 ⧵ {𝑝, 𝑑} and 𝑁 𝑠 = 𝑉 ⧵ {𝑞, 𝑑′}. For the

convoy we have

∑
𝑗 ∶ (𝑖,𝑗)∈𝐴

𝑥𝑖𝑗 −
∑

𝑗 ∶ (𝑗,𝑖)∈𝐴
𝑥𝑗𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, 𝑖 = 𝑝,

−1, 𝑖 = 𝑑,

0, ∀𝑖 ∈ 𝑁 𝑐

(2.1)

Similarly, for the support vehicle we have

∑
𝑗 ∶ (𝑖,𝑗)∈𝐴

𝑦𝑖𝑗 −
∑

𝑗 ∶ (𝑗,𝑖)∈𝐴
𝑦𝑗𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, 𝑖 = 𝑞,

−1, 𝑖 = 𝑑′,

0, ∀𝑖 ∈ 𝑁 𝑠

(2.2)

Constraints (2.1) and (2.2) state the convoy and support vehicle must leave their respective starting

points and terminate at their respective destinations while taking a continuous path.

2.4.1.4 Time Updates

The next set of constraints correspond to how the arrival time at a vertex is updated when a

vehicle reaches that vertex. For the convoy, we have

𝑥𝑖𝑗(𝑡𝑐𝑖 + 𝑇 𝑢
(𝑖,𝑗) − 𝑡𝑐𝑗) ≤ 0, ∀(𝑖, 𝑗) ∈ 𝐴 (2.3)

14

Similarly, for the support vehicle we have

𝑦𝑖𝑗(𝑡𝑠𝑖 + 𝜏 𝑖(𝑖,𝑗) − 𝑡𝑠𝑗) ≤ 0, ∀(𝑖, 𝑗) ∈ 𝐴 (2.4)

Constraint (2.3) says the time the convoy arrives at 𝑗 is at least the time the convoy arrived at 𝑖

plus the convoy’s unimpeded travel time from 𝑖 to 𝑗. Similarly, constraint (2.4) says the time the

support arrives at 𝑗 is at least the time the support arrived at 𝑖 plus the support’s unimpeded travel

time from 𝑖 to 𝑗 and the service time. If the convoy or support vehicle does not take arc (𝑖, 𝑗) ∈ 𝐴,

we simply get the redundant constraint 0 ≤ 0 for that corresponding vehicle. An inequality is used

instead of equality since we have made no restriction on the vehicles’ ability to wait at a vertex.

With the coordination constraints presented later, the convoy may need to wait at 𝑖 before departing

to 𝑗. We note that constraints (2.3) and (2.4) are bilinear.

2.4.1.5 Dynamic Time Window Constraints

The next set of constraints we introduce are dynamic time window constraints. We define a

time window to be an interval of time representing the earliest and latest a vehicle may arrive at a

vertex. We first discuss the intuition behind how these constraints are constructed. We then present

the dynamic time window constraints used for this formulation.

Suppose the earliest and latest the convoy may arrive at vertex 𝑗 ∈ 𝑉 is 𝑎𝑗 and 𝑏𝑗 , respectively,

and so the convoy’s time window for 𝑗 is [𝑎𝑗 , 𝑏𝑗]. The corresponding time window constraint for

the convoy arriving at 𝑗 would then be expressed as

𝑎𝑗 ≤ 𝑡𝑐𝑗 ≤ 𝑏𝑗 .

For the problem at hand, we have 𝑏𝑗 = +∞ for both the convoy and the service vehicle, as there is

no restriction on the latest either vehicle may arrive at any vertex. Next, suppose (𝑖, 𝑗) is an impeded

arc and the convoy intends to use this arc. We note 𝑎𝑗 will depend on the time (𝑖, 𝑗) or (𝑗, 𝑖) has

been treated. Since treatment of impeded arcs is bi-directional, we will need to consider two cases.

15

In the first case, 𝑎𝑗 will depend on the time the support vehicle has treated (𝑖, 𝑗) by taking (𝑖, 𝑗);

in this case the support vehicle travels in the same direction as the convoy when servicing (𝑖, 𝑗).

In the second case, 𝑎𝑗 will depend on the time the support vehicle serviced (𝑖, 𝑗) by taking (𝑗, 𝑖);

in this case, the support vehicle travels in the opposite direction as the convoy since servicing is

bi-directional. We note that if (𝑖, 𝑗) is an unimpeded arc, then 𝑎𝑗 = 𝑡𝑐𝑖 + 𝑇 𝑢
(𝑖,𝑗), which was already

captured by constraints (2.3). Therefore, the time window constraints only correspond to the set

of impeded arcs, 𝐾 . We also note the support vehicle does not have any restrictions on the time it

arrives to any vertex in the graph.

We now present the dynamic time window constraints used in this formulation. As previously

mentioned, we need only focus on impeded arcs. Suppose the convoy is to use an impeded arc

(𝑖, 𝑗) ∈ 𝐾 . We have two cases to consider. First, suppose the support vehicle’s path is such that (𝑖, 𝑗)

is treated by the support vehicle using arc (𝑖, 𝑗) (i.e., the support treats (𝑖, 𝑗) in the same direction

the convoy is traveling). The convoy must wait until the support vehicle has arrived at 𝑗 before

using arc (𝑖, 𝑗) and the convoy must take at least an additional 𝑇 𝑢
(𝑖,𝑗) units of time before reaching 𝑗.

We then have

(𝑥𝑖𝑗 + 𝑦𝑖𝑗 − 1)(𝑡𝑠𝑗 + 𝑇 𝑢
(𝑖,𝑗)) ≤ 𝑡𝑐𝑗 , ∀(𝑖, 𝑗) ∈ 𝐾. (2.5)

In the second case, suppose the support’s path is such that (𝑖, 𝑗) is serviced by the support using arc

(𝑗, 𝑖) (i.e., the support services (𝑖, 𝑗) in the opposite direction the convoy is traveling). The convoy

must wait until the support has arrived at 𝑖 before using arc (𝑖, 𝑗) and the convoy must take at least

an additional 𝑇 𝑢
(𝑖,𝑗) units of time before reaching 𝑗. We then have

(𝑥𝑖𝑗 + 𝑦𝑗𝑖 − 1)(𝑡𝑠𝑖 + 𝑇 𝑢
(𝑖,𝑗)) ≤ 𝑡𝑐𝑗 , ∀(𝑖, 𝑗) ∈ 𝐾. (2.6)

Constraints (2.5) and (2.6) are the dynamic time window constraints. In the event at least one of

the binary decision variables in (2.5) and (2.6) is zero, we will have 𝑡𝑐𝑗 is greater than or equal to

some negative number. However, we defined 𝑡𝑐𝑗 to be non-negative for all nodes in the graph, so

this constraint would be effectively redundant.

16

2.4.1.6 Coordination Constraints

The last set of constraints required are coordination constraints given by

𝑥𝑖𝑗 ≤ 𝑦𝑖𝑗 + 𝑦𝑗𝑖, ∀(𝑖, 𝑗) ∈ 𝐾 (2.7)

These constraints along with constraints (2.5) and (2.6) prevent the convoy from taking an impeded

arc before the arc (and hence the corresponding edge due to bi-directional servicing) has been

serviced by the support vehicle.

2.4.2 MILP Using Big-M

The previous constraints will lead to a mixed-integer non-linear program (MINLP), which will

prove to be difficult for commercial solvers to solve. Constraints (2.3) through (2.7) are non-linear

(bi-linear to be more precise) and so these constraints can be rewritten using the standard big-M

[13] approach to convert the MINLP into an equivalent MILP. Doing so yields the following MILP

for the restricted ASPP (denoted by ASPPr):

(𝐴𝑆𝑃𝑃𝑟) minimize 𝑡𝑐𝑑 (2.8a)

subject to
∑

𝑗 ∶ (𝑖,𝑗)∈𝐴
𝑥𝑖𝑗 −

∑
𝑗 ∶ (𝑗,𝑖)∈𝐴

𝑥𝑗𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, 𝑖 = 𝑝,

−1, 𝑖 = 𝑑,

0, ∀𝑖 ∈ 𝑁 𝑐

(2.8b)

∑
𝑗 ∶ (𝑖,𝑗)∈𝐴

𝑦𝑖𝑗 −
∑

𝑗 ∶ (𝑗,𝑖)∈𝐴
𝑦𝑗𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, 𝑖 = 𝑞,

−1, 𝑖 = 𝑑′,

0, ∀𝑖 ∈ 𝑁 𝑠

(2.8c)

𝑀(𝑥𝑖𝑗 − 1) + 𝑡𝑐𝑖 + 𝑇 𝑢
(𝑖,𝑗) ≤ 𝑡𝑐𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴 (2.8d)

17

𝑀(𝑦𝑖𝑗 − 1) + 𝑡𝑠𝑖 + 𝜏 𝑖(𝑖,𝑗) ≤ 𝑡𝑠𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴 (2.8e)

𝑀(𝑥𝑖𝑗 + 𝑦𝑖𝑗 − 2) + 𝑡𝑠𝑖 + 𝑇 𝑢
(𝑖,𝑗) ≤ 𝑡𝑐𝑗 , ∀(𝑖, 𝑗) ∈ 𝐾 (2.8f)

𝑀(𝑥𝑖𝑗 + 𝑦𝑗𝑖 − 2) + 𝑡𝑠𝑖 + 𝑇 𝑢
(𝑖,𝑗) ≤ 𝑡𝑐𝑗 , ∀(𝑖, 𝑗) ∈ 𝐾 (2.8g)

𝑥𝑖𝑗 ≤ 𝑦𝑖𝑗 + 𝑦𝑗𝑖, ∀(𝑖, 𝑗) ∈ 𝐾 (2.8h)

𝑥𝑖𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝐴 (2.8i)

𝑦𝑖𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝐴 (2.8j)

𝑡𝑐𝑖 ≥ 0, ∀𝑖 ∈ 𝑉 (2.8k)

𝑡𝑠𝑖 ≥ 0, ∀𝑖 ∈ 𝑉 (2.8l)

In (2.8), 𝑀 is a sufficiently large constant. For this formulation, the value of 𝑀 was chosen as

follows. First, construct an auxiliary graph 𝐻 = (𝑉 ,𝐴) where 𝐻 has the same set of nodes and

arcs as the original graph 𝐺, but the weight 𝑤𝑖𝑗 of each arc 𝑎 = (𝑖, 𝑗) is set to 𝑤𝑖𝑗 = 𝑇 𝑢
𝑎 + 𝜏 𝑖𝑎. That

is, the weight of each arc is the sum of the unimpeded travel cost of the convoy and the impeded

cost of the support vehicle. Denote the maximum spanning tree of 𝐻 by 𝑇𝑚𝑎𝑥. The constant 𝑀

was then chosen to be

𝑀 = 2
∑

𝑎=(𝑖,𝑗)∈𝑇𝑚𝑎𝑥

(𝑇 𝑢
𝑎 + 𝜏 𝑖𝑎). (2.9)

This choice of 𝑀 will be sufficiently large since each vehicle may only take an elementary path

and so each edge in the maximum spanning tree can only be taken at most once by each vehicle.

With this choice of 𝑀 , it can be seen that if any binary decision variable is zero in constraints

(2.8d)-(2.8g), the resulting negative term on the left-hand side will be large enough to make the

left-hand side of each constraint negative overall, making these equations redundant due to (2.8k)

and (2.8l). Constraints (2.8d)-(2.8g) then only come into effect when the terms being multiplied by

𝑀 are equal to zero due to the corresponding binary variables taking on positive values. However,

as is common when using a big-M approach, this choice of 𝑀 is relatively loose for many instances.

This may lead to poor computational performance in some cases.

18

2.4.3 Computational Results

Two sets of randomly generated graph instances were constructed. These two sets of instances

will be referred to as Set 1 and Set 2, respectively. Each set consisted of 200 randomly generated

instances. The 200 instances were split into 10 groups of 20 instances each. The instances in each

group were given a fixed number of vertices, |𝑉 |. For both Set 1 and Set 2, the first 10 groups were

made so that |𝑉 | was 8, 10, 12, 14, 16, 18, 20, 22, 24, and 26, respectively. For each instance, the

network was generated by randomly placing the vertices of the graph at integer-valued coordinates

(𝑥, 𝑦) in a [0, 50] × [0, 50] region. Two vertices were connected by a forward arc and an inverse arc

if the Euclidean distance between the two vertices was at most 20 units. After arcs were added, if

the resulting network was not connected then additional arcs were added to connect the next closest

vertices until the resulting network was connected. The unimpeded travel cost of the convoy, 𝑇 𝑢
𝑎 ,

and the unimpeded travel cost of the support vehicle, 𝜏𝑢𝑎 , for each arc 𝑎 = (𝑖, 𝑗) ∈ 𝐴 were both set

to be randomly selected integers in the range [5, 20]. The same values were assigned to the inverse

arcs (𝑗, 𝑖) ∈ 𝐴. The number of initially impeded arcs, |𝐴|, was set in advance for each instance. For

Set 1, 25 percent of the arcs in the network were chosen to be impeded arcs. For Set 2, 50 percent

of the arcs in the network were chosen to be impeded arcs. Arcs were randomly selected to be an

impeded arc. Since |𝐴| is not known in advance due to how the networks were constructed, it is

possible 0.25|𝐴| or 0.5|𝐴| is not an integer value or is odd. When this occurred, |𝐾| was taken

to be the nearest even integer below the computed value of |𝐾|. When arc (𝑖, 𝑗) was set to be an

impeded arc, the inverse arc (𝑗, 𝑖) was also set to be an impeded arc with the same service cost.

The service cost for each impeded arc was set to be a randomly chosen integer in the range [1, 5].

The origin vertices 𝑝 and 𝑞 were set to be the vertices nearest (0, 0) and (0, 50), respectively, for

each instance. Similarly, destination vertices 𝑑 and 𝑑′ were set to be the vertices nearest (50, 50)

and (50, 0), respectively, for each instance. This scheme was selected in an attempt to avoid trivial

instances corresponding to the convoy taking very few arcs to reach its destination without the

assistance of or with minimal assistance from the support.

For each instance, MILP (2.8) was solved on an Inspiron 5676 (3.2 GHz, 8 GB RAM) in the Julia

19

programming language [21] using version 1.4.2. The JuMP package [22] was used to implement

the MILP formulation and the Gurobi solver [23] was used to solve the MILP. Each instance was

given a time limit of 1 hour to solve. For each group of 20 instances, the minimum, average, and

maximum run time needed to solve the MILP was recorded. If an instance reached the 1 hour

time limit, it was not considered to be solved and the corresponding run time was not included in

the determination of the reported average run times for that group. Instances that were found to

be infeasible were considered to be solved and their corresponding run times were included in the

averages reporte for that group. Table 2.1 and Table 2.2 contain the results for the first set and

second set of 200 instances, respectively. In both tables, the column labeled "Solved" shows the

number of instances either solved to optimality or shown to be infeasible within the 1 hour time

limit. Run times with an asterisk indicate the run time only corresponds to instances that were

solved within the 1 hour time limit. Since run times for infeasible instances were included, the run

times shown in both tables are biased towards lower values.

In Table 2.1 it can be seen the run times are dependent on the particular instance being solved.

For example, for |𝑉 | = 14 the average run time was 5.18 seconds, but the maximum run time for

the group was 93.4 seconds. Furthermore, as the number of vertices increases the MILP becomes

significantly more computationally expensive to solve, which is to be expected. After |𝑉 | = 20,

many instances were unable to be solved within the 1 hour time limit, resulting in skewed average

run times. It should be noted that for small instances (|𝑉 | ≤ 12), many of these instances were

found to be infeasible, which is a direct consequence of how the graphs were constructed. If more

arcs were included for these smaller instances, the MILP would likely be feasible more often. These

infeasible solutions become common for the smaller instances because the MILP formulation only

admits elementary paths for the convoy and support vehicle, making it more difficult for the MILP

to be feasible when there is a small number of available arcs. The same trends can be seen in Table

2.2. For both sets, the low minimum run times correspond to infeasible instances. In both sets,

typically only one instance was infeasible for |𝑉 | ≥ 12. The lowest run time for feasible instances

was typically in the range of 1 to 15 seconds in nearly all of the groups with |𝑉 | ≥ 14.

20

Table 2.1: Computational Results for Set 1 (|𝐾| ≈ 0.25|𝐴|)
|𝑉 | Avg. |𝐴| |𝐾|∕|𝐴| Min. Run Time (s) Avg. Run Time (s) Max. Run Time (s) Solved

8 22 0.25 0.0003 0.00513 0.0215 20/20
10 32 0.25 0.0004 0.0108 0.0531 20/20
12 48 0.25 0.0005 0.0972 1.10 20/20
14 64 0.25 0.0007 0.198 1.10 20/20
16 82 0.25 0.0009 0.302 0.891 20/20
18 96 0.25 0.001 0.765 4.44 20/20
20 126 0.25 0.391 117.3 2053.8 20/20
22 162 0.25 0.0021* 127.9* 1201* 19/20
24 184 0.25 0.321* 193.7* 1600.5* 17/20
26 212 0.25 0.002* 199.3* 1606.4* 15/20

2.5 Approximation Algorithm for the Trailing Convoy ASPP

In this section, a (2 + 𝜀)-approximation algorithm for the ASPP with a trailing convoy is pre-

sented. That is, the convoy is unable to traverse impeded edges, but the convoy may take an impeded

edge as the support vehicle is servicing the edge but must remain behind the support vehicle. For

such a case, the travel cost of the convoy would then be the maximum unimpeded travel cost be-

tween the two vehicles plus the time required for servicing the impeded edge. Note that, unlike

for the MILP formulation, both vehicles are permitted to take cycles. This is relevant for the sup-

port vehicle, as there may be situations that calls for the support vehicle to re-use an edge after

depending on the structure of the graph.

2.5.1 Additional Notation

Recall 𝑋𝑎𝑣 denotes a path from 𝑎, 𝑣 ∈ 𝑉 for the convoy and similarly 𝑋̄𝑏𝑤 denotes a path from

𝑏,𝑤 ∈ 𝑉 for the support vehicle. Two convoy paths 𝑋𝑎𝑣 and 𝑋𝑣𝑠 being joined to create a new

convoy path 𝑋𝑎𝑠 will be denoted by 𝑋𝑎𝑣⧺𝑋𝑣𝑠. A similar notation will be employed for the support

vehicle. We say a path is a totally impeded path if the cost of each edge in the path is taken to be

the impeded travel cost for the corresponding vehicle, irrespective of whether the edge has been

21

Table 2.2: Computational Results for Set 2 (|𝐾| ≈ 0.50|𝐴|)
|𝑉 | Avg. |𝐴| |𝐾|∕|𝐴| Min. Run Time (s) Avg. Run Time (s) Max. Run Time (s) Solved

8 24 0.5 0.0003 0.008 0.051 20/20
10 32 0.5 0.0005 0.027 0.159 20/20
12 42 0.5 0.0005 0.039 0.166 20/20
14 64 0.5 0.0008 5.18 93.4 20/20
16 78 0.5 0.001 6.67 121.5 20/20
18 104 0.5 0.001 10.5 151.6 20/20
20 118 0.5 0.001 159.5 2950.4 20/20
22 156 0.5 0.002* 157.4* 1041.2* 16/20
24 178 0.5 0.005* 31.8* 130* 11/20
26 220 0.5 0.008* 192.1* 927.2* 7/20

previously serviced in the path. The totally impeded cost of a path is the sum of the edge costs

of a path if it is treated as a totally impeded path and is denoted 𝑐𝐼 (⋅). We say a path is a totally

unimpeded path if the cost of each edge in the path is taken to be the unimpeded travel cost. The

totally unimpeded cost of a path is the sum of the edge weights of a path if is treated as a totally

unimpeded path and is denoted by 𝑐𝑈 (⋅). For impeded edges 𝑒 ∈ 𝐾 , let 𝜌𝑒 = 𝜏 𝑖𝑒 − 𝜏𝑢𝑒 be the cost

of servicing. The boundary of 𝐾 , denoted by 𝛿(𝐾), is the set of all ends of impeded edges. The

vertices making up 𝛿(𝐾) are referred to as boundary vertices. As before, the words cost and time

elapsed will be used interchangeably – the following work can be modified to handle more complex

cost schemes, but the corresponding approximation ratio will differ as a result. If a path between

two vertices does not exist, the path is set to be the empty set and the cost of that path is taken to

be +∞.

2.5.2 Motivating Structure for the Approximation Algorithm

Before presenting the proposed approximation algorithm for the trailing convoy ASPP, we first

examine a typical solution structure to this problem. We will then use this solution structure as a

guide to developing the proposed approximation algorithm.

Consider an abstracted representation of a solution to the trailing convoy ASPP shown in Figure

22

2.3. In Figure 2.3, a solid line represents a path for a corresponding vehicle in the graph defined for

the trailing convoy ASPP. The gray region in Figure 2.3 called the "Region of Conflict“ (denoted

ROC for brevity) is an abstract representation of all possible paths using at least one initially im-

peded edge with the first edge in the path being an initially impeded edge. The dashed border of the

ROC represents all vertices that are incident with an initially impeded edge. These vertices are pre-

cisely the boundary vertices 𝛿(𝐾) as previously defined. A path strictly outside the ROC represents

a path in the graph that does not use any impeded edges (i.e., totally unimpeded paths). In Figure

2.3, the abstract representation of a solution to the trailing convoy ASPP can be viewed as follows.

Initially, the convoy and support vehicle start at vertices 𝑝 and 𝑞. The convoy, taking the green path

from 𝑝 to the left-most red node shown in Figure 2.3, initially takes a path using only unimpeded

edges until it eventually encounters a vertex that is incident with an impeded edge. This initial

totally unimpeded path is represented by the green path lying outside the ROC. Once the convoy

reaches this first boundary vertex, if the next edge to be taken by the convoy is an initially impeded

edge, the convoy must wait for the support vehicle’s assistance. With this in mind, the support

vehicle’s initial path goes from 𝑞 to the same boundary vertex encountered by the convoy. Such

a path for the support vehicle is represented by the purple path in Figure 2.3. Due to the support

vehicle’s capabilities, this initial path for the support vehicle need not be a totally unimpeded path.

This is represented by the purple path passing through the ROC before reaching the first boundary

vertex encountered by the convoy. Once the two vehicles have met at the first boundary vertex,

they may then travel together using a sequence of edges, unimpeded or impeded, until they reach

the final boundary vertex to be used by the convoy. The two vehicles traveling together with the

support vehicle assisting the convoy by servicing edges along the way is represented by the blue

path in Figure 2.3. Note that the support vehicle may have already serviced some of the impeded

edges to be used by the convoy in the initial portion of the solution (purple path). This may be rep-

resented by the purple path intersecting the blue path in Figure 2.3. This was not shown in Figure

2.3 in order to reduce potential confusion with the abstraction. Once the convoy has reached the

final boundary vertex used in its solution, the support vehicle’s assistance is no longer required and

23

Figure 2.3: Motivating solution structure to the ASPP using an abstracted representation of the
possible paths for the convoy and support vehicle.

so the support vehicle may terminate. The convoy may then take the remaining totally unimpeded

path from this final boundary vertex to the destination, shown in green once again in Figure 2.3.

The motivating solution structure previously described was found to occur in many of the op-

timal solutions of the trailing convoy ASPP for simpler instances that could be manually solved.

Additionally, this structure was seen in many of the optimal solutions to the previously described

restricted ASPP from Section 2.4 (see Figure 2.2 for example). Because of this, the proposed ap-

proximation algorithm was constructed with this solution structure in mind.

2.5.3 Approximation Algorithm

The proposed algorithm (which will be referred to as Algorithm 1) is as follows.

1) Define an auxiliary graph 𝐺𝑈 = (𝑉 ,𝐸 ⧵ 𝐾) where the weights of the edges are set to 𝑇 𝑢
𝑒 .

Find the shortest path from 𝑝 to 𝑑 on 𝐺𝑈 and store this path as 𝑋0
𝑝𝑑 .

2) Find the shortest totally unimpeded path in 𝐺𝑈 for the convoy from 𝑝 to each boundary vertex

𝑣 ∈ 𝛿(𝐾) and store each such path as 𝑋𝑝𝑣.

3) Find the shortest totally impeded path in 𝐺 for the support vehicle from 𝑞 to each boundary

vertex 𝑣 ∈ 𝛿(𝐾) and store each such path as 𝑋̄𝑞𝑣.

24

4) Find the shortest totally unimpeded path in 𝐺𝑈 for the convoy from each boundary vertex

𝑤 ∈ 𝛿(𝐾) to the destination 𝑑 and store each such path as 𝑋𝑤𝑑 .

5) Create an auxiliary graph 𝐺𝑚𝑎𝑥 where the weights of the edges are set to max{𝑇 𝑖
𝑒 , 𝜏

𝑖
𝑒}. Then,

for each pair of boundary vertices 𝑣,𝑤 ∈ 𝛿(𝐾), 𝑣 ≠ 𝑤, find the shortest path on 𝐺𝑚𝑎𝑥 from

𝑣 to 𝑤 and store these paths as 𝑃𝑣𝑤.

6) Define

𝑡1(𝑣) = max{𝑐𝑈 (𝑋𝑝𝑣), 𝑐𝐼 (𝑋̄𝑞𝑣)} (2.10)

and

𝑐∗(𝑃𝑣𝑤) =
∑
𝑒∈𝑃𝑣𝑤

(
max{𝑇 𝑢

𝑒 , 𝜏
𝑢
𝑒} + 𝜌𝑒

)
(2.11)

Compute

𝑈𝐵𝑣̄,𝑤̄ = min
𝑣,𝑤∈𝛿(𝐾)

{𝑡1(𝑣) + 𝑐∗(𝑃𝑣𝑤) + 𝑐𝑈 (𝑋𝑤𝑑)} (2.12)

where 𝑣̄ and 𝑤̄ are the boundary vertices for which this minimum is attained.

7) If 𝑐𝑈 (𝑋0
𝑝𝑑) ≤ 𝑈𝐵𝑣̄,𝑤̄, then set 𝑋𝑝𝑑 = 𝑋0

𝑝𝑑 and do not deploy the support vehicle. Otherwise,

set

𝑋𝑝𝑑 = 𝑋𝑝𝑣̄ ⧺ 𝑃𝑣̄𝑤̄ ⧺𝑋𝑤̄𝑑 (2.13)

to be the convoy’s path and

𝑋̄𝑞𝑤̄ = 𝑋̄𝑞𝑣̄ ⧺ 𝑃𝑣̄𝑤̄ (2.14)

to be the support vehicle’s path.

Algorithm 1 can be understood as follows. Step 1 finds the shortest path the convoy is able

to take from 𝑝 to 𝑑 without the assistance of the support vehicle (noting we assume the convoy

is unable to traverse impeded edges). This path is used as a default feasible solution. If no such

path exists, it is simply set to be the empty set. Step 2 finds the shortest totally unimpeded paths

for the convoy to each obstruction, which is indicated by reaching a boundary vertex 𝑣 ∈ 𝛿(𝐾),

25

without using any initially impeded edges. These paths represent the fastest the convoy may reach

any obstruction without the assistance of the support vehicle. Similarly, Step 3 finds the shortest

totally impeded paths for the support vehicle to each obstruction. Since all costs are positive, there

will be no cycles in these shortest paths and so these paths represent the fastest the support vehicle

may reach each obstruction. Step 4 finds the shortest path for the convoy from each obstruction

to the destination without using any initially impeded edges. These paths represent the best-case

scenario for the convoy to depart from an obstruction and reach the destination in minimum time

without encountering any impeded edges along the way. For any boundary vertex without such

a path, we simply set the corresponding path to be the empty set. Step 5 finds the shortest paths

going from one obstruction to another obstruction where the edge weights provide a conservative

estimate of the case where the convoy and support vehicle travel together on the same path 𝑃𝑣𝑤.

Since the convoy must trail behind the support vehicle on any impeded edges they may be traveling

on simultaneously, the edge weight is taken to be the worst case of max{𝑇 𝑢
𝑒 , 𝜏

𝑢
𝑒} + 𝜌𝑒, though

impeded edges may actually be serviced before the convoy reaches them. For Step 6, suppose the

convoy and support vehicle took the paths 𝑋𝑝𝑣 and 𝑋̄𝑞𝑣 given by Step 2 and Step 3, respectively, to

the boundary vertex 𝑣 ∈ 𝛿(𝐾). In such a case, the value 𝑡1(𝑣) defined in Step 6 represents the time

needed for both vehicles to be present at 𝑣, noting both vehicles are permitted to wait at any vertex in

the ASPP. Next, suppose the convoy and support vehicle begin at 𝑣 ∈ 𝛿(𝐾) and travel to 𝑤 ∈ 𝛿(𝐾)

using the same path 𝑃𝑣𝑤. When the convoy and support vehicle are traversing an impeded edge 𝑒

simultaneously, the travel cost is given by max{𝑇 𝑢
𝑒 , 𝜏

𝑢
𝑒} + 𝜌𝑒. With this in mind, 𝑐∗(𝑃𝑣𝑤) represents

an upper bound on the time elapsed for the convoy when both vehicles take path 𝑃𝑣𝑤. This cost

is an upper bound as an impeded edge may be serviced by the support vehicle before the convoy

reaches it along this path depending on the various travel costs. We may then consider the paths

𝑋𝑝𝑑 = 𝑋𝑝𝑣 ⧺ 𝑃𝑣𝑤 ⧺ 𝑋𝑤𝑑 and 𝑋̄𝑞𝑣 ⧺ 𝑃𝑣𝑤 for the convoy and support vehicle, respectively. That is,

the vehicles both travel to the same boundary vertex 𝑣, travel together on the same path from 𝑣 to

another boundary vertex 𝑤, then the support vehicle terminates at 𝑤 and the convoy travels from

𝑤 to 𝑑 without taking any initially impeded edges. The value 𝑈𝐵𝑣̄𝑤̄ then represents the smallest of

26

the conservative estimates of the travel cost of the paths for all combinations of 𝑣 and 𝑤. Finally,

the feasible solution corresponding to the upper bound is compared to the convoy traveling without

the assistance of the support vehicle and the better of the two is outputted.

If the solution returned by Algorithm 1 is not the default solution, 𝑋0
𝑝𝑑 , then this solution will

have the same structure as the desired solution structure shown in Figure 2.3. The boundary vertices

𝑣̄ and 𝑤̄ from the returned solution of Algorithm 1 correspond to the red boundary nodes indicated

in Figure 2.3. The paths 𝑋𝑝𝑣̄ and 𝑋̄𝑞𝑣̄ correspond to the initial green and purple paths shown in

Figure 2.3. The path 𝑃𝑣̄𝑤̄ that both the convoy and support vehicle take corresponds to the blue

path shown in Figure 2.3. Finally, the path 𝑋𝑤̄𝑑 corresponds to the final green path from the right-

most boundary node (𝑤̄) to 𝑑 in Figure 2.3. The computation of 𝑈𝐵𝑣̄𝑤̄ in Step 6 corresponds to

selecting a combination of the green, purple, and blue paths in Figure 2.3 that correspond to various

shortest paths as computed in Steps 2 through 4 that result in the least total cost.

