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Abstract 

 

Almost stochastic dominance (ASD) extends conventional first and second degree 

stochastic dominance by placing restrictions on the variability in the first and second derivatives 

of utility.  Such restrictions increase the number of random variables for which a unanimous 

ranking of one over the other occurs.  This paper advances an alternative approach to ASD in 

which the magnitude of absolute or relative risk aversion is constrained with both an upper 

bound and a lower bound.  Using the results of Meyer (1977b), the paper provides cumulative 

distribution function (CDF) characterizations of these forms of ASD.  Simple closed-form 

necessary and sufficient conditions for these ASD relations are determined for the special cases 

where the absolute or relative risk aversion is only bounded on one end or where the pair of 

random variables under comparison have single-crossing CDFs.  
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1. Introduction 

More than fifty years ago Hadar and Russell (1969) and Hanoch and Levy (1969) defined 

first and second degree stochastic dominance (FSD, SSD).  These random variable ranking tools 

impose minimal assumptions on the risk preferences of decision makers and still are frequently 

used to provide a partial order over random variables.  Random variable x̃ stochastically 

dominates ỹ in the first degree (second degree) when x̃ is preferred to ỹ by all decision makers 

who prefer more to less (and are risk averse).  While FSD and SSD have proven to be powerful 

theoretical tools, in practice, there are random variables where it seems obvious that one is 

preferred to another by all reasonable decision makers yet neither FSD nor SSD provides a 

unanimous ranking.  An example of this is provided by Leshno and Levy (2002) in their paper 

where the almost stochastic dominance (ASD) concept is first defined.  In their example they 

consider random variables x̃, which yields either $0 or $1,000,000 with probabilities 0.01 and 

0.99 respectively, and ỹ which yields $1 with certainty.  Neither x̃ nor ỹ dominates the other in 

either the first or the second degree,1 yet it seems clear that except for very extreme risk 

preferences, x̃ would be chosen over ỹ.  Leshno and Levy provide an example of such extreme 

preferences using utility function u(x) = x for x  1 and u(x) = 1 for x > 1.  

Leshno and Levy’s solution to this lack of stochastic dominance when x̃ seems obviously 

preferable to ỹ is to alter the definition of stochastic dominance so that extreme utility functions, 

such as the one in the example, are excluded from consideration.  They refer to such utility 

functions as “extreme, pathological or simply unrealistic”.  Leshno and Levy define almost first 

and almost second degree stochastic dominance (AFSD, ASSD) by restricting the degree of 

                                                             
1 Since x̃ has a positive probability mass to the left of the entire distribution of ỹ, x̃ does not stochastically dominate 

ỹ in any degree.  On the other hand, since E(x̃) > E( ỹ), ỹ does not stochastically dominate x̃ in any degree either. 
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variability in the first and the second derivatives of utility, respectively.  AFSD or ASSD can be 

used to rank random variables which FSD and SSD do not rank.  The ensuing literature extends 

and modifies the work of Leshno and Levy.  Tzeng et al. (2013) modify the second degree 

formulation and extend ASSD to the general nth degree.  Others, including Guo et al. (2013), 

Denuit et al. (2014a), Tsetlin et al. (2015), Tsetlin and Winkler (2018) and Chang et al. (2019), 

offer further refinements and extensions of the original Leshno and Levy AFSD and ASSD 

definitions.2 

The original definitions of AFSD and ASSD place restrictions on the magnitude of the 

variability of derivatives of utility and thereby alter the set of utility functions under 

consideration. The method used to restrict variability for a derivative of utility is as follows.  As 

is well known, FSD determines necessary and sufficient conditions on cumulative distribution 

functions (CDFs) F(x) and G(x) so that all decision makers with utility functions in U1 = {u(x): 

u'(x)  0} are unanimous in preferring F(x) to G(x).3  Almost first degree stochastic dominance 

(AFSD ()) examines this same unanimous ranking question for the smaller set of utility 

functions U1
 = {u(x) in U1: u'(x)  inf {u'(x)}(1/ - 1) for all x in [a, b]}, where 0 <   1/2.  It is 

the case that the larger the value for , the smaller is the set U1
.  U1

  converges to U1
 as  

approaches zero and to u'(x) equaling a constant as  approaches 1/2.  Similarly, U2 = {u(x): u'(x) 

 0 and u''(x)  0} is the set of utility functions associated with SSD,4 and almost second degree 

                                                             
2 Basically, the ASD analysis provides a solution to the so-called “left tail problem”. That is, no matter how x̃ 

appears more desirable than ỹ in other aspects, as long as x̃ has some probability mass to the left of the entire 

distribution of ỹ, x̃ does not stochastically dominate ỹ in any degree. Liu and Meyer (2021) recently propose an 

alternative approach to the “left tail problem”, referred to as stochastic superiority, by introducing a secondary risk 

reduction decision.  
3 The description of the existing approach to almost stochastic dominance uses notation similar to that in Tzeng et al. 

(2013).  
4 That is, a pair of random variables that can be ordered by SSD implies uniform preference by all (weakly) risk 

averse decision makers.  According to Liu and Meyer (2017), a somewhat symmetric stochastic order known as the 
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stochastic dominance (ASSD ()) is defined by restricting the variability of -u''(x).  Formally,   

U2
 = {u(x) in U2: -u''(x)  inf{-u''(x)}(1/ - 1) for x in [a, b]}.  

We propose in this paper to place restrictions on the degree of risk aversion rather than on 

the variability of the first and second derivatives of utility.  Specifically, we consider a group of 

decision makers whose Arrow-Pratt absolute (or relative) risk aversion measure is between two 

constants.  This way of defining almost stochastic dominance requires unanimous preference by 

all decision makers “who are neither too risk averse nor too risk loving”.  Since restricting the 

size of absolute risk aversion is equivalent to restricting the size of the percentage rate of change 

of marginal utility, the approach is similar in spirit to that initiated by Leshno and Levy.  The 

paper goes on to provide CDF-based characterizations of the newly provided definitions of ASD.  

Much of the analysis relies on results of Meyer (1977a, 1977b).   

There are several reasons why restricting the magnitude of risk aversion makes good 

sense.  First, placing bounds on the absolute or relative risk aversion measure, denoted A(x) and 

R(x) (R(x) = xA(x)), respectively, indirectly restricts the variability of u'(x) as well, since A(x) is 

the percentage rate of change of u'(x).  Second, A(x) or R(x) is a unique representation of the risk 

preferences of an expected utility maximizing decision maker. As is well known, A(x) is the risk 

aversion measure of u(x) if and only if A(x) is also the risk aversion measure of d·u(x) + c for 

any d > 0.  Pratt (1964) shows how u(x) can be recovered from A(x) except for such a positive 

linear transformation.  Thus, there is a one to one relationship between decision makers and their 

risk aversion measures.  A similar one to one relationship does not hold for any derivative of 

                                                             
“increasing convex order” in mathematical statistics – unanimous preference by decision makers with utility 

functions in U2
' = {u(x): u'(x)  0 and u''(x)  0} – can be used to frame the size versus risk tradeoff for risk averse 

decision makers. See also Denuit et al. (2014b) and Denuit et al. (2016).     
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utility.5  Finally, and likely the most important reason for restricting the magnitude of A(x) or 

R(x) rather than the variability of u'(x) or u''(x), is that the information concerning risk 

preferences that is available from experiments or empirical estimation is primarily for the risk 

aversion measures of decision makers.6 

Two recent papers also place bounds on risk aversion measures.  This paper differs in 

important ways from each. Huang et al. (2020) place a negative lower bound on the absolute risk 

aversion measure to form a set of utility functions that are not too risk loving, a set that contains 

U2 and is contained in U1. Their purpose is to define fractional degree stochastic dominance that 

fills the gap between FSD and SSD.  This work does not directly address the issues arising in the 

ASD literature.  The bound on risk aversion needed to provide solutions to the motivating 

example of Leshno and Levy and similar examples in the ASD literature is an upper rather than 

lower bound, and, as a result, the relevant group of decision makers should be those who are 

neither too risk averse nor too risk loving, rather than those who are merely not too risk loving.  

Another recent paper by Luo and Tan (2020) does consider an upper bound on the absolute risk 

aversion measure, but does so in conjunction with an upper bound on the variability in the 

marginal utility.  Luo and Tan's work does contribute to the ASD literature, but differs from that 

presented here.  Their method restricts the product of two upper bounds, and does not necessarily 

constrain the size of either.    

The paper is organized as follows.  Section 2 provides two new definitions of ASD by 

imposing both an upper bound and a lower bound on either the absolute or the relative risk 

                                                             
5 Note, however, that the ratio of first or second derivatives of utility, which is constrained in the conventional ASD 

definitions, is also invariant with a positive linear transformation of the utility function.  
6 For example, see Eckel and Grossman (2002), Holt and Laury (2002), Callen et al. (2014), Ebert and Wiesen 

(2014), and Grossman and Eckel (2015). In addition, see the references discussed in Meyer and Meyer (2005a, 

2005b) and Liu (2012). 
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aversion measure. A CDF-based characterization for each of these two forms of ASD is 

provided, and additional properties of these ASD definitions, dealing with robustness to adding a 

constant to the random variables or scaling them by a positive constant, are presented.  These 

robustness findings can help determine whether bounds on absolute risk aversion or relative risk 

aversion are the most appropriate for a specific application.  In Section 3, more compact 

characterization results are obtained for the special cases where the absolute or relative risk 

aversion is only bounded on one end or where the pair of random variables under comparison 

have single-crossing CDFs. In Section 4, we show that the conventional AFSD implies the two 

new notions of ASD, for appropriately chosen parameter values. Finally, the concluding section 

summarizes the findings presented here and offers some suggestions for additional research.   

 

 

2. Almost Stochastic Dominance with Bounds on Risk Aversion 

In this section, two new definitions of ASD are presented.  These result from imposing 

both an upper bound and a lower bound on either the absolute or relative risk aversion measure 

of the decision maker.  A result from Meyer (1977b) is used to demonstrate a necessary and 

sufficient condition on F(x) and G(x) for F(x) to almost stochastically dominate G(x).  In terms 

of notation and assumptions, random variables are denoted x̃ and ỹ with corresponding CDFs 

F(x) and G(x).  The supports of these random variables are assumed to lie in bounded interval  

[a, b] with no probability mass at x = a so that F(a) = G(a) = 0 and F(b) = G(b) = 1.  When 

relative risk aversion is discussed a > 0 is also assumed.  First and second derivatives of utility 

and the absolute risk aversion measure are assumed to exist at all x in [a, b]. 