2.5.4 Proof of Approximation Ratio

Let 𝑐(𝑋𝑝𝑑 , 𝑋̄𝑞𝑤) be the cost (i.e., time elapsed for the convoy) of the solution outputted by

Algorithm 1, where the special case 𝑤 = 𝑞 corresponds to the support vehicle not being deployed.

Let 𝑂𝑃𝑇 denote the cost of the optimal solution to the trailing convoy ASPP. It will then be shown

𝑐(𝑋𝑝𝑑 , 𝑋̄𝑞𝑤) ≤ (2 + 𝜀)𝑂𝑃𝑇 (2.15)

where

𝜀 = max
𝑒∈𝐸

𝜏𝑢𝑒
𝑇 𝑢
𝑒

(2.16)

To do this, we will make use of three lemmas.

Lemma 2.5.1. By construction, we have

𝑐(𝑋𝑝𝑑 , 𝑋̄𝑞𝑤) ≤ 𝑈𝐵𝑣̄𝑤̄. (2.17)

Proof. If Algorithm 1 outputs 𝑋𝑝𝑑 = 𝑋0
𝑝𝑑 , then the inequality is clear from Step 7. Suppose instead

27

Algorithm 1 outputs the paths given by (2.13) and (2.14) in Step 7. The convoy and the support

vehicle take the same path 𝑃𝑣̄𝑤̄ from 𝑣̄ to 𝑤̄. Along this path, the most time required for the convoy

to reach 𝑤̄ is precisely ∑
𝑒∈𝑃𝑣̄𝑤̄

(
max{𝑇 𝑢

𝑒 , 𝜏
𝑢
𝑒} + 𝜌𝑒

)
which represents the every edge 𝑒 ∈ 𝑃𝑣̄𝑤̄ being an impeded edge and the convoy trailing behind the

support vehicle on each edge as they traverse these edges simultaneously. Therefore, 𝑐∗(𝑃𝑣̄𝑤̄) is an

upper bound the time elapsed when the two vehicles take the path 𝑃𝑣̄𝑤̄. By construction, 𝑡1(𝑣̄) is an

upper bound on the earliest the convoy is able to leave 𝑣̄ after taking the path 𝑋𝑝𝑣̄. The inequality

then immediately follows.

Lemma 2.5.2. Let 𝑋∗
𝑝𝑑 be the convoy’s path in the optimal solution to the ASPP with cost 𝑂𝑃𝑇 .

Suppose 𝑋∗
𝑝𝑑 uses at least one initially impeded edge. Denote the first and last boundary vertex

used in 𝑋∗
𝑝𝑑 by 𝑣∗ and 𝑤∗, respectively. Then

𝑡1(𝑣∗) +
∑
𝑒∈𝑋∗

𝑝𝑑

𝑇 𝑢
𝑒 + 𝑐𝑈 (𝑋∗

𝑝𝑑) ≤ 𝑂𝑃𝑇 .

Proof. The term on the left-hand side of the inequality represents the time elapsed if all the impeded

edges on 𝑋∗
𝑝𝑑 were serviced before the convoy reached them and is therefore the least cost possible

for a path using impeded edges.

Lemma 2.5.3. Let 𝑋∗
𝑝𝑑 be the convoy’s path in the optimal solution to the ASPP with cost 𝑂𝑃𝑇 .

Suppose 𝑋∗
𝑝𝑑 uses at least one initially impeded edge and denote the first and last boundary vertex

used in 𝑋∗
𝑝𝑑 by 𝑣∗ and 𝑤∗, respectively. Let 𝑋∗

𝑣∗𝑤∗ denote the sub-path from 𝑣∗ to 𝑤∗ in 𝑋∗
𝑝𝑑 . Then,

∑
𝑒∈𝑋∗

𝑣∗𝑤∗

𝜌𝑒 ≤ 𝑂𝑃𝑇 .

Proof. 𝑂𝑃𝑇 includes the service times along 𝑋∗
𝑝𝑑 , which only occur in the sub-path 𝑋∗

𝑣∗𝑤∗ .

We are now prepared to prove the approximation ratio of the proposed algorithm.

28

Theorem 1. Let 𝑋𝑝𝑑 and 𝑋̄𝑞𝑤 be the convoy and support vehicle paths, respectively, that have

been outputted by Algorithm 1, where 𝑋̄𝑞𝑤 = ∅ is used to represent the support vehicle not being

deployed. Let the cost of the optimal solution to the trailing convoy ASPP be denoted by 𝑂𝑃𝑇 .

Define

𝜀 = max
𝑒∈𝐸

𝜏𝑢𝑒
𝑇 𝑢
𝑒

Then

𝑐(𝑋𝑝𝑑 , 𝑋̄𝑞𝑤) ≤ (2 + 𝜀)𝑂𝑃𝑇

Proof. Let 𝑋∗
𝑝𝑑 and 𝑋̄∗

𝑞𝑤 denote the convoy and support vehicle paths, respectively, in the optimal

solution to the trailing convoy ASPP with corresponding cost 𝑂𝑃𝑇 . If the support vehicle is not

deployed in the optimal solution, set 𝑋̄∗
𝑞𝑤 = ∅.

Suppose 𝑋∗
𝑝𝑑 does not use any initially impeded edges. Then 𝑋∗

𝑝𝑑 = 𝑋0 and so this case is

captured in Step 7 of the algorithm.

Suppose instead 𝑋∗
𝑝𝑑 uses at least one initially impeded edge. Denote the first and last boundary

vertex used in 𝑋∗
𝑝𝑑 by 𝑣∗ and 𝑤∗, respectively. By construction, we have

𝑈𝐵𝑣̄𝑤̄ ≤ 𝑡1(𝑣∗) + 𝑐∗(𝑃𝑣∗𝑤∗) + 𝑐𝑈 (𝑋𝑤∗𝑑)

Let 𝑃 ∗
𝑣∗𝑤∗ denote the sub-path taken by the convoy from 𝑣∗ to 𝑤∗ in 𝑋∗

𝑝𝑑 . Similarly, let 𝑋∗
𝑤∗𝑑 denote

the sub-path taken by the convoy from 𝑤∗ to 𝑑 in 𝑋∗
𝑝𝑑 . Expanding 𝑐∗(𝑃𝑣∗𝑤∗) and noting 𝑋𝑤∗𝑑 and

𝑃𝑣∗𝑤∗ are shortest paths (for graphs with appropriate edge weights outlined in Steps 4 and 5), we

find

𝑈𝐵𝑣̄𝑤̄ ≤ 𝑡1(𝑣∗) +
∑

𝑒∈𝑃 ∗
𝑣∗𝑤∗

(
max{𝑇 𝑢

𝑒 , 𝜏
𝑢
𝑒} + 𝜌𝑒

)
+ 𝑐𝑈 (𝑋∗

𝑤∗𝑑)

29

We further note

∑
𝑒∈𝑃 ∗

𝑣∗𝑤∗

max{𝑇 𝑢
𝑒 , 𝜏

𝑢
𝑒} ≤ ∑

𝑒∈𝑃 ∗
𝑣∗𝑤∗

𝑇 𝑢
𝑒 +

∑
𝑒∈𝑃 ∗

𝑣∗𝑤∗

𝜏𝑢𝑒

≤ (1 + 𝜀)
∑

𝑒∈𝑃 ∗
𝑣∗𝑤∗

𝑇 𝑢
𝑒

From Lemmas 2 and 3, we then have

𝑈𝐵𝑣̄𝑤̄ ≤ (2 + 𝜀)𝑂𝑃𝑇

and so by Lemma 1

𝑐(𝑋𝑝𝑑 , 𝑋̄𝑞𝑤) ≤ (2 + 𝜀)𝑂𝑃𝑇 (2.18)

as desired.

2.5.5 Computational Results

Algorithm 1 was implemented in Python 3.7 on a Dell Inspiron (i7-8565U processor @ 1.80

GHz, 16 GB RAM). Three sets of instances were created for testing. Each instance consists of a

network that was randomly generated on a 50 × 50 grid. For large problem instances (|𝑉 | = 50),

vertices were connected by an edge if their Euclidean distance was less than 20 units. For smaller

instances (|𝑉 | = 25), vertices were connected by an edge if their Euclidean distance was less than

30 units. In both cases, additional edges were added if the generated network was not originally

connected. These additional edges were chosen at random from the possible edges connected sep-

arated connected components. For each instance, the convoy’s unimpeded travel cost on each edge

of the network was chosen to be a random integer from 5 to 20. The number of initially impeded

edges for each instance was set in advance and the impeded edges were randomly selected among

all edges available. The time to service each impeded edge was chosen to be a random integer from

1 to 5. The support vehicle’s unimpeded travel time is specified in a different manner for each set

in order to capture different aspects of Algorithm 1. This information is presented along with the

30

corresponding set information that follows. The convoy’s origin 𝑝 was set to be the vertex closest to

the point (0, 0) and the convoy’s destination 𝑑 was set to be the vertex closest to the point (50, 50).

The support vehicle’s origin 𝑞 was set to be the vertex closest to (0, 50). This was done for each

instance in an attempt to avoid trivial solutions corresponding to the convoy using only a few edges

to reach its destination.

In addition to the three sets of instances that were created, 30 additional simulations were ini-

tially ran for the general heterogeneous case with the support vehicle’s unimpeded travel time being

a randomly chosen integer from 5 to 20 for each edge in the network. The results for this additional

simulations are shown in Table 2.3. The 𝐿𝐵 column contains the cost of a lower bound for the

trailing convoy ASPP corresponding to the shortest path in the network from 𝑝 to 𝑑 with all edges

being treated as unimpeded or serviced edges with edge weights set to 𝑇 𝑢
𝑒 for each edge. That is, the

lower bound 𝐿𝐵 is precisely the shortest path from 𝑝 to 𝑑 assuming the obstructions were instantly

removed for no additional cost. The 𝑐 column contains the cost Algorithm 1’s output for each in-

stance. The 𝑈𝐵𝑣̄𝑤̄ column contains the upper bound that was computed in Step 6 of Algorithm 1.

The 𝜀 simply contains the value of 𝜀 computed for each instance using (2.16). The lower bound

previously described will also be used for the remaining three sets of instances that follow.

2.5.5.1 Set 1 - Heterogeneous Case

In Set 1, the support vehicle’s unimpeded travel cost 𝜏𝑢𝑒 for each edge was set to a random integer

from 5 to 20. Set 1 consists of 800 instances in total, with the first 400 corresponding to networks

with |𝑉 | = 50 and the remaining 400 corresponding to networks with |𝑉 | = 25. For the networks

with 50 vertices, the instances were split into 4 groups of 100 instances with the number of initially

impeded edges set to 250, 200, 150, and 100, respectively. For the networks with 25 vertices, the

instances were split into 4 groups of 100 instances with the number of initially impeded edges set

to 100, 80, 50, and 40, respectively The number of initially impeded edges were chosen so that

the percentage of edges requiring servicing were roughly comparable between the two instance

sizes. Algorithm 1 was applied to each instance and the results were compiled into Table 2.4. In

Table 2.4, the 𝑐∕𝐿𝐵 column contains the average ratio of the cost of Algorithm 1’s output versus

31

Table 2.3: Results for 30 instances - General heterogeneous case

Instance No. |𝑉 | |𝐾| |𝐸| 𝐿𝐵 𝑐 𝑈𝐵𝑣̄,𝑤̄ Run Time (s) 𝜀

1 50 250 472 30 31 33 0.98 4.0
2 50 250 421 30 40 45 0.77 4.0
3 50 250 463 36 43 48 0.82 3.8
4 50 250 379 33 49 52 0.65 4.0
5 50 250 409 32 40 41 0.68 4.0
6 50 250 429 39 48 51 0.76 4.0
7 50 250 406 28 28 33 0.69 3.8
8 50 250 391 38 53 55 0.81 3.8
9 50 250 380 31 41 46 0.69 4.0

10 50 250 406 28 39 41 0.73 4.0

11 50 250 430 33 48 55 0.75 4.0
12 50 250 454 28 44 44 0.74 3.8
13 50 250 467 23 27 38 0.82 4.0
14 50 250 358 33 46 49 0.70 4.0
15 50 250 350 24 45 57 0.67 4.0
16 50 250 421 28 36 41 0.73 4.0
17 50 250 405 33 40 44 0.70 4.0
18 50 250 430 38 41 51 0.70 4.0
19 50 250 370 35 49 50 0.65 4.0
20 50 250 430 29 42 45 0.83 4.0

21 50 250 444 30 42 42 0.81 3.8
22 50 250 403 33 49 52 0.71 3.8
23 50 250 403 24 25 35 0.71 3.8
24 50 250 403 34 71 76 0.70 3.8
25 50 250 381 29 47 47 0.68 3.8
26 50 250 535 23 44 44 0.94 4.0
27 50 250 426 28 87 90 0.77 4.0
28 50 250 440 34 45 45 0.93 3.8
29 50 250 398 37 59 59 0.74 4.0
30 50 250 421 26 72 79 0.73 4.0

32

Table 2.4: Computational Results for Set 1 - General Heterogeneous Case

|𝑉 | |𝐾| |𝐾|∕|𝐸| 𝜀 𝑐∕𝐿𝐵 𝑈𝐵𝑣̄,𝑤̄∕𝑐 sec.

50 250 0.609 3.95 1.46 1.09 0.759
50 200 0.490 3.95 1.31 1.11 0.758
50 150 0.371 3.94 1.23 1.11 0.754
50 100 0.245 3.95 1.12 1.16 0.733

25 100 0.564 3.80 1.51 1.21 0.077
25 80 0.443 3.83 1.29 1.26 0.081
25 50 0.284 3.78 1.12 1.31 0.077
25 40 0.225 3.84 1.10 1.34 0.068

the computed lower bound for each set of 100 instances. The 𝑈𝐵𝑣̄𝑤̄ column contains the average

ratio of the computed upper bound in Step 6 versus the cost of Algorithm 1’s output for each set of

100 instances. The final column contains the average run time of Algorithm 1 for each set of 100

instances in seconds.

2.5.5.2 Set 2 - Homogeneous Case

In Set 2, the support vehicle’s unimpeded travel cost 𝜏𝑢𝑒 for each edge was set to be equal to

the convoy’s unimpeded travel cost 𝑇 𝑢
𝑒 . Set 2 consists of 800 instances in total, with the first 400

corresponding to networks with |𝑉 | = 50 and the remaining 400 corresponding to networks with

|𝑉 | = 25. For the networks with 50 vertices, the instances were split into 4 groups of 100 instances

with the number of initially impeded edges set to 250, 200, 150, and 100, respectively. For the

networks with 25 vertices, the instances were split into 4 groups of 100 instances with the number

of initially impeded edges set to 100, 80, 50, and 40, respectively. As with Set 1, the number

of impeded edges were chosen so that the percentage of edges requiring servicing were roughly

comparable between the two instance sizes. Algorithm 1 was applied to each instance and the

results were compiled into Table 2.5. The data listed in Table 2.5 correspond to averages for each

set of 100 instances and the columns are defined in the same manner as those in Table 2.4.

33

Table 2.5: Computational Results for Set 2 - Homogeneous Case

|𝑉 | |𝐾| |𝐾|∕|𝐸| 𝜀 𝑐∕𝐿𝐵 𝑈𝐵𝑣̄,𝑤̄∕𝑐 sec.

50 250 0.614 1.0 1.45 1.04 0.750
50 200 0.500 1.0 1.26 1.04 0.747
50 150 0.368 1.0 1.14 1.06 0.761
50 100 0.248 1.0 1.10 1.06 0.695

25 100 0.554 1.0 1.41 1.13 0.079
25 80 0.444 1.0 1.25 1.13 0.077
25 50 0.283 1.0 1.15 1.13 0.075
25 40 0.225 1.0 1.09 1.21 0.071

2.5.5.3 Set 3 - Scalar Multiple Case

In Set 3, the support vehicle’s unimpeded travel cost for each edge was set to a specified scalar

multiple of the convoy’s unimpeded travel cost, i.e., 𝜏𝑢𝑒 = 𝜀𝑇 𝑢
𝑒 for each 𝑒 ∈ 𝐸. This scalar multiple,

𝜀, was set to 0.5, 2, 3, and 4 for 400 instances each, totaling to 1600 instances for the entire set.

Each set of 400 instances was split into 4 sets of 100 instances with the number of impeded edges

set to 250, 200, 150, and 100, respectively. Algorithm 1 was applied to each instance the results

were compiled into Table 2.6. The data listed in Table 2.6 corresponds to averages for each set of

100 instances and the columns are defined in the same manner as those in Table 2.4. All instances

in Set 3 have 50 vertices.

2.5.5.4 Discussion of Results

In Tables 2.3 through 2.6, it can be seen Algorithm 1 performs well for relatively small (|𝑉 | =
25) and relatively large (|𝑉 | = 50) instances, even as the percentage of impeded edges vary. Ad-

ditionally, the run time for the algorithm. Additionally, the algorithm’s run time appears to be at

an acceptable level for all sets. The results for Set 3 (see Table 2.6) seem to indicate the relatively

quality of the output of Algorithm 1 begins to worsen as the value of 𝜀 increases. In all instances,

as the percentage of impeded edges decreases, the quality of the algorithm’s output increases. This

34

Table 2.6: Computational Results for Set 3 - Scalar Multiple Case

|𝑉 | |𝐾| |𝐾|∕|𝐸| 𝜀 𝑐∕𝐿𝐵 𝑈𝐵𝑣̄,𝑤̄∕𝑐 sec.

50 250 0.616 0.5 1.29 1.08 0.771
50 200 0.484 0.5 1.15 1.05 0.767
50 150 0.369 0.5 1.13 1.04 0.761
50 100 0.241 0.5 1.05 1.03 0.743

50 250 0.617 2.0 1.58 1.28 0.762
50 200 0.495 2.0 1.38 1.33 0.761
50 150 0.371 2.0 1.19 1.45 0.748
50 100 0.245 2.0 1.12 1.49 0.722

50 250 0.619 3.0 1.63 1.58 0.744
50 200 0.498 3.0 1.43 1.64 0.757
50 150 0.370 3.0 1.25 1.73 0.768
50 100 0.248 3.0 1.16 1.79 1.00

50 250 0.614 4.0 1.72 1.84 1.016
50 200 0.497 4.0 1.49 2.00 1.006
50 150 0.370 4.0 1.21 2.05 1.024
50 100 0.250 4.0 1.10 2.14 0.987

35

is expected, as the convoy’s path in the optimal solution is more likely to be a totally unimpeded

path (i.e., contain no impeded edges) as the number of impeded edges in the network decreases.

Algorithm 1 is able to output such a solution.

2.6 Asynchronous Generalized Permanent Labeling Algorithm

2.6.1 Section Structure

In this section, a generalized version of the ASPP is considered and an asynchronous generalized

permanent labeling algorithm is presented to solve this generalized ASPP. First, we consider the

case where the support vehicle does not wait at any vertex unless it has chosen to terminate its

journey. This variation of the ASPP occurs in situations where the support vehicle is a vehicle

that is not able to easily wait at a vertex, such as in the case of a fixed-wing UAV. Afterwards, we

consider the case where the support vehicle is capable of waiting at any vertex.

2.6.2 Generalized ASPP with an Unyielding Support

2.6.2.1 Problem Statement

Much of the notation and definitions directly match those given in Section 2.2. For the sake of

being self-contained, this information is repeated here in addition to the small changes leading to

the more general form of the ASPP. This form can be further generalized and it will be pointed out

where these further generalizations may be accounted for in the presented labeling algorithm.

Let𝐺 = (𝑉 ,𝐸) be an undirected, connected graph representing an impeded environment, where

𝑉 is the set of vertices and 𝐸 is the set of undirected edges. The vertices and edges are chosen by a

designer a priori and are assumed to reasonably represent the environment. The convoy and support

vehicle start at vertices 𝑝 and 𝑞, respectively, where 𝑝 and 𝑞 need not be distinct. Let 𝑑 ∈ 𝑉 be the

destination of the convoy. The support vehicle is permitted to terminate at any vertex (a destination

may be specified for the support vehicle and the presented algorithm may be modified accordingly).

For the remainder of this section, cost and time will be used interchangeably, though in general a

cost structure may be imposed that is not directly equal to time elapsed and the algorithm may be

modified to reflect this cost structure. Let 𝐾 ⊆ 𝐸 denote the set of impeded edges in the graph. An

36

edge (corresponding to a path in the real environment) may be impeded due to a physical obstruction

(debris, broken road, etc.) or an abstract obstruction (permission required, inspection required, etc.).

The impeded edges 𝐾 are assumed to be known a priori by the designer. The remaining edges

(i.e., 𝐸 ⧵𝐾) are referred to as the unimpeded edges of the graph. We say an initially impeded edge

has been serviced if either the convoy or support vehicle has completely traversed that edge. An

impeded edge being serviced is equivalent to the relevant obstruction (physical or abstract) being

removed in the impeded environment. It will be assumed a serviced edge remains serviced for the

duration of the vehicles’ journey (i.e., obstructions are permanently removed). The term impeded

travel cost will refer to the cost for a vehicle to take an impeded edge that has not yet been serviced.

The term unimpeded travel cost will refer to the cost for a vehicle to taken an unimpeded or serviced

edge. Each edge 𝑒 ∈ 𝐸 has four positive edge weights of the form (𝑇 𝑢
𝑒 , 𝑇

𝑖
𝑒 , 𝜏

𝑢
𝑒 , 𝜏

𝑖
𝑒). Edge weights 𝑇 𝑢

𝑒

and 𝑇 𝑖
𝑒 are the unimpeded and impeded travel cost for the convoy, respectively, when taking edge

𝑒. Edge weights 𝜏𝑢𝑒 and 𝜏 𝑖𝑒 are defined similarly for the support vehicle. The costs 𝑇 𝑢
𝑒 , 𝜏𝑢𝑒 , and 𝜏 𝑖𝑒

are taken to be finite, but 𝑇 𝑖
𝑒 may be infinite in general. A positive infinite cost 𝑇 𝑖

𝑒 corresponds to

the convoy being unable to take the impeded edge 𝑒 without the assistance of the support vehicle.

In this section, we will only consider finite values of 𝑇 𝑖
𝑒 . The presented algorithm can be easily

modified to account for positive infinite cost 𝑇 𝑖
𝑒 for select (or all) impeded edges. For unimpeded

edges, we have 𝑇 𝑖
𝑒 = 𝑇 𝑢

𝑒 and 𝜏 𝑖𝑒 = 𝜏𝑢𝑒 . For impeded edges, we require 𝑇 𝑖
𝑒 > 𝑇 𝑢

𝑒 and 𝜏 𝑖𝑒 > 𝜏𝑢𝑒 , i.e.,

servicing an edge (removing an obstruction) always reduces the cost of taking that edge. All edges

are undirected and so the cost in both directions are taken to be identical. To avoid ambiguity, if a

vehicle begins to take an initially impeded edge as another vehicle is currently traversing the same

edge, the travel cost of the former (i.e., the vehicle that began taking the impeded edge at a later

time) will be taken to be the impeded travel cost.

The following assumptions are made: (i) the convoy and support vehicles may share vertices and

edges without conflict, (ii) the two vehicles start at the same time, (iii) the two vehicles communicate

at all times and information is shared in a negligible amount of time, and (iv) once the support

vehicle stops moving at a vertex it will remain at that vertex for the remainder of the journey.

37

Assumption (iv) will only be needed for the unyielding support vehicle variation of the ASPP that

is considered in this section. In the following section, assumption (iv) will be removed.

Let 𝑋𝑝𝑎 be a path from 𝑝 to 𝑎 ∈ 𝑉 for the convoy and 𝑋̄𝑞𝑏 from 𝑞 to 𝑏 ∈ 𝑉 for the support

vehicle. A vehicle’s path may also include waiting at one or more vertices. The two paths are

coupled by the vehicles’ interactions (i.e., servicing impeded edges) previously described. Note

the support vehicle is permitted to remain at 𝑞, which is equivalent to the support vehicle never

being deployed as the convoy travels to its destination. The accumulated cost of these two paths is

taken to be the sum of the time elapsed for the convoy to reach 𝑎 and the time elapsed for the support

vehicle to reach 𝑏, including costs incurred by waiting (noting the support vehicle waiting is said

to incur no additional cost out of mathematical convenience by assumption (iv)), while adhering to

the previously described travel cost rules. If the support vehicle never initially leaves 𝑞, the cost of

𝑋̄𝑞𝑞 is zero. The accumulated cost of the coupled paths is denoted by 𝐶(𝑋𝑝𝑎, 𝑋̄𝑞𝑏). The problem

considered is then to find two coupled paths𝑋𝑝𝑑 and 𝑋̄𝑞𝑣, where 𝑣 is any vertex in 𝑉 , that minimizes

𝐶(𝑋𝑝𝑑 , 𝑋̄𝑞𝑣).

2.6.2.2 Definitions and Algorithm

The principal idea behind the upcoming labeling algorithm is to use abstract objects called la-

bels (which represent paths for the two vehicles) to generate new labels (corresponding to valid ex-

tensions of the vehicles’ paths) and repeat this process until all possible paths have been exhausted.

We then reduce the number of labels (paths) to be explored through additional mechanisms (dom-

inance, filtering, and an 𝐴∗-like exploration procedure) to improve the computational performance

of the algorithm.

We first define an abstract object called a label to store relevant information on the decisions

made by both vehicles. It is important to note the label considers the decisions made, rather than

the state (i.e., position) of the vehicles.

Definition 2.6.1 (Label). Suppose the convoy and support vehicle have taken paths 𝑋𝑝𝑖 and 𝑋̄𝑞𝑗

to 𝑖 and 𝑗 in 𝐺 in times 𝑡𝑐𝑖 and 𝑡𝑠𝑗 , respectively, including waiting, while accumulating a total cost

𝐶𝑖𝑗 . For each edge 𝑒 that has been serviced by either the convoy or the support vehicle in their

38

respective paths, create a tuple (𝑒, 𝑠𝑒) where 𝑠𝑒 is the time at which edge 𝑒 was serviced. Let 𝑆𝑖𝑗 be

the collection of such tuples (𝑒, 𝑠𝑒), where 𝑒 ∈ 𝐾 . A label 𝜆𝑖𝑗 is then defined as

𝜆𝑖𝑗 = (𝑖, 𝑗, 𝑡𝑐𝑖 , 𝑡
𝑠
𝑗 , 𝐶𝑖𝑗 , 𝑆𝑖𝑗). (2.19)

The cost 𝐶𝑖𝑗 in Definition 2.6.1 is simply shorthand for 𝐶(𝑋𝑝𝑖, 𝑋̄𝑞𝑗) for ease of notation. For each

label 𝜆𝑖𝑗 , we define 𝐾𝑆(𝜆𝑖𝑗) = {𝑒 ∈ 𝑆𝑖𝑗} to be the set of serviced edges in 𝑆𝑖𝑗 and 𝐾̂(𝜆𝑖𝑗) =

𝐾 ⧵ 𝐾𝑆(𝜆𝑖𝑗) to be the set of impeded edges that have yet to be serviced by the convoy or support

vehicle after taking paths 𝑋𝑝𝑖 and 𝑋̄𝑞𝑗 , respectively.

We next introduce resource extension functions (REFs) [14] associated with each label. REFs

describe how a label 𝜆𝑖𝑗 is extended to create a new label 𝜆𝑙𝑚 given a valid action (a valid pair of

decisions by the convoy and support vehicle). Extending a label corresponds to feasible extensions

of the paths 𝑋𝑝𝑖 and 𝑋̄𝑞𝑗 from decisions involving edges (𝑖, 𝑙) and (𝑗, 𝑚), respectively. We allow for

𝑖 = 𝑙 or 𝑗 = 𝑚 to represent the corresponding vehicle’s position not changing, but we do not allow

these cases simultaneously.