We begin with bounds on the absolute risk aversion measure A(x) = -u''(x)/u'(x). The 

decision makers are assumed to have utility functions u(x) in the set U (1, 2) = {u(x): u'(x) > 0 
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and 1  A(x)  2}, where 1 and 2  are two constants with  1  0 < 2 . The signs of 1 and 2 

allow U (1, 2) to be interpreted as the group of decision makers who are neither too risk averse 

nor too risk loving according to the absolute risk aversion measure. Note also that the risk neutral 

decision maker is included in U (1, 2).  The decision maker who meets the lower (upper) bound 

restriction exactly for all x is the constant absolute risk averse utility function u1(x) = e-1x (u2(x) 

= -e-2x). The decision makers in U (1, 2) are all more risk averse than u1(x) and less risk averse 

than u2(x). 

 

Definition 1: For 1 and 2 such that 1  0 < 2, x̃ ASDA (1, 2) ỹ  if x̃ is preferred or indifferent 

to ỹ by all u(x) in U (1, 2). 

 

The decision makers in U (1, 2) are all more (less) risk averse than the constant absolute 

risk averse decision maker with risk aversion level 1 (2).  Being more (less) risk averse implies 

many things, including holding less (more) of the risky asset in a portfolio and having a larger 

(smaller) risk premium and insurance demand.  Because the risk neutral decision maker is 

included in U (1, 2), it must be the case that E(x̃)  E(ỹ) for an ASDA (1, 2) relation to hold.  

It is also obvious that the ASDA (1, 2) relation becomes stronger as 1 decreases or 2 

increases. In addition, the ASDA (1, 2) relation converges to FSD when 1 goes to the negative 

infinity and 2 goes to the positive infinity, and to SSD when 1 = 0 and 2 goes to the positive 

infinity.  
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Relative risk aversion levels are estimated more often and relative risk aversion estimates 

from various studies are more comparable.7  For bounds on the relative risk aversion measure 

R(x) = -xu''(x)/u'(x), the decision makers are assumed to have utility functions u(x) in the set        

U (1, 2) = {u(x): u'(x) > 0 and 1  R(x)  2} = {u(x): u'(x) > 0 and 1/x  A(x)  2/x}, where 

1 and 2  are two constants with 1  0 < 2 . The signs of 1 and 2 allow U (1, 2) to be 

interpreted as the group of decision makers who are neither too risk averse nor too risk loving, 

this time by the relative risk aversion measure rather than the absolute risk aversion measure.  

Obviously, the risk neutral decision maker is included in U (1, 2).  The decision maker who 

meets the lower (upper) bound restriction exactly for all x is the constant relative risk averse 

utility function u1(x) = 
x1-1

1-1

  (u2(x) = 
x1-2

1-2

 when 2 ≠ 1 and u2(x) = ln x when 2 = 1). The 

decision makers in U (1, 2) are all more risk averse than u1(x) and less risk averse than u2(x). 

 

Definition 2: For 1 and 2  such that 1  0 < 2 ,  x̃ ASDR (1, 2) ỹ if x̃ is preferred or 

indifferent to ỹ by all u(x) in U (1, 2). 

 

As with ASDA (1, 2), E(x̃)  E(ỹ) is a necessary condition for x̃ ASDR (1, 2) ỹ, and 

the ASDR (1, 2) relation becomes stronger as 1 decreases or 2 increases. In addition, the 

ASDR (1, 2)  relation converges to FSD when 1 goes to the negative infinity and 2 goes to the 

positive infinity, and to SSD when 1 = 0 and 2 goes to the positive infinity. 

                                                             
7According to the relevant references cited in Liu (2012), the relative risk aversion coefficient  falls within the 

range of (0, 30).  Meyer and Meyer (2005a, 2005b) distinguish between the relative risk aversion measure for the 

utility function defined over consumption and that for the value function defined over wealth, and find that the 

former could be 1.25 to 10 times the latter, partially accounting for the widely divergent estimates of .  
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To determine the condition on F(x) and G(x) that is equivalent to F(x) ASDA (1, 2) 

G(x) or F(x) ASDR (1, 2) G(x), we apply a result in Meyer (1977b), which is provided next. 

 

Theorem 1 (Meyer 1977b):  A solution, denoted 0 ( )u x , to the problem of choosing ( )u x  to 

minimize    ( ) ( ) ( ) ( ) ( ) ( )
b b

a a
u x d F x G x G x F x u x dx     subject to u'(x) > 0 and 

1 2

( )
( ) ( )

( )

u x
r x r x

u x


 


 for all [ , ]x a b  and ( ) 1u a  , is given by  

 

 

1 0
0

0
2 0

( ), if ( ) ( ) ( ) 0( )

( ) ( ), if ( ) ( ) ( ) 0

b

x

b

x

r x G y F y u y dyu x

u x r x G y F y u y dy

   
 

   





. 

  

Theorem 1 says that at any point x, 0 ( )u x  is chosen in such a way that its absolute risk 

aversion measure is either the lower bound or the upper bound, depending only on the sign of the 

objective function from point x on to b.  Therefore, 0 ( )u x  is obtained in a backward fashion. 

From Theorem 1, the corollary next follows immediately. 

 

Corollary 1 (Meyer 1977b): x  is preferred or indifferent to y  for all u(x) such that u'(x) > 0 and 

1 2

( )
( ) ( )

( )

u x
r x r x

u x


 


 for all [ , ]x a b  if and only if 

   0 0( ) ( ) ( ) ( ) ( ) ( ) 0
b b

a a
u x d F x G x G x F x u x dx     . 

  

When F(x), G(x), 1 2( ) and ( )r x r x  are given, 0 ( )u x  can be derived according to Theorem 

1.  We can then check whether    0 0( ) ( )E u x E u y  holds, and thus determine whether F(x) is 
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preferred or indifferent to G(x) by all u(x) subject to u'(x) > 0 and 1 2

( )
( ) ( )

( )

u x
r x r x

u x


 


 for all 

[ , ]x a b .8  The next two theorems follow directly from Theorem 1 and Corollary 1. 

 

Theorem 2:  For 1 and 2 such that 1  0 < 2, x̃ ASDA (1, 2) ỹ if and only if

  0( ) ( ) ( ) 0
b

a
G x F x u x dx  , where 0 ( )u x  is obtained according to 

 

 

1 0
0

0
2 0

, if ( ) ( ) ( ) 0( )

( ) , if ( ) ( ) ( ) 0

b

x

b

x

G y F y u y dyu x

u x G y F y u y dy





   
 

   





 .    (1) 

 

Theorem 3:  For 1 and 2  such that 1  0 < 2 ,  x̃ ASDR (1, 2) ỹ if and only if

  0( ) ( ) ( ) 0
b

a
G x F x u x dx  , where 0 ( )u x  is obtained according to 

 
 

 

1 0
0

0
2 0

/ , if ( ) ( ) ( ) 0( )

( ) / , if ( ) ( ) ( ) 0

b

x

b

x

x G y F y u y dyu x

u x x G y F y u y dy





   
 

   





.   (2) 

As an illustration of how to apply the characterization results for the two new definitions 

of ASD, consider the example provided by Leshno and Levy (2002) and described in the 

introduction. The example is modified slightly by adding an initial wealth w.  In the modified 

example, suppose x̃ yields either $w or $(w+1,000,000) with probabilities 0.01 and 0.99 

respectively, and ỹ yields $(w+1) with certainty. Denote the CDF for x̃ and ỹ as F(x) and G(x), 

respectively.  Let a = $(w-1) and b = $(w+1,000,001).  Then     

                                                             
8Although the solution is not in closed form, Meyer (1977b) explains that the solution from an applied standpoint 

can be calculated with comparative ease (see also Meyer 1977c). 
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0

0.01 1
( ) ( )

0.99 1 1,000,000

0 1,000,000

a x w

w x w
G x F x

w x w

w x b

 


   
  

   
   

 

Apply Theorem 2 and 0 ( )u x  is obtained according to 

 

 

1 0
0

0
2 0

, if ( ) ( ) ( ) 0( )

( ) , if ( ) ( ) ( ) 0

b

x

b

x

G y F y u y dyu x

u x G y F y u y dy





   
 

   





 .  

For this example, it must be the case that   0( ) ( ) ( ) 0
b

x
G y F y u y dy  for all x in [a, b], in order 

to have   0( ) ( ) ( ) 0
b

a
G x F x u x dx  . Therefore, 0

2

0

( )

( )

u x

u x






 for all x in [a, b]. This implies that 

u0(x) = -e-2x, and x̃ ASDA (1, 2) ỹ if and only if ∫ [G(x) - F(x)]e-2xdx
b

a
  0, or 

∫ (- 0.01)e-2xdx
1

0
 + ∫ (0.99)e-2xdx

1,000,000

1
  0.    

Similarly, applying Theorem 3, 0
2

0

( )
/

( )

u x
x

u x






 for all x in [a, b]. This implies that u'0(x) 

= x-2, and x̃ ASDR (1, 2) ỹ if and only if ∫ [G(x) - F(x)]x-2dx
b

a
  0, or ∫ (- 0.01)x-2dx

w+1

w
 + 

∫ (0.99)x-2dx
w+1,000,000

w+1
  0. Risk-aversion estimations are often conducted with respect to the 

relative risk aversion, and most existing estimates of  are smaller than 6.9  It can be readily 

checked that x̃ ASDR (1, 2) ỹ holds for 2 = 7 when w = 1 and for 2 = 49 when w = 10.  

                                                             
9 For example, see Epstein and Zin (1991), Gertner (1993), Metrick (1995), Barsky et al. (1997), Kaplow (2005) and 

Chetty (2006). On the other hand, the value of relative risk aversion implied by the observed equity premium may be 

substantially larger than the direct estimates, which is referred to as the equity premium puzzle and is the focus of an 

extensive literature (Mehra and Prescott 1985, and Kocherlakota 1996).  
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Therefore, it seems that the notion of ASDR (1, 2) captures the “folk” preference of x̃ over ỹ 

well.   