Definition 2.6.2 (REFs). Suppose convoy and support vehicle paths 𝑋𝑝𝑖 and 𝑋̄𝑞𝑗 associated with

label 𝜆𝑖𝑗 are extended by edges 𝑒𝑐 = (𝑖, 𝑙) and 𝑒𝑠 = (𝑗, 𝑚), respectively, to create a new label 𝜆𝑙𝑚,

39

where we allow for 𝑖 = 𝑙 or 𝑗 = 𝑚 but not simultaneously. Then the REFs are defined as

𝑡𝑐𝑙 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑡𝑐𝑖 + 𝑇 𝑢
𝑒𝑐
, 𝑒𝑐 ∈ 𝐸 ⧵𝐾

𝑡𝑐𝑖 + min(𝑇 𝑖
𝑒𝑐
, 𝑇 𝑢

𝑒𝑐
+ max(0, 𝑠𝑒𝑐 − 𝑡𝑐𝑖)), 𝑒𝑐 ∈ 𝐾𝑆(𝜆𝑖𝑗)

𝑡𝑐𝑖 + 𝑇 𝑖
𝑒𝑐
, 𝑒𝑐 ∈ 𝐾̂(𝜆𝑖𝑗)

max(𝑡𝑐𝑖 , 𝑡
𝑠
𝑚), 𝑖 = 𝑙 ∧ 𝑗 ≠ 𝑚

(2.20)

𝑡𝑠𝑚 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑡𝑠𝑗 + 𝜏 𝑖𝑒𝑠 , 𝑒𝑠 ∈ 𝐾̂(𝜆𝑖𝑗)

𝑡𝑠𝑗 + 𝜏𝑢𝑒𝑠 , 𝑒𝑠 ∈ 𝐸 ⧵ 𝐾̂(𝜆𝑖𝑗)

max(𝑡𝑠𝑗 , 𝑡
𝑐
𝑙), 𝑗 = 𝑚 ∧ 𝑖 ≠ 𝑙

(2.21)

𝐶𝑙𝑚 =

⎧⎪⎨⎪⎩
𝐶𝑖𝑗 + (𝑡𝑐𝑙 − 𝑡𝑐𝑖) + (𝑡𝑠𝑚 − 𝑡𝑠𝑗), 𝑗 ≠ 𝑚

𝐶𝑖𝑗 + (𝑡𝑐𝑙 − 𝑡𝑐𝑖), 𝑗 = 𝑚
(2.22)

𝑆𝑙𝑚 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑆𝑖𝑗 , 𝑒𝑐, 𝑒𝑠 ∈ 𝐸 ⧵ 𝐾̂(𝜆𝑖𝑗)

𝑆𝑖𝑗 ∪ {(𝑒𝑐, 𝑡𝑐𝑙)}, 𝑒𝑐 ∈ 𝐾̂(𝜆𝑖𝑗) ∧ 𝑒𝑠 ∈ 𝐸 ⧵ 𝐾̂(𝜆𝑖𝑗)

𝑆𝑖𝑗 ∪ {(𝑒𝑠, 𝑡𝑠𝑚)}, 𝑒𝑐 ∈ 𝐸 ⧵ 𝐾̂(𝜆𝑖𝑗) ∧ 𝑒𝑠 ∈ 𝐾̂(𝜆𝑖𝑗)

𝑆𝑖𝑗 ∪ {(𝑒𝑐, 𝑡𝑐𝑙), (𝑒𝑠, 𝑡
𝑠
𝑚)}, 𝑒𝑐, 𝑒𝑠 ∈ 𝐾̂(𝜆𝑖𝑗)

(2.23)

The REFs in Definition 2.6.2 encode the travel cost rules outlined in Section 2.6.2.1. REF (2.20)

encodes how much time will elapse for the convoy when taking the path 𝑋𝑝𝑖 followed by edge (𝑖, 𝑙),

noting the case 𝑖 = 𝑙 is also captured in the REF. Similarly, REF (2.21) encodes how much time will

elapse for the support vehicle when taking the path 𝑋̄𝑞𝑗 followed by the edge (𝑗, 𝑚), noting the case

for 𝑗 = 𝑚 is also captured in the REF. It is important to note that while 𝑡𝑐𝑙 and 𝑡𝑠𝑚 represent the time

elapsed for the convoy and support vehicle, respectively, they need not be equal. This is a direct

consequence of the fact these REFs correspond to decisions made by the two vehicles. For example,

40

in the second case of (2.20), the time elapsed for the convoy when taking the edge (𝑖, 𝑙) will differ

based on whether the convoy has reached 𝑖 before the support vehicle has serviced edge (𝑖, 𝑙). This

is directly captured by the minimum function in (2.20). The final case in (2.20), which corresponds

to 𝑖 = 𝑙, appears to correspond to the convoy waiting at a vertex, but this is not accurate. Rather,

this final case for (2.20) represents two scenarios. In the scenario 𝑡𝑐𝑖 > 𝑡𝑠𝑚, the convoy effectively

does not yet make any decisions, as the clock associated with the support vehicle’s path is lagging

behind the convoy’s clock. Because of this, there may still be impeded edges that can be serviced by

the support vehicle by the time the convoy needs to make a decision in reality (i.e., when the clocks

match). In the scenario 𝑡𝑐𝑖 ≤ 𝑡𝑠𝑚, the convoy is truly waiting in the environment at 𝑖 until the support

vehicle has finished acting out its most recent decision corresponding to taking edge (𝑗, 𝑚). This

asynchronous aspect of the labels and their REFs allows for complex path structural constraints,

such as the interaction with impeded edges, to be represented by the labels while also allowing

for mathematical machinery to be put in place to reduce the search space necessary for finding an

optimal solution. The REFs (2.21) also exhibit this asynchronous behavior in the final case. REF

(2.22) updates the total accumulated cost of the two paths, with the second case corresponding to

only the convoy moving while the support vehicle pauses its decision-making at 𝑗 = 𝑚. We note the

support vehicle waiting at 𝑗 = 𝑚 does not incur additional cost. In this variation of the ASPP, the

support vehicle will never wait at a vertex and instead can only pause at a vertex if it has chosen to

terminate its journey. We can treat the support vehicle’s waiting time as incurring zero cost without

affecting the search for the optimal solution as a result. If a more general cost structure is required

for the ASPP, this complex cost structure would need to be encoded in (2.22) through modification

and/or additional cases. This will be discussed in the next section when considering the general

ASPP with a support vehicle capable of pausing at a vertex. REF (2.23) updates the impeded edges

that have been serviced and the times they were serviced.

In general, there are an infinite number of possible labels due to cycles and waiting. To combat

this, a dominance rule [14] is introduced to reduce the number of labels under consideration to a

finite number.

41

Definition 2.6.3 (Dominance Rule). Consider two labels 𝜆𝑖𝑗 and 𝜆′𝑖𝑗 . We say 𝜆′𝑖𝑗 dominates 𝜆𝑖𝑗 if

(D1) 𝑡′𝑐𝑖 ≤ 𝑡𝑐𝑖

(D2) 𝑡′𝑠𝑗 ≤ 𝑡𝑠𝑗

(D3) 𝐾𝑆(𝜆′𝑖𝑗) ⊇ 𝐾𝑆(𝜆𝑖𝑗)

(D4) 𝑠′𝑒 ≤ 𝑠𝑒, ∀𝑒 ∈ 𝐾𝑆(𝜆𝑖𝑗)

If we have equality for all the above conditions, then we consider 𝜆′𝑖𝑗 = 𝜆𝑖𝑗 and one label can be

discarded arbitrarily.

Condition (D1) and (D2) state both vehicles have reached the same pair of vertices in less time in

the paths of label 𝜆′𝑖𝑗 when compared to paths of 𝜆𝑖𝑗 . Since we have defined the total accumulated

cost of a pair of paths to be the sum of time elapsed for each vehicle, we do not require an additional

dominance condition for the cost as 𝐶 ′
𝑖𝑗 ≤ 𝐶𝑖𝑗 directly follows from (D1) and (D2) being satisfied.

If a more general cost structure is used, an additional dominance condition of 𝐶 ′
𝑖𝑗 ≤ 𝐶𝑖𝑗 will be

required. Condition (D3) states at least all the serviced edges in 𝜆𝑖𝑗 have also been serviced in 𝜆′𝑖𝑗 .

Condition (D4) states each serviced edge in 𝜆𝑖𝑗 has been serviced earlier or at the same time in 𝜆′𝑖𝑗 .

We say a label 𝜆𝑖𝑗 is non-dominated if there exists no other label that dominates it according to the

dominance rule given in Definition 2.6.3.

We first note the label corresponding to the optimal solution must necessarily be a non-domi-

nated label, as otherwise would imply another label (and hence another feasible solution) has been

found with lower cost. We now make use of the following theorem to significantly reduce the search

space required for finding the label corresponding to the optimal solution.

Theorem 2. The extensions of only the non-dominated labels need to be considered to obtain the

optimal solution.

Proof. Let 𝜆′𝑖𝑗 and 𝜆𝑖𝑗 be two distinct labels with 𝜆′𝑖𝑗 dominating 𝜆𝑖𝑗 . We need to show any feasible

extension of 𝜆𝑖𝑗 will be dominated by the same extension of 𝜆′𝑖𝑗 .

42

Both 𝜆′𝑖𝑗 and 𝜆𝑖𝑗 must have the same feasible extensions. Let the labels be extended by 𝑒𝑐 = (𝑖, 𝑙)

and 𝑒𝑠 = (𝑗, 𝑚) for the convoy and support vehicle, respectively, resulting in new labels 𝜆𝑙𝑚 and

𝜆′𝑙𝑚. We allow for 𝑖 = 𝑙 and 𝑗 = 𝑚, but not simultaneously. Using Definitions 2.6.2 and 2.6.3, we

observe the following:

• If 𝑖 ≠ 𝑙 and 𝑒𝑐 ∉ 𝐾𝑆(𝜆𝑖𝑗) ∪𝐾𝑆(𝜆′𝑖𝑗), then we have 𝑡′𝑐𝑙 ≤ 𝑡𝑐𝑙 .

• Suppose 𝑖 ≠ 𝑙 and 𝑒𝑐 ∈ 𝐾𝑆(𝜆𝑖𝑗) ∩𝐾𝑆(𝜆′𝑖𝑗). From 𝑠′𝑒𝑐 ≤ 𝑠𝑒𝑐 ,

𝑡′𝑐𝑖 + min(𝑇 𝑖
𝑒𝑐
, 𝑇 𝑢

𝑒𝑐
+ max(0, 𝑠′𝑒𝑐 − 𝑡′𝑐𝑖)) ≤ 𝑡𝑐𝑖 + min(𝑇 𝑖

𝑒𝑐
, 𝑇 𝑢

𝑒𝑐
+ max(0, 𝑠𝑒𝑐 − 𝑡𝑐𝑖)),

which implies 𝑡′𝑐𝑙 ≤ 𝑡𝑐𝑙 .

• Suppose 𝑖 ≠ 𝑙 and 𝑒𝑐 ∈ 𝐾𝑆(𝜆′𝑖𝑗) ⧵𝐾𝑆(𝜆𝑖𝑗). Then

𝑡′𝑐𝑖 + min(𝑇 𝑖
𝑒𝑐
, 𝑇 𝑢

𝑒𝑐
+ max(0, 𝑠′𝑒𝑐 − 𝑡′𝑐𝑖)) ≤ 𝑡𝑐𝑖 + 𝑇 𝑖

𝑒𝑐
,

which implies 𝑡′𝑐𝑙 ≤ 𝑡𝑐𝑙 .

• Suppose 𝑗 ≠ 𝑚. Since 𝐾𝑆(𝜆′𝑖𝑗) ⊇ 𝐾𝑆(𝜆𝑖𝑗) and 𝑡′𝑠𝑗 ≤ 𝑡𝑠𝑗 , from Definition 2.6.2 we must have

𝑡′𝑠𝑚 ≤ 𝑡𝑠𝑚.

• Suppose 𝑖 = 𝑙 and 𝑗 ≠ 𝑚. Then

max(𝑡′𝑐𝑖 , 𝑡
′𝑠
𝑚) ≤ max(𝑡𝑐𝑖 , 𝑡

𝑠
𝑚)

which implies 𝑡′𝑐𝑙 ≤ 𝑡𝑐𝑙 .

• Suppose 𝑗 = 𝑚 and 𝑖 ≠ 𝑙. Then

max(𝑡′𝑠𝑗 , 𝑡
′𝑐
𝑙) ≤ max(𝑡𝑠𝑗 , 𝑡

𝑐
𝑙),

which implies 𝑡′𝑠𝑚 ≤ 𝑡𝑠𝑚.

43

• The same extension is used so clearly 𝐾𝑆(𝜆′𝑖𝑗) ⊇ 𝐾𝑆(𝜆𝑖𝑗) implies 𝐾𝑆(𝜆′𝑙𝑚) ⊇ 𝐾𝑆(𝜆𝑙𝑚).

• Suppose 𝑒𝑐 ∈ 𝐾 .

– If 𝑒𝑐 ∉ 𝐾𝑆(𝜆𝑖𝑗) ∪𝐾𝑆(𝜆′𝑖𝑗), from 𝑡′𝑐𝑙 ≤ 𝑡𝑐𝑙 it follows that 𝑠′𝑒𝑐 ≤ 𝑠𝑒𝑐 .

– If 𝑒𝑐 ∈ 𝐾𝑆(𝜆′𝑖𝑗) ⧵𝐾𝑆(𝜆𝑖𝑗), then 𝑠′𝑒𝑐 ≤ 𝑡′𝑐𝑖 ≤ 𝑡′𝑐𝑙 ≤ 𝑡𝑐𝑙 and so 𝑠′𝑒𝑐 ≤ 𝑠𝑒𝑐 .

• Suppose 𝑒𝑠 ∈ 𝐾 .

– If 𝑒𝑠 ∉ 𝐾𝑆(𝜆𝑖𝑗) ∪𝐾𝑆(𝜆′𝑖𝑗), from 𝑡′𝑠𝑗 ≤ 𝑡𝑠𝑗 it follows that 𝑠′𝑒𝑠 ≤ 𝑠𝑒𝑠 .

– If 𝑒𝑠 ∈ 𝐾𝑆(𝜆′𝑖𝑗) ⧵𝐾𝑆(𝜆𝑖𝑗), then 𝑠′𝑒𝑠 ≤ 𝑡′𝑠𝑗 ≤ 𝑡′𝑠𝑚 ≤ 𝑡𝑠𝑚 and so 𝑠′𝑒𝑠 ≤ 𝑠𝑒𝑠 .

We see 𝜆′𝑙𝑚 will always dominate 𝜆𝑙𝑚. Since the optimal solution must be a non-dominated label,

we then need only consider non-dominated labels.

From Theorem 2, the general ASPP with an unyielding support can be solved by repeatedly

extending non-dominated labels (including the label corresponding to the initial configuration) to

generate new labels until there are no more unique non-dominated labels that can be generated. The

optimal solution will then be the non-dominated label among with the convoy at the destination

and with the least accumulated cost. This provides the framework for a basic labeling algorithm

to solve the general ASPP. However, this basic labeling algorithm will have poor computational

performance due to the number of non-dominated labels that need to be explored. We now introduce

additional mechanisms to significantly reduce the number of non-dominated labels that need to be

explored to find the optimal solution.

2.6.2.3 Filtering Through Knowledge of the Optimal Solution Structure

The domination rule in Definition 2.6.3 will remove dominated labels that can never lead to an

optimal solution. However, a label generated by extending a non-dominated label has the potential

to never lead to an optimal solution but not be immediately discarded by the dominance rule, as

another label dominating this label may not have been generated yet. We can introduce additional

44

filtering based on knowledge of the structure of the optimal solution to remove some of these unde-

sirable labels. We note if a different cost structure and/or set of assumptions are used, the optimal

solution structure may differ and hence so will the additional filtering mechanisms for the modified

problem.

We first make a few trivial observations for the optimal solution to the general ASPP with an

unyielding support:

(O1) The support vehicle will never begin to move again after pausing at a vertex.

(O2) The support vehicle, if deployed, will only terminate immediately after servicing an impeded

edge.

(O3) The convoy will only wait at an end of an impeded edge it uses later.

(O4) If the convoy is waiting to use an impeded edge, it will wait until the support vehicle has

serviced that edge.

(O5) The convoy will never wait at a vertex after the support vehicle has terminated its motion.

These observations are a direct consequence of the structure of the cost rules and the assumptions

listed in Section 2.6.2.1. These observations may not hold for more general cost structures and

variants of the ASPP involving differing constraints. These observations may be used to recognized

a label generated by extending a non-dominated label may be discarded, even if this label is a

non-dominated label. To do so, two Boolean variables (i.e., flags), denoted by 𝑆𝑉𝑡𝑒𝑟𝑚 and 𝛿, are

introduced. These Boolean variables are appended to the label tuple in Definition 2.6.1 and so a

label 𝜆𝑖𝑗 will be denoted by

𝜆𝑖𝑗 = (𝑖, 𝑗, 𝑡𝑐𝑖 , 𝑡
𝑠
𝑗 , 𝑆𝑖𝑗 , 𝑆𝑉𝑡𝑒𝑟𝑚, 𝛿) (2.24)

These additional Boolean variables are not a part of the dominance rule and do not affect the validity

of Theorem 2, as they will simply be used to remove additional (potentially non-dominated) labels

that cannot possibly lead to an optimal solution. The first Boolean variable 𝑆𝑉𝑡𝑒𝑟𝑚 denotes whether

the support vehicle has terminated. Observations (O1), (O2), and (O5) are captured by 𝑆𝑉𝑡𝑒𝑟𝑚.

45

For the initial configuration label, 𝑆𝑉𝑡𝑒𝑟𝑚 is set to false. When extending a label with 𝑆𝑉𝑡𝑒𝑟𝑚 set to

false, all feasible extensions are generated with 𝑆𝑉𝑡𝑒𝑟𝑚 set to false for each label resulting from these

extensions. If any of the newly generated extensions corresponds to the support vehicle servicing

an edge, generate a copy of that extension’s resulting label with 𝑆𝑉𝑡𝑒𝑟𝑚 set to true. This copy with

𝑆𝑉𝑡𝑒𝑟𝑚 set to true corresponds to observation (O2) and potentially avoids unnecessary extensions

of the support vehicle’s path when searching for the optimal solution. In a similar vein, a copy of

the initial configuration label with 𝑆𝑉𝑡𝑒𝑟𝑚 set to true is also created at the start of the algorithm to

capture the case where the support vehicle never deploys. When extending a label with 𝑆𝑉𝑡𝑒𝑟𝑚 set to

true, the support vehicle always remains at its current position and the convoy will always move to

a new position (i.e., we do not consider any extensions with both vehicles remaining at their current

position), and all resulting labels from these extensions will have 𝑆𝑉𝑡𝑒𝑟𝑚 set to true. This procedure

corresponds to observations (O1) and (O5). The second Boolean variable 𝛿 is used to capture the

interaction between the convoy and support vehicle in a way that eliminates redundant decisions

by the convoy that can never lead to an optimal solution and will correspond to observations (O3)

and (O4). The initial configuration label (including the copy for 𝑆𝑉𝑡𝑒𝑟𝑚 set to true) begins with 𝛿

set to false. When extending a label 𝜆𝑖𝑗 with 𝛿 set to false, if the convoy’s current position 𝑖 is not

incident with an impeded edge that has yet to be serviced, then all generated extensions will have

𝛿 set to false. Also, by observation (O3) we note we do not need to consider an extension with the

convoy remaining at its current position. If instead the convoy’s position 𝑖 is incident with at least

one impeded edge, then the extensions corresponding to the convoy remaining at 𝑖 will have 𝛿 set

to true. When extending a label with 𝛿 set to true, generate labels where the convoy takes an edge

that has been serviced (i.e., an edge 𝑒 ∈ 𝐾𝑆(𝜆𝑖𝑗)) and set 𝛿 to be false. In a sense, 𝛿 being set to

true represents the convoy "waiting" to make a decision when given the option to take an impeded

edge. However, due to the asynchronous nature of the clocks associated with the two vehicles in

each label, 𝛿 being set to true does not necessarily correspond to the convoy physically waiting at

𝑖. Rather, it represents a pause in the extension of the sequence of decisions associated with the

convoy.

46

2.6.2.4 Additional Filtering

In the basic labeling algorithm, non-dominated labels that have yet to be extended are collected

into a list 𝐿𝑜𝑝𝑒𝑛. A non-dominated label is then removed from 𝐿𝑜𝑝𝑒𝑛 and extended to produce new

labels. The non-dominated labels from these new labels are then added to 𝐿𝑜𝑝𝑒𝑛. This process is

then repeated until 𝐿𝑜𝑝𝑒𝑛 is empty and the non-dominated label with the convoy at 𝑑 and with the

least cost is the optimal solution. While this algorithm will find the optimal solution, the search

is in some sense a brute force approach as all non-dominated labels that have not been filtered are

extended until there are no more non-dominated labels to extend. This leads to many redundant

computations. The selection rule used to choose which labels from 𝐿𝑜𝑝𝑒𝑛 are to be extended can be

arbitrary in general, as the algorithm will always converge to the optimal solution irrespective of

the choice of selection rule. In permanent labeling algorithms [14], it is common to select the label

that was most recently added to 𝐿𝑜𝑝𝑒𝑛 (known as last-in first-out or LIFO) or find the label in 𝐿𝑜𝑝𝑒𝑛

with the least cost (known as best-first). The selection rule used can have a significant impact on

the termination time of the algorithm, as the labels present to dominate newly generated labels will

differ depending on the choice of selection rule.

The best-first selection rule can be used in conjunction with a simple check to significantly

reduce the number of labels to be extended by allowing the algorithm to terminate as soon as the

optimal solution’s label has been created. This approach is based on the early termination criterion

used in the 𝐴∗ algorithm [24] used to solve the shortest path problem for a single vehicle. For any

label 𝜆𝑖𝑗 , define the heuristic cost ℎ𝑖 to be a lower bound on the cost for the convoy to reach 𝑑 from

𝑖. In the presented implementation, ℎ𝑖 has been taken to be the cost of the least cost path from 𝑖

to 𝑑 while treating all impeded edges as unimpeded, i.e., the least cost path from 𝑖 to 𝑑 with edge

weights set to 𝑇 𝑢
𝑒 . We define the so-called 𝑓 -cost [24] for 𝜆𝑖𝑗 to be

𝑓 (𝜆𝑖𝑗) = 𝑡𝑐𝑖 + 𝑡𝑠𝑗 + ℎ𝑖 = 𝐶𝑖𝑗 + ℎ𝑖 (2.25)

That is, 𝑓 (𝜆𝑖𝑗) is a lower bound on the accumulated cost for the convoy to reach the destination

47

from the state corresponding to 𝜆𝑖𝑗 . Note that if the convoy is able to reach 𝑑 from 𝑖 without using

any initially impeded edges, the 𝑓 -cost of 𝜆𝑖𝑗 is exactly the accumulated cost of the solution for the

convoy and support vehicle with the support vehicle terminating at 𝑗. We now make use of this

𝑓 -cost to identify when the algorithm may be terminated early.

Lemma 2.6.1. If a label 𝜆𝑖𝑗 with the least f-cost is selected to be extended at every iteration of the

algorithm, then the first such label with 𝑖 = 𝑑 will correspond to the optimal solution.

Proof. From Definition 2.6.2, for any extension from 𝜆𝑖𝑗 to a new label 𝜆𝑙𝑚, we must necessarily

have 𝐶𝑖𝑗 ≤ 𝐶𝑙𝑚 by construction. From the definition of ℎ𝑖 (i.e., ℎ𝑖 corresponding to the shortest

unimpeded path from 𝑖 to 𝑑), we have

ℎ𝑖 ≤ ℎ𝑙 + 𝐶𝑙𝑚 − 𝐶𝑖𝑗

⇒ ℎ𝑖 + 𝐶𝑖𝑗 ≤ ℎ𝑙 + 𝐶𝑙𝑚

𝑓 (𝜆𝑖𝑗) ≤ 𝑓 (𝜆𝑙𝑚)

which implies the 𝑓 -cost will never decrease with label extensions. Suppose the least 𝑓 -cost label

is selected to be extended at every iteration of the algorithm. Let 𝜆𝑑𝑣 be the first label with the

convoy at the destination to be selected by this selection rule. Therefore, all other labels that have

yet to be extended must have an 𝑓 -cost greater than or equal to the 𝑓 -cost of 𝜆𝑑𝑣. Since the convoy

is at 𝑑 in 𝜆𝑑𝑣, the heuristic cost ℎ𝑑 associated with 𝜆𝑑𝑣 is zero and so the 𝑓 -cost is exactly equal to

𝐶𝑑𝑣, which is the total accumulated cost of the solution corresponding to 𝜆𝑑𝑣. Since 𝑓 -cost never

decreases with label extensions, there must not exist any other label that has yet to be generated

with a lower 𝑓 -cost (total cost 𝐶𝑑𝑣) and hence 𝜆𝑑𝑣 is optimal.

From Lemma 2.6.1, we may use a best-first selection rule where the label with least 𝑓 -cost is

selected for extension in each iteration of the algorithm. As soon as a label with the convoy’s

position at 𝑑 is selected for extension, the algorithm may terminated and this label may be returned

48

as the optimal solution. The heuristic cost ℎ𝑖 at each vertex 𝑖 ∈ 𝑉 can be computed before starting

the algorithm, as ℎ𝑖 only depends on the unimpeded travel costs 𝑇 𝑢
𝑒 .

We also make use of an upper bound to further reduce the number of labels to be considered. Let

𝑈𝐵 denote the value of an upper bound to the general ASPP. An initial value of 𝑈𝐵 is first found by

finding the least-cost path for the convoy from 𝑝 to 𝑑 assuming no help from the support vehicle (i.e.,

each unimpeded edge has weight 𝑇 𝑢
𝑒 and each impeded edge has weight 𝑇 𝑖

𝑒). We may pre-compute

the least-cost path for the convoy from each 𝑖 ∈ 𝑉 to 𝑑. For the presented implementation, this

was done using Dijkstra’s algorithm. Next, for the each label 𝜆𝑖𝑗 selected for extension, the pre-

computed least-cost path for the convoy from 𝑖 to 𝑑 is used to find a feasible solution. The cost of

resulting feasible solution is computed with the cost of each impeded edge 𝑒 in the pre-computed

path from 𝑖 to 𝑑 adjusted if it has been serviced (i.e., if 𝑒 ∈ 𝐾𝑆(𝜆𝑖𝑗). If the cost of the new feasible

solution is less than 𝑈𝐵, the upper bound is updated and the corresponding best known feasible

solution is stored. When a label is generated from the extension of a non-dominated label, before

checking for dominance, the label’s 𝑓 -cost is compared to 𝑈𝐵. If the label’s 𝑓 -cost exceeds the

upper bound, the generated label may be discarded without requiring a dominance check. We are

therefore able to discard many non-dominated labels that can never lead to an optimal solution that

would have otherwise required extension in the basic algorithm. Additionally, since the best-known

feasible solution is stored as the algorithm progresses, the algorithm may be terminated early by

a user and a feasible solution may be returned. Without this additional step, the algorithm only

produces a feasible solution when a label extension happens to have the convoy at 𝑑, which may

require a large amount of time depending on the instance.

2.6.2.5 Generalized Permanent Labeling Algorithm - A*

The generalized permanent labeling algorithm - 𝐴∗ is as follows. Create initial labels 𝜆1𝑝𝑞 =

(𝑝, 𝑞, 0, 0, 0, , 𝑓𝑎𝑙𝑠𝑒, 𝑓𝑎𝑙𝑠𝑒) and 𝜆2𝑝𝑞 = (𝑝, 𝑞, 0, 0, 0, , 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒). Initialize two lists 𝐿𝑜𝑝𝑒𝑛 and 𝐷

with 𝜆1𝑝𝑞 and 𝜆2𝑝𝑞 stored in these lists. 𝐿𝑜𝑝𝑒𝑛 represents the list of labels yet to be extended (also

called open labels) and 𝐷 represents the list of all non-dominated labels generated so far. The

following steps are then repeated until 𝐿𝑜𝑝𝑒𝑛 is empty. In each iteration, select the label 𝜆𝑖𝑗 with

49

the least 𝑓 -cost from 𝐿𝑜𝑝𝑒𝑛. For efficiency, 𝐿𝑜𝑝𝑒𝑛 is kept sorted by the 𝑓 -cost. If the selected label

𝜆𝑖𝑗 has 𝑖 = 𝑑, terminate the algorithm and return this label as the optimal solution (see Lemma

2.6.1). Otherwise, find a new feasible solution corresponding to 𝜆𝑖𝑗 and update the 𝑈𝐵 if needed

as described in Section 2.6.2.4. Extend the selected label 𝜆𝑖𝑗 according to the REFs of Definition

2.6.2, with certain labels avoided according to the filtering due to𝑆𝑉𝑡𝑒𝑟𝑚 and 𝛿 as outlined in Section

2.6.2.3. If the 𝑓 -cost of a generated label is less than 𝑈𝐵 and it is non-dominated when compared

to the labels in 𝐷, add this label to 𝐿𝑜𝑝𝑒𝑛 and 𝐷. When inserting a label into the sorted list 𝐿𝑜𝑝𝑒𝑛,

to break 𝑓 -cost ties we select the label with the highest accumulated cost (following the procedure

used in [25] for 𝐴∗). If a tie still persists, the most recently created label is used to break the tie. The

trajectories for the optimal solution can be found by iterating through the predecessors of the label.

This is accomplished in the coding implementation of the algorithm by simply storing for each

label a reference to the parent label used to generated that label during the extension step, with the

initial labels 𝜆1𝑝𝑞 and 𝜆2𝑝𝑞 having no such reference, indicating the end of the predecessor chain. For

any given graph 𝐺, the connectivity can be verified in polynomial time using breadth-first search

before running the algorithm to ensure there exists a feasible solution.

2.6.2.6 Complexity Analysis

We now find the complexity of 𝐺𝑃𝐿𝐴∗. Define

𝐷 = 𝑈𝐵 − 𝐿𝐵 (2.26)

where 𝑈𝐵 is the cost of the least-cost path for the convoy from 𝑝 to 𝑑 without deploying the support

vehicle and 𝐿𝐵 is the cost of the least-cost path from 𝑝 to 𝑑 while treating all impeded edges

as unimpeded (i.e., each edge has weight 𝑇 𝑢
𝑒). By construction, 𝑈𝐵 and 𝐿𝐵 do not depend on

the support vehicle. Note that 𝐷 represents the maximum additional cost the support vehicle can

accumulate before the combined cost of both vehicles will always exceed the computed upper bound

for any convoy path from 𝑝 to 𝑑. Therefore, 𝐷 can be used to find a bound on the number of labels

50

that need to be explored to find the optimal solution. Define

𝑘1 =
⌈
𝑈𝐵
𝑇𝑚𝑖𝑛

⌉
(2.27)

and

𝑘2 =
⌈

𝐷
𝜏𝑚𝑖𝑛

⌉
(2.28)

where 𝑇𝑚𝑖𝑛 = min{𝑇 𝑢
𝑒 | 𝑒 ∈ 𝐸} and 𝜏𝑚𝑖𝑛 = min{𝜏𝑢𝑒 | 𝑒 ∈ 𝐸}, and ⌈⋅⌉ denotes the ceil function.

Parameter 𝑘1 is the maximum number of edges the convoy can take before exceeding the computed

upper bound on its own. Similarly, parameter 𝑘2 is the maximum number of edges the support

vehicle can take before the convoy and support vehicle together exceed the computed upper bound.

For any vertex, the convoy has at most 𝑛 − 1 neighboring vertices it can move to. Addition-

ally, the convoy is able to take at most 𝑘1 edges before exceeding the computed upper bound by

construction. Therefore, the number of paths the convoy can take is upper bounded by

1 + (𝑛 − 1) + (𝑛 − 1)2 +…+ (𝑛 − 1)𝑘1 = (𝑛 − 1)𝑘1+1 − 1
𝑛 − 2

(2.29)

In the construction of 𝐺𝑃𝐿𝐴∗, the convoy does not need to consider entering a "waiting" state (i.e.,

𝛿 set to true) if the support vehicle has terminated its journey. As a result, the convoy can only enter

a "waiting" state at most 𝑘2 times in the algorithm for each convoy path. Therefore, an upper bound

on the number of labels with 𝛿 set to true for any convoy path is 𝑘1𝑘2. Since this bound applies to all

convoy paths, an upper bound on the number of sequences of decisions (i.e., moves and "waiting"

states) for the convoy is found to be

(𝑘1𝑘2 + 1)
[
(𝑛 − 1)𝑘1+1 − 1

]
𝑛 − 2

(2.30)

For any vertex, the support vehicle has at most 𝑛 − 1 neighboring vertices it can move to and

the support vehicle is allotted at most 𝑘2 moves. Additionally, the support vehicle is permitted to

terminate at any vertex and hence the support vehicle has at most 𝑛 options at each vertex. An

51

upper bound on the number of sequences of decisions the support vehicle can make is then 𝑛𝑘2 .