 For the random variables x̃ and ỹ given in this example, x̃ ASDA (1, 2) ỹ is 

characterized by the same condition regardless of the value of 1, and x̃ ASDR (1, 2) ỹ also has 

the same necessary and sufficient condition regardless of the value of 1. That this is not a 

coincidence is demonstrated in Section 3 where one of the special cases analyzed is about pairs 

of CDFs that are single-crossing, which is the case for this example. 

 We conclude this section with some additional properties of ASDA (1, 2) and   ASDR 

(1, 2), which are concerned with whether each of these ASD notions is invariant to adding a 

same amount of wealth to the two random variables under comparison, or scaling them by a 

same positive scalar.    

 

Property 1: For any constant w and positive scalar 0  ,  

(i) x w  ASDA (1, 2) y w  if and only if x  ASDA (1, 2) y ; 

(ii) x  ASDA (α1, α2) y  if and only if x  ASDA (1, 2) y . 

Proof:  ( ) ( ) ( ) ( ) ( )
b

a
Eu x Eu y u x d F x G x   . 

(i)     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b

a a
Eu x w Eu y w u x w d F x G x v x d F x G x         , where 

( ) ( )v x u x w  .  Note that 
( ) ( )

( ) ( )

v x u x w

v x u x w

   


  
 for all x, which means that 

1 2

( )

( )

v x

v x
 


 


 if and only if  1 2

( )

( )

u x

u x
 


 


. 
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(ii)     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b

a a
Eu x Eu y u x d F x G x v x d F x G x        , where 

( ) ( )v x u x .  Note that 
( ) ( )

( ) ( )

v x u x

v x u x






  


 
 for all x, which means that 

1 2

( )

( )

v x

v x
 


 


 if and only if 1 2

( )

( )

u x

u x
 


 


.             Q.E.D. 

Property 2: For any positive scalar  , x  ASDR (1, 2) y  if and only if x  ASDR (1, 2) y . 

Proof:  ( ) ( ) ( ) ( ) ( )
b

a
Eu x Eu y u x d F x G x   , and 

   ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b

a a
Eu x Eu y u x d F x G x v x d F x G x        , where ( ) ( )v x u x .  Note 

that 
( ) ( ) ( )

( ) ( )

xv x x u x

v x u x

 



  


 
 for all x, which means that 1 2

( )

( )

xv x

v x
 


 


 if and only if  

1 2

( )

( )

xu x

u x
 


 


.            Q.E.D. 

 FSD and SSD have the nice property that they are each invariant to both translations and 

positive scaling.  In contrast, ASDA (1, 2) only inherits invariance to translations whereas 

ASDR (1, 2) only inherits invariance to positive scaling. Thus, it seems that ASDR (1, 2) has 

an advantage over ASDA (1, 2) since the former definition of ASD, based on restricting the 

relative risk aversion, is invariant to changes in the measuring unit of wealth, e.g., from the 

dollar to the euro. However, it is important to explicitly specify a reasonable initial wealth when 

applying ASDR (1, 2) because it is not invariant to translations. 

 

3. Simple Characterization Conditions for ASDA (1, 2) and ASDR (1, 2): Several Special 

Cases  
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 The characterizations of ASDA (1, 2) and ASDR (1, 2) given in Theorems 2 and 3 for 

the general case are not closed-form, even though for given CDFs F(x) and G(x), the           

ASDA (1, 2) or the ASDR (1, 2) relation can be checked according to well-defined 

operational procedures.  In this section, simple, closed-form characterization conditions of  

ASDA (1, 2) and ASDR (1, 2) are obtained for several special cases.  

3.1. Only an Upper Bound on Risk Aversion 

 In the general case analyzed in the last section, both an upper bound and a lower bound 

are placed on the absolute or the relative risk aversion. In other words, extreme risk preferences 

on both ends of the spectrum are eliminated.  In this subsection we consider a special case where 

only an upper bound is imposed, whereas the symmetric special case with only a lower bound is 

analyzed in the next subsection.  In these special cases, extreme risk preferences on either end of 

the spectrum, but not on both ends, are eliminated. The closed-form characterization conditions 

for these special cases can also serve as the sufficient conditions for the corresponding ASD 

relations in the general case. 

 For 2 > 0 and 2 > 0, denote ASDA (-∞, 2) and ASDR (-∞, 2) as the ASD notion 

associated with sets of utility functions U (-∞, 2) = {u(x): u'(x) > 0 and A(x)  2} and              

U (-∞, 2) = {u(x): u'(x) > 0 and R(x)  2} = {u(x): u'(x) > 0 and A(x)  2/x}, respectively. In 

order to determine the condition on F(x) and G(x) so that F(x) ASDA (-∞, 2) G(x) or F(x)  

ASDR (-∞, 2) G(x), the following result is used.   
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Theorem 4: (Meyer 1977a)  Given utility function k(x) with k'(x) > 0, x̃ is preferred or indifferent 

to ỹ for all u(x) such that u'(x) > 0 and 
-u''(x)

u'(x)
  

-k''(x)

k'(x)
 for all x in [a, b] if and only if 

∫ [G(x) - F(x)]dk(x)
b

y
  0 for all y in [a, b]. 

 Note that this result reduces to the well-known result characterizing the increasing 

convex order when k(x) = x.10 To apply this theorem to ASDA (-∞, 2) and ASDR (-∞, 2), 

observe that the set U (-∞, 2) is the set of all u(x) less risk averse than k(x) = -e-2x, and the set  

U (-∞, 2) is the set of all u(x) less risk averse than k(x) where k(x) = 
x1-2

1-2

   for 2 > 0 and 2 ≠ 1, 

and k(x) = ln x for 2 = 1.  Thus, the following theorem characterizes F(x) ASDA (-∞, 2) G(x) 

and F(x) ASDR (-∞, 2) G(x). 

 

Theorem 5:  (i) For 2 > 0, x̃ ASDA (-∞, 2) ỹ if and only if  ∫ [G(x) - F(x)]e-2xdx
b

y
  0 for all y 

in [a, b]; 

             (ii) For 2 > 0, x̃ ASDR (-∞, 2) ỹ if and only if ∫ [G(x) - F(x)]x-2 dx
b

y
  0 for all y in 

[a, b]. 

 Note that the results in Theorem 5 also identify a closed-form sufficient condition for 

ASDA (1, 2) and ASDR (1, 2), respectively, as summarized below. 

Corollary 2:  (i) For 1 and 2 such that 1  0 < 2, x̃ ASDA (1, 2) ỹ if  ∫ [G(x) - F(x)]e-2xdx
b

y
  

0 for all y in [a, b]; 

                                                             
10See Liu and Meyer (2017) for applications of the increasing convex order in framing the size-for-risk tradeoff. 
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   (ii) For 1 and 2 such that 1  0 < 2 , x̃ ASDR (1, 2) ỹ if ∫ [G(x) - F(x)]x-2 dx
b

y
  

0 for all y in [a, b]. 

 

3.2. Only a Lower Bound on Risk Aversion 

 

For 1  0 and 1   0, denote ASDA (1, ∞) and ASDR (1, ∞) as the ASD notion 

associated with sets of utility functions U (1, ∞) = {u(x): u'(x) > 0 and 1  A(x)} and U (1, ∞) 

= {u(x): u'(x) > 0 and 1  R(x)} = {u(x): u'(x) > 0 and 1/x  A(x)}, respectively. In order to 

determine the condition on F(x) and G(x) so that F(x) ASDA (1, ∞) G(x) or F(x) ASDR (1, ∞) 

G(x), the following result is used.   

Theorem 6: (Meyer 1977a)  Given utility function k(x) with k'(x) > 0, x̃ is preferred or indifferent 

to ỹ for all u(x) such that u'(x) > 0 and 
-k''(x)

k'(x)
  

-u''(x)

u'(x)
 for all x in [a, b] if and only if 

∫ [G(x) - F(x)]dk(x)
y

a
  0 for all y in [a, b]. 

 To apply this theorem to ASDA (1, ∞) and ASDR (1, ∞), observe that the set U (1, ∞) is 

the set of all u(x) more risk averse than k(x) = e-1x, and the set U (1, ∞) is the set of all u(x) 

more risk averse than k(x) = 
x1-1

1-1

.  Thus, the following theorem characterizes F(x) ASDA (1, ∞) 

G(x) and F(x) ASDR (1, ∞) G(x). 

 

Theorem 7:  (i) For 1  0, x̃ ASDA (1, ∞) ỹ if and only if ∫ [G(x) - F(x)]e-1xdx
y

a
  0 for all y in 

[a, b]. 

 (ii) For 1   0, x̃ ASDR (1, ∞) ỹ if and only if ∫ [G(x) - F(x)]x-1 dx
y

a
  0 for all y in 

[a, b]. 
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 Huang et al. (2020) present a result identical to (i) in Theorem 7.11 Their goal is to define 

and characterize a general notion of (fractional degree) stochastic dominance that fills the gap 

between FSD and SSD, whereas our purpose here is to define and characterize a notion of 

stochastic dominance that excludes extremely risk loving decision makers. As the following 

corollary indicates, nevertheless, the fractional degree stochastic dominance and the notions of 

ASD proposed here are closely related. Specifically, the characterization conditions for the 

fractional degree stochastic dominance can serve as sufficient conditions for the corresponding 

ASD relations. 

Corollary 3:  (i) For 1 and 2 such that 1  0 < 2, x̃ ASDA (1, 2) ỹ if  ∫ [G(x) - F(x)]e-1xdx
y

a
  

0 for all y in [a, b]; 

   (ii) For 1 and 2 such that 1  0 < 2 , x̃ ASDR (1, 2) ỹ if  ∫ [G(x) - F(x)]x-1 dx
y

a
 

 0 for all y in [a, b]. 

 

3.3. Single-Crossing CDFs  

Many of the well-known motivating examples used in the ASD literature compare 

random payoffs whose CDFs are single-crossing. This was true for the original Leshno and Levy 

example analyzed in Section 2.  Another often-cited example, provided by Levy (2006, pp 331-

332), also involves a comparison of two CDFs that are single-crossing.  In this example, random 

payoff  x̃ yields either $1 or $1,000,000 with probabilities 0.1 and 0.9 respectively, and ỹ is 

either $2 or $3 with those same probabilities.  As Levy points out, neither x̃ nor ỹ dominates the 

other in the first degree, yet x̃ appears to be clearly better than ỹ.  Denote the CDFs of x  and y  

                                                             
11 In a working paper version of Huang et al. (2020), they also present a result identical to (ii) in Theorem 7 for a 

notion of fractional degree stochastic dominance based on the relative risk aversion measure.   