The support vehicle’s decisions are coupled with the convoy’s decisions and hence an upper bound

on the number of labels (representing sequences of decisions for the two vehicles) is found to be

(𝑘1𝑘2 + 1)
[
(𝑛 − 1)𝑘1+1 − 1

]
𝑛𝑘2

𝑛 − 2
(2.31)

These labels are effectively vertices of a higher-dimensional graph, which 𝐺𝑃𝐿𝐴∗ effectively ex-

plores using 𝐴∗. Therefore, the complexity of the algorithm is 𝒪((𝑘1𝑘2)2𝑛2(𝑘1+𝑘2), which is pseudo-

polynomial [26]. From (2.31), the number of non-dominated labels to be explored is finite and so

from Lemma 2.6.1 we can conclude 𝐺𝑃𝐿𝐴∗ will terminate with the optimal solution in finite time.

We see 𝑘1 and 𝑘2 will have a direct impact on the overall complexity of 𝐺𝑃𝐿𝐴∗. This is to

be expected, as 𝑘1 and 𝑘2 are measures of the number of allotted moves for both vehicles. As

the number of allotted moves for both vehicles increses, the complexity of the algorithm begins to

explode. It should be noted that 𝑘1 and 𝑘2 can take rather large values depending on the instance

considered. This is especially true for graphs where the least-cost path for the convoy from 𝑝 to 𝑑

without deploying the support vehicle is long and involves many initially impeded edges (i.e., 𝑈𝐵

is large and 𝐿𝐵 is relatively small in comparison).

2.6.2.7 Computational Results

𝐺𝑃𝐿𝐴∗ was implemented in Python 3.6 on an MSI laptop (8 core Intel i7-7700HQ processor

@ 2.80 GHz with 16 GB RAM). For the analysis, a grid graph (see Figure 2.4) was used as grid

graphs are typically used to represent a real-world environment, such as a warehouse, and grid

graphs are easier to reproduce for verification. For all instances, the origin and destination of the

convoy, 𝑝 and 𝑑, were chosen to be at diagonally opposite ends of the grid to avoid trivial cases.

Impeded edges can be chosen randomly or strategically so that the convoy has to traverse through

at least one impeded edge to reach the destination in the optimal solution. This strategic selection

can be achieved by choosing the impeded edges such that they make a cut between 𝑝 and 𝑑. A cut

between 𝑝 and 𝑑 for an instance is defined as the set of edges {(𝑎, 𝑏) ∈ 𝐸 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} for any

52

Y-axis

0

1

2

3

4

2 40 6 8

X-axis

d

p

q
Convoy Path Service Vehicle Path

Wait = 4

Figure 2.4: Example grid graph instance.

two disjoint sets 𝐴,𝐵 ⊂ 𝑉 such that 𝐴 ∪ 𝐵 = 𝑉 , 𝑝 ∈ 𝐴, and 𝑞 ∈ 𝐵. To illustrate the effectiveness

of 𝐺𝑃𝐿𝐴∗, it is compared with centralized 𝐴∗ [27], an exact algorithm for cooperative multi-agent

path planning problems modeled using MA-STRIPS [28].

The remainder of this section is as follows. First, centralized 𝐴∗ is compared with 𝐺𝑃𝐿𝐴∗.

Next, 𝐺𝑃𝐿𝐴∗ is analyzed by implementing using 𝐺𝑃𝐿𝐴∗ for three classes of instances of the

general ASPP. In Class 1, the computational limits of 𝐺𝑃𝐿𝐴∗ as the graph size and number of

impeded edges increases is examined. In Class 2, the significance of unavoidable impeded edges

on the optimal solution cost is studied. Finally, in Class 3 the instances were designed to understand

the impact of the support vehicle’s starting position on the optimal solution cost.

2.6.2.7.1 Comparison Between GPLA* and Centralized A* To compare 𝐺𝑃𝐿𝐴∗ and central-

ized 𝐴∗, instances with varied grid sizes and cuts were created. Table 2.7 shows the results for these

instances. The starting position for the support vehicle was chosen randomly for each instance. For

the convoy, the unimpeded travel cost, 𝑇 𝑢
𝑒 , was randomly chosen from the range [10, 15] for all

edges and the impeded travel cost, 𝑇 𝑖
𝑒 , was randomly chosen from the range [40, 50] for the im-

peded edges. For the support vehicle, the unimpeded travel cost, 𝜏𝑢𝑒 , was set to be 1 for all edges

and the impeded travel cost, 𝜏𝑢𝑒 , was randomly chosen from the range [2, 6]. For unimpeded edges,

we set 𝑇 𝑢
𝑒 = 𝑇 𝑖

𝑒 and 𝜏 𝑖𝑒 = 𝜏𝑢𝑒 . This cost structure was chosen to encourage collaboration between the

53

vehicles while keeping the decision-making non-trivial.

The results in Table 2.7 highlight the effectiveness of 𝐺𝑃𝐿𝐴∗ over the centralized 𝐴∗ method.

Each row represents the averages over 50 randomly generated instances using the previously de-

scribed structure. The columns labeled 𝑇𝐺𝑃𝐿𝐴∗ and 𝑇𝐴∗ represent the average computational times

for 𝐺𝑃𝐿𝐴∗ and centralized 𝐴∗
𝑐 , respectively. The columns labeled 𝑂𝐺𝑃𝐿𝐴∗ and 𝑂𝐴∗

𝑐
shows the

average number of extended states for both algorithms. From Table 2.7, it can be seen 𝐺𝑃𝐿𝐴∗

outperforms centralized 𝐴∗ both in the computational time needed to find an optimal solution and

in the number of states that needed to be explored to do so. The key difference between these two

algorithms lies in the extension step. Centralized 𝐴∗ only considers a single agent’s action for each

extension step. Conversely, 𝐺𝑃𝐿𝐴∗, using the REFs presented in Definition 2.6.2, considers the

actions of both agents simultaneously, resulting in fewer label extensions required. This in combi-

nation with the additional filtering, domination checks, and avoiding generating redundant states,

all leads to better performance.

Table 2.7: Computational time comparison: 𝐺𝑃𝐿𝐴∗ vs centralized 𝐴∗

Grid-Size Cuts 𝑇𝐺𝑃𝐿𝐴∗ 𝑇𝐴∗
𝑐

𝑂𝐺𝑃𝐿𝐴∗ 𝑂𝐴∗
𝑐

6 × 6 2 0.05 s 0.59 s 914 2300
8 × 8 2 0.60 s 3.52 s 6008 15768
10 × 10 2 2.45 s 22.9 s 15723 46404
3 × 15 2 0.10 s 0.42 s 1623 4738
3 × 15 3 1.80 s 42.2 s 7787 28351
3 × 15 4 7.96 s 149 s 16972 66160

2.6.2.7.2 Class 1 Instances To test the computational limits of 𝐺𝑃𝐿𝐴∗, we generated instances

from 6 × 6 to 10 × 10 grid sizes. For each instance, the impeded edges were chosen randomly and

the same cost structure as in Section 2.6.2.7.1 was used. The fraction of impeded edges is denoted

54

by |𝐾|∕|𝐸|. For each grid size, the fraction of impeded edges were varied to be 0.1, 0.2, 0.3, 0.4,

and 0.5. We generated 50 random instances for each grid size and fraction of impeded edges. The

starting position for the support vehicle was chosen randomly for each instance. An instance is said

to be successful if it terminated with the optimal solution within 900 seconds. The success rate,

𝛾 , is defined as the fraction of all successful instances over the total number of instances. For a

majority of the instances with |𝐾|∕|𝐸| = 0.1 and 0.2, we observed that the impeded edges did not

form a cut and so the convoy had at least one unimpeded path from 𝑝 to 𝑑 that was found to be

optimal. Therefore, we do not include those results in the discussion.

The results for Class 1 are shown in Table 2.8. In Table 2.8, each entry in the time columns

represents the average computation time of successful instances along with the standard deviation

in parentheses. The success rate decreases with increasing grid size and increasing fraction of

impeded edges. The average computation time and the standard deviation increase with increasing

grid size and fraction of impeded edges. For the cases with a relatively low success rate (𝛾 < 0.5),

the average computation time may not follow the same trend as the samples are skewed. From this

set of instances, we see the computation time is significantly affected by the number of impeded

edges. This is to be expected, as 𝐺𝑃𝐿𝐴∗ must produce additional labels whenever a label is such

that the convoy’s position is an end of an impeded edge. Similarly, an additional label is also

generated whenever an extension is such that the support vehicle services an impeded edge. As

the number of impeded edges increases, the number of additional labels generated will begin to

explode. The upper bound cost filter introduced for 𝐺𝑃𝐿𝐴∗ significantly reduces the number of

redundant labels generated. However, as the grid size increases, the upper bound becomes less

tight and so the algorithm begins to fail to discard redundant labels early on. This behavior can be

seen by noticing as the fraction of impeded edges increases for a fixed grid size, the computation

time begins to grow at an exponential rate. Conversely, for a fixed fraction of impeded edges, the

computation time grows more slowly as the grid size increases.

2.6.2.7.3 Class 2 Instances For this set of instances, we wish to determine how the presence

of unavoidable impeded edges affects the optimal solution cost. To do this, we used a fixed grid

55

Table 2.8: Class 1 Results

|𝐾|∕|𝐸| = 0.3 |𝐾|∕|𝐸| = 0.4 |𝐾|∕|𝐸| = 0.5
Grid Size time (sec.)* 𝛾 time (sec.)* 𝛾 time (sec.)* 𝛾

6×6 0.1± 0.2 1.00 5.6 ± 21 1.00 27 ± 96 0.96
7×7 2.3± 11 1.00 39 ± 142 0.94 93 ± 180 0.66
8×8 10 ± 48 0.98 55 ± 146 0.84 100 ± 184 0.36
9×9 39 ± 96 0.98 72 ± 147 0.68 128 ± 255 0.16

10×10 51 ± 154 0.88 112 ± 223 0.48 127 ± 132 0.12
* time indicates the average computation time ± standard deviation.

size of 3 × 15 with the same cost structure defined in Section 2.6.2.7.1 for each instance. We then

generated cuts to introduce unavoidable impeded edges for the convoy. The narrow grid structure

was chosen as it is easier to produce cuts with fewer edges, which keeps the computational time

reasonable as we increase the number of cuts. The support vehicle’s starting position was chosen

randomly for each instance. The number of cuts was varied from 1 to 5. We generated 50 random

instances for each cut size.

The computational results for this set of instances is shown in Table 2.9. Each row in Table

2.9 represents an average value over the 50 instances for a set number of cuts. Column |𝐾|∕|𝐸|
indicates the fraction of impeded edges. An upper bound, 𝑈𝐵, was computed by having the convoy

take the shortest path from 𝑝 to 𝑑 without any assistance from the support vehicle. The gap between

the cost of the optimal solution to the ASPP and 𝑈𝐵 gives an indicator of the benefit of deploying

the support vehicle. Similarly, a lower bound, 𝐿𝐵, was computed by treating all impeded edges as

unimpeded and finding the shortst path for the convoy from 𝑝 to 𝑑 only using the unimpeded cost

for all edges. Columns 𝑂𝑃𝑇 ∕𝑈𝐵 and 𝑂𝑃𝑇 ∕𝐿𝐵 represents the ratio of the optimal cost, 𝑂𝑃𝑇 ,

against the upper and lower bound costs, respectively. We see as the number of cuts increases,

the 𝑂𝑃𝑇 ∕𝑈𝐵 ratio decreases. This shows the effectiveness/benefit of the support vehicle in an

impeded environment, especially as the number of unavoidable impeded edges increases. Column

𝜎(𝑂𝑃𝑇) shows the standard deviation of the optimal cost. The increasing trend of 𝜎(𝑂𝑃𝑇) indi-

56

cates the optimal solution cost is sensitive to the number of unavoidable impeded edges.

Table 2.9: Class 2 Results

Cuts |𝐾|∕|𝐸| 𝑂𝑃𝑇 𝑂𝑃𝑇 ∕𝑈𝐵 𝑂𝑃𝑇 ∕𝐿𝐵 𝜎(𝑂𝑃𝑇)

1 0.05 191 0.89 1.05 6.19
2 0.10 196 0.82 1.08 6.48
3 0.14 201 0.77 1.10 6.94
4 0.18 205 0.71 1.12 6.90
5 0.22 207 0.68 1.14 7.56

2.6.2.7.4 Class 3 Instances For this set of instances, we examine the impact of the starting posi-

tion of the support vehicle on the optimal solution. For each instance, we again use a 3×15 grid, but

we impose a fixed cost structure for all instances. All edges were assigned costs 𝑇 𝑢
𝑒 = 10 and 𝜏𝑢𝑒 = 1

and the impeded edges were all assigned costs 𝑇 𝑖
𝑒 = 40 and 𝜏 𝑖𝑒 = 6. The convoy’s starting position

and destination were fixed at diagonally opposite ends with positions (0, 0) and (14, 2) (see Figure

2.5). This cost structure and choice of positions were chosen to encourage collaboration between

the convoy and the support vehicle. We generated 50 different instances by randomly generating

3 cuts for each instance. For each instance, we computed the optimal solution cost for each of the

45 possible starting positions for the support vehicle. We then computed the average optimal cost

across all 50 instances for each of the 45 support vehicle starting positions.

Figure 2.5 shows the average cost across 50 instances for each starting position in the fixed

grid. The convoy starting position and destination are marked at (0, 0) and (14, 2) in Figure 2.5.

Gaussian interpolation was used to generate a continuous map. We observe that the minimum and

maximum average costs are achieved at vertex (3, 1) and (14, 0), respectively. Figure 2.5 shows

the starting position of the support vehicle will have a noticeable impact on the optimal solution.

The magnitude of the impact will depend on the numerical values of the costs for the edges. We

57

Figure 2.5: Average cost map as a function of the starting position of the support vehicle.

also note the best starting position for the support vehicle in this set of instances does not coincide

with the starting position of the convoy. This is to be expected. If the support vehicle starts some

distance away from the convoy, it may be able to attend to more significant impeded edges early on

before the convoy is able to reach them.

2.6.3 Generalized ASPP

2.6.3.1 Problem Statement

We now consider the generalized ASPP with a support vehicle that is capable of waiting at a

vertex for any duration of time. All other notation and definitions from Section 2.6.2.1 introduced

for the unyielding support variation will apply. As before, we will assume (i) the convoy and support

vehicles may share vertices and edges without conflict, (ii) the two vehicles start at the same time,

and (iii) the two vehicles communicate at all times and information is shared in a negligible amount

of time. Unlike in the unyielding support variation, we will assign a cost for the support vehicle

waiting at a vertex. For simplicity, the waiting cost will be the time elapsed. A more complex cost

structure can be considered and the following REFs may be modified accordingly.

58

2.6.3.2 Extending Previous Results

This variation of the generalized ASPP can be solved in a manner similar to the unyielding

support variation. The REFs in Definition 2.6.2 would need to be modified by adjusting how the

support vehicle’s time, 𝑡𝑠𝑚, changes by considering the case where the support vehicle waits for the

convoy to service an edge. In doing so, the support vehicle’s time update will mirror the convoy’s

time update in Definition 2.6.2. By modifying the REFs Definition 2.6.2, all possible feasible

solutions to the generalized ASPP can be generated. Afterward, an equivalent result to Theorem 2

can be shown to reduce the number of labels that need to be considered to find the optimal solution

to the ASPP.

As of writing this dissertation, results for this variation of the generalized ASPP are not yet

available and so discussion on this variation is limited in this dissertation to avoid being uninten-

tionally misleading. It is important to note the additional label filtering techniques shown in Section

2.6.2.3 and Section 2.6.2.4 do not all immediately apply to this variation of the generalized ASPP.

For example, the labeling algorithm presented for the unyielding support vehicle variation does not

permit a label with the support vehicle waiting at a vertex to be extended in a manner that results

in the support vehicle moving to a new vertex (i.e., once the support vehicle pauses, it remains at

that vertex for the remainder of the journey).

59

3. GLOBAL OPTIMIZATION ALGORITHM FOR MIXED-INTEGER NONLINEAR

PROGRAMS WITH TRIGONOMETRIC FUNCTIONS

3.1 Introduction

Optimization problems in many applications such as chemical process networks [29, 30, 31, 32],

energy systems [33], and wastewater treatment [34] to name a few, are traditionally modeled as

Mixed Integer Nonlinear Programs (MINLPs). MINLPs are mathematical programs that include

both continuous and discrete decision variables and the objective function and/or the constraints

may be nonlinear and possibly nonconvex in general. Algorithms to solve this class of optimization

problems to global optimality has garnered extensive attention from both the academia and the

industry and has resulted in the development of both open-source (Couenne [12] and SCIP [35]) and

commercial solvers (BARON [36], LINDOGlobal [11] and ANTIGONE [37]) for the same. Each

of these solvers are specialised and solve a subset of factorable MINLPs [38] where nonlinearities

arise due to a certain class of functions such as multilinear, logarithmic, exponential, etc. Since the

focus of this article is on MINLPs with trigonometric functions, we remark that among all these

global optimization solvers, to the best of our knowledge, only Couenne and LINDOGLOBAL

implement global optimization algorithms that are equipped to solve MINLPs with trigonometric

terms. The method presented in this chapter differs from the methods used by these solvers.

All algorithmic approaches to solving MINLPs to global optimality contain two main features:

convex relaxations and search. For instance, any of the aforementioned solvers for MINLPs first

isolate each non-convex term in the problem and construct convex over- and under-estimators for

these terms. Doing so for every non-convex term in the MINLP yields a convex relaxation of the

MINLP which in turn is solved to optimality to provide a bound to the optimal objective value of the

MINLP. This process is typically combined with a standard search procedure such as spatial branch-

and-bound (sBB) [39, 40] to explore the full space of feasible solutions to the MINLP. Furthermore,

at each node of the sBB tree, a local solve or heuristics are applied to keep generating feasible

60

solutions to the MINLPs and to keep track of the optimality gap. Mathematical properties of sBB

such as consistency and exhaustiveness [39, 41] in turn provide a guarantee of convergence of the

algorithm to global optimality. Each solver differs in how the convex relaxations are constructed,

the strength of the respective convex relaxations, and the support for the different types of non-

convex terms it provides, resulting in disparate computational performance for the same MINLP.

More recently, global optimization algorithms for MINLPs that rely on solving a Mixed Inte-

ger Linear Program (MILP) at each iteration have gained considerable interest [42, 43, 44, 45, 46].

The main motivation for developing MILP-based algorithms for MINLPs has been the meteoric im-

provement in the speed of off-the-shelf MILP solvers [47]. While the sBB-based algorithms rely on

constructing and solving convex relaxations of non-convex structures, MILP-based algorithms rely

on constructing and solving piecewise convex or polyhedral relaxations of non-convex structures

[48]. The search procedure for MILP-based methods are domain partitioning schemes which parti-

tion the domains of the variables involved in the non-convex terms [46]. Similar to the sBB search

procedure, the domain partitioning schemes require the mathematical properties of exhaustiveness

and consistency to ensure convergence. It has been shown in recent work [46, 49] that the MILP-

based methods perform comparably with sBB-based methods and sometimes even outperform the

sBB counterpart for MINLPs with multilinear and quadratic functions. In this chapter, we develop

piecewise polyhedral relaxations for non-convexities arising from trigonometric terms and embed

these relaxations in an MILP-based algorithmic framework for global optimization of MINLPs. To

the best of our knowledge, this is the first work to develop a MILP-based global optimization algo-

rithm for MINLPs with trigonometric functions. This framework can be implemented into existing

MINLP solvers to handle trigonometric terms which originally could not be considered. Addition-

ally, the presented framework can be extended to factorable MINLPs with differentiable, periodic

terms, with trigonometric terms falling into a subset of this class of MINLPs.

This chapter is divided into five major parts: (i) development of polyhedral and piecewise poly-

hedral relaxations for univariate trigonometric functions, (ii) integration of these relaxations into

an MILP-based algorithmic framework for global optimization of MINLPs, (iii) exploration of dif-

61

ferent adaptive partitioning schemes for variable domain partitioning, (iv) introduction of a refor-

mulation for periodic functions with bounded inputs to reduce the overall search space of the MILP

relaxations, and (v) illustration of the effectiveness of the overall algorithm to solve a MINLP that

models a path planning problem for a single fixed-wing vehicle.

3.1.1 Problem Statement

We consider the problem of finding the globally optimal solution∗ of an MINLP composed of

linear, trigonometric, and bilinear terms that has been factored into the form

() minimize 𝑐𝑇𝑥 + 𝑑𝑇
1 𝑦 + 𝑑𝑇

2 𝑧 (3.1a)

subject to 𝐴1𝑥 + 𝐴2𝑦 + 𝐴3𝑧 ≤ 0 (3.1b)

𝑦𝑖 = 𝑓𝑖(𝑥), 𝑖 = 1,… , 𝑛𝑡 (3.1c)

𝑧𝑗 = 𝑔𝑗(𝑥, 𝑦), 𝑗 = 1,… , 𝑛𝑏 (3.1d)

𝑥 ∈ 𝑋 ⊆ ℤ𝑛𝑖 ×ℝ𝑛−𝑛𝑖 (3.1e)

In (3.1), the vector 𝑥 consists of continuous and integer-valued variables and represents the variables

of the original MINLP. The vectors 𝑐, 𝑑1, and 𝑑2 and the matrices 𝐴1, 𝐴2, and 𝐴3 are of appropriate

size and are the result of the factoring procedure used to convert the original MINLP into the form

of (3.1). The functions 𝑓𝑖∶ 𝐼𝑖 ⊂ ℝ ↦ ℝ for 𝑖 = 1,… 𝑛𝑡, are univariate, trigonometric functions

that are differentiable and bounded over a closed interval 𝐼𝑖, where 𝑛𝑡 is the number of unique

trigonometric terms after factoring. The functions 𝑔𝑗 ∶ 𝑅𝑗 ⊂ ℝ2 ↦ ℝ for 𝑗 = 1,… , 𝑛𝑏 are bilinear

terms which may consist of the original variables 𝑥 for the MINLP and/or auxiliary variables 𝑦 that

have been added after factoring. The functions 𝑔𝑗 are each defined over a closed rectangle 𝑅𝑗 and

𝑛𝑏 represents the number of unique bilinear terms after factoring. It is assumed the feasible space

of (3.1) is non-empty. Note that multilinear terms may also be considered by recursively defining

bilinear variables. In doing so, 𝑔𝑗 would also be a function of the introduced 𝑧 variables.

∗Global optimality is defined numerically by a specified tolerance, 𝜖.

62

The proposed approach to finding the globally optimal solution to  is by first introducing

MILP relaxations for the trigonometric terms (3.1c) and the bilinear terms (3.1d). For the univariate

trigonometric functions 𝑓𝑖 with domain 𝐼𝑖, we partition 𝐼𝑖 using information of the convexity of 𝑓𝑖

over sub-intervals of 𝐼𝑖. An MILP relaxation of each 𝑓𝑖 is then constructed using its corresponding

partition where the MILP relaxation is the disjunctive union of triangles containing 𝑓𝑖. For the

bilinear terms 𝑔𝑗 with domain 𝑅𝑗 , we partition 𝑅𝑗 by dividing the domain of one variable and

leaving the second variable’s domain untouched. An MILP relaxation of each 𝑔𝑗 is then constructed

using its corresponding partition where the MILP relaxation is the disjunctive union of tetrahedrons

containing 𝑔𝑗 . All the relaxations are formulated using a so-called “incremental formulation” [50].

Once all trigonometric and bilinear terms have been relaxed, the resulting MILP is solved to find a

lower bound. This lower bound is successively tightened by refining some or all of the partitions

used to construct the MILP relaxations of the trigonometric and bilinear terms. This process is

repeated until the gap is sufficiently small. It is assumed a method exists for determining an upper

bound given a lower bound. If no such method exists, a standard local nonlinear programming

(NLP) solver can be used to find a feasible solution and hence, an upper bound to the optimal

objective value. This algorithm can be integrated into existing solvers to handle a larger class of

MINLPs than those considered in this paper.

3.1.2 Structure of Chapter

The remainder of this chapter is organized as follows. Section 3.2 presents a simplified flowchart

of the proposed algorithm. This overview is meant to serve as a guide for the reader. Section 3.3

presents preliminary definitions which will be used throughout the remainder of the chapter. Sec-

tion 3.4 presents the MILP relaxations for trigonometric and bilinear terms. Section 3.5 presents

an adaptive partition refinement scheme that will be used to successively tighten the MILP relax-

ation until global optimality is reached. Section 3.6 presents a procedure for representing a periodic

function with a bounded input using an alternative, equivalent formulation that reduces the over-

all search space required of a MILP relaxation with such a function in its constraints. Section 3.7

presents a motivating example in the form of the path planning of a vehicle moving in the plane

63

through a specified sequence of points subject to kinematic constraints. Section 3.8 presents com-

putational results.

3.1.3 Relevance to the Assisted Shortest Path Problem

Before continuing, it should be noted the work presented in this chapter may be directly related

to the ASPP by noting the problem of determining appropriate edge weights for the graph chosen

by a designer for the ASPP can be posed as a MINLP of the kind considered in this chapter. Despite

this, the majority of this chapter is presented as independent material to highlight the effectiveness

of the proposed algorithm for a larger class of problems. The example problem shown in Section

3.7 directly relates to the problem of determining appropriate edge weights for the ASPP.

3.2 Initial Overview of the Algorithm

A simplified flowchart of the algorithm is shown in Figure 3.1. The algorithm first takes an

MINLP composed of linear, trigonometric, and bilinear terms in the factored form (3.1). An initial

partition is created for each trigonometric and bilinear term in the factored MINLP. The procedure

for constructing these initial partitions is the subject of Sections 3.3, 3.4, and 3.5. Using these initial

partitions, an MILP relaxation for each trigonometric and bilinear term in the factored MINLP is

constructed. The procedure for constructing MILP relaxations of trigonometric and bilinear terms

given a set of partitions is the subject of Section 3.4. The MILP relaxation is then solved using

a standard MILP solver (such as CPLEX [51] or Gurobi [23]) to obtain a lower bound on the

original MINLP’s optimal solution. It is assumed a method is available to find a feasible solution

to the MINLP. This method is then used to find a feasible solution, the best known upper bound is

updated, and the resulting relative gap is computed. If the gap is sufficiently small (using a user-

specified gap tolerance 𝜀), the algorithm terminates. If the gap is too large, some or all partitions

are selected for refinement to tighten the relaxation. The procedure used for selecting partitions for

further refinement is referred to as a refinement strategy. Refinement strategies are the subject of

Section 3.5.3. Each of the selected partitions are then refined. The procedure used for refining a

given partition is referred to as a refinement scheme. Refinement schemes are the subject of Section

64

3.5.2. Once each of the selected partitions are further refined, a new, tighter MILP relaxation

is constructed using these partitions. The tighter MILP relaxation is solved and this process is

repeated until the gap is less than 𝜀.

3.3 Preliminaries

Terminology that will be used throughout the remainder of the chapter is presented in this

section. The terminology used closely follows the work of [48].

Definition 3.3.1. Given a closed interval [𝑙, 𝑢] ⊂ ℝ, a partition 𝑝 of [𝑙, 𝑢] is an ordered sequence

of distinct real numbers (𝑥0, 𝑥1,… , 𝑥𝑚) such that 𝑙 = 𝑥0 < 𝑥1 < … < 𝑥𝑚 = 𝑢. We denote the set

of partition points of 𝑝 by (𝑝) = {𝑥0, 𝑥1,… , 𝑥𝑚}.

Definition 3.3.2. Given a nonlinear, bounded, and differentiable function

𝑓 ∶ [𝑙, 𝑢] ↦ ℝ, we say 𝑏 ∈ [𝑙, 𝑢] is a break point of 𝑓 if at 𝑏 the function changes from being convex

to concave or vice-versa.

Definition 3.3.3. Given 𝑓 ∶ [𝑙, 𝑢] ↦ ℝ, we say a partition 𝑝 is admissible if 𝑝 contains all break

points of 𝑓 in [𝑙, 𝑢].

Definition 3.3.4. Given a function 𝑓 ∶ [𝑙, 𝑢] ↦ ℝ, the partition 𝑝0 of [𝑙, 𝑢] is referred to as a

base partition of [𝑙, 𝑢] for 𝑓 if (i) it is admissible, (ii) for any sub-interval [𝑥𝑖, 𝑥𝑖+1] defined by the

partition, 𝑓 ′(𝑥𝑖) ≠ 𝑓 ′(𝑥𝑖+1), and (iii) |(𝑝0)| is minimum.

Definition 3.3.5. Given 𝑓 ∶ [𝑙, 𝑢] ↦ ℝ and admissible partition 𝑝 of [𝑙, 𝑢] for 𝑓 , we say the partition

𝑞 is a valid refinement of 𝑝 if (𝑝) ⊂ (𝑞) and for each sub-interval [𝑥𝑖, 𝑥𝑖+1] defined by 𝑞 we have

𝑓 ′(𝑥𝑖) ≠ 𝑓 ′(𝑥𝑖+1).

As an example, consider the function 𝑓 (𝑥) = sin 𝑥 for 𝑥 ∈ [0, 2𝜋] and the partition 𝑝 =

(0, 𝜋
2
, 𝜋, 3𝜋

2
, 2𝜋). The break points of 𝑓 in the domain [0, 2𝜋] are 0, 𝜋, and 2𝜋 and so 𝑝 is admissible.

We also see the slope conditions (ii) in Definition 3.3.4 are satisfied. However, (𝑝) satisfying

conditions (i) and (ii) in Definition 3.3.4 is not of minimum size and so 𝑝 is not a base partition.

The partition 𝑝0 = (0, 𝜋, 2𝜋) is a base partition of [0, 2𝜋] for 𝑓 and so 𝑝 is a valid refinement of

65

Figure 3.1: Simplified flowchart for the algorithm.

66

𝑝0. In general, to construct a base partition we start with all break points and only add additional

points to the partition when the slope condition (ii) in Definition 3.3.4 for a sub-interval [𝑥𝑖, 𝑥𝑖+1]

is not satisfied. As a result, a base partition is not unique in general.

3.4 MILP Relaxations

In this section a method for constructing MILP relaxations of univariate trigonometric terms

(3.1c) and bilinear terms (3.1d) in  is presented. Once these nonlinearities have been relaxed, the

resulting MILP can be solved using a standard MILP solver.