17 

as F(x) and G(x), respectively; F(x) is (weakly) above (below) G(x) for 1 3x                               

( 3 1,000,000)x  ). 

These two examples and others involve random variables where F(x) crosses G(x) only 

once from above.   F(x) – G(x) is positive up to the crossing point, so x̃ does not stochastically 

dominate ỹ in any degree.  Additionally, E(x̃) > E( ỹ), so ỹ  does not stochastically dominate x̃ in 

any degree. We summarize these features of the two examples with the following assumption. 

 

Assumption 1: (i) There exists ( , )c a b  such that ( ) ( )F x G x  for all [ , )x a c , and  

( ) ( )F x G x  for all [ , ]x c b , (ii)  ( ) ( ) 0
c

a
F x G x dx  , and (iii) ( ) ( )E x E y . 

 Condition (i) above implies that the CDFs to be compared are single-crossing, and 

conditions (ii) and (iii) are added to make the comparison interesting. Note that under 

Assumption 1, neither x  nor y  stochastically dominates the other in any degree. The following 

theorem provides closed-form characterizations for ASDA (1, 2) and ASDR (1, 2) 

when F(x) and G(x) are single-crossing. 

 

Theorem 8:  Under Assumption 1, 

(i) x  ASDA (1, 2) y for all 1  0 if and only if   2( ) ( ) 0
b

x

a
G x F x e dx  ; 

(ii) x  ASDR (1, 2) y  for all ρ1  0 if and only if   2( ) ( ) 0
b

a
G x F x x dx  . 

Proof: (i) “If” – Suppose   2( ) ( ) 0
b

x

a
G x F x e dx  .  This, together with Assumption 1, implies 

  2( ) ( ) 0
b

x

y
G x F x e dx

   for all [ , ]y a b .  According to (i) in Theorem 5, x̃ ASDA (-∞, 2) ỹ, 
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which in turn implies that x̃ ASDA (1, 2) ỹ for all 1  0.   “Only if” – Suppose that x        

ASDA (1, 2) y for all 1  0.  By definition,    ( ) ( )E u x E u y  for all u(x) in U (1, 2).  In 

particular,    ( ) ( )E u x E u y  for 2( )
x

u x e


  , or   2( ) ( ) 0
b

x

a
G x F x e dx  . 

 (ii) The proof is similar to that in (i) above, using result (ii) in Theorem 5 instead. Q.E.D. 

 

Theorem 8 applies to the example of Levy (2006) with an initial wealth w added: x̃ is 

either $(w+1) or $(w+1,000,000) with probabilities 0.1 and 0.9 respectively, and ỹ is either 

$(w+2) or $(w+3) with those same probabilities.  According to Theorem 8, x  ASDA (1, 2) y

for all 1  0 if and only if 2 2
2 1,000,000

1 3
( 0.1) (0.9) 0x xe dx e dx       (note that ASDA (1, 2) is 

invariant to changes in the initial wealth, so the initial wealth can be assumed to be zero), and x  

ASDR (1, 2) y  for all ρ1  0 if and only if 2 2
2 1,000,000

1 3
( 0.1) (0.9) 0

w w

w w
x dx x dx 

 
 

 
    .   

As a final example, consider F(x) and G(x) drawn from the same location-scale family 

(Meyer 1987, and Wong and Ma 2008). Suppose the mean and standard deviation are F  and 

F  for F(x) and G  and G  for G(x).  Let  be the CDF of the seed random variable z  with a 

mean of zero and a standard deviation of 1.  Then  ( ) ( ) /F FF x x      and 

 ( ) ( ) /G GG x x     .  Assumption 1 is satisfied when F G   and F G  .  According to 

Theorem 8, x̃ ASDA (1, 2) ỹ if and only if      2( ) / ( ) / 0
b

x

G G F F
a

x x e dx         , 

and x̃ ASDR (1, 2) ỹ if and only if      2( ) / ( ) / 0
b

G G F F
a

x x x dx         . 
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The discussion in this subsection has so far been confined to the case in which F(x) 

crosses G(x) only once from above.  What about F(x) crossing G(x) only once from below? 

Although the latter case is not the focus of the ASD discussions in the literature, we include a 

quick analysis of it for completeness.  

 

Assumption 2: (i) There exists ( , )c a b  such that ( ) ( )F x G x  for all [ , )x a c , and  

( ) ( )F x G x  for all [ , ]x c b , (ii)  ( ) ( ) 0
c

a
F x G x dx  , and (iii)  ( ) ( ) 0

b

c
F x G x dx   

Theorem 9:  Under Assumption 2, 

(i) If ( ) ( )E x E y , then x  SSD y ; 

(ii) If ( ) ( )E x E y , then x  does not ASDA (1, 2) y  for any (1, 2), and x  does not 

ASDR (1, 2) y  for any (1, 2). 

Proof: (i) Assumption 2 and ( ) ( )E x E y  together imply  ( ) ( ) 0
y

a
G x F x dx   for all y.  So x  

SSD y . 

(ii) This result holds because ( ) ( )E x E y  is a necessary condition for x  ASDA (1, 2) y  or x  

ASDR (1, 2) y .    Q.E.D. 

 

4. Relation to the Conventional AFSD   
 

 Recall that x  almost first degree stochastically dominates y , or x  AFSD () y , if x  is 

preferred or indifferent to y  by every utility function in the set U1
 = {u(x) in U1: u'(x)  inf 
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{u'(x)}(1/ - 1) for all x in [a, b]}, where 0 <   1/2.  We now show that AFSD () implies 

ASDA (1, 2) and ASDR (1, 2) for appropriately chosen parameter values. 

First, for every utility function u(x) in U (1, 2) = {u(x): u'(x) > 0 and 1  A(x)  2}, 

where  1  0 < 2 , we have, for all y  z,  

1 2
1 2( ) ( )( )

( )

z z

y y
dx dx

b a b au y
e e e e

u z

 
   

   


.   (3) 

Choose 1 and 2 so that 

    2

1

( )

( )

1 1
1

b a

b a
e

e



 





 
   

 
.    (4) 

Then it is readily seen that u(x) belongs to the set U1
 . 

Similarly, for every utility function u(x) in U (1, 2) = {u(x): u'(x) > 0 and 1  R(x)  

2} = {u(x): u'(x) > 0 and 1/x  A(x)  2/x}, where  1  0 < 2 , we have, for all y  z,  

1 21 2( )

( )

b z u y z b

a y u z y a

  
      

         
      

.   (5) 

Choose 1 and 2 so that 

    

1 2 1
1

b b

a a

 





     
       

     
.    (6) 

Then it is readily seen that u(x) belongs to the set U1
 . 

Based on the above discussions, we have the following theorem stating the relations 

between ASDA (1, 2) and ASDR (1, 2) on one side and AFSD () on the other.     

Theorem 10: If x  AFSD () y , then 

(i) x  ASDA (1, 2) y  for 1 and 2 chosen according to (4); 
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(ii) x  ASDR (1, 2) y  for 1 and 2 chosen according to (6). 

The same analysis can be used to establish a connection between two existing notions of 

fractional degree stochastic dominance that fill the gap between FSD and SSD. Defined by 

Muller et al. (2017),  x  (1+γ)th degree stochastically dominates y , where 0  γ  1, if x  is 

preferred or indifferent to y  by all utility functions satisfying u'(x) > 0 and 
( )

( )

u y

u z






 for all y  

z.12 In contrast, Huang et al.’s (2020) notion of fractional degree stochastic dominance based on 

a negative lower bound on the absolute risk aversion measure is equivalent to ASDA (1, ∞) 

which is defined as unanimous preference of x  over y on the set of utility functions U (1, ∞) = 

{u(x): u'(x) > 0 and 1  A(x)}. A similar notion of fractional degree stochastic dominance – 

based on a negative lower bound on the relative risk aversion measure – would be equivalent to 

ASDR (1, ∞) with an associated set of utility functions U (1, ∞) = {u(x): u'(x) > 0 and 1  

R(x)} = {u(x): u'(x) > 0 and 1/x  A(x)}.  With discussions similar to those leading to Theorem 

10, we can establish the following theorem. 

Theorem 11: If x  (1+γ)th degree stochastically dominates y (according to Muller et al. 2017), 

then 

(i) x  ASDA (1, ∞) y  for 1 such that 1 ( )b a
e
 

 ; 

(ii) x  ASDR (1, ∞) y  for 1 such that 
1b

a




 

 
 

. 

5. Conclusion    

                                                             
12The original definition only requires u'(x)  0, and we require u'(x) > 0 so that the risk aversion measures are well 
defined.  
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We advance an alternative approach to almost stochastic dominance (ASD) by 

considering a group of decision makers whose Arrow-Pratt absolute (or relative) risk aversion 

measure has both an upper bound and a lower bound, thereby eliminating decision makers with 

extreme risk preferences.  Our ASD definitions can be interpreted as unanimous preference by 

all decision makers “who are neither too risk averse nor too risk loving”.  CDF-based 

characterizations of these two definitions of ASD are provided. We also show that the ASD 

definition based on bounds on the absolute risk aversion measure is invariant to translations, 

whereas that based on bounds on the relative risk aversion measure is invariant to positive 

scaling.  In addition, we demonstrate that, for several special cases (including the cases of either 

an upper bound or a lower bound but not both bounds at the same time, and the case of single-

crossing CDFs), each of the two ASD notions can be characterized by a simple closed-form 

condition. Finally, we provide a connection between the conventional AFSD based on restricting 

the degree of variability in the first order derivative of utility and the two new ASD concepts.     

 The Meyer results (1977a, 1977b) only discuss upper and lower bounds on risk aversion 

and say nothing about the slopes or other properties of the risk aversion measures.  As a result, 

they do not provide a way to extend our ASD definitions to higher orders of stochastic 

dominance.  Finding closed-form CDF characterizations of the two definitions of ASD for the 

general case and extending the ASD definitions to higher degrees seem to be a worthwhile 

avenue for future research.   
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