3.4.1 Trigonometric Terms

Consider a univariate, trigonometric function 𝑓 ∶ [𝑥𝐿, 𝑥𝑈] ↦ ℝ, where 𝑓 is differentiable

and bounded over [𝑥𝐿, 𝑥𝑈] ⊂ ℝ. We would like to construct a MILP relaxation of the constraint

𝑦 = 𝑓 (𝑥) with 𝑥 ∈ [𝑥𝐿, 𝑥𝑈], which can then be used for the constraints (3.1c) in  . Define an

admissible partition 𝑝 = (𝑥0, 𝑥1,… , 𝑥𝑚) of [𝑥𝐿, 𝑥𝑈] for 𝑓 where 𝑝 is a valid refinement of a base

partition 𝑝0 or is 𝑝0 itself. Let [𝑥𝑖, 𝑥𝑖+1] be a sub-interval defined by 𝑝. Define the following:

ℎ𝑖(𝑥) = 𝑓 (𝑥𝑖) + 𝑓 ′(𝑥𝑖) ⋅ (𝑥 − 𝑥𝑖) (3.2)

ℎ𝑖+1(𝑥) = 𝑓 (𝑥𝑖+1) + 𝑓 ′(𝑥𝑖+1) ⋅ (𝑥 − 𝑥𝑖+1) (3.3)

𝑡𝑖+1(𝑥) =

⎧⎪⎨⎪⎩
max{ℎ𝑖(𝑥), ℎ𝑖+1(𝑥)}, if 𝑓 is convex in [𝑥𝑖, 𝑥𝑖+1]

min{ℎ𝑖(𝑥), ℎ𝑖+1(𝑥)}, if 𝑓 is concave in [𝑥𝑖, 𝑥𝑖+1]
(3.4)

𝑠𝑖+1(𝑥) = 𝑓 (𝑥𝑖) +
𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖)

𝑥𝑖+1 − 𝑥𝑖
⋅ (𝑥 − 𝑥𝑖) (3.5)

Equations (3.2) and (3.3) define tangent lines at 𝑓 (𝑥𝑖) and 𝑓 (𝑥𝑖+1), respectively. When 𝑓 is convex

(resp. concave) the tangent lines lie below (resp. above) the function and so a simple underestimate

(resp. overestimate) of 𝑓 over the sub-interval [𝑥𝑖, 𝑥𝑖+1] is obtained by taking the maximum (resp.

minimum) of these two tangents, corresponding to (3.4). Equation (3.5) defines a secant line from

𝑓 (𝑥𝑖) to 𝑓 (𝑥𝑖+1), which is above (resp. below) 𝑓 when it is convex (resp. concave) in the sub-

67

interval [𝑥𝑖, 𝑥𝑖+1]. For each partition point 𝑥𝑖 ∈ (𝑝), let 𝑣𝑖 = 𝑓 (𝑥𝑖) be the corresponding point on

the curve. For each sub-interval [𝑥𝑖, 𝑥𝑖+1], let 𝑣𝑖,𝑖+1 be the point of intersection for the tangent lines

defined by (3.2) and (3.3).

We now make a few key observations. For any sub-interval [𝑥𝑖, 𝑥𝑖+1] defined by 𝑝, the points 𝑣𝑖,

𝑣𝑖,𝑖+1, and 𝑣𝑖+1 form a triangle which contains the curve 𝑓 over this sub-interval. This can be seen by

noting the partition 𝑝 is admissible and so 𝑓 is either convex or concave in each sub-interval. The

intersection point 𝑣𝑖,𝑖+1 is guaranteed to exist for each sub-interval as 𝑝 satisfies the slope condition

in Definitions 3.3.4 and 3.3.5. The number of triangles formed by 𝑝 is 𝑚 = |(𝑝)|−1. If 𝑞 is a valid

refinement of 𝑝, the number of triangles will increase as (𝑝) ⊂ (𝑞). Additionally, by the nature

of the construction of the triangles, the triangles themselves will decrease in size and approach the

curve itself. This can be seen by the simple example 𝑓 (𝑥) = sin 𝑥 with 𝑥 ∈ [0, 2𝜋]. The base

partition (which is unique in this case) is 𝑝0 = (0, 𝜋, 2𝜋). Define 𝑝 = (0, 𝜋
2
, 𝜋, 3𝜋

2
, 2𝜋), which is

simply the result of bisecting each sub-interval of 𝑝0. The partition 𝑝 is a valid refinement of 𝑝0

and so once again triangles containing the curve over each sub-interval can be constructed using

the points 𝑣𝑖, 𝑣𝑖,𝑖+1, and 𝑣𝑖+1 as previously described. This is shown in Figure 3.2. It can be clearly

seen the triangles approach the curve itself as the number of partition points increases with valid

refinements, as expected.

The main idea behind the MILP relaxation is then as follows: For each sub-interval [𝑥𝑖, 𝑥𝑖+1]

of 𝑝, any point in the triangle defined by the points 𝑣𝑖, 𝑣𝑖,𝑖+1, and 𝑣𝑖+1 provides a relaxation of the

constraint 𝑦 = 𝑓 (𝑥) when 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1]. Therefore, the disjunctive union of triangles formed by

𝑝 using (3.2)-(3.5) provides a relaxation of 𝑦 = 𝑓 (𝑥) with 𝑥 ∈ [𝑥𝐿, 𝑥𝑈]. As valid refinements

are iteratively constructed, this relaxation is tightened and will ultimately converge to the original

function in the limit.

3.4.1.1 Incremental Formulation

We are now prepared to construct the MILP relaxation for the constraint 𝑦 = 𝑓 (𝑥) with 𝑥 ∈

[𝑥𝐿, 𝑥𝑈] ⊂ ℝ where 𝑓 is a univariate, trigonometric function that is differentiable and bounded over

[𝑥𝐿, 𝑥𝑈]. Let 𝑝 = (𝑥0, 𝑥1,… , 𝑥𝑚) be a valid refinement of a base partition 𝑝0 of [𝑥𝐿, 𝑥𝑈] for 𝑓 or be

68

(a) Using base partition.

(b) Using valid refinement.

Figure 3.2: Example of triangles formed by overestimates, underestimates, and secant lines of
𝑓 (𝑥) = sin 𝑥 with 𝑥 ∈ [0, 2𝜋] and admissible partition 𝑝. The points on the curve corresponding to
the partition points are shown with black markers. The green triangles correspond to the points 𝑣𝑖,
𝑣𝑖,𝑖+1, and 𝑣𝑖+1 for each sub-interval [𝑥𝑖, 𝑥𝑖+1] of 𝑝. (a) Triangles formed when using base partition
𝑝0 = (0, 𝜋, 2𝜋). (b) Triangles formed when using the admissible partition 𝑝 = (0, 𝜋

2
, 𝜋, 3𝜋

2
, 2𝜋),

which is a valid refinement of the base partition 𝑝0.

69

𝑝0 itself. As before, let 𝑣𝑖 = 𝑓 (𝑥𝑖) and let 𝑣𝑖,𝑖+1 be the intersection of the two tangent lines defined

by (3.2) and (3.3) for each sub-interval [𝑥𝑖, 𝑥𝑖+1]. Let 𝑣𝑥𝑖 and 𝑣𝑦𝑖 be the 𝑥- and 𝑦-coordinate of 𝑣𝑖

and similarly for the vertex 𝑣𝑖,𝑖+1. Define binary variables 𝑢𝑖 for 𝑖 = 1,… , 𝑚 − 1 and non-negative

continuous variables 𝛿𝑖1 and 𝛿𝑖2 for 𝑖 = 1,… , 𝑚. The disjunctive union of triangles formed by 𝑣𝑖,

𝑣𝑖,𝑖+1, and 𝑣𝑖+1 for each sub-interval [𝑥𝑖, 𝑥𝑖+1] provides a relaxation of 𝑦 = 𝑓 (𝑥) with 𝑥 ∈ [𝑥𝐿, 𝑥𝑈]

and can be expressed using a standard incremental formulation [50, 48] as

𝑥 = 𝑣𝑥0 +
𝑚∑
𝑖=1

(
𝛿𝑖1(𝑣

𝑥
𝑖−1,𝑖 − 𝑣𝑥𝑖−1) + 𝛿𝑖2(𝑣

𝑥
𝑖 − 𝑣𝑥𝑖−1)

)
(3.6a)

𝑦 = 𝑣𝑦0 +
𝑚∑
𝑖=1

[
𝛿𝑖1(𝑣

𝑦
𝑖−1,𝑖 − 𝑣𝑦𝑖−1) + 𝛿𝑖2(𝑣

𝑦
𝑖 − 𝑣𝑦𝑖−1)

]
(3.6b)

𝛿11 + 𝛿12 ≤ 1 (3.6c)

𝛿𝑖1 + 𝛿𝑖2 ≤ 𝑢𝑖−1 ≤ 𝛿𝑖−12 , ∀𝑖 ∈ {2,… , 𝑚} (3.6d)

0 ≤ 𝛿𝑖1, 𝛿
𝑖
2 ≤ 1, ∀𝑖 ∈ {1,… , 𝑚} (3.6e)

𝑢𝑖 ∈ {0, 1}, ∀𝑖 ∈ {1,… , 𝑚 − 1} (3.6f)

Though there are many ways to formulate the disjunctive union of triangles with theoretical proper-

ties similar to that of the incremental formulation as shown in [50, 52], the incremental formulation

given can be shown to have computational superiority to other means of formulating the disjunctive

union [53]. Nevertheless, comparing the different formulations for relaxing trigonometric functions

is an interesting problem in its own right and will be delegated to potential future work.

The relaxation (3.6) can be understood as follows. The terms 𝑣𝑥0 and 𝑣𝑦0 represent a starting

point for 𝑥 and 𝑦. For partition 𝑝 = (𝑥0, 𝑥1,… , 𝑥𝑚), we refer to the triangle corresponding to the

sub-interval [𝑥𝑖, 𝑥𝑖+1] as the (𝑖+1)-th triangle and so the triangles are ordered. Let (𝑥, 𝑦) denote the

relaxation value of (𝑥, 𝑓 (𝑥)). The binary variable 𝑢𝑖 takes value 1 if the 𝑖-th triangle must be passed

to reached the triangle containing the point (𝑥, 𝑦) and takes value 0 otherwise. It can be shown [50]

that (3.6) has the ordering property 𝑢1 ≥ 𝑢2 ≥ … ≥ 𝑢𝑚−1. Therefore, if 𝑢𝑖∗ = 1 we must have 𝑢𝑖 = 1

70

for all 𝑖 < 𝑖∗, which simply states triangles must be considered in sequential order before reaching

the triangle containing (𝑥, 𝑦). The variables 𝛿𝑖1 and 𝛿𝑖2 for the 𝑖-th triangle have two purposes which

are most easily understood through example. Suppose (𝑥, 𝑦) lies in the first triangle. In this case, we

must have 𝑢𝑖 = 0 for all 𝑖 ∈ {1,… , 𝑚 − 1}, which implies 𝛿𝑖1 = 0 and 𝛿𝑖2 = 0 for all 𝑖 ∈ {2,… , 𝑚}

by (3.6d) and (3.6e). Relaxation (3.6) then becomes

𝑥 = 𝑣𝑥0 + 𝛿11(𝑣
𝑥
0,1 − 𝑣𝑥0) + 𝛿12(𝑣

𝑥
1 − 𝑣𝑥0) (3.7a)

𝑦 = 𝑣𝑦0 + 𝛿11(𝑣
𝑦
0,1 − 𝑣𝑦0) + 𝛿12(𝑣

𝑦
1 − 𝑣𝑦0) (3.7b)

𝛿11 + 𝛿12 ≤ 1 (3.7c)

0 ≤ 𝛿11 , 𝛿
1
2 ≤ 1 (3.7d)

From (3.7), we see 𝛿11 and 𝛿12 are used to capture any (𝑥, 𝑦) in the first triangle defined by 𝑣0, 𝑣0,1,

and 𝑣1. In the case where (𝑥, 𝑦) lies in the 𝑖-th triangle, variables 𝛿𝑖1 and 𝛿𝑖2 hold similar meaning.

Next, suppose (𝑥, 𝑦) lies in the second triangle. In this case, we must have 𝑢1 = 1 and 𝑢𝑖 = 0 for

all 𝑖 ∈ {2,… , 𝑚 − 1}. From (3.6d) we then must have 𝛿11 = 0 and 𝛿12 = 1. Similarly, we must also

have 𝛿𝑖1 = 0 and 𝛿𝑖2 = 0 for all 𝑖 ∈ {3,… , 𝑚}. Relaxation (3.6) then becomes

𝑥 = 𝑣𝑥0 + (𝑣𝑥1 − 𝑣𝑥0) + 𝛿21(𝑣
𝑥
1,2 − 𝑣𝑥1) + 𝛿22(𝑣

𝑥
2 − 𝑣𝑥1) (3.8a)

𝑦 = 𝑣𝑦0 + (𝑣𝑦1 − 𝑣𝑦0) + 𝛿21(𝑣
𝑦
1,2 − 𝑣𝑦1) + 𝛿22(𝑣

𝑦
2 − 𝑣𝑦1) (3.8b)

𝛿21 + 𝛿22 ≤ 1 (3.8c)

0 ≤ 𝛿21 , 𝛿
2
2 ≤ 1 (3.8d)

We now note that 𝛿12 = 1 is the coefficient of (𝑣𝑥1 − 𝑣𝑥0) and (𝑣𝑦1 − 𝑣𝑦0), which corresponds to the

secant line connecting 𝑣0 and 𝑣1. Therefore, 𝛿12 simply shifts the starting point from 𝑣0 to 𝑣1 or,

equivalently, shifts the search for (𝑥, 𝑦) from the first triangle to the second triangle. After this

71

shift, we again see 𝛿21 and 𝛿22 are used to capture any (𝑥, 𝑦) in the second triangle, as expected. The

variable 𝛿11 is zero as we do not need it to shift from 𝑣0 to 𝑣1 by construction. In the case where

(𝑥, 𝑦) lies in the 𝑖∗-th triangle, variables 𝛿𝑖1 and 𝛿𝑖2 for all 𝑖 < 𝑖∗ hold similar meaning.

3.4.1.2 Convergence Guarantee

The reader is referred to [48] for a proof the previously described MILP relaxation converges

to the original function as all sub-intervals are refined in the limit. This convergences relies on the

refinement strategy used on the partition. This is addressed in Section 3.5.2.

3.4.2 Bilinear Terms

This section presents an incremental formulation to obtain a MILP relaxation of the constraint

𝑧 = 𝑥𝑦 where 𝑥 ∈ [𝑥𝐿, 𝑥𝑈] ⊂ ℝ and 𝑦 ∈ [𝑦𝐿, 𝑦𝑈] ⊂ ℝ. Such a relaxation can then be used for the

bilinear terms (3.1d) in  found after factoring. The relaxation presented has a similar construction

as the relaxation for trigonometric terms. Using MILP relaxations for bilinear terms is not new and

has been dealt with explicitly in the literature [54, 46]. Typically the MILP relaxations use either

a big-M reformulation or a convex hull representation of a disjunctive union [46]. The proposed

approach instead uses an incremental formulation similar to the relaxation used for trigonometric

terms. Furthermore, it is assumed that only one of the variables involved in the bilinear term,

i.e., either 𝑥 or 𝑦 is partitioned. To the best of the author’s knowledge, the following incremental

formulation is not explicitly presented in the literature and so, for the sake of completeness it is

presented here.

Consider the standard convex envelope [38] commonly used for relaxing bilinear terms.

𝑧 = 𝑤 (3.9a)

𝑤 ≥ 𝑥𝐿𝑦 + 𝑥𝑦𝐿 − 𝑥𝐿𝑦𝐿 (3.9b)

𝑤 ≥ 𝑥𝑈𝑦 + 𝑥𝑦𝑈 − 𝑥𝑈𝑦𝑈 (3.9c)

𝑤 ≤ 𝑥𝑈𝑦 + 𝑥𝑦𝐿 − 𝑥𝑈𝑦𝐿 (3.9d)

72

−1 −0.5 0 0.5 1 −1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

x
y

z

Figure 3.3: Convex hull of 𝑧 = 𝑥𝑦 with domain [−1, 1] × [−1, 1].

𝑤 ≤ 𝑥𝑦𝑈 + 𝑥𝐿𝑦 − 𝑥𝐿𝑦𝑈 (3.9e)

The convex envelope defined by (3.9) is precisely the convex hull of 𝑧 = 𝑥𝑦 over the domain

[𝑥𝐿, 𝑥𝑈] × [𝑦𝐿, 𝑦𝑈]. This convex hull is the tightest tetrahedron containing the graph of the bilinear

term (see Figure 3.3). Consider a partition 𝑝𝑥 = (𝑥0, 𝑥1,… , 𝑥𝑚) of [𝑥𝐿, 𝑥𝑈]. Let 𝑅𝑖+1 = [𝑥𝑖, 𝑥𝑖+1] ×

[𝑦𝐿, 𝑦𝑈] be the (𝑖 + 1)-th rectangle defined by sub-interval [𝑥𝑖, 𝑥𝑖+1] of 𝑝𝑥. We can describe the

graph over 𝑅𝑖+1 by

𝑧 = 𝑥𝑦 (3.10a)

𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1 (3.10b)

𝑦𝐿 ≤ 𝑦 ≤ 𝑦𝑈 (3.10c)

Here (3.10) is once again a bilinear term with box constraints on 𝑥 and 𝑦, so we can again construct

73

−1 −0.5 0 0.5 1 −1
−0.5

0
0.5

1
−1

−0.5

0

0.5

1

x
y

z

Figure 3.4: Disjunctive union of three tetrahedrons containing 𝑧 = 𝑥𝑦 over the domain [−1, 1] ×
[−1, 1]. The variable 𝑥 has been partitioned using 𝑝𝑥 = (−1,−0.25, 0.25, 1), shown by the colored
bars along the 𝑥-axis with tetrahedrons being colored accordingly.

a convex envelope of (3.10) to get a tetrahedron containing the graph 𝑧 = 𝑥𝑦 over sub-domain 𝑅𝑖+1.

Figure 3.4 shows an example of this procedure for three sub-domains.

The main idea behind the MILP relaxation is then as follows: For each sub-domain 𝑅𝑖+1 defined

by partition 𝑝𝑥, construct the tightest tetrahedron (i.e., convex envelope) containing 𝑧 = 𝑥𝑦 over

𝑅𝑖+1. Any point in the corresponding tetrahedron provides a relaxation of 𝑧 = 𝑥𝑦with (𝑥, 𝑦) ∈ 𝑅𝑖+1.

Therefore, the disjunctive union of tetrahedrons formed by 𝑝𝑥 provides a relaxation of 𝑧 = 𝑥𝑦 over

the original domain [𝑥𝐿, 𝑥𝑈] × [𝑦𝐿, 𝑦𝑈].

3.4.2.1 Incremental Formulation

We are now prepared to construct the MILP relaxation for the bilinear term 𝑧 = 𝑥𝑦 with 𝑥 ∈

[𝑥𝐿, 𝑥𝑈] ⊂ ℝ and 𝑦 ∈ [𝑦𝐿, 𝑦𝑈] ⊂ ℝ. Let 𝑝𝑥 = (𝑥0, 𝑥1,… , 𝑥𝑚) be a partition of [𝑥𝐿, 𝑥𝑈]. Define

74

binary variables 𝑢𝑖 for 𝑖 = 1,… , 𝑚 − 1 and non-negative continuous variables 𝛿𝑖1, 𝛿
𝑖
2, and 𝛿𝑖3 for

𝑖 = 1,… , 𝑚. The MILP relaxation is the disjunctive union of tetrahedrons constructed from 𝑝𝑥 and

can be expressed [50] as

𝑥 = 𝑥𝐿 +
𝑚∑
𝑖=1

[
𝛿𝑖2(𝑥𝑖 − 𝑥𝑖−1) + 𝛿𝑖3(𝑥𝑖 − 𝑥𝑖−1)

]
(3.11a)

𝑦 = 𝑦𝐿 +
𝑚∑
𝑖=1

[
𝛿𝑖1(𝑦

𝑈 − 𝑦𝐿) + 𝛿𝑖2(𝑦
𝑈 − 𝑦𝐿)

]
(3.11b)

𝑧 = 𝑥𝐿𝑦𝐿 +
𝑚∑
𝑖=1

⎛⎜⎜⎜⎜⎜⎝
𝛿𝑖1

𝛿𝑖2

𝛿𝑖3

⎞⎟⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎜⎝
𝑥𝑖−1𝑦𝑈 − 𝑥𝑖−1𝑦𝐿

𝑥𝑖𝑦𝑈 − 𝑥𝑖−1𝑦𝐿

𝑥𝑖𝑦𝐿 − 𝑥𝑖−1𝑦𝐿

⎞⎟⎟⎟⎟⎟⎠
(3.11c)

𝛿𝑖1 + 𝛿𝑖2 + 𝛿𝑖3 ≤ 𝑢𝑖−1 ≤ 𝛿𝑖−13 , ∀𝑖 ∈ {2,… , 𝑚} (3.11d)

𝛿11 + 𝛿12 + 𝛿12 ≤ 1 (3.11e)

0 ≤ 𝛿𝑖1, 𝛿
𝑖
2, 𝛿

𝑖
3 ≤ 1, ∀𝑖 ∈ {1,… , 𝑚} (3.11f)

𝑢𝑖 ∈ {0, 1}, ∀𝑖 ∈ {1,… , 𝑚 − 1} (3.11g)

Relaxation (3.11) can be understood as follows. For the given partition 𝑝𝑥, we will refer to the

tetrahedron corresponding to sub-domain 𝑅𝑖+1 as the (𝑖+ 1)-th tetrahedron and so the tetrahedrons

are ordered. Note the (𝑖 + 1)-th tetrahedron over 𝑅𝑖+1 has the four extreme points

𝑣0𝑖+1 = (𝑥𝑖, 𝑦
𝐿, 𝑥𝑖𝑦

𝐿) (3.12a)

𝑣1𝑖+1 = (𝑥𝑖, 𝑦
𝑈 , 𝑥𝑖𝑦

𝑈) (3.12b)

𝑣2𝑖+1 = (𝑥𝑖+1, 𝑦
𝑈 , 𝑥𝑖+1𝑦

𝑈) (3.12c)

𝑣3𝑖+1 = (𝑥𝑖+1, 𝑦
𝐿, 𝑥𝑖+1𝑦

𝐿) (3.12d)

The terms 𝑥𝐿, 𝑦𝐿, and 𝑥𝐿𝑦𝐿 represent starting points for 𝑥, 𝑦, and 𝑧, respectively. In particular,

75

(𝑥𝐿, 𝑦𝐿, 𝑥𝐿𝑦𝐿) is the extreme point 𝑣01. Let (𝑥, 𝑦, 𝑧) denote the relaxation value of (𝑥, 𝑦, 𝑥𝑦). The

binary variable 𝑢𝑖 takes value 1 if the 𝑖-th tetrahedron must be passed to reach the tetrahedron

containing the point (𝑥, 𝑦, 𝑧) and takes value 0 otherwise. It can be shown [50] that (3.11) has the

ordering property 𝑢1 ≥ 𝑢2 ≥ … ≥ 𝑢𝑚−1. Therefore, if 𝑢𝑖∗ = 1 then we must have 𝑢𝑖 = 1 for all

𝑖 < 𝑖∗, which simply states we must pass the tetrahedrons in order before reaching the tetrahedron

containing (𝑥, 𝑦, 𝑧). The variables 𝛿𝑖1, 𝛿
𝑖
2, and 𝛿𝑖3 for the 𝑖-th tetrahedron have similar meaning as the

𝛿 variables in the trigonometric case.

3.4.2.2 Convergence Guarantee

It can be shown [55] the largest gap between the convex envelope (3.9) over a sub-domain

𝑅𝑖+1 = [𝑥𝑖, 𝑥𝑖+1] × [𝑦𝐿, 𝑦𝑈] is at most

max
(𝑥,𝑦)∈𝑅𝑖+1

|𝑤𝑖+1 − 𝑥𝑦| = (𝑥𝑖+1 − 𝑥𝑖)(𝑦𝑈 − 𝑦𝐿)
4

(3.13)

where 𝑤𝑖+1 denotes the relaxation value. This bound holds for each sub-domain and so as all sub-

domains are further refined the MILP relaxation (3.11) converges to the original bilinear function in

the limit. This convergences relies on all sub-domains being further refined. This will be addressed

in Section 3.5.2.

3.5 Partitions

This section focuses on the schemes used for partitioning selected variable domains which in

turn are used to construct the MILP relaxations previously described. It is first shown how to re-

duce the total number of variables needed across MILP relaxations of different nonlinear functions

by sharing partitions between functions when multiple functions use the same variable. This is

especially important when using trigonometric functions, as many applications will have several

functions sharing the same variable (for example, sin 𝑥 and cos 𝑥 may appear in pairs when look-

ing at signals or geometric constraints). Then several refinement schemes are introduced, which

are responsible for refining a given partition after finding an optimal solution to the MILP relax-

ation of  to further tighten the relaxation. The refinement scheme chosen will directly impact the

76

convergence rate of the overall algorithm and so three options are presented - bisection, direct, and

non-uniform. It is entirely possible to use alternative refinement schemes not discussed in this paper

to great success and the author does not claim to have exhaustively examined all possible refinement

schemes. When refining the partitions for the MILP relaxation of  , we may either choose to refine

all available partitions or elect to refine a subset of partitions subject to some criteria (under certain

conditions so convergence to a globally optimal solution is ensured). These two possibilities are

briefly discussed and a simple criteria for refining a subset of all partitions is given as a motivating

example.

3.5.1 Sharing Partitions

For ease of discussion, we will consider two univariate trigonometric functions 𝑓1(𝑥) and 𝑓2(𝑥)

which share the same variable 𝑥 and have been relaxed using the MILP relaxation presented in

Section 3.4. The same procedure presented applies to bilinear terms that have been relaxed as well

and may be extended to more than two functions. The variable 𝑥 has a box constraint [𝑥𝐿, 𝑥𝑈].

Let 𝑝01 and 𝑝02 be base partitions of [𝑥𝐿, 𝑥𝑈] for 𝑓1 and 𝑓2, respectively. Rather than constructing

two separate partitions, we can use information from both base partitions to construct a single par-

tition that can be used for both functions simultaneously in the MILP relaxation. Define a partition

as the union of points in 𝑝01 and 𝑝02. If the slope condition in Definition 3.3.4 is not initially satisfied

(applied to both functions), add additional partition points so that the slope condition is satisfied

and the resulting partition, 𝑝0, is of minimum size. The resulting partition is in a sense a base par-

tition of the collection of functions. We note that for any sub-interval [𝑥𝑖, 𝑥𝑖+1] defined by 𝑝0, the

functions 𝑓1 and 𝑓2 are either convex or concave over the sub-interval (the functions need not have

the same convexity). This allows the use the incremental formulation presented in Section 3.4 and

so we can refine 𝑝0 to tighten all parts of the formulation containing 𝑓1 and 𝑓2 rather than refining

two separate partitions. In doing so, we reduce the number of binary variables needed for 𝑓1 and 𝑓2

in the incremental formulation by half (or a factor of 𝑀 when 𝑀 functions are considered instead

of two). This will significantly reduce the computation time needed.

77

Figure 3.5: Example of using a shared partition, 𝑝0 = (0, 𝜋
2
, 𝜋, 3𝜋

2
, 2𝜋), for 𝑓1(𝑥) = sin 𝑥 and

𝑓2(𝑥) = cos 𝑥 over the closed interval [0, 2𝜋]. It can be seen the 𝑖-th triangle for 𝑓1 and the 𝑖-th
triangle for 𝑓2 are defined over the same sub-interval, so they can be linked by sharing the same
binary variables in the MILP relaxations. The binary variables then indicate which sub-interval the
solution is in, rather than which triangle.

3.5.1.1 Sharing Partitions Example

As a simple example, consider the two functions 𝑓1(𝑥) = sin 𝑥 and 𝑓2(𝑥) = cos 𝑥 where 𝑥 ∈

[0, 2𝜋]. The (unique) base partitions for 𝑓1 and 𝑓2 are 𝑝01 = (0, 𝜋, 2𝜋) and 𝑝02 = (0, 𝜋
2
, 3𝜋

2
, 2𝜋),

respectively. We can then define a new partition 𝑝0 = (0, 𝜋
2
, 𝜋, 3𝜋

2
, 2𝜋). We see the slope condition

in Definition 3.3.4 is satisfied for both 𝑓1 and 𝑓2 with 𝑝0 and so 𝑝0 is effectively a base partition for

the set of functions. We can then use relaxation (3.6) for both 𝑓1 and 𝑓2 using the same partition.

The 𝑖-th triangle for 𝑓1 and the 𝑖-th triangle for 𝑓2 are linked since they are defined over the same

sub-interval. This is readily seen in Figure 3.5. With this in mind, the binary variables in relaxation

(3.6) for both functions may be shared.

78

3.5.2 Refinement Schemes - Method of Partition Refinement

The following definition is first introduced.

Definition 3.5.1. Given an admissible partition 𝑝 of [𝑥𝐿, 𝑥𝑈] for a function 𝑓 , the procedure used

to generate a valid refinement of 𝑝 is referred to as a refinement scheme.

A refinement scheme is for a single partition and it is entirely possible to use various refinement

schemes depending on the partition considered. As a simple example, consider the base partition

𝑝0 = (0, 𝜋, 2𝜋) of [0, 2𝜋] for 𝑓 (𝑥) = sin 𝑥 (see Figure 3.2). We can construct the valid refinement

𝑞 = (0, 𝜋
2
, 𝜋, 3𝜋

2
, 2𝜋), where the refinement scheme used is: For each sub-interval defined by 𝑝0

we add a point to bisect that sub-interval. We note that in this particular example the refinement

scheme used is indifferent of any known solution to the MILP relaxation. This may be considered

inefficient, as some sub-intervals are further refined despite them potentially not being useful to

the solution of the original problem. More targeted refinement schemes using information of the

optimal solution to the MILP relaxation are soon considered.

For the remainder of this section, the following notation will be used. Suppose  has been re-

laxed using the previously described MILP relaxations. For a given term (trigonometric or bilinear)

that has been relaxed, let 𝑥 be the variable that has been partitioned with 𝑝 = (𝑥0,… , 𝑥𝑚) and let

𝑥∗ denote its value in the optimal solution of the MILP. Only a single partition 𝑝 needs to be as-

sociated with 𝑥 because multiple relaxed terms using 𝑥 may share the same partition as previously

discussed. It will be assumed 𝑥∗ is strictly in the interior of a sub-interval [𝑥𝑖, 𝑥𝑖+1] defined by 𝑝. In

the case where 𝑥∗ = 𝑥𝑖 for some 𝑥𝑖 ∈ (𝑝), we do not refine partition 𝑝 for that particular iteration

of the overall algorithm. In a later iteration we may have 𝑥∗ strictly in the interior of a sub-interval

defined by 𝑝 and so we may refine 𝑝 for that iteration. Three refinement schemes are now presented

— bisection, direct, and non-uniform.

3.5.2.1 Bisection Refinement Scheme

The first refinement scheme is the bisection refinement scheme. Given 𝑥∗ ∈ (𝑥𝑖, 𝑥𝑖+1), the

bisection refinement scheme is to simply add a new partition point 𝑥′ = 1
2
(𝑥𝑖 + 𝑥𝑖+1) to 𝑝, giving

79

the valid refinement 𝑞 = (𝑥0,… , 𝑥𝑖, 𝑥′, 𝑥𝑖+1,… , 𝑥𝑚).

It is important to note that while this refinement scheme is simple, it may not always improve the

lower bound to  . This can be seen by considering 𝑓 (𝑥) = sin 𝑥 with domain [0, 𝜋]. We may first

start with the base partition 𝑝 = (0, 𝜋) and use relaxation (3.6) for 𝑓 using 𝑝, where we introduce a

variable 𝑦 for the relaxation value of 𝑓 (𝑥). This will result in a single triangle containing the curve

(green triangle in Figure 3.6). After relaxing 𝑓 (and other constraints), we may solve the resulting

MILP, yielding values (𝑥∗, 𝑦∗). It is possible for (𝑥∗, 𝑦∗) to lie in the interior of the triangle defined

by 𝑝. Since 𝑥∗ is in the interior of [0, 𝜋], we may refine 𝑝 using bisection to get the valid refinement

𝑞 = (0, 𝜋
2
, 𝜋). Using relaxation (3.6) with 𝑞 results in two triangles containing 𝑓 (blue triangles in

Figure 3.6). Because (𝑥∗, 𝑦∗) was in the interior of the original triangle, it is possible this point is

also in one of the two newly created triangles. This case is shown in Figure 3.6. In the event this

happens, solving the new MILP relaxation may not result in a tighter lower bound, though this will

largely depend on any other constraints present in the problem. We also note a similar situation can

occur when (𝑥∗, 𝑦∗) is on an edge of a triangle, which can be seen by noting the overlapping edges

in Figure 3.6.

It is important to note that while the lower bound may not improve for a particular iteration

using bisection, the MILP’s solution will still converge to the optimal solution of  in the limit.

Once again consider the example shown in Figure 3.6 and suppose (𝑥∗, 𝑦∗) remains optimal when

relaxing using 𝑞. We then apply the bisection refinement scheme to 𝑞, resulting in 𝑟 = (0, 𝜋
4
, 𝜋
2
, 𝜋)

and so two triangles are created over [0, 𝜋
2
]. Visually, it should be clear from Figure 3.6 that the

two triangles will likely not contain (𝑥∗, 𝑦∗). When this happens, the lower bound will continue to

improve. This same idea holds in the case of bilinear terms as well. We are guaranteed this will

always eventually happen because the MILP relaxations used approach the original functions in the

limit. As such, any relaxation solution that is not on the original function will eventually become

infeasible as partitions are further refined.

80

Figure 3.6: MILP relaxation of 𝑓 (𝑥) = sin 𝑥 over [0, 𝜋] using 𝑝 = (0, 𝜋) (green) and the valid
refinement 𝑞 = (0, 𝜋

2
, 𝜋) (blue), which was constructed using a bisection refinement scheme. The

optimal solution (yellow star) of the resulting MILP, (𝑥∗, 𝑦∗), when using 𝑝 may still lie in the
triangles constructed using 𝑞. If this happens, (𝑥∗, 𝑦∗) remains a possible solution to the MILP
when using 𝑞 and so the lower bound may not improve for that particular iteration of the algorithm.

3.5.2.2 Direct Refinement Scheme

We next consider the direct refinement scheme, which is another natural choice. Given 𝑥∗ ∈

(𝑥𝑖, 𝑥𝑖+1), the direct refinement scheme is to simply add 𝑥∗ to 𝑝, giving the valid refinement 𝑞 =

(𝑥0,… , 𝑥𝑖, 𝑥∗, 𝑥𝑖+1,… , 𝑥𝑚).

Unlike bisection, the direct refinement scheme is guaranteed to remove the previous MILP op-

timal solution from the relaxation’s feasible space except in the extremely rare (and favorable) case

the optimal solution lies on the original curve. Once again consider 𝑓 (𝑥) = sin 𝑥 with domain

[0, 𝜋]. As before, we start with the base partition 𝑝 = (0, 𝜋), relax 𝑓 using relaxation (3.6) (intro-

ducing variable 𝑦 for the relaxation value of 𝑓 (𝑥)), and solve the resulting MILP giving optimal

solution (𝑥∗, 𝑦∗). Suppose (𝑥∗, 𝑦∗) lies in the interior of the triangle constructed using 𝑝. Since 𝑥∗ is

in the interior of [0, 𝜋], we may refine 𝑝 using the direct refinement scheme to get the valid refine-

ment 𝑞 = (0, 𝑥∗, 𝜋). Suppose we now use relaxation (3.6) using 𝑞. Since 𝑦∗ lies on the vertical line

81

Figure 3.7: MILP relaxation of 𝑓 (𝑥) = sin 𝑥 over [0, 𝜋] using 𝑝 = (0, 𝜋) (green) and the valid
refinement 𝑞 = (0, 𝑥∗, 𝜋) (blue), which was constructed using a direct refinement scheme. The
previous optimal solution to the MILP using 𝑝 (yellow star) is no longer feasible when constructing
the relaxation of 𝑓 using 𝑞.

𝑥 = 𝑥∗, we see the tangent lines and secant line defined in (3.6) will only contain (𝑥∗, 𝑦∗) if either

(i) 𝑦∗ = 𝑓 (𝑥∗) or (ii) a tangent line is vertical, which cannot happen as we require the function to

be differentiable. This can be seen in Figure 3.7. A similar discussion holds for bilinear terms that

have been relaxed using (3.11).

3.5.2.3 Non-Uniform Refinement Scheme

Another refinement scheme to consider is the non-uniform refinement scheme. In bisection,

the location of the added partition point only considered which sub-interval contained 𝑥∗ and was

indifferent to the exact location of 𝑥∗. In contrast, the direct refinement scheme only considered

the exact location of 𝑥∗. The non-uniform refinement scheme attempts to strike a balance between

these two refinement schemes and is as follows. Let Δ1,Δ2 > 1 be user-defined constants and let

𝑥∗ ∈ (𝑥𝑖, 𝑥𝑖+1) as before. Define

𝑥′
1 = 𝑥∗ −

𝑥∗ − 𝑥𝑖

Δ1
(3.14)

82

𝑥′
2 = 𝑥∗ +

𝑥𝑖+1 − 𝑥∗

Δ2
(3.15)

In the two-point non-uniform refinement scheme, points 𝑥′
1 and 𝑥′

2 are added to 𝑝 to yield the valid re-

finement 𝑞 = (𝑥0,… , 𝑥𝑖, 𝑥′
1, 𝑥

′
2, 𝑥𝑖+1,… , 𝑥𝑚). In a sense, the two-point refinement scheme attempts

to remove large amounts of the relaxation space, like in bisection, while still being influenced by

the exact location of 𝑥∗. Larger values of Δ1 and Δ2 will produce a smaller polyhedron (triangle for

trigonometric or tetrahedron for bilinear) containing the curve or surface near 𝑥∗. This refinement

scheme has been proposed previously in the literature with Δ1 = Δ2 in the context of adaptive

partitioning schemes [46]. In the three-point non-uniform refinement scheme, the point 𝑥∗ is also

added to the partition to yield the valid refinement 𝑞 = (𝑥0,… , 𝑥𝑖, 𝑥′
1, 𝑥

∗, 𝑥′
2,… , 𝑥𝑚). Adding point

𝑥∗ will ensure the previous MILP’s optimal solution will be removed from the feasible space, just

like in the direct refinement scheme. In the two-point refinement scheme, two binary variables

are added for each partition refined using this scheme. In the three-point refinement scheme, three

binary variables are added.

To better visualize both the two-point and three-point non-uniform refinement schemes, once

again consider 𝑓 (𝑥) = sin 𝑥 with domain [0, 𝜋]. As before, start with the initial base partition

𝑝 = (0, 𝜋), apply relaxation (3.6) for 𝑓 using 𝑝 (introducing variable 𝑦 for the relaxation value of

𝑓 (𝑥)), and solve the resulting MILP giving optimal solution (𝑥∗, 𝑦∗). Suppose (𝑥∗, 𝑦∗) lies in the

interior of the triangle constructed using 𝑝. As in the bisection refinement scheme, the two-point

refinement scheme may not remove (𝑥∗, 𝑦∗) from the feasible space after refinement. However, as in

the direct refinement scheme, the three-point refinement scheme will always remove (𝑥∗, 𝑦∗) from

the feasible space except for in the rare case 𝑦∗ = 𝑓 (𝑥∗). These observations directly follow from

the discussion of the two previous refinement schemes. This can be seen in Figure 3.8.

Note in Figure 3.8, the three-point refinement scheme results in a significantly tighter relaxation,

but has four triangles instead of three in the two-point refinement. This appears to make the three-

point refinement scheme the better choice of the two. However, suppose the domain was larger

than [0, 𝜋]. The base partition would necessarily consist of more points, leading to more initial

83

(a)

(b)

Figure 3.8: Example showing partition 𝑝 = (0, 𝜋) being refined using (a) the two-point non-uniform
refinement scheme and (b) the three-point non-uniform refinement scheme. The initial MILP relax-
ation using 𝑝 is shown in green. In (a) the optimal solution (yellow star) for the previous iteration
remains feasible, while in (b) it is no longer feasible after refinement. In both cases we have set
Δ1 = Δ2 = 2.

84

triangles. It is possible both refinement schemes may tighten the relaxation over [0, 𝜋] enough for

the optimal solution to move to a different sub-interval and never return to [0, 𝜋]. If this happens,

the three-point refinement scheme will have generated an additional binary variable that no longer

contributes to the overall convergence of the algorithm. With this in mind, the choice between using

two points or three points is not clear in general and would require computational experiments to

make an informed decision.

3.5.2.4 Consistent Refinement Scheme

Consider the function 𝑓 (trigonometric or bilinear) that has been relaxed using one of the pre-

viously described MILP relaxations using partition 𝑝 for variable 𝑥. As 𝑝 is refined using a chosen

refinement scheme, the MILP relaxation of 𝑓 is tightened. When all sub-intervals defined by 𝑝 are

further refined, the MILP relaxation will approach 𝑓 in the limit. However, the refinement schemes

presented only further refine a single sub-interval to limit the number of additional variables gener-

ated at each iteration of the algorithm. An additional mechanism so the MILP relaxation approaches

𝑓 in the limit is required. Motivated by [56, 39] for global optimization using branch-and-bound,

the following definition is introduced:

Definition 3.5.2. A refinement scheme is said to be consistent if at every step any sub-interval

defined by the current partition is capable of further refinement and the length of every sub-interval

approaches zero (or a small 𝜀 > 0) in the limit.

Note the use of the word "capable" in Definition 3.5.2. It is not required that every sub-interval

be further refined. This concept is similar to the concept of a consistent branch-and-bound algo-

rithm, where the feasible space may be subdivided (branching) and all sub-domains may be explored

unless it is known a sub-domain cannot contain the optimal solution (pruning).

The previous three refinement schemes are not consistent. In order to make these refinement

schemes consistent, the following simple rule is added to the algorithm.

Consistency Rule 3.5.1. Let 𝑝 be a given partition and let [𝑥𝑖, 𝑥𝑖+1] be a sub-interval defined by 𝑝

to be further refined by adding one or more partition points according to a refinement scheme. If

85

|𝑥𝑖 − 𝑥𝑖+1| < 𝜀 for small 𝜀 > 0, bisect the largest sub-interval defined by 𝑝 instead.

This rule ensures the algorithm does not get stuck refining the same initial sub-interval when the

optimal solution lies in a different sub-interval. Using the largest sub-interval ensures all sub-

intervals initially defined by a base partition are capable of further refinement. The choice of

bisection is for simplicity and alternative refinement schemes could be used. Note that if the optimal

solution to the MILP relaxation results in 𝑥 being equal to some 𝑥𝑖 ∈ (𝑝), we do not refine 𝑝 for

that iteration and so we would not need to invoke this rule.

Using any of the previously described refinement schemes along with Consistency Rule 3.5.1

guarantees the MILP relaxation of a function (trigonometric or bilinear) will approach the function

in the limit. This only concerns a single variable in  and so additional criteria is needed to ensure

all relaxations of functions approach their original functions in the limit. This is the subject of

Section 3.5.3.

3.5.3 Refinement Strategies - Selecting Partitions for Refinement

The following definition is first introduced.

Definition 3.5.3. Let 𝒫 be the set of partitions used to construct the MILP relaxation of  . The

procedure used to choose a subset 𝒫1 ⊆ 𝒫 of partitions to be refined is referred to as a refinement

strategy.

Let( ,𝒫) denote the relaxation of using the previously described MILP relaxations using a

set of partitions 𝒫 (after sharing partitions). Consider a partition 𝑝 ∈ 𝒫 corresponding to function

𝑓 (a similar discussion holds for when 𝑝 is shared among a set of functions) with partitioned variable

𝑥. In Section 3.5.2, it was noted the MILP relaxation of 𝑦 = 𝑓 (𝑥) will approach the original curve

if a consistent refinement scheme is used. This only considers a single partition and so the purpose

of this section is extend this to the set 𝒫 . Doing so will ensure the optimal solution of ( ,𝒫)

approaches the optimal solution of  in the limit as further refinements are performed. Similar to

the concept of a consistent refinement scheme, the concept of a consistent refinement strategy is

introduced to accomplish this.

86

The remainder of this section is organized as follows. The concept of a consistent refinement

strategy is introduced to guarantee the optimal solution of( ,𝒫) approaches the optimal solution

of  in the limit. Two consistent refinement strategies are then provided. The first refinement

strategy is the most natural refinement strategy where all partitions are refined at each iteration

(i.e., 𝒫1 = 𝒫). The second refinement strategy considers a subset of partitions based on the quality

of the relaxations associated with those partitions.

3.5.3.1 Consistent Refinement Strategy

The concept of a consistent refinement strategy is now introduced.

Definition 3.5.4. A refinement strategy is said to be consistent if at every iteration of the algorithm

every partition used for the MILP is capable of being selected for refinement and in the limit every

partition will be refined such that the corresponding relaxations converge to the original functions.

Note the use of the word "capable" in Definition 3.5.4. Similar to consistent refinement scheme,

it is not required that every partition to be refined. In fact, it is possible for one or many initial

partitions to never be refined and still have the optimal value of the relaxation of  approach the

optimal solution to  . This can happen when the optimal solution has a point that corresponds to

one or many initial partition points. This is similar to the case in branch-and-bound when a feasible

solution is found at a node in the branch-and-bound tree and so no branching is needed for that

node. The condition a refinement strategy be consistent is equivalent to requiring every relaxation

(trigonometric or bilinear) be capable of being tightened at every iteration of the overall algorithm

until the gap is sufficiently small.

3.5.3.2 Complete Refinement Strategy

The most obvious consistent refinement strategy is to refine all partitions 𝒫 at each iteration

of the overall algorithm. In doing so, all relaxations (trigonometric and bilinear) are tightened at

each iteration until the gap is sufficiently small. This refinement strategy will be referred to as the

complete refinement strategy.

The complete refinement strategy has advantages and disadvantages. It is easy to implement

87

and avoids additional computations and sorting that may be used in an alternative refinement strat-

egy that selects a subset of partitions. However, a major disadvantage of this strategy is the number

of variables (with emphasis on binary variables) will grow at a faster rate than any other refinement

strategy that only uses a subset of partitions. As a result, the complete refinement strategy’s effec-

tiveness will depend on the number of iterations needed in the overall algorithm (i.e., the number

of times the refinement strategy is invoked) before the gap is sufficiently small. If the number of

iterations to reach optimality is small, then the growth in the number of variables will be manage-

able.

3.5.3.3 k-Worst Refinement Strategy

An alternative consistent refinement strategy that selects a subset of partitions 𝒫1 ⊆ 𝒫 for fur-

ther refinement at each iteration of the overall algorithm is now presented. To do so, the following

definition is introduced.

Definition 3.5.5. Let 𝑝𝑥 ∈ 𝒫 be a partition for 𝑥 ∈ [𝑥𝐿, 𝑥𝑈] corresponding to functions

{𝑓1(𝑥),… , 𝑓𝑀 (𝑥)} with relaxation values 𝑦1,… , 𝑦𝑀 in ( ,𝒫). Let (𝑥∗, 𝑦∗𝑖) denote the value of

𝑥 and 𝑦𝑖 in the optimal solution to ( ,𝒫). The measure of 𝑝𝑥, denoted by 𝜇(𝑝𝑥), is then

𝜇(𝑝𝑥) = max
1≤𝑖≤𝑀 |𝑓𝑖(𝑥∗) − 𝑦∗𝑖 |. (3.16)

Note if 𝑝𝑥 ∈ 𝒫 only corresponds to a single function 𝑓 , we simply have 𝜇(𝑝𝑥) = |𝑓 (𝑥∗) − 𝑦∗|
in Definition 3.5.5. The measure of a partition 𝑝𝑥 provides a means of quantifying the quality of

the MILP relaxations of the corresponding functions (with lower values being desirable). Suppose

( ,𝒫) has been solved to optimality and the measure of all partitions in 𝒫 have been computed.

The proposed alternative consistent refinement strategy is then to choose the 𝑘 partitions with the

𝑘 highest measures (with ties broken arbitrarily) for further refinement. This refinement strategy

will be referred to as the 𝑘-worst refinement strategy. The integer 𝑘 is set in advance by the user

and requires knowledge of the number of functions to be relaxed in  . The user may also choose

to modify 𝑘 as the algorithm is running, either by increasing or decreasing 𝑘 to a valid non-zero

88

integer. For the purposes of this paper, 𝑘 will be kept constant when using this refinement strategy.

Note 𝑘 = |𝒫 | results in the complete refinement strategy.

The 𝑘-worst refinement strategy has the advantage of reducing the number of variables (with

emphasis on binary variables) added each time partitions are refined to tighten the relaxation. How-

ever, a major disadvantage of this refinement strategy is the number of iterations needed to get a

sufficiently small gap may increase as a result. This may lead to a longer overall computational

time and will largely depend on the maximum gap allowed before terminating the algorithm.

3.6 Principal Domains for Periodic Functions

In this section we discuss a simple reformulation for bounded, periodic functions with period 𝑇

where the corresponding variable has a domain that does not align with a known, more convenient

domain of width 𝑇 . We will refer to this more convenient domain as a principal domain. A few

simple examples of such principal domains for 𝑇 = 2𝜋 are [0, 2𝜋], [−𝜋, 𝜋], and more generally

[𝜃, 𝜃 + 2𝜋] for any 𝜃 ∈ ℝ. For sine and cosine, these example principal domains capture all

possible values and so if a variable’s domain contains one of these principal domains (i.e., the

domain’s width is at least 𝑇), then the points outside a principal domain of interest are in some sense

redundant. A similar observation holds for when the variable’s original domain can be shifted to

contain a principal domain of interest. Noting this, we aim to reduce the number of binary variables

introduced in the MILP relaxation of trigonometric functions, as these binary variables will likely

have a significant impact on the overall computational time needed to solve the original MINLP.

We also show the presented reformulation gives the ability to effectively tighten multiple regions

of the original domain simultaneously.

3.6.1 Reformulation Using Principal Domains

Let 𝑓 (𝑥) be a periodic, bounded, univariate function with period 𝑇 and with 𝑥 ∈ [𝑥𝐿, 𝑥𝑈] ⊂ ℝ

where 𝑥𝑈 − 𝑥𝐿 ≥ 𝑇 . Let [𝑥̂𝐿, 𝑥̂𝑈] ⊂ ℝ be a principal domain of interest for 𝑓 where 𝑥̂𝑈 − 𝑥̂𝐿 = 𝑇 .

For brevity, we will denote [𝑥𝐿, 𝑥𝑈] and [𝑥̂𝐿, 𝑥̂𝑈] by 𝐼 and 𝐼 , respectively. We will focus our

attention to the case 𝐼 ⊆ 𝐼 . The procedure for 𝐼 ⊄ 𝐼 can be easily deduced based on the following

89

discussion and will only differ from 𝐼 ⊆ 𝐼 by considering where the endpoints of 𝐼 are relative to

the endpoints of 𝐼 . If 𝐼 = 𝐼 , clearly no additional work needs to be done. In the case 𝐼 ⊂ 𝐼 , define

𝛼𝐿 =
⌊
𝑥𝐿 − 𝑥̂𝐿

𝑇

⌋
(3.17)

𝛼𝑈 =
⌈
𝑥𝑈 − 𝑥̂𝑈

𝑇

⌉
(3.18)

where ⌊⋅⌋ and ⌈⋅⌉ denote the floor and ceil function, respectively. We note 𝛼𝐿 and 𝛼𝑈 are integers by

construction and may take on negative values. We may then reformulate 𝑦 = 𝑓 (𝑥)with 𝑥 ∈ [𝑥𝐿, 𝑥𝑈]

by

𝑦 = 𝑓 (𝑥̂) (3.19a)

𝑥̂ = 𝑥 − 𝛼𝑇 (3.19b)

𝑥̂ ∈ [𝑥̂𝐿, 𝑥̂𝑈] (3.19c)

𝑥 ∈ [𝑥𝐿, 𝑥𝑈] (3.19d)

𝛼 ∈ {𝛼𝐿,… , 𝛼𝑈} (3.19e)

We have introduced a new variable 𝑥̂ and we observe in (3.19a) the function takes in 𝑥̂ as its ar-

gument. This is valid because 𝑓 is 𝑇 -periodic and bounded and the principal domain [𝑥̂𝐿, 𝑥̂𝑈] has

width 𝑇 , so we may make use of the mapping (3.19b) to accomplish this. The trade-off for doing

this is the introduction of the integer variable 𝛼 which takes on an integer value between 𝛼𝐿 and

𝛼𝑈 . The variable 𝛼 represents the number of integer steps of width 𝑇 a point 𝑥 ∈ [𝑥𝐿, 𝑥𝑈] is from

an equivalent point 𝑥̂ ∈ [𝑥̂𝐿, 𝑥̂𝑈]. Depending on the original domain 𝐼 , this reformulation may not

be more efficient than using the original formulation. However, as we will see in Section 3.8, this

reformulation may lead to noticeable improvements in the computational time needed to solve the

original MINLP.

90

3.6.2 Impact on MILP Relaxation

In order to see how reformulation (3.19) impacts the MILP relaxations of trigonometric terms

as described in Section 3.4.1.1, consider the case where the MINLP has constraints 𝑦1 = sin(𝜃) and

𝑦2 = cos(𝜃) with 𝜃 ∈ [−4𝜋, 4𝜋]. From Section 3.5, a single partition 𝑝 may be used for relaxing

𝑦1 and 𝑦2 simultaneously. We will use the union of the base partitions of 𝑦1 and 𝑦2 as the shared

partition, which will consist of 17 points, noting that we require a point for every multiple of 𝜋
2

in

[−4𝜋, 4𝜋]. The corresponding initial MILP relaxation of 𝑦1 and 𝑦2 using this partition will then

consist of 15 binary variables and 32 non-negative continuous variables. We will choose [0, 2𝜋] to

be the principal domain of interest. For this principal domain, we may rewrite these constraints as

𝑦1 = sin(𝜃̂) (3.20a)

𝑦2 = cos(𝜃̂) (3.20b)

𝜃̂ = 𝜃 − 2𝜋𝛼 (3.20c)

𝜃̂ ∈ [0, 2𝜋] (3.20d)

𝜃 ∈ [−4𝜋, 4𝜋] (3.20e)

𝛼 ∈ {−2,−1, 0, 1} (3.20f)

From (3.20), we have changed the domain of the trigonometric functions from [−4𝜋, 4𝜋] to [0, 2𝜋].

For this new domain, we can use the smaller shared partition 𝑝 = (0, 𝜋
2
, 𝜋, 3𝜋

2
, 2𝜋), which only

has 5 points (see Figure 3.5) and so the corresponding MILP relaxation will consist of 3 binary

variables and 8 non-negative continuous variables. In exchange, we have introduced an integer

variable 𝛼 which may take on 4 possible values. Despite the number of binary variables being

reduced from 17 to 3, the introduction of 𝛼 may not lead to improved computational times. This is

because 𝛼 may require multiple branching steps when solving the MILP, which may prove to be too

computationally expensive. Even so, this example clearly illustrates the potential benefit of using

91

this reformulation.

In addition to reducing the number of variables in the resulting MILP relaxation, the presented

reformulation effectively allows the relaxation over multiple sub-domains to be tightened simulta-

neously. For example, once again consider (3.20). In the original formulation, the functions are

relaxed over the domain [−4𝜋,−2𝜋] ∪ [−2𝜋, 0] ∪ [0, 2𝜋] ∪ [2𝜋, 4𝜋]. Conversely, in the principal

domain reformulation the functions are relaxed over the single principle domain [0, 2𝜋]. Now, con-

sider the shared (effective base) partition 𝑝 = (0, 𝜋
2
, 𝜋, 3𝜋

2
, 2𝜋) of [0, 2𝜋]. If we are now to refine

𝑝 using any of the previously described refinement schemes, the refinement will be equivalent to

adding a partition point to each of the previous sub-domains simultaneously at the expense of a

single partition point and the use of the integer variable 𝛼 in (3.20). More generally, for 𝑇 -periodic

functions, adding a partition point in a principle domain is equivalent to adding a partition point

in every sub-domain of width 𝑇 that has been shifted by 𝛼𝑇 from the principal domain. In the

original formulation, adding multiple partition points to any of the sub-domains may prove to be

expensive if the optimal solution lies in a different sub-domain. However, in the principal domain

reformulation any added partition point will be beneficial as it will impact all of the sub-domains

simultaneously.

Even with the benefits of reformulating the problem to use principal domains, computational

studies need to be conducted to determine if this formulation will lead to reduced computational

times for the user-specific application at hand. The need for the integer variables 𝛼 may ultimately

lead to longer solve times despite these benefits due to the branching needed to identify the optimal

value of 𝛼.

3.6.3 Choice of Principal Domain

As previously mentioned, there are many choices for the principal domain to be used for the

reformulation in general. This is because we may always shift an interval of width 𝑇 by any amount

to produce another principal domain (assuming the function remains properly defined). The choice

of principal domain has a direct impact on the performance of the reformulation. To see this,

consider 𝑦 = sin(𝜃) with 𝜃 ∈ [−𝜋, 3𝜋]. For the principal domain [0, 2𝜋], we find 𝛼𝐿 = −1 and

92

𝛼𝑈 = 1, and so 𝛼 ∈ {−1, 0, 1}. However, for the principal domain [−𝜋, 𝜋], we find 𝛼𝐿 = 0 and

𝛼𝑈 = 1 and so 𝛼 ∈ {0, 1}. Clearly the principal domain [−𝜋, 𝜋] is superior in this case since

𝛼 only has two possible values, which will likely reduce the computational effort in solving the

resulting MILP relaxation. Therefore, care should be taken when choosing a principal domain for

reformulation.

3.6.4 Relating Principal Domain Variables

Consider two 𝑇 -periodic functions 𝑓1(𝜃1) and 𝑓2(𝜃2) with the same principal domain [𝜃̂𝐿, 𝜃̂𝑈]

and with original domains 𝐼1 = [𝜃𝐿1 , 𝜃
𝑈
1] and 𝐼2 = [𝜃𝐿2 , 𝜃

𝑈
2]. We will denote by 𝛼1 and 𝛼2 the integer

variables introduced for 𝜃1 and 𝜃2 when implementing the principal domain reformulations for 𝑓1

and 𝑓2. Suppose 𝜃1 and 𝜃2 are related by a linking constraint 𝜃2 = ℎ(𝜃1). We will assume ℎ is

continuous and bounded with lower and upper bounds 𝐾1 and 𝐾2, respectively. We will assume

𝐼1 ⊆ 𝐼2, i.e., 𝐼2 is the result of expanding 𝐼1 a finite amount. Such a case occurs when 𝜃1 and 𝜃2

both represent the accumulation of some quantity (time, angle, cost, etc.) in one stage of a process

for 𝜃1 and a subsequent stage for 𝜃2. We will also assume 𝐾1 ∈ 𝐼2 and 𝐾2 ∈ 𝐼2. In the case 𝐾1 ∉ 𝐼2

(resp. 𝐾2 ∉ 𝐼2), we will be unable to improve the lower bound (resp. upper bound) of 𝛼2. Define

𝛾𝑈 = 𝐾2 − 𝜃𝑈1 (3.21)

𝛾𝐿 = 𝜃𝐿1 −𝐾1 (3.22)

where 𝛾𝑈 (resp. 𝛾𝐿) is the maximum amount 𝜃2 can deviate from the maximum (resp. minimum) of

𝐼1. Recall in the principal domain reformulation the introduced 𝛼 integer variable represents how

many steps of width 𝑇 are needed to reach the original variable’s value from the chosen principal

domain. With this in mind, 𝛾𝑈 and 𝛾𝐿 give a tighter bound on the number of steps of width 𝑇

needed to capture all possible values of 𝜃2 with respect to any value of 𝜃1 as a result of the linking

constraint 𝜃2 = ℎ(𝜃1). More specifically, we have

−
⌈
𝛾𝐿

𝑇

⌉
≤ 𝛼2 − 𝛼1 ≤

⌈
𝛾𝑈

𝑇

⌉
(3.23)

93

As a simple example, consider 𝑦1 = sin(𝜃1) and 𝑦2 = sin(𝜃2) with 𝜃1 ∈ [−2𝜋, 2𝜋] and 𝜃2 ∈

[−4𝜋, 4𝜋]. We will suppose 𝜃1 and 𝜃2 are related by the linking constraint 𝜃2 = 𝜃1 + 𝑏 with 0 ≤
𝑏 ≤ 2𝜋. This linking constraint may represent a physical constraint on a vehicle i.e., it may not turn

more than an angle of 2𝜋 in addition to the initial angle 𝜃1 in the stage corresponding to 𝜃2. Let

[0, 2𝜋] be the chosen principal domain for both 𝜃1 and 𝜃2. Without any modifications, the principal

domain reformulations would give

𝑦1 = sin(𝜃̂1) (3.24a)

𝑦2 = sin(𝜃̂2) (3.24b)

𝜃̂1, 𝜃̂2 ∈ [0, 2𝜋] (3.24c)

𝜃1 ∈ [−2𝜋, 2𝜋] (3.24d)

𝜃2 ∈ [−4𝜋, 4𝜋] (3.24e)

𝛼1 ∈ {−1, 0} (3.24f)

𝛼2 ∈ {−2,−1, 0, 1} (3.24g)

We now note by the linking constraint 𝐾1 = −2𝜋 and 𝐾2 = 4𝜋. From this we find 𝛾𝐿 = 0 and

𝛾𝑈 = 1. Therefore, we may add the additional constraints

0 ≤ 𝛼2 − 𝛼1 ≤ 1 (3.25)

In words, (3.25) states the value of 𝜃2 is either the same number of 2𝜋 steps from [0, 2𝜋] as 𝜃1 or is

one step further in the increasing direction. For this particular example, this reduces (3.24g) to 𝛼2 ∈

{−1, 0, 1}. In general, a direct reduction like this may not always happen. However, the addition of

(3.25) introduces information to a solver when the value of 𝛼1 has been determined. For example,

suppose (3.24) is relaxed using the previously described polyhedral relaxations and is being solved

by a MILP solver using branch-and-bound. In one of the branches, we may have 𝛼1 = −1. If we

94

include the constraint (3.25), we then know −1 ≤ 𝛼2 ≤ 0 holds in this branch, halving the number

of possible values of 𝛼2 from the (3.24). As a result, if the MILP solver must branch once more,

only two values of 𝛼2 need to be considered (in this branch). This may potentially lead to reduced

computation times for solving the MILP. Attempting to take advantage of the branching decisions

when solving the MILP corresponding to the principal domain reformulation is the subject of the

discussion that immediately follows.

3.6.4.1 Branching Decisions

Consider univariate, bounded, continuous, trigonometric functions 𝑓1(𝑥1),… , 𝑓𝑚(𝑥𝑚) each with

period 𝑇 that have been relaxed using the polyhedral relaxations of Section 3.4. The following dis-

cussion will hold for general 𝑇 -periodic functions that are relaxed and solved using a branch-and-

bound procedure. Furthermore, suppose 𝑥1,… , 𝑥𝑚 are linked sequentially, i.e., 𝑥2 = ℎ1(𝑥1), 𝑥3 =

ℎ2(𝑥2),… , 𝑥𝑚 = ℎ𝑚−1(𝑥𝑚−1) where each ℎ𝑖 is bounded and continuous. As previously described,

these linking constraints result in inequalities of the form (3.23) for consecutive variables 𝛼𝑖 and

𝛼𝑖+1 when using the same principal domain. When solving the corresponding MILP with these

added inequalities, we may elect to branch on each 𝛼𝑖 (corresponding to 𝑥𝑖) in sequential order.

That is, when branching to solve the MILP we first consider 𝛼1, then 𝛼2, and so on until 𝛼𝑚. Con-

sider a branch where we have set 𝛼𝑖, 𝑖 < 𝑚, to be equal to some value. By the linking constraint

𝑥𝑖+1 = ℎ𝑖(𝑥𝑖), the resulting inequality of form (3.23) for 𝛼𝑖 and 𝛼𝑖+1 may reduce the number of

values to consider for 𝛼𝑖+1. Consequently, if we require to branch once more we may do so on 𝛼𝑖+1

and require fewer children subproblems for this branch as a result. This will ultimately reduce the

number of subproblems needed to be solved in the extreme case of an exhaustive search (by ef-

fectively avoiding generating many infeasible subproblems due to the various values of 𝛼𝑖). In the

case where additional linking constraints between non-consecutive variables are present, a similar

approach can be taken to identify a potentially stronger branching scheme. These other cases are

not discussed here.

95

3.7 Motivating Example - Markov-Dubins Path Planning Problem

The Markov-Dubins path planning problem [10] (MDPPP) is a natural extension of the classical

two-point Markov-Dubins problem [8]. The MDPPP may be formulated as follows. Consider

a vehicle travelling in the plane starting at a point 𝑝1 = (𝑥1, 𝑦1) ∈ ℝ2, passing through 𝑛 − 2

intermediate points 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖) ∈ ℝ2, 𝑖 = 2,… , 𝑛 − 1, and arriving at a final point 𝑝𝑛 = (𝑥𝑛, 𝑦𝑛) ∈

ℝ2, in the sequence (𝑝1,… , 𝑝𝑛). The vehicle may or may not have a specified initial and final heading

angle 𝜃0 ∈ [0, 2𝜋] and 𝜃𝑛 ∈ [0, 2𝜋] at 𝑝1 and 𝑝𝑛, respectively. The vehicle is a Dubins vehicle [8]

and so it has a minimum turning radius 𝜌 > 0 and travels at constant speed. The MDPPP is then to

find a path of minimum length passing through the points in the specified sequence with radius of

curvature at least 𝜌 everywhere from 𝑝1 to 𝑝𝑛.

In Dubins’ seminal work [8], it was shown the optimal path in the case where 𝑛 = 2 is of type

𝐶𝐶𝐶 or 𝐶𝑆𝐶 where 𝐶 denotes a circular arc segment (left or right turn) of radius 𝜌 and 𝑆 denotes

a straight line segment. For the circular arc segments of radius 𝜌, let a left turn (counter-clockwise)

be denoted by 𝐿 and a right turn (clockwise) be denoted by 𝑅. For 𝑛 = 2, the optimal solution is

then one of the following: 𝐿𝑅𝐿, 𝑅𝐿𝑅, 𝐿𝑆𝐿, 𝐿𝑆𝑅, 𝑅𝑆𝑅, or 𝑅𝑆𝐿. Examples of 𝑅𝑆𝑅, 𝐿𝑅𝐿, and

𝐿𝑆𝑅 are shown in Figure 3.9. Examples of 𝐿𝑆𝐿, 𝑅𝐿𝑅, and 𝑅𝑆𝐿 are obtained by reversing the

paths shown in Figure 3.9. We note that a segment in the optimal solution may have zero length.

By Bellman’s principle of optimality [57], the subpath connecting two consecutive points in the

optimal solution to the MDPPP must then also be of type 𝐶𝐶𝐶 or 𝐶𝑆𝐶 . An example solution to

the MDPPP for 𝑛 = 3 is shown in Figure 3.10.

Following the work of [10], we can formulate the MDPPP as a NLP as follows. We refer to the

subpath connecting consecutive points 𝑝𝑖 and 𝑝𝑖+1 as stage 𝑖. There are 𝑁 = 𝑛− 1 stages. We note

that the word describing the optimal subpath at stage 𝑖 is a subset of the sequence (𝐿,𝑅, 𝑆, 𝐿,𝑅).

For each stage 𝑖, define 𝜉𝑖𝑗 ≥ 0, where 𝑗 = 1,… , 5 denotes which letter (𝐿, 𝑅, or 𝑆) in the sequence

(𝐿,𝑅, 𝑆, 𝐿,𝑅) and 𝜉𝑖𝑗 represents the length of the corresponding segment type. (For example, if

the path taken at stage 𝑖 is 𝐿𝑅𝐿, then 𝜉𝑖3 = 𝜉𝑖5 = 0 and 𝜉𝑖1, 𝜉
𝑖
2, 𝜉

𝑖
4 ≥ 0.) For 𝑗 ∈ {1, 2, 4, 5}, define

𝜃𝑖𝑗 to be heading angle of the vehicle at the end of the corresponding segment (𝐿 or 𝑅) at stage 𝑖.

96

(a) RSR (b) LRL

(c) LSR

Figure 3.9: Example of optimal Dubins paths when 𝑛 = 2. Examples of the remaining optimal
words are obtained by reversing the initial and final heading directions (blue arrows).

97

Figure 3.10: Optimal solution for MDPPP with 𝑛 = 3. The path is LSL followed by LSR.

Let 𝜃𝑖0 be the heading angle at the start of stage 𝑖, i.e., the heading angle when the vehicle reaches

point 𝑝𝑖 or the initial heading angle in the case of 𝑝1. Let  = {1,… , 𝑁}. The NLP formulation

[10] (after factoring) of the MDPPP is then:

(𝑀𝐷𝑃𝑃𝑃) minimize
𝑁∑
𝑖=1

5∑
𝑗=1

𝜉𝑖𝑗 (3.26a)

s.t. 𝑥𝑖 − 𝑥𝑖+1 + 𝜌
[
−𝑤𝑖

0 + 2𝑤𝑖
1 − 2𝑤𝑖

2 + 2𝑤𝑖
4 −𝑤𝑖

5

]
+ 𝜇𝑖 = 0, ∀𝑖 ∈  (3.26b)

𝑦𝑖 − 𝑦𝑖+1 + 𝜌
[
𝑧𝑖0 − 2𝑧𝑖1 + 2𝑧𝑖2 − 2𝑧𝑖4 + 𝑧𝑖5

]
+ 𝜈𝑖 = 0, ∀𝑖 ∈  (3.26c)

𝑤𝑖
𝑗 = sin(𝜃𝑖𝑗), ∀𝑖 ∈  , 𝑗 ∈ {0, 1, 2, 4, 5} (3.26d)

𝑧𝑖𝑗 = cos(𝜃𝑖𝑗), ∀𝑖 ∈  , 𝑗 ∈ {0, 1, 2, 4, 5} (3.26e)

𝜇𝑖 = 𝜉𝑖3𝑧
𝑖
2, ∀𝑖 ∈  (3.26f)

𝜈𝑖 = 𝜉𝑖3𝑤
𝑖
2, ∀𝑖 ∈  (3.26g)

𝜃𝑖1 = 𝜃𝑖0 + 𝜌−1𝜉𝑖1, 𝜃𝑖2 = 𝜃𝑖1 − 𝜌−1𝜉𝑖2,

𝜃𝑖4 = 𝜃𝑖2 + 𝜌−1𝜉𝑖4, 𝜃𝑖5 = 𝜃𝑖4 − 𝜌−1𝜉𝑖4, ∀𝑖 ∈  (3.26h)

98

𝑤𝑖+1
0 = 𝑤𝑖

5, 𝑖 = 1,… , 𝑁 − 1 (3.26i)

𝑧𝑖+10 = 𝑧𝑖5, 𝑖 = 1,… , 𝑁 − 1 (3.26j)

𝜃𝑖0 ∈ [0, 2𝜋], 𝜃𝑖1 ∈ [0, 4𝜋]

𝜃𝑖2, 𝜃
𝑖
4 ∈ [−2𝜋, 4𝜋], 𝜃𝑖5 ∈ [−4𝜋, 4𝜋], ∀𝑖 ∈  (3.26k)

𝜃10 = 𝜃0, 𝑤𝑁
5 = sin(𝜃𝑛), 𝑧𝑁5 = cos(𝜃𝑛) (3.26l*)

𝜉𝑖𝑗 ≥ 0, ∀𝑖 ∈  , 𝑗 = 1,… , 5 (3.26m)

Objective (3.26a) says to minimize the total path length from 𝑝1 to 𝑝𝑛. Constraints (3.26b) and

(3.26c) represent the horizontal and vertical displacement, respectively, after taking a 𝐿𝑅𝑆𝐿𝑅

path [58, 10] from 𝑝𝑖 to 𝑝𝑖+1 for each stage 𝑖, where the trigonometric and bilinear terms have been

factored out with constraints (3.26d)-(3.26e) and (3.26f)-(3.26g), respectively. The left and right

turns of radius 𝜌 are characterized by constraints (3.26h), where an increase (resp. decrease) in

angle from one segment to another corresponds to a left (resp. right) turn. Constraints (3.26i)-

(3.26j) ensure the slope of the path at the end of stage 𝑖 and at the beginning of stage 𝑖+1 are equal,

i.e., continuity is maintained.

We have chosen to use this problem to illustrate the effectiveness of our proposed algorithm for

several reasons. Firstly, all nonlinearities present in (3.26) are trigonometric (sine and cosine) or

bilinear. The MDPPP provides a natural example where sharing partitions for both trigonometric

and bilinear terms is possible. The trigonometric terms are defined over closed intervals given

by (3.26k). The bilinear terms are also capable of being defined over closed intervals by using

knowledge of the optimal solutions to the MDPPP (see Section 3.7.1.1). Secondly, by the nature of

the problem the box constraints in (3.26k) are, in some sense, relatively loose. This motivates the

idea of using principal domains to replace the original domains of the trigonometric terms. Finally,

the complexity of the MDPPP will likely increase the influence of the chosen refinement schemes

and refinement strategy on the overall time to solve. This will help in comparing these refinement

schemes and refinement strategies.

99

3.7.1 Additional Constraints

We now introduce some additional constraints that can be added to the MINLP formulation of

the MDPPP in order to reduce computation time. These are included to ensure the computational

times stay within a reasonable range.

3.7.1.1 Bounding Arc Lengths

In order to apply the MILP relaxations for the trigonometric terms (3.26d)-(3.26e) and the bilin-

ear terms (3.26f)-(3.26g), we require the arc lengths of the straight line segments, 𝜉𝑖3, be bounded

above (since we require a closed interval). Consider two consecutive points 𝑝𝑖 and 𝑝𝑖+1 in the

MDPPP. It can be shown that in an optimal solution of the MDPPP we must have

𝜉𝑖3 ≤ ‖𝑝𝑖 − 𝑝𝑖+1‖ + 4𝜌, ∀𝑖 ∈  (3.27)

where ‖ ⋅ ‖ denotes the Euclidean norm. We may also bound the circular arc segments by noting

that taking more than a full circle in any circular segment will never be optimal. Therefore,

𝜉𝑖𝑗 ≤ 2𝜋𝜌, ∀𝑖 ∈  , 𝑗 ∈ {1, 2, 4, 5} (3.28)

3.7.1.2 Restricting the Number of Segments

As previously mentioned, the sub-path for two consecutive points in the optimal solution to the

MDPPP must be of type 𝐶𝐶𝐶 or 𝐶𝑆𝐶 . In the current formulation, we are not strictly requiring at

most three segments be used at each stage. This is because the optimal solution will automatically

satisfy this property. In order to reduce the computation time needed to solve the MDPPP, we

can add constraints enforcing at most three segments are used at each stage. For each stage 𝑖 and

segment 𝑗, let 𝛽 𝑖
𝑗 be a binary variable where 𝛽 𝑖

𝑗 = 1 if segment 𝑗 is used in stage 𝑖 and 𝛽 𝑖
𝑗 = 0

otherwise. We can then add the constraints

5∑
𝑗=1

𝛽 𝑖
𝑗 ≤ 3, ∀𝑖 ∈  (3.29)

100

and replace the upper bounds (3.27) and (3.28) by

𝜉𝑖𝑗 ≤ 𝑀 𝑖
𝑗𝛽

𝑖
𝑗 , ∀𝑖 ∈  , 𝑗 = 1,… , 5 (3.30)

where the constant 𝑀 𝑖
𝑗 represents an upper bound for the arc length 𝜉𝑖𝑗 as described in (3.27) and

(3.28). If tighter bounds are available, they could be easily substituted into (3.30). By including

constraints (3.29) and (3.30), the formulation for the MDPPP becomes an MINLP.

3.7.1.3 CSC Conditions

We next take advantage of two results that limit the type of sub-paths in an optimal solution of

the MDPPP for two or more consecutive points.

Consider two points 𝑝𝑖 and 𝑝𝑖+1 and suppose the Euclidean distance between the two points is

at least 4𝜌. It can be shown the optimal Dubins path from 𝑝𝑖 and 𝑝𝑖+1 cannot be of type 𝐶𝐶𝐶 .

Suppose points 𝑝𝑖 and 𝑝𝑖+1 in the MDPPP, corresponding to stage 𝑖, are at least 4𝜌 from each other.

We may then introduce the following constraints.

𝛽 𝑖
1 + 𝛽 𝑖

2 ≤ 1 (3.31)

𝛽 𝑖
3 = 1 (3.32)

𝛽 𝑖
4 + 𝛽 𝑖

5 ≤ 1 (3.33)

Recall 𝛽 𝑖
1, 𝛽

𝑖
4 and 𝛽 𝑖

2, 𝛽
𝑖
5 correspond to a left turn and a right turn, respectively, in the sequence

(𝐿,𝑅, 𝑆, 𝐿,𝑅). Similarly, 𝛽 𝑖
3 corresponds to a straight line segment. Constraints (3.31) and (3.33)

then simply says at most two turns are taken between points 𝑝𝑖 and 𝑝𝑖+1. Additionally, constraint

(3.32) requires a straight line segment be used, though it may be a degenerate case with zero length

(i.e., we still allow for 𝜉𝑖3 = 0).

Constraints (3.31)-(3.33) impose additional constraints for a single stage due to optimality con-

ditions from the physics of the problem. We can go further by also considering consecutive stages.

In [10], the following result was derived using optimal control theory for the MDPPP. Consider two

101

consecutive stages 𝑖 and 𝑖+ 1 and suppose the Euclidean distance between consecutive points is at

least 4𝜌 for both stages. Therefore, each stages will only admit a 𝐶𝑆𝐶 path in the optimal solution

to the MDPPP. Under these conditions, we can make use of two results in [10] (see Theorem 4 and

Proposition 2 therein) to get the following corollary.

Corollary 3.7.1. Suppose two consecutive stages 𝑖 and 𝑖 + 1 are such that both only admit 𝐶𝑆𝐶

paths in the optimal solution to the MDPPP. Then the type (𝐿 or 𝑅) of the final turn in stage 𝑖 must

be the same type (𝐿 or 𝑅) as the first turn in stage 𝑖 + 1. Furthermore, the length of the final turn

in stage 𝑖 and the length of the first turn in stage 𝑖+ 1 must be equal. Additionally, the first turn (𝐿

or 𝑅) in stage 𝑖 + 1 has length less than 𝜋𝜌.

From Corollary 3.7.1, we get the following additional constraints for consecutive stages admit-

ting only 𝐶𝑆𝐶 paths

𝛽 𝑖
4 = 𝛽 𝑖+1

1 (3.34)

𝛽 𝑖
5 = 𝛽 𝑖+1

2 (3.35)

𝜉𝑖4 = 𝜉𝑖+11 (3.36)

𝜉𝑖5 = 𝜉𝑖+12 (3.37)

𝜉𝑖+11 + 𝜉𝑖+12 ≤ 𝜋𝜌 (3.38)

Constraints (3.31)-(3.38) can be added to the formulation for the MDPPP by a pre-processing step

before solving. We note that constraint (3.38) could have also been written as

𝜉𝑖4 + 𝜉𝑖5 ≤ 𝜋𝜌 (3.39)

by the first statement in Corollary 3.7.1.

3.8 Computational Results

In this section we present computational results related to the MDPPP presented in Section 3.7.

102

3.8.1 Problem Generation

Each instance consists of 𝑛 points ranging from 𝑛 = 2 to 𝑛 = 8 in a 10×10 grid. For each value

of 𝑛, ten instances were generated by randomly placing the 𝑛 points with the additional requirement

that consecutive points are separated by a Euclidean distance of at least 4𝜌 where 𝜌 = 1 for all

instances. This additional requirement was enforced to reduce the overall computation time needed

for all instances by making use of the additional constraints listed in Section 3.7.1. The initial and

final heading angles were randomly chosen from [0, 2𝜋] for each instance.

3.8.2 Implementation Details

All instances were solved on a 64-bit Windows computer with an AMD Ryzen 7 2700 processor

at 3.2 GHz with 16 GB of RAM (2400 MHz) using Julia v1.6.3 [21]. All MILPs were modelled

using the JuMP (v1.2.0) modelling package [22] for mathematical programs in Julia. All MILPs

were solved using CPLEX 20.1 with default settings. A solution was taken to be optimal when the

relative gap was under 1 percent and all instances were given a 1 hour time limit. Warm-starting

was used for all instances to improve computational time. All variables except for the binary and

non-negative continuous variables involved in the polyhedral relaxations were warm-started at each

iteration of the algorithm. Shared partitions were used whenever possible.

In order to tighten the bounds on the heading angles and arc lengths in the MINLP model of

the MDPPP, we used feasibility-based bounds tightening (FBBT) [59]. In general, FBBT may be

used multiple times (potentially an infinite number of times), successively tightening the bounds for

some or all variables while approaching a fixed point. However, for this particular MINLP it was

found that FBBT only needed to be used once before reaching a fixed point. We note that this does

not mean the bounds are as tight as possible, but rather the bounds could no longer be tightened

using feasibility information.

As mentioned in Section 3.2, we require a procedure for generating a feasible solution given

a solution to the MILP relaxation at each iteration of the algorithm. To do this, from the MILP

solution we take the heading angle at the start of each stage (i.e., 𝜃𝑖0 for 𝑖 = 1,… , 𝑁) and the

103

final heading angle and compute the shortest Dubins path between these points using these heading

angles. This provides a feasible solution that can be used to update the best-known upper bound.

In general, this procedure will not always produce a tighter upper bound at each iteration.

3.8.3 Results

3.8.3.1 Original Formulation vs. Principal Domain Reformulation

We first compare results for the original formulation (3.26) with results for the MDPPP where

the trigonometric terms and angle bounds have been replaced using the principal domain refor-

mulation discussed in Section 3.6.1. For each angle, a principle domain of [0, 2𝜋] was chosen for

simplicity. The results for the original MDPPP formulation and the reformulation using principal

domains are shown in Table 3.1 and Table 3.2, respectively. The first column ‘instance’ has entries

of the form 𝑛 − 𝑞 where 𝑛 is the number of points and 𝑞 is the instance number for that value of 𝑛.

Column ‘t’ indicates the time (in seconds) for the algorithm to terminate (either due to a relative

gap below 1% or the time limit being exceeded). Entries ‘**’ indicate an instance exceeded the

1 hour time limit. Column ‘iter.’ indicates the number of refinement iterations performed by the

algorithm. Column ‘bin’ indicates the number of binary variables added to the formulation due to

refinement. Equivalently, entries in the ‘bin’ column correspond to the number of partition points

added due to refinement. The top-most row in each table lists which refinement scheme (bisection,

direct, non-uniform two-point, non-uniform three-point) was used for the instances. For brevity,

we will refer to the non-uniform two-point and non-uniform three-point refinement schemes with

NU2 and NU3, respectively. For both Table 3.1 and Table 3.2, the complete refinement strategy

was used (i.e., all partitions were refined at each refinement iteration of the algorithm).

In Table 3.1, it can be seen most instances are solved within the 1 hour time limit with the ex-

ception of instances 7-2 and 7-7 using NU3. We also see the instances with 𝑛 = 7 take significantly

longer than the instances with 𝑛 = 6 using any of the proposed refinement schemes. Simultane-

ously, the 𝑛 = 7 instances and 𝑛 = 6 instances appear to take roughly the same number of refinement

iterations to reach the desired relative gap. It also appears the number of added binary variables is

104

not the primary bottleneck, as the 𝑛 = 6 and 𝑛 = 7 instances have comparable values. This seems to

suggest the formulation itself may be causing the sudden drastic increase in computational time. In

particular, it is likely that solving the MILP relaxation of the original formulation (3.26) is difficult

due to ambiguity arising from not taking into account the periodic nature of the trigonometric terms

over their corresponding angle domains. As 𝑛 increases, the influence of this ambiguity increases,

leading to a significant jump in the computational effort required. We also note in Table 3.1 the

NU2 refinement scheme appears to perform most consistently as 𝑛 increases.

In Table 3.2, it can be seen all instances up to 𝑛 = 7 are solved within the 1 hour time limit.

Additionally, we see the increase in computational time from 𝑛 = 6 to 𝑛 = 7 is more tame than

in Table 3.1. This is especially true when using the NU2 or NU3 refinement schemes. As was the

case in Table 3.1, the number of refinement iterations and the number of added binary variables are

comparable for the 𝑛 = 6 and 𝑛 = 7 instances. This then suggests the primary contributing factor in

limiting the jump in computational effort required is the reformulation using principal domains. In

doing so, we have simplified the relationship between angles in consecutive stages. We remark that

the computational times in Table 3.2 are dependent on the principal domain chosen for each angle

and so choosing a different set of principal domains may lead to better times. For the sake of this

article, Table 3.2 is sufficient to show advantage of using principal domains in place of large angle

domains. In Table 3.2, we see instances with 𝑛 = 8 are significantly more difficult than the 𝑛 = 7

instances. Each refinement scheme for 𝑛 = 8 has one or more instances exceeding the 1 hour time

limit. We also see of the four proposed refinement schemes, NU2 performed the best for 𝑛 = 8.

105

Table 3.1: Original formulation results.

Bisection Direct NU2 NU3
instance t iter bin t iter. bin t iter. bin t iter. bin

5–1 39.09 4 89 45.65 3 67 24.74 2 92 54.18 2 137
5–2 85.4 5 115 76.59 4 86 139.88 4 183 93.58 3 206
5–3 35.13 4 91 42.37 4 85 62.43 3 138 60.06 3 203
5–4 140.27 6 134 104.27 5 102 85.26 4 173 168.74 4 254
5–5 56.74 5 110 60.9 4 85 66.27 3 132 77.51 3 195
5–6 97.83 6 110 66.77 4 75 74.34 3 116 113.93 3 172
5–7 38.72 5 108 39.12 4 86 29.6 3 132 66.09 3 198
5–8 50.78 4 89 43.51 4 86 37.44 3 135 86.52 3 200
5–9 44.68 4 91 57.72 3 64 69.1 3 134 49.43 3 198

5–10 76.82 5 107 51.38 4 78 76.73 3 120 98.62 3 188
– – – – – – – – – – – – –

6–1 134.86 5 142 101.05 4 104 98.04 3 168 135.99 3 244
6–2 214.27 5 141 196.11 4 103 181.13 3 165 252.54 3 248
6–3 207.58 4 114 142.98 3 81 178.67 3 173 256.54 3 249
6–4 468.18 6 173 424.05 5 132 425.33 3 174 416.8 3 256
6–5 491.81 7 197 414.65 5 136 267.73 3 168 190.72 3 243
6–6 303.83 6 160 383.62 6 141 346.78 4 212 178.66 3 227
6–7 146.63 5 131 160.59 4 94 187.29 3 152 190.62 3 223
6–8 460.59 6 174 736.12 5 140 313.04 4 232 220.05 3 260
6–9 354.27 6 166 262.23 5 133 435.09 4 219 271.96 4 326

6–10 192.72 5 135 262.55 4 95 227.03 3 162 127.68 2 150
– – – – – – – – – – – – –

7–1 204.76 4 137 551.01 4 133 317.56 3 204 345.17 2 201
7–2 669.32 5 166 1974.86 5 157 572.96 3 200 ** 1 102
7–3 516.44 4 140 781.15 4 135 1781.79 3 210 803.68 3 309
7–4 963.81 4 134 158.51 4 130 1047.18 3 199 1849.16 3 292
7–5 2072.35 4 136 2476.62 4 136 1270.12 3 204 2816.3 3 305
7–6 1229.08 6 205 2953.63 5 164 1518.99 3 204 2655.86 3 302
7–7 2500.93 5 173 3307.15 5 162 2604.86 4 276 ** 2 205
7–8 506.25 5 172 638.5 4 129 566.41 3 210 1282.62 3 311
7–9 1317.84 6 200 515.22 4 130 645.33 3 188 490.54 3 291

7–10 904.65 5 171 2296.51 5 149 607.45 3 202 290.43 2 197

106

Table 3.2: Principal domain results.

Bisection Direct NU2 NU3
instance t iter bin t iter. bin t iter. bin t iter. bin

6–1 56.24 5 142 28.5 3 80 31.4 3 163 29.36 2 161
6–2 169.22 5 141 76.79 3 83 74.58 3 166 46.82 2 162
6–3 101.59 4 116 76.76 3 85 63.3 3 174 53.1 2 174
6–4 126.45 5 145 155.6 4 114 80.92 3 174 181.87 3 260
6–5 214.7 7 194 134.05 5 120 117.5 4 207 90.14 3 232
6–6 99.11 6 171 95.22 5 126 49.29 3 168 85.19 3 245
6–7 82.16 5 143 32.86 3 81 53.2 3 174 39.98 2 171
6–8 131.67 5 145 173.92 5 130 172.37 4 232 210.71 4 339
6–9 175.75 6 174 75.79 4 106 65.78 3 174 204.48 3 253

6–10 145.21 5 145 95.89 4 111 58.22 3 174 79.63 3 253
– – – – – – – – – – – – –

7–1 2205.12 5 202 223.02 4 133 267.15 3 206 72.85 2 204
7–2 345.13 5 175 284.44 4 122 271.33 3 208 385.73 3 302
7–3 308.31 4 140 224.76 4 134 86.68 2 140 101.16 2 210
7–4 438.38 4 140 179.29 3 102 366.9 3 210 194.21 2 207
7–5 1279.65 4 140 1567.77 4 131 322.18 2 140 293.36 2 210
7–6 719.48 6 207 1012.66 4 129 1155.93 3 198 609.64 2 201
7–7 507.65 4 140 813.75 4 132 323.24 3 209 824.05 3 306
7–8 134.71 5 175 285.71 4 126 122.32 3 207 313.16 3 299
7–9 198.46 4 139 198.32 4 133 184.81 3 206 142.63 2 203

7–10 303.46 5 169 811.68 5 138 168.97 3 198 726.83 3 289
– – – – – – – – – – – – –

8–1 2207.29 5 202 ** 3 115 1405.03 3 240 1010.79 3 351
8–2 805.63 5 205 933.15 3 116 795.59 3 246 ** 3 364
8–3 664.52 5 202 1209.03 4 143 649.35 3 240 1026.15 3 350
8–4 977.74 5 199 442.52 3 113 895.21 3 232 227.54 2 228
8–5 2666.26 6 241 1997.71 4 151 3530.79 4 318 ** 2 231
8–6 ** 3 122 ** 3 118 ** 3 244 ** 2 243
8–7 963.75 4 162 1204.89 3 120 928.82 3 242 629.7 2 240
8–8 ** 6 245 3113.63 4 152 2417.68 4 324 2284.58 3 355
8–9 2965.78 5 199 2305.21 4 155 1157.14 3 246 857.99 2 243

8–10 795.74 5 202 2614.42 4 143 1849.28 3 236 656.73 3 333

3.8.3.2 Complete Refinement Strategy vs. k-Worst Refinement Strategy

We next compare the complete refinement strategy with the 𝑘-worst refinement strategy. Due to

the results in Table 3.1 and Table 3.2, we use the principal domain reformulation for all subsequent

instances. For each refinement scheme, we vary the value of 𝑘 for the 𝑘-worst refinement strategy.

107

In particular, we take 𝑘 to be 25%, 50%, and 100% of all available partitions for each instance

(rounding up when necessary). Note that the 100% case corresponds to the complete refinement

strategy. The results for the bisection, direct, NU2, and NU3 refinement schemes are shown in

Tables 3.3-3.6, respectively. For each refinement scheme, we restrict our attention to 𝑛 ≥ 6, since

the influence of the refinement strategy for smaller 𝑛 is minimal.

In Table 3.3, we see all three refinement strategies are relatively equal in overall performance

when using bisection, with 𝑘 = 25% performing slightly worse on average when compared to the

other strategies. It is not surprising that 𝑘 = 25% performs slightly worse, since it can be seen in

Table 3.3 it typically requires more refinement iterations than the other strategies.

In Table 3.4, we see when using the direct refinement scheme the 𝑘-worst strategy with 𝑘 =

50% outperforms the other strategies. Additionally, we see when 𝑘 = 50% outperforms the other

strategies, it tends to do so by a fair margin. We once again see 𝑘 = 25% typically requires more

refinement iterations overall, which is a major contributor to the overall solve time. We also see

𝑘 = 50% and the complete refinement strategy have comparable refinement iterations for nearly

all instances in Table 3.4. In the few instances for 𝑛 = 8 where the complete refinement strategy

outperforms 𝑘 = 50%, we see the complete refinement strategy required the same or less refinement

iterations than 𝑘 = 50%.

In Table 3.5, we see when using the non-uniform two-point refinement scheme the 𝑘-worst

strategy with 𝑘 = 50% once again outperforms the other strategies. As was the case with the

direct refinement scheme, when 𝑘 = 50% outperforms the other strategies it tends to do so by a

noticeable margin. This is especially clear in instances 8-2, 8-3, 8-5, 8-8, 8-9, and 8-10 in Table

3.5. As before, we see 𝑘 = 25% typically requires more refinement iterations than 𝑘 = 50% or the

complete refinement strategy. For this particular refinement scheme, we see for 𝑛 = 8 the 𝑘 = 25%

strategy performs worse than 𝑘 = 50% in all solved instances. This suggests as 𝑛 increases, these

additional refinement iterations require too much time to justify the benefit of reducing the number

of additional binary variables. We also see the difference in the number of added binary variables

between 𝑘 = 25% and 𝑘 = 50% is not especially large in the 𝑛 = 8 instances. Conversely, for

108

smaller 𝑛 the 𝑘 = 25% strategy is able to reach a 1 percent relative gap with significantly less added

binary variables. This is especially noticeable for 𝑛 = 7 in Table 3.5.

In Table 3.6, we see when using the non-uniform three-point refinement scheme we have once

again 𝑘 = 50% outperforming the other strategies overall. We also again see 𝑘 = 25% requires more

refinement iterations than the other strategies on average. It’s interesting to note that the complete

refinement strategy performed noticeably worse than 𝑘 = 25% and 𝑘 = 50%, with three of the 𝑛 = 8

instances exceeding the 1 hour time limit. Despite this, the number of binary variables added in the

complete refinement strategy is comparable to the other strategies, suggesting the binary variables

themselves are not the primary bottleneck (with a potential exception for instance 8-2).

109

Table 3.3: k-Worst Results - Bisection.

k = 25 % k = 50 % k = 100 %
instance t iter. bin t iter. bin t iter. bin

5–1 19.2 4 48 21.98 4 72 20.73 4 89
5–2 35.89 6 72 30.5 5 90 39.64 5 115
5–3 27.47 6 72 25.49 5 90 15.84 4 92
5–4 39.54 6 72 33.59 5 90 43.69 5 110
5–5 20.31 6 72 21.02 5 90 33.49 5 115
5–6 44.22 7 84 33.7 6 107 39.67 6 128
5–7 36.17 7 84 16.77 4 72 16.17 4 89
5–8 24.09 5 60 28.49 5 90 21.88 4 92
5–9 32.96 6 72 15.88 4 72 20.22 4 87

5–10 29.8 6 71 24.95 5 90 32.16 5 114
– – – – – – – – – –

6–1 36.95 5 75 55.15 5 110 56.24 5 142
6–2 169.33 6 90 154.57 5 110 169.22 5 141
6–3 104.63 6 90 84.3 4 88 101.59 4 116
6–4 137.67 7 105 123 6 132 126.45 5 145
6–5 137.7 8 119 186.52 7 152 214.7 7 194
6–6 107.04 7 105 104.82 6 132 99.11 6 171
6–7 61.79 6 90 49.15 5 110 82.16 5 143
6–8 163.79 7 105 88.28 5 110 131.67 5 145
6–9 167.17 7 104 153.99 6 132 175.75 6 174

6–10 86.41 6 90 77.08 5 110 145.21 5 145
– – – – – – – – – –

7–1 489.04 7 126 156.76 5 135 2205.12 5 202
7–2 327.07 6 108 285.75 5 135 345.13 5 175
7–3 273.98 5 90 104.41 4 108 308.31 4 140
7–4 366.01 6 108 363.75 4 108 438.38 4 140
7–5 524.14 5 90 703.43 4 108 1279.65 4 140
7–6 725.79 7 126 615.79 6 162 719.48 6 207
7–7 894.76 7 126 560.14 5 135 507.65 4 140
7–8 236.71 6 108 183.4 5 135 134.71 5 175
7–9 175.73 6 108 208.67 5 135 198.46 4 139

7–10 877.64 6 108 164.29 5 135 303.46 5 169
– – – – – – – – – –

8–1 1360.66 6 126 1142.86 5 155 2207.29 5 202
8–2 3362.94 8 168 1111.02 5 155 805.63 5 205
8–3 1128.49 7 147 451.66 5 155 664.52 5 202
8–4 500.09 6 126 1041.69 5 155 977.74 5 199
8–5 2789.1 7 147 ** 6 186 2666.26 6 241
8–6 ** 5 105 ** 4 124 ** 3 122

110

instance t iter. bin t iter. bin t iter. bin
8–7 1311.64 6 126 643.22 4 124 963.75 4 162
8–8 ** 6 126 2464.24 6 185 ** 6 245
8–9 ** 5 105 2231.56 5 155 2965.78 5 199

8–10 1862.22 7 147 1219.08 6 186 795.74 5 202

111

Table 3.4: k-Worst Results - Direct.

k = 25 % k = 50 % k = 100 %
instance t iter bin t iter. bin t iter. bin

5–1 12.63 3 36 8.77 2 36 9.32 2 45
5–2 29.01 5 59 19.04 4 72 20.06 3 69
5–3 36.42 5 59 23.54 4 72 30.73 4 84
5–4 47.21 6 72 36.78 5 89 32.76 4 82
5–5 18.67 5 60 17.6 4 72 23.99 4 87
5–6 22.76 4 48 38.04 5 86 32.6 5 89
5–7 14.46 4 47 10.03 3 54 11.31 3 66
5–8 26.07 5 58 19.84 4 70 29.75 4 88
5–9 27.39 5 60 24.05 4 72 31.56 4 88
5–10 16.26 4 46 12.53 3 54 13.99 3 67

– – – – – – – – – –
6–1 23.77 4 59 20.14 3 66 28.5 3 80
6–2 69.33 4 60 43.59 3 66 76.79 3 83
6–3 60.39 4 60 61.32 3 66 76.76 3 85
6–4 144.5 6 90 122.11 4 88 155.6 4 114
6–5 116.64 6 90 134.66 5 105 134.05 5 120
6–6 118.66 6 90 81.78 5 107 95.22 5 126
6–7 45.29 4 60 63.56 4 87 32.86 3 81
6–8 175.22 6 90 137.99 5 110 173.92 5 130
6–9 121.35 5 75 80.47 4 88 75.79 4 106
6–10 64.95 4 60 69.62 4 88 95.89 4 111

– – – – – – – – – –
7–1 286.42 5 89 176.84 4 108 223.02 4 133
7–2 318.95 5 88 450.93 4 107 284.44 4 122
7–3 169.5 5 88 127.34 4 108 224.76 4 134
7–4 394.93 5 90 240.47 4 108 179.29 3 102
7–5 443.71 4 72 816.89 4 108 1567.77 4 131
7–6 322.42 5 90 576.72 4 108 1012.66 4 129
7–7 308.3 5 90 1246.79 5 134 813.75 4 132
7–8 589.12 5 90 216.34 4 108 285.71 4 126
7–9 257.31 5 90 220.79 4 108 198.32 4 133
7–10 591.49 5 88 617.41 4 105 811.68 5 138

– – – – – – – – – –
8–1 2598.56 5 104 1941.35 4 124 ** 3 115
8–2 2041.39 5 105 958.85 4 124 933.15 3 116
8–3 648.06 5 104 476.91 4 124 1209.03 4 143
8–4 516.85 4 84 289.67 3 93 442.52 3 113
8–5 2533.47 6 125 3598.72 5 155 1997.71 4 151
8–6 ** 4 84 3598.84 4 122 ** 3 118

112

instance t iter bin t iter. bin t iter. bin
8–7 1342.65 5 102 928.19 3 93 1204.89 3 120
8–8 3530.37 6 125 1885.85 4 124 3113.63 4 152
8–9 2040.53 5 104 2278.59 4 122 2305.21 4 155
8–10 953.98 5 104 933.37 4 124 2614.42 4 143

113

Table 3.5: k-Worst Results - Non-Uniform Two-Point.

k = 25 % k = 50 % k = 100 %
instance t iter bin t iter. bin t iter. bin

5–1 12.59 2 48 13.89 2 72 11.48 2 92
5–2 31.44 4 96 21.21 3 108 21.13 3 138
5–3 15 3 72 16.67 3 108 17.66 3 138
5–4 25.94 4 96 22.45 3 108 22.92 3 134
5–5 21.67 4 96 14.47 3 108 32.69 3 138
5–6 28.01 4 96 22.33 3 106 22.59 3 121
5–7 12.48 3 72 18.47 3 108 18.44 3 138
5–8 18.98 3 72 24.27 3 108 26.37 3 138
5–9 12.62 3 72 28.23 3 108 26.23 3 132
5–10 21.29 4 95 20.83 3 108 27.62 3 137

– – – – – – – – – –
6–1 27.96 3 90 44.23 3 132 31.4 3 163
6–2 94.75 4 120 53.53 3 132 74.58 3 166
6–3 37.53 3 90 54.23 3 132 63.3 3 174
6–4 70.72 4 120 53.86 3 132 80.92 3 174
6–5 113.94 5 150 87.87 4 172 117.5 4 207
6–6 95.63 5 150 41.41 3 132 49.29 3 168
6–7 39.58 3 90 52.22 3 132 53.2 3 174
6–8 139.03 5 150 137.15 4 176 172.37 4 232
6–9 97.01 4 120 104.16 3 132 65.78 3 174
6–10 86.08 4 120 46.87 3 132 58.22 3 174

– – – – – – – – – –
7–1 112.46 4 144 97.65 3 162 267.15 3 206
7–2 284.79 3 108 215.19 3 162 271.33 3 208
7–3 140.39 3 108 133.99 3 162 86.68 2 140
7–4 386.93 4 144 170.34 3 162 366.9 3 210
7–5 492.88 3 108 304.11 2 108 322.18 2 140
7–6 573.55 3 108 640.53 3 162 1155.93 3 198
7–7 539.99 4 144 405.53 3 162 323.24 3 209
7–8 80.34 3 108 329.16 3 162 122.32 3 207
7–9 251.79 3 108 181.09 3 162 184.81 3 206
7–10 124.6 3 108 180.97 3 162 168.97 3 198

– – – – – – – – – –
8–1 1789.28 4 168 297.18 3 186 1405.03 3 240

114

instance t iter bin t iter. bin t iter. bin
8–2 2985.97 4 168 1248.97 3 186 795.59 3 246
8–3 571.06 4 168 364.35 3 186 649.35 3 240
8–4 743.2 3 126 392.27 3 186 895.21 3 232
8–5 1599.23 5 210 1209.47 3 186 3530.79 4 318
8–6 ** 4 168 ** 3 186 ** 3 244
8–7 1247.97 4 168 990.37 3 186 928.82 3 242
8–8 2555.22 5 208 1798.73 3 184 2417.68 4 324
8–9 2305.63 3 126 834.69 3 186 1157.14 3 246
8–10 467.95 4 168 297.22 3 186 1849.28 3 236

115

Table 3.6: k-Worst Results - Non-Uniform Three-Point.

k = 25 % k = 50 % k = 100 %
instance t iter bin t iter. bin t iter. bin

5–1 11.37 2 72 13.63 2 108 15.82 2 137
5–2 46.64 4 144 37.51 3 162 42.94 3 206
5–3 25.23 3 108 32.31 3 162 27.77 3 203
5–4 29.38 3 108 37.61 3 160 43.27 3 184
5–5 22.36 3 108 23.87 3 162 27.44 3 199
5–6 25.78 3 108 28.55 3 159 54.38 3 183
5–7 19.27 3 108 12.43 2 108 15.31 2 135
5–8 26.54 3 108 33.98 3 162 40.94 3 199
5–9 28.74 3 108 29.12 3 160 30.51 3 191
5–10 18.35 3 108 14.69 2 108 16.65 2 138

– – – – – – – – – –
6–1 29.35 3 135 21.98 2 132 29.36 2 161
6–2 150.83 3 135 49.14 2 132 46.82 2 162
6–3 57.19 3 135 41.69 2 132 53.1 2 174
6–4 64.04 3 132 94.9 3 198 181.87 3 260
6–5 122.03 4 180 74.03 3 192 90.14 3 232
6–6 104.77 4 180 61.07 3 195 85.19 3 245
6–7 66.39 3 135 41.04 2 132 39.98 2 171
6–8 127.62 4 180 159.39 4 264 210.71 4 339
6–9 159.62 4 180 110.59 3 198 204.48 3 253
6–10 67.13 3 135 62.12 3 198 79.63 3 253

– – – – – – – – – –
7–1 137.29 3 162 204.74 3 243 72.85 2 204
7–2 312.51 3 160 333.99 3 243 385.73 3 302
7–3 151.28 3 162 186.06 3 243 101.16 2 210
7–4 220.49 3 162 561.82 3 243 194.21 2 207
7–5 1031.92 4 216 526.54 2 162 293.36 2 210
7–6 1265.01 3 162 409.81 2 162 609.64 2 201
7–7 875.97 4 216 533.14 3 243 824.05 3 306
7–8 151.35 3 162 340.35 3 243 313.16 3 299
7–9 124.13 2 108 106.54 2 162 142.63 2 203
7–10 324.76 3 162 521.24 3 243 726.83 3 289

– – – – – – – – – –
8–1 1121.86 3 189 1101.29 3 278 1010.79 3 351

116

instance t iter bin t iter. bin t iter. bin
8–2 2004.67 4 252 1236.84 3 278 ** 3 364
8–3 1012.12 3 189 396.73 3 279 1026.15 3 350
8–4 292.09 3 189 109.86 2 186 227.54 2 228
8–5 2862.5 4 252 1583.59 3 279 ** 2 231
8–6 3433.67 4 252 ** 2 186 ** 2 243
8–7 1187.75 3 189 385.81 2 186 629.7 2 240
8–8 ** 3 189 1980.69 3 279 2284.58 3 355
8–9 2090.45 3 189 2433.41 2 186 857.99 2 243
8–10 798.72 4 252 1036.06 3 279 656.73 3 333

117

4. CONCLUDING REMARKS AND FUTURE WORK

This dissertation considered the assisted shortest path problem or ASPP. The ASPP consists of

a primary agent traveling in an impeded environment, represented by a graph, to a destination in

minimum cost while being assisted by a secondary, support agent. Two restricted variants of this

problem were first considered and a method for each restricted variation was provided. Afterwards,

a generalized form of this problem was formulated and an exact algorithm for this generalized form

was presented for the case of an unyielding support. Noting the problem definition requires values

for the travel costs between points in the environment, a procedure was presented to solve factorable

mixed-integer non-linear programs with trigonometric terms and this method was applied to solving

the Markov-Dubins path planning problem, which can be used to determine these desired travel

costs for the graph defining the ASPP.

The ASPP as presented in this dissertation can be further extended to capture an even larger

class of problems that may be used for many real-world applications. By extending the ASPP to

consider multiple primary agents and multiple support agents, more complex real-world behavior

can be captured. Furthermore, the interaction between the primary agent(s) and secondary agent(s)

need not be limited to the servicing interaction as described in this dissertation. For example, there

may be scenarios where multiple agents must be present at the same vertex before being permitted

to take an edge, such as in the case of box-pushing where multiple agents work together to move

a large, physical obstruction in the environment that would otherwise be impossible to move using

a single agent. If multiple support agents are available, the capabilities of the support agents may

differ amongst themselves and this may change how each individual support agent is able to interact

with a primary agent. These extensions and many others are worth further investigation for their

utility.

118

REFERENCES

[1] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of cooperative, au-

tonomous vehicles in warehouses,” AI magazine, vol. 29, no. 1, pp. 9–9, 2008.

[2] N. M. Kou, C. Peng, H. Ma, T. S. Kumar, and S. Koenig, “Idle time optimization for target

assignment and path finding in sortation centers,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 34, pp. 9925–9932, 2020.

[3] J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. S. Kumar, and S. Koenig, “Lifelong multi-agent

path finding in large-scale warehouses,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 35, pp. 11272–11281, 2021.

[4] B. Doroodgar, M. Ficocelli, B. Mobedi, and G. Nejat, “The search for survivors: Cooperative

human-robot interaction in search and rescue environments using semi-autonomous robots,”

in 2010 IEEE International Conference on Robotics and Automation, pp. 2858–2863, IEEE,

2010.

[5] K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse, “The vehicle routing problem: State of

the art classification and review,” Computers & industrial engineering, vol. 99, pp. 300–313,

2016.

[6] T. K. Ralphs, L. Kopman, W. R. Pulleyblank, and L. E. Trotter, “On the capacitated vehicle

routing problem,” Mathematical programming, vol. 94, pp. 343–359, 2003.

[7] H. C. Lau, M. Sim, and K. M. Teo, “Vehicle routing problem with time windows and a limited

number of vehicles,” European journal of operational research, vol. 148, no. 3, pp. 559–569,

2003.

[8] L. E. Dubins, “On curves of minimal length with a constraint on average curvature, and with

prescribed initial and terminal positions and tangents,” American Journal of mathematics,

vol. 79, no. 3, pp. 497–516, 1957.

119

[9] Z. Chen and T. Shima, “Shortest dubins paths through three points,” Automatica, vol. 105,

pp. 368–375, 2019.

[10] C. Y. Kaya, “Markov–dubins interpolating curves,” Computational Optimization and Appli-

cations, vol. 73, no. 2, pp. 647–677, 2019.

[11] Y. Lin and L. Schrage, “The global solver in the LINDO api,” Optimization Methods & Soft-

ware, vol. 24, no. 4-5, pp. 657–668, 2009.

[12] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter, “Branching and bounds tighten-

ingtechniques for non-convex minlp,” Optimization Methods & Software, vol. 24, no. 4-5,

pp. 597–634, 2009.

[13] G. Nemhauser and L. Wolsey, Integer and Combinatorial Optimization. Wiley, 1988.

[14] M. Desrochers and F. Soumis, “A generalized permanent labelling algorithm for the shortest

path problem with time windows,” INFOR: Information Systems and Operational Research,

vol. 26, no. 3, pp. 191–212, 1988.

[15] C. Montez, S. Rathinam, S. Darbha, D. Casbeer, and S. G. Manyam, “An approximation

algorithm for an assisted shortest path problem,” in 2021 IEEE International Conference on

Robotics and Automation (ICRA), pp. 8024–8030, IEEE, 2021.

[16] C. Montez, S. Rathinam, S. Darbha, and D. Casbeer, “Finding shortest paths for a team of

convoy and repair vehicles,” in AIAA Scitech 2021 Forum, p. 1769, 2021.

[17] L. Parker, Heterogeneous multi-robot cooperation. PhD thesis, MIT, 1994.

[18] B. Donald, J. Jennings, and D. Rus, “Analyzing teams of cooperating mobile robots,” Pro-

ceedings of the 1994 IEEE International Conference on Robotics and Automation, vol. 3,

pp. 1896–1903, 1994.

[19] L. Steels, “Cooperation between distributed agents through self-organization,” IEEE Interna-

tional Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications,

pp. 8–14, 1990.

120

[20] Y. Cao, A. Fukunaga, and A. Kahng, “Cooperative mobile robotics: Antecedents and direc-

tions,” Autonomous Robots, pp. 7–27, 1997.

[21] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numerical

computing,” SIAM review, vol. 59, no. 1, pp. 65–98, 2017.

[22] I. Dunning, J. Huchette, and M. Lubin, “Jump: A modeling language for mathematical opti-

mization,” SIAM Review, vol. 59, no. 2, pp. 295–320, 2017.

[23] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2022.

[24] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of

minimum cost paths,” IEEE transactions on Systems Science and Cybernetics, vol. 4, no. 2,

pp. 100–107, 1968.

[25] Z. Zhang, N. R. Sturtevant, R. Holte, J. Schaeffer, and A. Felner, “A* search with inconsistent

heuristics,” in Twenty-First International Joint Conference on Artificial Intelligence, 2009.

[26] A. Martelli, “On the complexity of admissible search algorithms,” Artificial Intelligence,

vol. 8, no. 1, pp. 1–13, 1977.

[27] R. Nissim and R. Brafman, “Distributed heuristic forward search for multi-agent planning,”

Journal of Artificial Intelligence Research, vol. 51, pp. 293–332, 2014.

[28] A. Torreño, E. Onaindia, A. Komenda, and M. Štolba, “Cooperative multi-agent planning: A

survey,” ACM Computing Surveys (CSUR), vol. 50, no. 6, pp. 1–32, 2017.

[29] H. Lee, J. M. Pinto, I. E. Grossmann, and S. Park, “Mixed-integer linear programming model

for refinery short-term scheduling of crude oil unloading with inventory management,” In-

dustrial & Engineering Chemistry Research, vol. 35, no. 5, pp. 1630–1641, 1996.

[30] Z. Jia and M. Ierapetritou, “Mixed-integer linear programming model for gasoline blending

and distribution scheduling,” Industrial & Engineering Chemistry Research, vol. 42, no. 4,

pp. 825–835, 2003.

121

[31] S. Yadav and M. A. Shaik, “Short-term scheduling of refinery crude oil operations,” Industrial

& engineering chemistry research, vol. 51, no. 27, pp. 9287–9299, 2012.

[32] E. Rubio-Castro, J. M. Ponce-Ortega, M. Serna-González, M. M. El-Halwagi, and V. Pham,

“Global optimization in property-based interplant water integration,” AIChE Journal, vol. 59,

no. 3, pp. 813–833, 2013.

[33] J. P. d. S. Catalão, H. M. I. Pousinho, and V. M. F. Mendes, “Hydro energy systems man-

agement in portugal: profit-based evaluation of a mixed-integer nonlinear approach,” Energy,

vol. 36, no. 1, pp. 500–507, 2011.

[34] B. Galan and I. E. Grossmann, “Optimal design of distributed wastewater treatment networks,”

Industrial & engineering chemistry research, vol. 37, no. 10, pp. 4036–4048, 1998.

[35] T. Achterberg, “SCIP: solving constraint integer programs,” Mathematical Programming

Computation, vol. 1, no. 1, pp. 1–41, 2009.

[36] N. V. Sahinidis, “BARON: A general purpose global optimization software package,” Journal

of global optimization, vol. 8, no. 2, pp. 201–205, 1996.

[37] R. Misener and C. A. Floudas, “ANTIGONE: algorithms for continuous/integer global opti-

mization of nonlinear equations,” Journal of Global Optimization, vol. 59, no. 2, pp. 503–526,

2014.

[38] G. P. McCormick, “Computability of global solutions to factorable nonconvex programs: Part

iconvex underestimating problems,” Mathematical programming, vol. 10, no. 1, pp. 147–175,

1976.

[39] R. Horst and H. Tuy, Global optimization: Deterministic approaches. Springer Science &

Business Media, 2013.

[40] E. M. Smith and C. C. Pantelides, “Global optimisation of nonconvex MINLPs,” Computers

& Chemical Engineering, vol. 21, pp. S791–S796, 1997.

122

[41] C. A. Floudas and P. M. Pardalos, Recent advances in global optimization. Princeton Univer-

sity Press, 2014.

[42] D. S. Wicaksono and I. A. Karimi, “Piecewise MILP under-and overestimators for global

optimization of bilinear programs,” AIChE Journal, vol. 54, no. 4, pp. 991–1008, 2008.

[43] R. Misener, J. P. Thompson, and C. A. Floudas, “APOGEE: Global optimization of standard,

generalized, and extended pooling problems via linear and logarithmic partitioning schemes,”

Computers & Chemical Engineering, vol. 35, no. 5, pp. 876–892, 2011.

[44] J. P. Teles, P. M. Castro, and H. A. Matos, “Univariate parameterization for global optimiza-

tion of mixed-integer polynomial problems,” European Journal of Operational Research,

vol. 229, no. 3, pp. 613–625, 2013.

[45] P. A. C. Castillo, P. M. Castro, and V. Mahalec, “Global optimization of MIQCPs with dy-

namic piecewise relaxations,” Journal of Global Optimization, vol. 71, no. 4, pp. 691–716,

2018.

[46] H. Nagarajan, M. Lu, S. Wang, R. Bent, and K. Sundar, “An adaptive, multivariate partitioning

algorithm for global optimization of nonconvex programs,” Journal of Global Optimization,

vol. 74, no. 4, pp. 639–675, 2019.

[47] G. Optimization, “Gurobi 8 performance benchmarks,” 2019. https://www.gurobi.

com/pdfs/benchmarks.pdf.

[48] K. Sundar, S. Sanjeevi, and H. Nagarajan, “Sequence of polyhedral relaxations for nonlinear

univariate functions,” Optimization and Engineering, pp. 1–18, 2021.

[49] P. M. Castro, “Normalized multiparametric disaggregation: an efficient relaxation for mixed-

integer bilinear problems,” Journal of Global Optimization, vol. 64, no. 4, pp. 765–784, 2016.

[50] S. Yıldız and J. P. Vielma, “Incremental and encoding formulations for mixed integer pro-

gramming,” Operations Research Letters, vol. 41, no. 6, pp. 654–658, 2013.

123

https://www.gurobi.com/pdfs/benchmarks.pdf
https://www.gurobi.com/pdfs/benchmarks.pdf

[51] CPLEX, IBM ILOG, “User’s manual for CPLEX (international business machines corpora-

tion),” 2009.

[52] J. P. Vielma, “Mixed integer linear programming formulation techniques,” Siam Review,

vol. 57, no. 1, pp. 3–57, 2015.

[53] J. Huchette and J. P. Vielma, “Nonconvex piecewise linear functions: Advanced formulations

and simple modeling tools,” Operations Research, 2022.

[54] M. L. Bergamini, P. Aguirre, and I. Grossmann, “Logic-based outer approximation for glob-

ally optimal synthesis of process networks,” Computers & chemical engineering, vol. 29,

no. 9, pp. 1914–1933, 2005.

[55] I. P. Androulakis, C. D. Maranas, and C. A. Floudas, “𝛼bb: A global optimization method

for general constrained nonconvex problems,” Journal of Global Optimization, vol. 7, no. 4,

pp. 337–363, 1995.

[56] H. S. Ryoo and N. V. Sahinidis, “A branch-and-reduce approach to global optimization,” Jour-

nal of global optimization, vol. 8, no. 2, pp. 107–138, 1996.

[57] R. Bellman, “On the theory of dynamic programming,” Proceedings of the National Academy

of Sciences, vol. 38, no. 8, pp. 716–719, 1952.

[58] A. M. Shkel and V. Lumelsky, “Classification of the dubins set,” Robotics and Autonomous

Systems, vol. 34, no. 4, pp. 179–202, 2001.

[59] P. Belotti, S. Cafieri, J. Lee, and L. Liberti, “On feasibility based bounds tightening,” 2012.

124

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Focus of the Dissertation
	Structure of the Dissertation

	ASSISTED SHORTEST PATH PROBLEM[1]Material presented in this chapter has been previously published by the author. See montez2021approximation and montez2021finding.
	Introduction
	Problem Statement
	Overview
	Mixed-Integer Linear Programming Formulation for Restricted ASPP
	MINLP Formulation
	Preliminary Adjustments
	Decision Variables
	Degree Constraints
	Time Updates
	Dynamic Time Window Constraints
	Coordination Constraints

	MILP Using Big-M
	Computational Results

	Approximation Algorithm for the Trailing Convoy ASPP
	Additional Notation
	Motivating Structure for the Approximation Algorithm
	Approximation Algorithm
	Proof of Approximation Ratio
	Computational Results
	Set 1 - Heterogeneous Case
	Set 2 - Homogeneous Case
	Set 3 - Scalar Multiple Case
	Discussion of Results

	Asynchronous Generalized Permanent Labeling Algorithm
	Section Structure
	Generalized ASPP with an Unyielding Support
	Problem Statement
	Definitions and Algorithm
	Filtering Through Knowledge of the Optimal Solution Structure
	Additional Filtering
	Generalized Permanent Labeling Algorithm - A*
	Complexity Analysis
	Computational Results
	Comparison Between GPLA* and Centralized A*
	Class 1 Instances
	Class 2 Instances
	Class 3 Instances

	Generalized ASPP
	Problem Statement
	Extending Previous Results

	GLOBAL OPTIMIZATION ALGORITHM FOR MIXED-INTEGER NONLINEAR PROGRAMS WITH TRIGONOMETRIC FUNCTIONS
	Introduction
	Problem Statement
	Structure of Chapter
	Relevance to the Assisted Shortest Path Problem

	Initial Overview of the Algorithm
	Preliminaries
	MILP Relaxations
	Trigonometric Terms
	Incremental Formulation
	Convergence Guarantee

	Bilinear Terms
	Incremental Formulation
	Convergence Guarantee

	Partitions
	Sharing Partitions
	Sharing Partitions Example

	Refinement Schemes - Method of Partition Refinement
	Bisection Refinement Scheme
	Direct Refinement Scheme
	Non-Uniform Refinement Scheme
	Consistent Refinement Scheme

	Refinement Strategies - Selecting Partitions for Refinement
	Consistent Refinement Strategy
	Complete Refinement Strategy
	k-Worst Refinement Strategy

	Principal Domains for Periodic Functions
	Reformulation Using Principal Domains
	Impact on MILP Relaxation
	Choice of Principal Domain
	Relating Principal Domain Variables
	Branching Decisions

	Motivating Example - Markov-Dubins Path Planning Problem
	Additional Constraints
	Bounding Arc Lengths
	Restricting the Number of Segments
	CSC Conditions

	Computational Results
	Problem Generation
	Implementation Details
	Results
	Original Formulation vs. Principal Domain Reformulation
	Complete Refinement Strategy vs. k-Worst Refinement Strategy

	CONCLUDING REMARKS AND FUTURE WORK
	REFERENCES

